xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn201/dcn201_hwseq.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "core_types.h"
29 #include "resource.h"
30 #include "dcn201_hwseq.h"
31 #include "dcn201_optc.h"
32 #include "dce/dce_hwseq.h"
33 #include "hubp.h"
34 #include "dchubbub.h"
35 #include "timing_generator.h"
36 #include "opp.h"
37 #include "ipp.h"
38 #include "mpc.h"
39 #include "dccg.h"
40 #include "clk_mgr.h"
41 #include "reg_helper.h"
42 
43 #define CTX \
44 	hws->ctx
45 
46 #define REG(reg)\
47 	hws->regs->reg
48 
49 #define DC_LOGGER \
50 	dc->ctx->logger
51 
52 #undef FN
53 #define FN(reg_name, field_name) \
54 	hws->shifts->field_name, hws->masks->field_name
55 
56 static bool patch_address_for_sbs_tb_stereo(
57 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
58 {
59 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
60 	bool sec_split = pipe_ctx->top_pipe &&
61 		pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
62 
63 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
64 		(pipe_ctx->stream->timing.timing_3d_format ==
65 			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
66 		pipe_ctx->stream->timing.timing_3d_format ==
67 			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
68 		*addr = plane_state->address.grph_stereo.left_addr;
69 		plane_state->address.grph_stereo.left_addr =
70 			plane_state->address.grph_stereo.right_addr;
71 		return true;
72 	} else {
73 		if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
74 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
75 			plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
76 			plane_state->address.grph_stereo.right_addr =
77 			plane_state->address.grph_stereo.left_addr;
78 			plane_state->address.grph_stereo.right_meta_addr =
79 			plane_state->address.grph_stereo.left_meta_addr;
80 		}
81 	}
82 	return false;
83 }
84 
85 static bool gpu_addr_to_uma(struct dce_hwseq *hwseq,
86 		PHYSICAL_ADDRESS_LOC *addr)
87 {
88 	bool is_in_uma;
89 
90 	if (hwseq->fb_base.quad_part <= addr->quad_part &&
91 			addr->quad_part < hwseq->fb_top.quad_part) {
92 		addr->quad_part -= hwseq->fb_base.quad_part;
93 		addr->quad_part += hwseq->fb_offset.quad_part;
94 		is_in_uma = true;
95 	} else if (hwseq->fb_offset.quad_part <= addr->quad_part &&
96 			addr->quad_part <= hwseq->uma_top.quad_part) {
97 		is_in_uma = true;
98 	} else {
99 		is_in_uma = false;
100 	}
101 	return is_in_uma;
102 }
103 
104 static void plane_address_in_gpu_space_to_uma(struct dce_hwseq *hwseq,
105 		struct dc_plane_address *addr)
106 {
107 	switch (addr->type) {
108 	case PLN_ADDR_TYPE_GRAPHICS:
109 		gpu_addr_to_uma(hwseq, &addr->grph.addr);
110 		gpu_addr_to_uma(hwseq, &addr->grph.meta_addr);
111 		break;
112 	case PLN_ADDR_TYPE_GRPH_STEREO:
113 		gpu_addr_to_uma(hwseq, &addr->grph_stereo.left_addr);
114 		gpu_addr_to_uma(hwseq, &addr->grph_stereo.left_meta_addr);
115 		gpu_addr_to_uma(hwseq, &addr->grph_stereo.right_addr);
116 		gpu_addr_to_uma(hwseq, &addr->grph_stereo.right_meta_addr);
117 		break;
118 	case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE:
119 		gpu_addr_to_uma(hwseq, &addr->video_progressive.luma_addr);
120 		gpu_addr_to_uma(hwseq, &addr->video_progressive.luma_meta_addr);
121 		gpu_addr_to_uma(hwseq, &addr->video_progressive.chroma_addr);
122 		gpu_addr_to_uma(hwseq, &addr->video_progressive.chroma_meta_addr);
123 		break;
124 	default:
125 		BREAK_TO_DEBUGGER();
126 		break;
127 	}
128 }
129 
130 void dcn201_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
131 {
132 	bool addr_patched = false;
133 	PHYSICAL_ADDRESS_LOC addr;
134 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
135 	struct dce_hwseq *hws = dc->hwseq;
136 	struct dc_plane_address uma;
137 
138 	if (plane_state == NULL)
139 		return;
140 
141 	uma = plane_state->address;
142 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
143 
144 	plane_address_in_gpu_space_to_uma(hws, &uma);
145 
146 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
147 			pipe_ctx->plane_res.hubp,
148 			&uma,
149 			plane_state->flip_immediate);
150 
151 	plane_state->status.requested_address = plane_state->address;
152 
153 	if (plane_state->flip_immediate)
