1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * Copyright 2019 Raptor Engineering, LLC 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include <linux/slab.h> 28 29 #include "dm_services.h" 30 #include "dc.h" 31 32 #include "dcn20_init.h" 33 34 #include "resource.h" 35 #include "include/irq_service_interface.h" 36 #include "dcn20/dcn20_resource.h" 37 38 #include "dml/dcn20/dcn20_fpu.h" 39 40 #include "dcn10/dcn10_hubp.h" 41 #include "dcn10/dcn10_ipp.h" 42 #include "dcn20_hubbub.h" 43 #include "dcn20_mpc.h" 44 #include "dcn20_hubp.h" 45 #include "irq/dcn20/irq_service_dcn20.h" 46 #include "dcn20_dpp.h" 47 #include "dcn20_optc.h" 48 #include "dcn20_hwseq.h" 49 #include "dce110/dce110_hw_sequencer.h" 50 #include "dcn10/dcn10_resource.h" 51 #include "dcn20_opp.h" 52 53 #include "dcn20_dsc.h" 54 55 #include "dcn20_link_encoder.h" 56 #include "dcn20_stream_encoder.h" 57 #include "dce/dce_clock_source.h" 58 #include "dce/dce_audio.h" 59 #include "dce/dce_hwseq.h" 60 #include "virtual/virtual_stream_encoder.h" 61 #include "dce110/dce110_resource.h" 62 #include "dml/display_mode_vba.h" 63 #include "dcn20_dccg.h" 64 #include "dcn20_vmid.h" 65 #include "dce/dce_panel_cntl.h" 66 67 #include "navi10_ip_offset.h" 68 69 #include "dcn/dcn_2_0_0_offset.h" 70 #include "dcn/dcn_2_0_0_sh_mask.h" 71 #include "dpcs/dpcs_2_0_0_offset.h" 72 #include "dpcs/dpcs_2_0_0_sh_mask.h" 73 74 #include "nbio/nbio_2_3_offset.h" 75 76 #include "dcn20/dcn20_dwb.h" 77 #include "dcn20/dcn20_mmhubbub.h" 78 79 #include "mmhub/mmhub_2_0_0_offset.h" 80 #include "mmhub/mmhub_2_0_0_sh_mask.h" 81 82 #include "reg_helper.h" 83 #include "dce/dce_abm.h" 84 #include "dce/dce_dmcu.h" 85 #include "dce/dce_aux.h" 86 #include "dce/dce_i2c.h" 87 #include "vm_helper.h" 88 #include "link_enc_cfg.h" 89 90 #include "amdgpu_socbb.h" 91 92 #include "link.h" 93 #define DC_LOGGER_INIT(logger) 94 95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL 96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f 97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f 99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f 101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f 103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f 105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f 107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f 109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 110 #endif 111 112 113 enum dcn20_clk_src_array_id { 114 DCN20_CLK_SRC_PLL0, 115 DCN20_CLK_SRC_PLL1, 116 DCN20_CLK_SRC_PLL2, 117 DCN20_CLK_SRC_PLL3, 118 DCN20_CLK_SRC_PLL4, 119 DCN20_CLK_SRC_PLL5, 120 DCN20_CLK_SRC_TOTAL 121 }; 122 123 /* begin ********************* 124 * macros to expend register list macro defined in HW object header file */ 125 126 /* DCN */ 127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 128 129 #define BASE(seg) BASE_INNER(seg) 130 131 #define SR(reg_name)\ 132 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 133 mm ## reg_name 134 135 #define SRI(reg_name, block, id)\ 136 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRI2_DWB(reg_name, block, id)\ 140 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 141 mm ## reg_name 142 #define SF_DWB(reg_name, field_name, post_fix)\ 143 .field_name = reg_name ## __ ## field_name ## post_fix 144 145 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 146 .field_name = reg_name ## __ ## field_name ## post_fix 147 148 #define SRIR(var_name, reg_name, block, id)\ 149 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 150 mm ## block ## id ## _ ## reg_name 151 152 #define SRII(reg_name, block, id)\ 153 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 154 mm ## block ## id ## _ ## reg_name 155 156 #define DCCG_SRII(reg_name, block, id)\ 157 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 158 mm ## block ## id ## _ ## reg_name 159 160 #define VUPDATE_SRII(reg_name, block, id)\ 161 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 162 mm ## reg_name ## _ ## block ## id 163 164 /* NBIO */ 165 #define NBIO_BASE_INNER(seg) \ 166 NBIO_BASE__INST0_SEG ## seg 167 168 #define NBIO_BASE(seg) \ 169 NBIO_BASE_INNER(seg) 170 171 #define NBIO_SR(reg_name)\ 172 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 173 mm ## reg_name 174 175 /* MMHUB */ 176 #define MMHUB_BASE_INNER(seg) \ 177 MMHUB_BASE__INST0_SEG ## seg 178 179 #define MMHUB_BASE(seg) \ 180 MMHUB_BASE_INNER(seg) 181 182 #define MMHUB_SR(reg_name)\ 183 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 184 mmMM ## reg_name 185 186 static const struct bios_registers bios_regs = { 187 NBIO_SR(BIOS_SCRATCH_3), 188 NBIO_SR(BIOS_SCRATCH_6) 189 }; 190 191 #define clk_src_regs(index, pllid)\ 192 [index] = {\ 193 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 194 } 195 196 static const struct dce110_clk_src_regs clk_src_regs[] = { 197 clk_src_regs(0, A), 198 clk_src_regs(1, B), 199 clk_src_regs(2, C), 200 clk_src_regs(3, D), 201 clk_src_regs(4, E), 202 clk_src_regs(5, F) 203 }; 204 205 static const struct dce110_clk_src_shift cs_shift = { 206 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 207 }; 208 209 static const struct dce110_clk_src_mask cs_mask = { 210 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 211 }; 212 213 static const struct dce_dmcu_registers dmcu_regs = { 214 DMCU_DCN10_REG_LIST() 215 }; 216 217 static const struct dce_dmcu_shift dmcu_shift = { 218 DMCU_MASK_SH_LIST_DCN10(__SHIFT) 219 }; 220 221 static const struct dce_dmcu_mask dmcu_mask = { 222 DMCU_MASK_SH_LIST_DCN10(_MASK) 223 }; 224 225 static const struct dce_abm_registers abm_regs = { 226 ABM_DCN20_REG_LIST() 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN20(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN20(_MASK) 235 }; 236 237 #define audio_regs(id)\ 238 [id] = {\ 239 AUD_COMMON_REG_LIST(id)\ 240 } 241 242 static const struct dce_audio_registers audio_regs[] = { 243 audio_regs(0), 244 audio_regs(1), 245 audio_regs(2), 246 audio_regs(3), 247 audio_regs(4), 248 audio_regs(5), 249 audio_regs(6), 250 }; 251 252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 253 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 255 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 256 257 static const struct dce_audio_shift audio_shift = { 258 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 259 }; 260 261 static const struct dce_audio_mask audio_mask = { 262 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 263 }; 264 265 #define stream_enc_regs(id)\ 266 [id] = {\ 267 SE_DCN2_REG_LIST(id)\ 268 } 269 270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 271 stream_enc_regs(0), 272 stream_enc_regs(1), 273 stream_enc_regs(2), 274 stream_enc_regs(3), 275 stream_enc_regs(4), 276 stream_enc_regs(5), 277 }; 278 279 static const struct dcn10_stream_encoder_shift se_shift = { 280 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) 281 }; 282 283 static const struct dcn10_stream_encoder_mask se_mask = { 284 SE_COMMON_MASK_SH_LIST_DCN20(_MASK) 285 }; 286 287 288 #define aux_regs(id)\ 289 [id] = {\ 290 DCN2_AUX_REG_LIST(id)\ 291 } 292 293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 294 aux_regs(0), 295 aux_regs(1), 296 aux_regs(2), 297 aux_regs(3), 298 aux_regs(4), 299 aux_regs(5) 300 }; 301 302 #define hpd_regs(id)\ 303 [id] = {\ 304 HPD_REG_LIST(id)\ 305 } 306 307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 308 hpd_regs(0), 309 hpd_regs(1), 310 hpd_regs(2), 311 hpd_regs(3), 312 hpd_regs(4), 313 hpd_regs(5) 314 }; 315 316 #define link_regs(id, phyid)\ 317 [id] = {\ 318 LE_DCN10_REG_LIST(id), \ 319 UNIPHY_DCN2_REG_LIST(phyid), \ 320 DPCS_DCN2_REG_LIST(id), \ 321 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 322 } 323 324 static const struct dcn10_link_enc_registers link_enc_regs[] = { 325 link_regs(0, A), 326 link_regs(1, B), 327 link_regs(2, C), 328 link_regs(3, D), 329 link_regs(4, E), 330 link_regs(5, F) 331 }; 332 333 static const struct dcn10_link_enc_shift le_shift = { 334 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ 335 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 336 }; 337 338 static const struct dcn10_link_enc_mask le_mask = { 339 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ 340 DPCS_DCN2_MASK_SH_LIST(_MASK) 341 }; 342 343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 344 { DCN_PANEL_CNTL_REG_LIST() } 345 }; 346 347 static const struct dce_panel_cntl_shift panel_cntl_shift = { 348 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 349 }; 350 351 static const struct dce_panel_cntl_mask panel_cntl_mask = { 352 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 353 }; 354 355 #define ipp_regs(id)\ 356 [id] = {\ 357 IPP_REG_LIST_DCN20(id),\ 358 } 359 360 static const struct dcn10_ipp_registers ipp_regs[] = { 361 ipp_regs(0), 362 ipp_regs(1), 363 ipp_regs(2), 364 ipp_regs(3), 365 ipp_regs(4), 366 ipp_regs(5), 367 }; 368 369 static const struct dcn10_ipp_shift ipp_shift = { 370 IPP_MASK_SH_LIST_DCN20(__SHIFT) 371 }; 372 373 static const struct dcn10_ipp_mask ipp_mask = { 374 IPP_MASK_SH_LIST_DCN20(_MASK), 375 }; 376 377 #define opp_regs(id)\ 378 [id] = {\ 379 OPP_REG_LIST_DCN20(id),\ 380 } 381 382 static const struct dcn20_opp_registers opp_regs[] = { 383 opp_regs(0), 384 opp_regs(1), 385 opp_regs(2), 386 opp_regs(3), 387 opp_regs(4), 388 opp_regs(5), 389 }; 390 391 static const struct dcn20_opp_shift opp_shift = { 392 OPP_MASK_SH_LIST_DCN20(__SHIFT) 393 }; 394 395 static const struct dcn20_opp_mask opp_mask = { 396 OPP_MASK_SH_LIST_DCN20(_MASK) 397 }; 398 399 #define aux_engine_regs(id)\ 400 [id] = {\ 401 AUX_COMMON_REG_LIST0(id), \ 402 .AUXN_IMPCAL = 0, \ 403 .AUXP_IMPCAL = 0, \ 404 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 405 } 406 407 static const struct dce110_aux_registers aux_engine_regs[] = { 408 aux_engine_regs(0), 409 aux_engine_regs(1), 410 aux_engine_regs(2), 411 aux_engine_regs(3), 412 aux_engine_regs(4), 413 aux_engine_regs(5) 414 }; 415 416 #define tf_regs(id)\ 417 [id] = {\ 418 TF_REG_LIST_DCN20(id),\ 419 TF_REG_LIST_DCN20_COMMON_APPEND(id),\ 420 } 421 422 static const struct dcn2_dpp_registers tf_regs[] = { 423 tf_regs(0), 424 tf_regs(1), 425 tf_regs(2), 426 tf_regs(3), 427 tf_regs(4), 428 tf_regs(5), 429 }; 430 431 static const struct dcn2_dpp_shift tf_shift = { 432 TF_REG_LIST_SH_MASK_DCN20(__SHIFT), 433 TF_DEBUG_REG_LIST_SH_DCN20 434 }; 435 436 static const struct dcn2_dpp_mask tf_mask = { 437 TF_REG_LIST_SH_MASK_DCN20(_MASK), 438 TF_DEBUG_REG_LIST_MASK_DCN20 439 }; 440 441 #define dwbc_regs_dcn2(id)\ 442 [id] = {\ 443 DWBC_COMMON_REG_LIST_DCN2_0(id),\ 444 } 445 446 static const struct dcn20_dwbc_registers dwbc20_regs[] = { 447 dwbc_regs_dcn2(0), 448 }; 449 450 static const struct dcn20_dwbc_shift dwbc20_shift = { 451 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 452 }; 453 454 static const struct dcn20_dwbc_mask dwbc20_mask = { 455 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 456 }; 457 458 #define mcif_wb_regs_dcn2(id)\ 459 [id] = {\ 460 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ 461 } 462 463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { 464 mcif_wb_regs_dcn2(0), 465 }; 466 467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { 468 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 469 }; 470 471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { 472 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 473 }; 474 475 static const struct dcn20_mpc_registers mpc_regs = { 476 MPC_REG_LIST_DCN2_0(0), 477 MPC_REG_LIST_DCN2_0(1), 478 MPC_REG_LIST_DCN2_0(2), 479 MPC_REG_LIST_DCN2_0(3), 480 MPC_REG_LIST_DCN2_0(4), 481 MPC_REG_LIST_DCN2_0(5), 482 MPC_OUT_MUX_REG_LIST_DCN2_0(0), 483 MPC_OUT_MUX_REG_LIST_DCN2_0(1), 484 MPC_OUT_MUX_REG_LIST_DCN2_0(2), 485 MPC_OUT_MUX_REG_LIST_DCN2_0(3), 486 MPC_OUT_MUX_REG_LIST_DCN2_0(4), 487 MPC_OUT_MUX_REG_LIST_DCN2_0(5), 488 MPC_DBG_REG_LIST_DCN2_0() 489 }; 490 491 static const struct dcn20_mpc_shift mpc_shift = { 492 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), 493 MPC_DEBUG_REG_LIST_SH_DCN20 494 }; 495 496 static const struct dcn20_mpc_mask mpc_mask = { 497 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), 498 MPC_DEBUG_REG_LIST_MASK_DCN20 499 }; 500 501 #define tg_regs(id)\ 502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} 503 504 505 static const struct