154 		plane_state->status.current_address = plane_state->address;
155 
156 	if (addr_patched)
157 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
158 }
159 
160 /* Blank pixel data during initialization */
161 void dcn201_init_blank(
162 		struct dc *dc,
163 		struct timing_generator *tg)
164 {
165 	struct dce_hwseq *hws = dc->hwseq;
166 	enum dc_color_space color_space;
167 	struct tg_color black_color = {0};
168 	struct output_pixel_processor *opp = NULL;
169 	uint32_t num_opps, opp_id_src0, opp_id_src1;
170 	uint32_t otg_active_width, otg_active_height;
171 
172 	/* program opp dpg blank color */
173 	color_space = COLOR_SPACE_SRGB;
174 	color_space_to_black_color(dc, color_space, &black_color);
175 
176 	/* get the OTG active size */
177 	tg->funcs->get_otg_active_size(tg,
178 			&otg_active_width,
179 			&otg_active_height);
180 
181 	/* get the OPTC source */
182 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
183 	ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
184 	opp = dc->res_pool->opps[opp_id_src0];
185 
186 	opp->funcs->opp_set_disp_pattern_generator(
187 			opp,
188 			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
189 			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
190 			COLOR_DEPTH_UNDEFINED,
191 			&black_color,
192 			otg_active_width,
193 			otg_active_height,
194 			0);
195 
196 	hws->funcs.wait_for_blank_complete(opp);
197 }
198 
199 static void read_mmhub_vm_setup(struct dce_hwseq *hws)
200 {
201 	uint32_t fb_base = REG_READ(MC_VM_FB_LOCATION_BASE);
202 	uint32_t fb_top = REG_READ(MC_VM_FB_LOCATION_TOP);
203 	uint32_t fb_offset = REG_READ(MC_VM_FB_OFFSET);
204 
205 	/* MC_VM_FB_LOCATION_TOP is in pages, actual top should add 1 */
206 	fb_top++;
207 
208 	/* bit 23:0 in register map to bit 47:24 in address */
209 	hws->fb_base.low_part = fb_base;
210 	hws->fb_base.quad_part <<= 24;
211 
212 	hws->fb_top.low_part  = fb_top;
213 	hws->fb_top.quad_part <<= 24;
214 	hws->fb_offset.low_part = fb_offset;
215 	hws->fb_offset.quad_part <<= 24;
216 
217 	hws->uma_top.quad_part = hws->fb_top.quad_part
218 			- hws->fb_base.quad_part + hws->fb_offset.quad_part;
219 }
220 
221 void dcn201_init_hw(struct dc *dc)
222 {
223 	int i, j;
224 	struct dce_hwseq *hws = dc->hwseq;
225 	struct resource_pool *res_pool = dc->res_pool;
226 	struct dc_state  *context = dc->current_state;
227 
228 	if (res_pool->dccg->funcs->dccg_init)
229 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
230 
231 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
232 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
233 
234 	if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
235 		REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
236 		REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
237 
238 		hws->funcs.dccg_init(hws);
239 
240 		REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
241 		REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
242 		REG_WRITE(REFCLK_CNTL, 0);
243 	} else {
244 		hws->funcs.bios_golden_init(dc);
245 
246 		if (dc->ctx->dc_bios->fw_info_valid) {
247 			res_pool->ref_clocks.xtalin_clock_inKhz =
248 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
249 
250 			if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
251 				if (res_pool->dccg && res_pool->hubbub) {
252 					(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
253 							dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
254 							&res_pool->ref_clocks.dccg_ref_clock_inKhz);
255 
256 					(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
257 							res_pool->ref_clocks.dccg_ref_clock_inKhz,
258 							&res_pool->ref_clocks.dchub_ref_clock_inKhz);
259 				} else {
260 					res_pool->ref_clocks.dccg_ref_clock_inKhz =
261 							res_pool->ref_clocks.xtalin_clock_inKhz;
262 					res_pool->ref_clocks.dchub_ref_clock_inKhz =
263 							res_pool->ref_clocks.xtalin_clock_inKhz;
264 				}
265 			}
266 		} else
267 			ASSERT_CRITICAL(false);
268 		for (i = 0; i < dc->link_count; i++) {
269 			/* Power up AND update implementation according to the
270 			 * required signal (which may be different from the
271 			 * default signal on connector).