dcn_optc_registers tg_regs[] = { 506 tg_regs(0), 507 tg_regs(1), 508 tg_regs(2), 509 tg_regs(3), 510 tg_regs(4), 511 tg_regs(5) 512 }; 513 514 static const struct dcn_optc_shift tg_shift = { 515 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 516 }; 517 518 static const struct dcn_optc_mask tg_mask = { 519 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 520 }; 521 522 #define hubp_regs(id)\ 523 [id] = {\ 524 HUBP_REG_LIST_DCN20(id)\ 525 } 526 527 static const struct dcn_hubp2_registers hubp_regs[] = { 528 hubp_regs(0), 529 hubp_regs(1), 530 hubp_regs(2), 531 hubp_regs(3), 532 hubp_regs(4), 533 hubp_regs(5) 534 }; 535 536 static const struct dcn_hubp2_shift hubp_shift = { 537 HUBP_MASK_SH_LIST_DCN20(__SHIFT) 538 }; 539 540 static const struct dcn_hubp2_mask hubp_mask = { 541 HUBP_MASK_SH_LIST_DCN20(_MASK) 542 }; 543 544 static const struct dcn_hubbub_registers hubbub_reg = { 545 HUBBUB_REG_LIST_DCN20(0) 546 }; 547 548 static const struct dcn_hubbub_shift hubbub_shift = { 549 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) 550 }; 551 552 static const struct dcn_hubbub_mask hubbub_mask = { 553 HUBBUB_MASK_SH_LIST_DCN20(_MASK) 554 }; 555 556 #define vmid_regs(id)\ 557 [id] = {\ 558 DCN20_VMID_REG_LIST(id)\ 559 } 560 561 static const struct dcn_vmid_registers vmid_regs[] = { 562 vmid_regs(0), 563 vmid_regs(1), 564 vmid_regs(2), 565 vmid_regs(3), 566 vmid_regs(4), 567 vmid_regs(5), 568 vmid_regs(6), 569 vmid_regs(7), 570 vmid_regs(8), 571 vmid_regs(9), 572 vmid_regs(10), 573 vmid_regs(11), 574 vmid_regs(12), 575 vmid_regs(13), 576 vmid_regs(14), 577 vmid_regs(15) 578 }; 579 580 static const struct dcn20_vmid_shift vmid_shifts = { 581 DCN20_VMID_MASK_SH_LIST(__SHIFT) 582 }; 583 584 static const struct dcn20_vmid_mask vmid_masks = { 585 DCN20_VMID_MASK_SH_LIST(_MASK) 586 }; 587 588 static const struct dce110_aux_registers_shift aux_shift = { 589 DCN_AUX_MASK_SH_LIST(__SHIFT) 590 }; 591 592 static const struct dce110_aux_registers_mask aux_mask = { 593 DCN_AUX_MASK_SH_LIST(_MASK) 594 }; 595 596 static int map_transmitter_id_to_phy_instance( 597 enum transmitter transmitter) 598 { 599 switch (transmitter) { 600 case TRANSMITTER_UNIPHY_A: 601 return 0; 602 break; 603 case TRANSMITTER_UNIPHY_B: 604 return 1; 605 break; 606 case TRANSMITTER_UNIPHY_C: 607 return 2; 608 break; 609 case TRANSMITTER_UNIPHY_D: 610 return 3; 611 break; 612 case TRANSMITTER_UNIPHY_E: 613 return 4; 614 break; 615 case TRANSMITTER_UNIPHY_F: 616 return 5; 617 break; 618 default: 619 ASSERT(0); 620 return 0; 621 } 622 } 623 624 #define dsc_regsDCN20(id)\ 625 [id] = {\ 626 DSC_REG_LIST_DCN20(id)\ 627 } 628 629 static const struct dcn20_dsc_registers dsc_regs[] = { 630 dsc_regsDCN20(0), 631 dsc_regsDCN20(1), 632 dsc_regsDCN20(2), 633 dsc_regsDCN20(3), 634 dsc_regsDCN20(4), 635 dsc_regsDCN20(5) 636 }; 637 638 static const struct dcn20_dsc_shift dsc_shift = { 639 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 640 }; 641 642 static const struct dcn20_dsc_mask dsc_mask = { 643 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 644 }; 645 646 static const struct dccg_registers dccg_regs = { 647 DCCG_REG_LIST_DCN2() 648 }; 649 650 static const struct dccg_shift dccg_shift = { 651 DCCG_MASK_SH_LIST_DCN2(__SHIFT) 652 }; 653 654 static const struct dccg_mask dccg_mask = { 655 DCCG_MASK_SH_LIST_DCN2(_MASK) 656 }; 657 658 static const struct resource_caps res_cap_nv10 = { 659 .num_timing_generator = 6, 660 .num_opp = 6, 661 .num_video_plane = 6, 662 .num_audio = 7, 663 .num_stream_encoder = 6, 664 .num_pll = 6, 665 .num_dwb = 1, 666 .num_ddc = 6, 667 .num_vmid = 16, 668 .num_dsc = 6, 669 }; 670 671 static const struct dc_plane_cap plane_cap = { 672 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 673 .per_pixel_alpha = true, 674 675 .pixel_format_support = { 676 .argb8888 = true, 677 .nv12 = true, 678 .fp16 = true, 679 .p010 = true 680 }, 681 682 .max_upscale_factor = { 683 .argb8888 = 16000, 684 .nv12 = 16000, 685 .fp16 = 1 686 }, 687 688 .max_downscale_factor = { 689 .argb8888 = 250, 690 .nv12 = 250, 691 .fp16 = 1 692 }, 693 16, 694 16 695 }; 696 static const struct resource_caps res_cap_nv14 = { 697 .num_timing_generator = 5, 698 .num_opp = 5, 699 .num_video_plane = 5, 700 .num_audio = 6, 701 .num_stream_encoder = 5, 702 .num_pll = 5, 703 .num_dwb = 1, 704 .num_ddc = 5, 705 .num_vmid = 16, 706 .num_dsc = 5, 707 }; 708 709 static const struct dc_debug_options debug_defaults_drv = { 710 .disable_dmcu = false, 711 .force_abm_enable = false, 712 .timing_trace = false, 713 .clock_trace = true, 714 .disable_pplib_clock_request = true, 715 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 716 .force_single_disp_pipe_split = false, 717 .disable_dcc = DCC_ENABLE, 718 .vsr_support = true, 719 .performance_trace = false, 720 .max_downscale_src_width = 5120,/*upto 5K*/ 721 .disable_pplib_wm_range = false, 722 .scl_reset_length10 = true, 723 .sanity_checks = false, 724 .underflow_assert_delay_us = 0xFFFFFFFF, 725 .enable_legacy_fast_update = true, 726 }; 727 728 void dcn20_dpp_destroy(struct dpp **dpp) 729 { 730 kfree(TO_DCN20_DPP(*dpp)); 731 *dpp = NULL; 732 } 733 734 struct dpp *dcn20_dpp_create( 735 struct dc_context *ctx, 736 uint32_t inst) 737 { 738 struct dcn20_dpp *dpp = 739 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC); 740 741 if (!dpp) 742 return NULL; 743 744 if (dpp2_construct(dpp, ctx, inst, 745 &tf_regs[inst], &tf_shift, &tf_mask)) 746 return &dpp->base; 747 748 BREAK_TO_DEBUGGER(); 749 kfree(dpp); 750 return NULL; 751 } 752 753 struct input_pixel_processor *dcn20_ipp_create( 754 struct dc_context *ctx, uint32_t inst) 755 { 756 struct dcn10_ipp *ipp = 757 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC); 758 759 if (!ipp) { 760 BREAK_TO_DEBUGGER(); 761 return NULL; 762 } 763 764 dcn20_ipp_construct(ipp, ctx, inst, 765 &ipp_regs[inst], &ipp_shift, &ipp_mask); 766 return &ipp->base; 767 } 768 769 770 struct output_pixel_processor *dcn20_opp_create( 771 struct dc_context *ctx, uint32_t inst) 772 { 773 struct dcn20_opp *opp = 774 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC); 775 776 if (!opp) { 777 BREAK_TO_DEBUGGER(); 778 return