272 			 */
273 			struct dc_link *link = dc->links[i];
274 
275 			link->link_enc->funcs->hw_init(link->link_enc);
276 		}
277 		if (hws->fb_offset.quad_part == 0)
278 			read_mmhub_vm_setup(hws);
279 	}
280 
281 	/* Blank pixel data with OPP DPG */
282 	for (i = 0; i < res_pool->timing_generator_count; i++) {
283 		struct timing_generator *tg = res_pool->timing_generators[i];
284 
285 		if (tg->funcs->is_tg_enabled(tg)) {
286 			dcn201_init_blank(dc, tg);
287 		}
288 	}
289 
290 	for (i = 0; i < res_pool->timing_generator_count; i++) {
291 		struct timing_generator *tg = res_pool->timing_generators[i];
292 
293 		if (tg->funcs->is_tg_enabled(tg))
294 			tg->funcs->lock(tg);
295 	}
296 
297 	for (i = 0; i < res_pool->pipe_count; i++) {
298 		struct dpp *dpp = res_pool->dpps[i];
299 
300 		dpp->funcs->dpp_reset(dpp);
301 	}
302 
303 	/* Reset all MPCC muxes */
304 	res_pool->mpc->funcs->mpc_init(res_pool->mpc);
305 
306 	/* initialize OPP mpc_tree parameter */
307 	for (i = 0; i < res_pool->res_cap->num_opp; i++) {
308 		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
309 		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
310 		for (j = 0; j < MAX_PIPES; j++)
311 			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
312 	}
313 
314 	for (i = 0; i < res_pool->timing_generator_count; i++) {
315 		struct timing_generator *tg = res_pool->timing_generators[i];
316 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
317 		struct hubp *hubp = res_pool->hubps[i];
318 		struct dpp *dpp = res_pool->dpps[i];
319 
320 		pipe_ctx->stream_res.tg = tg;
321 		pipe_ctx->pipe_idx = i;
322 
323 		pipe_ctx->plane_res.hubp = hubp;
324 		pipe_ctx->plane_res.dpp = dpp;
325 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
326 		hubp->mpcc_id = dpp->inst;
327 		hubp->opp_id = OPP_ID_INVALID;
328 		hubp->power_gated = false;
329 		pipe_ctx->stream_res.opp = NULL;
330 
331 		hubp->funcs->hubp_init(hubp);
332 
333 		res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
334 		pipe_ctx->stream_res.opp = res_pool->opps[i];
335 		/*To do: number of MPCC != number of opp*/
336 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
337 	}
338 
339 	/* initialize DWB pointer to MCIF_WB */
340 	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
341 		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
342 
343 	for (i = 0; i < res_pool->timing_generator_count; i++) {
344 		struct timing_generator *tg = res_pool->timing_generators[i];
345 
346 		if (tg->funcs->is_tg_enabled(tg))
347 			tg->funcs->unlock(tg);
348 	}
349 
350 	for (i = 0; i < res_pool->pipe_count; i++) {
351 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
352 
353 		dc->hwss.disable_plane(dc, pipe_ctx);
354 
355 		pipe_ctx->stream_res.tg = NULL;
356 		pipe_ctx->plane_res.hubp = NULL;
357 	}
358 
359 	for (i = 0; i < res_pool->timing_generator_count; i++) {
360 		struct timing_generator *tg = res_pool->timing_generators[i];
361 
362 		tg->funcs->tg_init(tg);
363 	}
364 
365 	/* end of FPGA. Below if real ASIC */
366 	if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
367 		return;
368 
369 	for (i = 0; i < res_pool->audio_count; i++) {
370 		struct audio *audio = res_pool->audios[i];
371 
372 		audio->funcs->hw_init(audio);
373 	}
374 
375 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
376 	REG_WRITE(DIO_MEM_PWR_CTRL, 0);
377 
378 	if (!dc->debug.disable_clock_gate) {
379 		/* enable all DCN clock gating */
380 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
381 
382 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
383 
384 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
385 	}
386 }
387 
388 /* trigger HW to start disconnect plane from stream on the next vsync */
389 void dcn201_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