NULL; 779 } 780 781 dcn20_opp_construct(opp, ctx, inst, 782 &opp_regs[inst], &opp_shift, &opp_mask); 783 return &opp->base; 784 } 785 786 struct dce_aux *dcn20_aux_engine_create( 787 struct dc_context *ctx, 788 uint32_t inst) 789 { 790 struct aux_engine_dce110 *aux_engine = 791 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC); 792 793 if (!aux_engine) 794 return NULL; 795 796 dce110_aux_engine_construct(aux_engine, ctx, inst, 797 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 798 &aux_engine_regs[inst], 799 &aux_mask, 800 &aux_shift, 801 ctx->dc->caps.extended_aux_timeout_support); 802 803 return &aux_engine->base; 804 } 805 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } 806 807 static const struct dce_i2c_registers i2c_hw_regs[] = { 808 i2c_inst_regs(1), 809 i2c_inst_regs(2), 810 i2c_inst_regs(3), 811 i2c_inst_regs(4), 812 i2c_inst_regs(5), 813 i2c_inst_regs(6), 814 }; 815 816 static const struct dce_i2c_shift i2c_shifts = { 817 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) 818 }; 819 820 static const struct dce_i2c_mask i2c_masks = { 821 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) 822 }; 823 824 struct dce_i2c_hw *dcn20_i2c_hw_create( 825 struct dc_context *ctx, 826 uint32_t inst) 827 { 828 struct dce_i2c_hw *dce_i2c_hw = 829 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC); 830 831 if (!dce_i2c_hw) 832 return NULL; 833 834 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 835 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 836 837 return dce_i2c_hw; 838 } 839 struct mpc *dcn20_mpc_create(struct dc_context *ctx) 840 { 841 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), 842 GFP_ATOMIC); 843 844 if (!mpc20) 845 return NULL; 846 847 dcn20_mpc_construct(mpc20, ctx, 848 &mpc_regs, 849 &mpc_shift, 850 &mpc_mask, 851 6); 852 853 return &mpc20->base; 854 } 855 856 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) 857 { 858 int i; 859 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), 860 GFP_ATOMIC); 861 862 if (!hubbub) 863 return NULL; 864 865 hubbub2_construct(hubbub, ctx, 866 &hubbub_reg, 867 &hubbub_shift, 868 &hubbub_mask); 869 870 for (i = 0; i < res_cap_nv10.num_vmid; i++) { 871 struct dcn20_vmid *vmid = &hubbub->vmid[i]; 872 873 vmid->ctx = ctx; 874 875 vmid->regs = &vmid_regs[i]; 876 vmid->shifts = &vmid_shifts; 877 vmid->masks = &vmid_masks; 878 } 879 880 return &hubbub->base; 881 } 882 883 struct timing_generator *dcn20_timing_generator_create( 884 struct dc_context *ctx, 885 uint32_t instance) 886 { 887 struct optc *tgn10 = 888 kzalloc(sizeof(struct optc), GFP_ATOMIC); 889 890 if (!tgn10) 891 return NULL; 892 893 tgn10->base.inst = instance; 894 tgn10->base.ctx = ctx; 895 896 tgn10->tg_regs = &tg_regs[instance]; 897 tgn10->tg_shift = &tg_shift; 898 tgn10->tg_mask = &tg_mask; 899 900 dcn20_timing_generator_init(tgn10); 901 902 return &tgn10->base; 903 } 904 905 static const struct encoder_feature_support link_enc_feature = { 906 .max_hdmi_deep_color = COLOR_DEPTH_121212, 907 .max_hdmi_pixel_clock = 600000, 908 .hdmi_ycbcr420_supported = true, 909 .dp_ycbcr420_supported = true, 910 .fec_supported = true, 911 .flags.bits.IS_HBR2_CAPABLE = true, 912 .flags.bits.IS_HBR3_CAPABLE = true, 913 .flags.bits.IS_TPS3_CAPABLE = true, 914 .flags.bits.IS_TPS4_CAPABLE = true 915 }; 916 917 struct link_encoder *dcn20_link_encoder_create( 918 struct dc_context *ctx, 919 const struct encoder_init_data *enc_init_data) 920 { 921 struct dcn20_link_encoder *enc20 = 922 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 923 int link_regs_id; 924 925 if (!enc20) 926 return NULL; 927 928 link_regs_id = 929 map_transmitter_id_to_phy_instance(enc_init_data->transmitter); 930 931 dcn20_link_encoder_construct(enc20, 932 enc_init_data, 933 &link_enc_feature, 934 &link_enc_regs[link_regs_id], 935 &link_enc_aux_regs[enc_init_data->channel - 1], 936 &link_enc_hpd_regs[enc_init_data->hpd_source], 937 &le_shift, 938 &le_mask); 939 940 return &enc20->enc10.base; 941 } 942 943 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data) 944 { 945 struct dce_panel_cntl *panel_cntl = 946 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 947 948 if (!panel_cntl) 949 return NULL; 950 951 dce_panel_cntl_construct(panel_cntl, 952 init_data, 953 &panel_cntl_regs[init_data->inst], 954 &panel_cntl_shift, 955 &panel_cntl_mask); 956 957 return &panel_cntl->base; 958 } 959 960 static struct clock_source *dcn20_clock_source_create( 961 struct dc_context *ctx, 962 struct dc_bios *bios, 963 enum clock_source_id id, 964 const struct dce110_clk_src_regs *regs, 965 bool dp_clk_src) 966 { 967 struct dce110_clk_src *clk_src = 968 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC); 969 970 if (!clk_src) 971 return NULL; 972 973 if (dcn20_clk_src_construct(clk_src, ctx, bios, id, 974 regs, &cs_shift, &cs_mask)) { 975 clk_src->base.dp_clk_src = dp_clk_src; 976 return &clk_src->base; 977 } 978 979 kfree(clk_src); 980 BREAK_TO_DEBUGGER(); 981 return NULL; 982 } 983 984 static void read_dce_straps( 985 struct dc_context *ctx, 986 struct resource_straps *straps) 987 { 988 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 989 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 990 } 991 992 static struct audio *dcn20_create_audio( 993 struct dc_context *ctx, unsigned int inst) 994 { 995 return dce_audio_create(ctx, inst, 996 &audio_regs[inst], &audio_shift, &audio_mask); 997 } 998 999 struct stream_encoder *dcn20_stream_encoder_create( 1000 enum engine_id eng_id, 1001 struct dc_context *ctx) 1002 { 1003 struct dcn10_stream_encoder *enc1 = 1004 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1005 1006 if (!enc1) 1007 return NULL; 1008 1009 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 1010 if (eng_id >= ENGINE_ID_DIGD) 1011 eng_id++; 1012 } 1013 1014 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, 1015 &stream_enc_regs[eng_id], 1016 &se_shift, &se_mask); 1017 1018 return &enc1->base; 1019 } 1020 1021 static const struct dce_hwseq_registers hwseq_reg = { 1022 HWSEQ_DCN2_REG_LIST() 1023 }; 1024 1025 static const struct dce_hwseq_shift hwseq_shift = { 1026 