390 {
391 	struct dce_hwseq *hws = dc->hwseq;
392 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
393 	int dpp_id = pipe_ctx->plane_res.dpp->inst;
394 	struct mpc *mpc = dc->res_pool->mpc;
395 	struct mpc_tree *mpc_tree_params;
396 	struct mpcc *mpcc_to_remove = NULL;
397 	struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
398 	bool mpcc_removed = false;
399 
400 	mpc_tree_params = &(opp->mpc_tree_params);
401 
402 	/* check if this plane is being used by an MPCC in the secondary blending chain */
403 	if (mpc->funcs->get_mpcc_for_dpp_from_secondary)
404 		mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp_from_secondary(mpc_tree_params, dpp_id);
405 
406 	/* remove MPCC from secondary if being used */
407 	if (mpcc_to_remove != NULL && mpc->funcs->remove_mpcc_from_secondary) {
408 		mpc->funcs->remove_mpcc_from_secondary(mpc, mpc_tree_params, mpcc_to_remove);
409 		mpcc_removed = true;
410 	}
411 
412 	/* check if this MPCC is already being used for this plane (dpp) in the primary blending chain */
413 	mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
414 	if (mpcc_to_remove != NULL) {
415 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
416 		mpcc_removed = true;
417 	}
418 
419 	/*Already reset*/
420 	if (mpcc_removed == false)
421 		return;
422 
423 	if (opp != NULL)
424 		opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
425 
426 	dc->optimized_required = true;
427 
428 	if (hubp->funcs->hubp_disconnect)
429 		hubp->funcs->hubp_disconnect(hubp);
430 
431 	if (dc->debug.sanity_checks)
432 		hws->funcs.verify_allow_pstate_change_high(dc);
433 }
434 
435 void dcn201_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
436 {
437 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
438 	struct mpcc_blnd_cfg blnd_cfg;
439 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
440 	int mpcc_id, dpp_id;
441 	struct mpcc *new_mpcc;
442 	struct mpcc *remove_mpcc = NULL;
443 	struct mpc *mpc = dc->res_pool->mpc;
444 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
445 
446 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
447 		get_hdr_visual_confirm_color(
448 				pipe_ctx, &blnd_cfg.black_color);
449 	} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
450 		get_surface_visual_confirm_color(
451 				pipe_ctx, &blnd_cfg.black_color);
452 	} else {
453 		color_space_to_black_color(
454 				dc, pipe_ctx->stream->output_color_space,
455 				&blnd_cfg.black_color);
456 	}
457 
458 	if (per_pixel_alpha)
459 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
460 	else
461 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
462 
463 	blnd_cfg.overlap_only = false;
464 
465 	if (pipe_ctx->plane_state->global_alpha_value)
466 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
467 	else
468 		blnd_cfg.global_alpha = 0xff;
469 
470 	blnd_cfg.global_gain = 0xff;
471 	blnd_cfg.background_color_bpc = 4;
472 	blnd_cfg.bottom_gain_mode = 0;
473 	blnd_cfg.top_gain = 0x1f000;
474 	blnd_cfg.bottom_inside_gain = 0x1f000;
475 	blnd_cfg.bottom_outside_gain = 0x1f000;
476 	/*the input to MPCC is RGB*/
477 	blnd_cfg.black_color.color_b_cb = 0;
478 	blnd_cfg.black_color.color_g_y = 0;
479 	blnd_cfg.black_color.color_r_cr = 0;
480 
481 	/* DCN1.0 has output CM before MPC which seems to screw with
482 	 * pre-multiplied alpha. This is a w/a hopefully unnecessary for DCN2.
483 	 */
484 	blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;
485 
486 	/*
487 	 * TODO: remove hack
488 	 * Note: currently there is a bug in init_hw such that
489 	 * on resume from hibernate, BIOS sets up MPCC0, and
490 	 * we do mpcc_remove but the mpcc cannot go to idle
491 	 * after remove. This cause us to pick mpcc1 here,
492 	 * which causes a pstate hang for yet unknown reason.
493 	 */
494 	dpp_id = hubp->inst;
495 	mpcc_id = dpp_id;
496 
497 	/* If there is no full update, don't need to touch MPC tree*/
498 	if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
499 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
500 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
501 		return;
502 	}
503 
504 	/* check if this plane is being used by an MPCC in the secondary blending chain */
505 	if (mpc->funcs->get_mpcc_for_dpp_from_secondary)
506 		remove_mpcc = mpc->funcs->get_mpcc_for_dpp_from_secondary(mpc_tree_params, dpp_id);
507 
508 	/* remove MPCC from secondary if being used */
509 	if (remove_mpcc != NULL && mpc->funcs->remove_mpcc_from_secondary)
510 		mpc->funcs->remove_mpcc_from_secondary(mpc, mpc_tree_params, remove_mpcc);
511 
512 	/* check if this MPCC is already being used for this plane (dpp) in the primary blending chain */
513 	remove_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
514 	/* remove MPCC if being used */
515 
516 	if (remove_mpcc != NULL)
517 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, remove_mpcc);
518 	else
519 		if (dc->debug.sanity_checks)
520 			mpc->funcs->assert_mpcc_idle_before_connect(
521 					dc->res_pool->mpc, mpcc_id);
522 
523 	/* Call MPC to insert new plane */
524 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
525 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
526 			mpc_tree_params,
527 			&blnd_cfg,
528 			NULL,
529 			NULL,
530 			dpp_id,
531 			mpcc_id);
532 
533 	ASSERT(new_mpcc != NULL);
534 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
535 	hubp->mpcc_id = mpcc_id;
536 }
537 
538 void dcn201_pipe_control_lock(
539 	struct dc *dc,
540 	struct pipe_ctx *pipe,
541 	bool lock)
542 {
543 	struct dce_hwseq *hws = dc->hwseq;
544 	/* use TG master update lock to lock everything on the TG
545 	 * therefore only top pipe need to lock
546 	 */
547 	if (pipe->top_pipe)
548 		return;
549 
550 	if (dc->debug.sanity_checks)
551 		hws->funcs.verify_allow_pstate_change_high(dc);
552 
553 	if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
554 		if (lock)
555 			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
556 		else
557 			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
558 	} else {
559 		if (lock)
560 			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
561 		else
562 			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
563 	}
564 
565 	if (dc->debug.sanity_checks)
566 		hws->funcs.verify_allow_pstate_change_high(dc);
567 }
568 
569 void dcn201_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
570 {
571 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
572 
573 	gpu_addr_to_uma(pipe_ctx->stream->ctx->dc->hwseq, &attributes->address);
574 
575 	pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
576 			pipe_ctx->plane_res.hubp, attributes);
577 	pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
578 		pipe_ctx->plane_res.dpp, attributes);
579 }
580 
581 void dcn201_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
582 {
583 	struct dc_dmdata_attributes attr = { 0 };
584 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
585 
586 	gpu_addr_to_uma(pipe_ctx->stream->ctx->dc->hwseq,
587 			&pipe_ctx->stream->dmdata_address);
588 
589 	attr.dmdata_mode = DMDATA_HW_MODE;
590 	attr.dmdata_size =
591 		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
592 	attr.address.quad_part =
593 			pipe_ctx->stream->dmdata_address.quad_part;
594 	attr.dmdata_dl_delta = 0;
595 	attr.dmdata_qos_mode = 0;
596 	attr.dmdata_qos_level = 0;
597 	attr.dmdata_repeat = 1; /* always repeat */
598 	attr.dmdata_updated = 1;
599 	attr.dmdata_sw_data = NULL;
600 
601 	hubp->funcs->dmdata_set_attributes(hubp, &attr);
602 }
603 
604 void dcn201_unblank_stream(struct pipe_ctx *pipe_ctx,
605 		struct dc_link_settings *link_settings)
606 {
607 	struct encoder_unblank_param params = { { 0 } };
608 	struct dc_stream_state *stream = pipe_ctx->stream;
609 	struct dc_link *link = stream->link;
610 	struct dce_hwseq *hws = link->dc->hwseq;
611 
612 	/* only 3 items below are used by unblank */
613 	params.timing = pipe_ctx->stream->timing;
614 
615 	params.link_settings.link_rate = link_settings->link_rate;
616 
617 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
618 		/*check whether it is half the rate*/
619 		if (optc201_is_two_pixels_per_containter(&stream->timing))
620 			params.timing.pix_clk_100hz /= 2;
621 
622 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
623 	}
624 
625 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
626 		hws->funcs.edp_backlight_control(link, true);
627 	}
628 }
629