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) 1027 }; 1028 1029 static const struct dce_hwseq_mask hwseq_mask = { 1030 HWSEQ_DCN2_MASK_SH_LIST(_MASK) 1031 }; 1032 1033 struct dce_hwseq *dcn20_hwseq_create( 1034 struct dc_context *ctx) 1035 { 1036 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1037 1038 if (hws) { 1039 hws->ctx = ctx; 1040 hws->regs = &hwseq_reg; 1041 hws->shifts = &hwseq_shift; 1042 hws->masks = &hwseq_mask; 1043 } 1044 return hws; 1045 } 1046 1047 static const struct resource_create_funcs res_create_funcs = { 1048 .read_dce_straps = read_dce_straps, 1049 .create_audio = dcn20_create_audio, 1050 .create_stream_encoder = dcn20_stream_encoder_create, 1051 .create_hwseq = dcn20_hwseq_create, 1052 }; 1053 1054 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu); 1055 1056 void dcn20_clock_source_destroy(struct clock_source **clk_src) 1057 { 1058 kfree(TO_DCE110_CLK_SRC(*clk_src)); 1059 *clk_src = NULL; 1060 } 1061 1062 1063 struct display_stream_compressor *dcn20_dsc_create( 1064 struct dc_context *ctx, uint32_t inst) 1065 { 1066 struct dcn20_dsc *dsc = 1067 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC); 1068 1069 if (!dsc) { 1070 BREAK_TO_DEBUGGER(); 1071 return NULL; 1072 } 1073 1074 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1075 return &dsc->base; 1076 } 1077 1078 void dcn20_dsc_destroy(struct display_stream_compressor **dsc) 1079 { 1080 kfree(container_of(*dsc, struct dcn20_dsc, base)); 1081 *dsc = NULL; 1082 } 1083 1084 1085 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool) 1086 { 1087 unsigned int i; 1088 1089 for (i = 0; i < pool->base.stream_enc_count; i++) { 1090 if (pool->base.stream_enc[i] != NULL) { 1091 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1092 pool->base.stream_enc[i] = NULL; 1093 } 1094 } 1095 1096 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1097 if (pool->base.dscs[i] != NULL) 1098 dcn20_dsc_destroy(&pool->base.dscs[i]); 1099 } 1100 1101 if (pool->base.mpc != NULL) { 1102 kfree(TO_DCN20_MPC(pool->base.mpc)); 1103 pool->base.mpc = NULL; 1104 } 1105 if (pool->base.hubbub != NULL) { 1106 kfree(pool->base.hubbub); 1107 pool->base.hubbub = NULL; 1108 } 1109 for (i = 0; i < pool->base.pipe_count; i++) { 1110 if (pool->base.dpps[i] != NULL) 1111 dcn20_dpp_destroy(&pool->base.dpps[i]); 1112 1113 if (pool->base.ipps[i] != NULL) 1114 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1115 1116 if (pool->base.hubps[i] != NULL) { 1117 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1118 pool->base.hubps[i] = NULL; 1119 } 1120 1121 if (pool->base.irqs != NULL) { 1122 dal_irq_service_destroy(&pool->base.irqs); 1123 } 1124 } 1125 1126 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1127 if (pool->base.engines[i] != NULL) 1128 dce110_engine_destroy(&pool->base.engines[i]); 1129 if (pool->base.hw_i2cs[i] != NULL) { 1130 kfree(pool->base.hw_i2cs[i]); 1131 pool->base.hw_i2cs[i] = NULL; 1132 } 1133 if (pool->base.sw_i2cs[i] != NULL) { 1134 kfree(pool->base.sw_i2cs[i]); 1135 pool->base.sw_i2cs[i] = NULL; 1136 } 1137 } 1138 1139 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1140 if (pool->base.opps[i] != NULL) 1141 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1142 } 1143 1144 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1145 if (pool->base.timing_generators[i] != NULL) { 1146 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1147 pool->base.timing_generators[i] = NULL; 1148 } 1149 } 1150 1151 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1152 if (pool->base.dwbc[i] != NULL) { 1153 kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); 1154 pool->base.dwbc[i] = NULL; 1155 } 1156 if (pool->base.mcif_wb[i] != NULL) { 1157 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); 1158 pool->base.mcif_wb[i] = NULL; 1159 } 1160 } 1161 1162 for (i = 0; i < pool->base.audio_count; i++) { 1163 if (pool->base.audios[i]) 1164 dce_aud_destroy(&pool->base.audios[i]); 1165 } 1166 1167 for (i = 0; i < pool->base.clk_src_count; i++) { 1168 if (pool->base.clock_sources[i] != NULL) { 1169 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1170 pool->base.clock_sources[i] = NULL; 1171 } 1172 } 1173 1174 if (pool->base.dp_clock_source != NULL) { 1175 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1176 pool->base.dp_clock_source = NULL; 1177 } 1178 1179 1180 if (pool->base.abm != NULL) 1181 dce_abm_destroy(&pool->base.abm); 1182 1183 if (pool->base.dmcu != NULL) 1184 dce_dmcu_destroy(&pool->base.dmcu); 1185 1186 if (pool->base.dccg != NULL) 1187 dcn_dccg_destroy(&pool->base.dccg); 1188 1189 if (pool->base.pp_smu != NULL) 1190 dcn20_pp_smu_destroy(&pool->base.pp_smu); 1191 1192 if (pool->base.oem_device != NULL) { 1193 struct dc *dc = pool->base.oem_device->ctx->dc; 1194 1195 dc->link_srv->destroy_ddc_service(&pool->base.oem_device); 1196 } 1197 } 1198 1199 struct hubp *dcn20_hubp_create( 1200 struct dc_context *ctx, 1201 uint32_t inst) 1202 { 1203 struct dcn20_hubp *hubp2 = 1204 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC); 1205 1206 if (!hubp2) 1207 return NULL; 1208 1209 if (hubp2_construct(hubp2, ctx, inst, 1210 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1211 return &hubp2->base; 1212 1213 BREAK_TO_DEBUGGER(); 1214 kfree(hubp2); 1215 return NULL; 1216 } 1217 1218 static void get_pixel_clock_parameters( 1219 struct pipe_ctx *pipe_ctx, 1220 struct pixel_clk_params *pixel_clk_params) 1221 { 1222 const struct dc_stream_state *stream = pipe_ctx->stream; 1223 struct pipe_ctx *odm_pipe; 1224 int opp_cnt = 1; 1225 struct dc_link *link = stream->link; 1226 struct link_encoder *link_enc = NULL; 1227 struct dc *dc = pipe_ctx->stream->ctx->dc; 1228 struct dce_hwseq *hws = dc->hwseq; 1229 1230 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1231 opp_cnt++; 1232 1233 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; 1234 1235 link_enc = link_enc_cfg_get_link_enc(link); 1236 if (link_enc) 1237 pixel_clk_params->encoder_object_id = link_enc->id; 1238 1239 pixel_clk_params->signal_type = pipe_ctx->stream->signal; 1240 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; 1241 /* TODO: un-hardcode*/ 1242 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */ 1243 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * 1244 LINK_RATE_REF_FREQ_IN_KHZ; 1245 pixel_clk_params->flags.ENABLE_SS = 0; 1246 pixel_clk_params->color_depth = 1247 stream->timing.display_color_depth; 1248 pixel_clk_params->flags.DISPLAY_BLANKED = 1; 1249 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; 1250 1251 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 1252 pixel_clk_params->color_depth = COLOR_DEPTH_888; 1253 1254 if (opp_cnt == 4) 1255 pixel_clk_params->requested_pix_clk_100hz /= 4; 1256 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) 1257 pixel_clk_params->requested_pix_clk_100hz /= 2; 1258 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) { 1259 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) 1260 pixel_clk_params->requested_pix_clk_100hz /= 2; 1261 } 1262 1263 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) 1264 pixel_clk_params->requested_pix_clk_100hz *= 2; 1265 1266 } 1267 1268 static void build_clamping_params(struct dc_stream_state *stream) 1269 { 1270 stream->clamping.clamping_level = CLAMPING_FULL_RANGE; 1271 stream->clamping.c_depth = stream->timing.display_color_depth; 1272 stream->clamping.pixel_encoding = stream->timing.pixel_encoding; 1273 } 1274 1275 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) 1276 { 1277 1278 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); 1279 1280 pipe_ctx->clock_source->funcs->get_pix_clk_dividers( 1281 pipe_ctx->clock_source, 1282 &pipe_ctx->stream_res.pix_clk_params, 1283 &pipe_ctx->pll_settings); 1284 1285 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; 1286 1287 resource_build_bit_depth_reduction_params(pipe_ctx->stream, 1288 &pipe_ctx->stream->bit_depth_params); 1289 build_clamping_params(pipe_ctx->stream); 1290 1291 return DC_OK; 1292 } 1293 1294 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) 1295 { 1296 enum dc_status status = DC_OK; 1297 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); 1298 1299 if (!pipe_ctx) 1300 return DC_ERROR_UNEXPECTED; 1301 1302 1303 status = build_pipe_hw_param(pipe_ctx); 1304 1305 return status; 1306 } 1307 1308 1309 void dcn20_acquire_dsc(const struct dc *dc, 1310 struct resource_context *res_ctx, 1311 struct display_stream_compressor **dsc, 1312 int pipe_idx) 1313 { 1314 int i; 1315 const struct resource_pool *pool = dc->res_pool; 1316 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc; 1317 1318 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */ 1319 *dsc = NULL; 1320 1321 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */ 1322 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) { 1323 *dsc = pool->dscs[pipe_idx]; 1324 res_ctx->is_dsc_acquired[pipe_idx] = true; 1325 return; 1326 } 1327 1328 /* Return old DSC to avoid the need for re-programming */ 1329 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) { 1330 *dsc = dsc_old; 1331 res_ctx->is_dsc_acquired[dsc_old->inst] = true; 1332 return ; 1333 } 1334 1335 /* Find first free DSC */ 1336 for (i = 0; i < pool->res_cap->num_dsc; i++) 1337 if (!res_ctx->is_dsc_acquired[i]) { 1338 *dsc = pool->dscs[i]; 1339 res_ctx->is_dsc_acquired[i] = true; 1340 break; 1341 } 1342 } 1343 1344 void dcn20_release_dsc(struct resource_context *res_ctx, 1345 const struct resource_pool *pool, 1346 struct display_stream_compressor **dsc) 1347 { 1348 int i; 1349 1350 for (i = 0; i < pool->res_cap->num_dsc; i++) 1351 if (pool->dscs[i] == *dsc) { 1352 res_ctx->is_dsc_acquired[i] = false; 1353 *dsc = NULL; 1354 break; 1355 } 1356 } 1357 1358 1359 1360 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc, 1361 struct dc_state *dc_ctx, 1362 struct dc_stream_state *dc_stream) 1363 { 1364 enum dc_status result = DC_OK; 1365 int i; 1366 1367 /* Get a DSC if required and available */ 1368 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1369 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; 1370 1371 if (pipe_ctx->top_pipe) 1372 continue; 1373 1374 if (pipe_ctx->stream != dc_stream) 1375 continue; 1376 1377 if (pipe_ctx->stream_res.dsc) 1378 continue; 1379 1380 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i); 1381 1382 /* The number of DSCs can be less than the number of pipes */ 1383 if (!pipe_ctx->stream_res.dsc) { 1384 result = DC_NO_DSC_RESOURCE; 1385 } 1386 1387 break; 1388 } 1389 1390 return result; 1391 } 1392 1393 1394 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, 1395 struct dc_state *new_ctx, 1396 struct dc_stream_state *dc_stream) 1397 { 1398 struct pipe_ctx *pipe_ctx = NULL; 1399 int i; 1400 1401 for (i = 0; i < MAX_PIPES; i++) { 1402 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { 1403 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1404 1405 if (pipe_ctx->stream_res.dsc) 1406 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); 1407 } 1408 } 1409 1410 if (!pipe_ctx) 1411 return DC_ERROR_UNEXPECTED; 1412 else 1413 return DC_OK; 1414 } 1415 1416 1417 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1418 { 1419 enum dc_status result = DC_ERROR_UNEXPECTED; 1420 1421 result = resource_map_pool_resources(dc, new_ctx, dc_stream); 1422 1423 if (result == DC_OK) 1424 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); 1425 1426 /* Get a DSC if required and available */ 1427 if (result == DC_OK && dc_stream->timing.flags.DSC) 1428 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream); 1429 1430 if (result == DC_OK) 1431 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); 1432 1433 return result; 1434 } 1435 1436 1437 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1438 { 1439 enum dc_status result = DC_OK; 1440 1441 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); 1442 1443 return result; 1444 } 1445 1446 /** 1447 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM 1448 * 1449 * @dc: DC object with resource pool info required for pipe split 1450 * @res_ctx: Persistent state of resources 1451 * @prev_odm_pipe: Reference to the previous ODM pipe 1452 * @next_odm_pipe: Reference to the next ODM pipe 1453 * 1454 * This function takes a logically active pipe and a logically free pipe and 1455 * halves all the scaling parameters that need to be halved while populating 1456 * the free pipe with the required resources and configuring the next/previous 1457 * ODM pipe pointers. 1458 * 1459 * Return: 1460 * Return true if split stream for ODM is possible, otherwise, return false. 1461 */ 1462 bool dcn20_split_stream_for_odm( 1463 const struct dc *dc, 1464 struct resource_context *res_ctx, 1465 struct pipe_ctx *prev_odm_pipe, 1466 struct pipe_ctx *next_odm_pipe) 1467 { 1468 int pipe_idx = next_odm_pipe->pipe_idx; 1469 const struct resource_pool *pool = dc->res_pool; 1470 1471 *next_odm_pipe = *prev_odm_pipe; 1472 1473 next_odm_pipe->pipe_idx = pipe_idx; 1474 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; 1475 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; 1476 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; 1477 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; 1478 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; 1479 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; 1480 next_odm_pipe->stream_res.dsc = NULL; 1481 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { 1482 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; 1483 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; 1484 } 1485 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) { 1486 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe; 1487 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe; 1488 } 1489 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) { 1490 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe; 1491 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe; 1492 } 1493 prev_odm_pipe->next_odm_pipe = next_odm_pipe; 1494 next_odm_pipe->prev_odm_pipe = prev_odm_pipe; 1495 1496 if (prev_odm_pipe->plane_state) { 1497 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; 1498 int new_width; 1499 1500 /* HACTIVE halved for odm combine */ 1501 sd->h_active /= 2; 1502 /* Calculate new vp and recout for left pipe */ 1503 /* Need at least 16 pixels width per side */ 1504 if (sd->recout.x + 16 >= sd->h_active) 1505 return false; 1506 new_width = sd->h_active - sd->recout.x; 1507 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1508 sd->ratios.horz, sd->recout.width - new_width)); 1509 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1510 sd->ratios.horz_c, sd->recout.width - new_width)); 1511 sd->recout.width = new_width; 1512 1513 /* Calculate new vp and recout for right pipe */ 1514 sd = &next_odm_pipe->plane_res.scl_data; 1515 /* HACTIVE halved for odm combine */ 1516 sd->h_active /= 2; 1517 /* Need at least 16 pixels width per side */ 1518 if (new_width <= 16) 1519 return false; 1520 new_width = sd->recout.width + sd->recout.x - sd->h_active; 1521 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1522 sd->ratios.horz, sd->recout.width - new_width)); 1523 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1524 sd->ratios.horz_c, sd->recout.width - new_width)); 1525 sd->recout.width = new_width; 1526 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( 1527 sd->ratios.horz, sd->h_active - sd->recout.x)); 1528 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( 1529 sd->ratios.horz_c, sd->h_active - sd->recout.x)); 1530 sd->recout.x = 0; 1531 } 1532 if (!next_odm_pipe->top_pipe) 1533 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; 1534 else 1535 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp; 1536 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) { 1537 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx); 1538 ASSERT(next_odm_pipe->stream_res.dsc); 1539 if (next_odm_pipe->stream_res.dsc == NULL) 1540 return false; 1541 } 1542 1543 return true; 1544 } 1545 1546 void dcn20_split_stream_for_mpc( 1547 struct resource_context *res_ctx, 1548 const struct resource_pool *pool, 1549 struct pipe_ctx *primary_pipe, 1550 struct pipe_ctx *secondary_pipe) 1551 { 1552 int pipe_idx = secondary_pipe->pipe_idx; 1553 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; 1554 1555 *secondary_pipe = *primary_pipe; 1556 secondary_pipe->bottom_pipe = sec_bot_pipe; 1557 1558 secondary_pipe->pipe_idx = pipe_idx; 1559 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; 1560 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; 1561 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; 1562 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; 1563 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; 1564 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; 1565 secondary_pipe->stream_res.dsc = NULL; 1566 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { 1567 ASSERT(!secondary_pipe->bottom_pipe); 1568 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; 1569 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; 1570 } 1571 primary_pipe->bottom_pipe = secondary_pipe; 1572 secondary_pipe->top_pipe = primary_pipe; 1573 1574 ASSERT(primary_pipe->plane_state); 1575 } 1576 1577 unsigned int dcn20_calc_max_scaled_time( 1578 unsigned int time_per_pixel, 1579 enum mmhubbub_wbif_mode mode, 1580 unsigned int urgent_watermark) 1581 { 1582 unsigned int time_per_byte = 0; 1583 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ 1584 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ 1585 unsigned int small_free_entry, max_free_entry; 1586 unsigned int buf_lh_capability; 1587 unsigned int max_scaled_time; 1588 1589 if (mode == PACKED_444) /* packed mode */ 1590 time_per_byte = time_per_pixel/4; 1591 else if (mode == PLANAR_420_8BPC) 1592 time_per_byte = time_per_pixel; 1593 else if (mode == PLANAR_420_10BPC) /* p010 */ 1594 time_per_byte = time_per_pixel * 819/1024; 1595 1596 if (time_per_byte == 0) 1597 time_per_byte = 1; 1598 1599 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; 1600 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; 1601 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ 1602 max_scaled_time = buf_lh_capability - urgent_watermark; 1603 return max_scaled_time; 1604 } 1605 1606 void dcn20_set_mcif_arb_params( 1607 struct dc *dc, 1608 struct dc_state *context, 1609 display_e2e_pipe_params_st *pipes, 1610 int pipe_cnt) 1611 { 1612 enum mmhubbub_wbif_mode wbif_mode; 1613 struct mcif_arb_params *wb_arb_params; 1614 int i, j, dwb_pipe; 1615 1616 /* Writeback MCIF_WB arbitration parameters */ 1617 dwb_pipe = 0; 1618 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1619 1620 if (!context->res_ctx.pipe_ctx[i].stream) 1621 continue; 1622 1623 for (j = 0; j < MAX_DWB_PIPES; j++) { 1624 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) 1625 continue; 1626 1627 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1628 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1629 1630 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { 1631 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) 1632 wbif_mode = PLANAR_420_8BPC; 1633 else 1634 wbif_mode = PLANAR_420_10BPC; 1635 } else 1636 wbif_mode = PACKED_444; 1637 1638 DC_FP_START(); 1639 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i); 1640 DC_FP_END(); 1641 1642 wb_arb_params->slice_lines = 32; 1643 wb_arb_params->arbitration_slice = 2; 1644 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1645 wbif_mode, 1646 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1647 1648 dwb_pipe++; 1649 1650 if (dwb_pipe >= MAX_DWB_PIPES) 1651 return; 1652 } 1653 if (dwb_pipe >= MAX_DWB_PIPES) 1654 return; 1655 } 1656 } 1657 1658 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) 1659 { 1660 int i; 1661 1662 /* Validate DSC config, dsc count validation is already done */ 1663 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1664 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1665 struct dc_stream_state *stream = pipe_ctx->stream; 1666 struct dsc_config dsc_cfg; 1667 struct pipe_ctx *odm_pipe; 1668 int opp_cnt = 1; 1669 1670 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1671 opp_cnt++; 1672 1673 /* Only need to validate top pipe */ 1674 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) 1675 continue; 1676 1677 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left 1678 + stream->timing.h_border_right) / opp_cnt; 1679 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top 1680 + stream->timing.v_border_bottom; 1681 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; 1682 dsc_cfg.color_depth = stream->timing.display_color_depth; 1683 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; 1684 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; 1685 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; 1686 1687 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) 1688 return false; 1689 } 1690 return true; 1691 } 1692 1693 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, 1694 struct resource_context *res_ctx, 1695 const struct resource_pool *pool, 1696 const struct pipe_ctx *primary_pipe) 1697 { 1698 struct pipe_ctx *secondary_pipe = NULL; 1699 1700 if (dc && primary_pipe) { 1701 int j; 1702 int preferred_pipe_idx = 0; 1703 1704 /* first check the prev dc state: 1705 * if this primary pipe has a bottom pipe in prev. state 1706 * and if the bottom pipe is still available (which it should be), 1707 * pick that pipe as secondary 1708 * Same logic applies for ODM pipes 1709 */ 1710 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { 1711 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; 1712 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1713 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1714 secondary_pipe->pipe_idx = preferred_pipe_idx; 1715 } 1716 } 1717 if (secondary_pipe == NULL && 1718 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { 1719 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; 1720 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1721 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1722 secondary_pipe->pipe_idx = preferred_pipe_idx; 1723 } 1724 } 1725 1726 /* 1727 * if this primary pipe does not have a bottom pipe in prev. state 1728 * start backward and find a pipe that did not used to be a bottom pipe in 1729 * prev. dc state. This way we make sure we keep the same assignment as 1730 * last state and will not have to reprogram every pipe 1731 */ 1732 if (secondary_pipe == NULL) { 1733 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1734 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL 1735 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) { 1736 preferred_pipe_idx = j; 1737 1738 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1739 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1740 secondary_pipe->pipe_idx = preferred_pipe_idx; 1741 break; 1742 } 1743 } 1744 } 1745 } 1746 /* 1747 * We should never hit this assert unless assignments are shuffled around 1748 * if this happens we will prob. hit a vsync tdr 1749 */ 1750 ASSERT(secondary_pipe); 1751 /* 1752 * search backwards for the second pipe to keep pipe 1753 * assignment more consistent 1754 */ 1755 if (secondary_pipe == NULL) { 1756 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1757 preferred_pipe_idx = j; 1758 1759 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1760 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1761 secondary_pipe->pipe_idx = preferred_pipe_idx; 1762 break; 1763 } 1764 } 1765 } 1766 } 1767 1768 return secondary_pipe; 1769 } 1770 1771 void dcn20_merge_pipes_for_validate( 1772 struct dc *dc, 1773 struct dc_state *context) 1774 { 1775 int i; 1776 1777 /* merge previously split odm pipes since mode support needs to make the decision */ 1778 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1779 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1780 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; 1781 1782 if (pipe->prev_odm_pipe) 1783 continue; 1784 1785 pipe->next_odm_pipe = NULL; 1786 while (odm_pipe) { 1787 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; 1788 1789 odm_pipe->plane_state = NULL; 1790 odm_pipe->stream = NULL; 1791 odm_pipe->top_pipe = NULL; 1792 odm_pipe->bottom_pipe = NULL; 1793 odm_pipe->prev_odm_pipe = NULL; 1794 odm_pipe->next_odm_pipe = NULL; 1795 if (odm_pipe->stream_res.dsc) 1796 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); 1797 /* Clear plane_res and stream_res */ 1798 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); 1799 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); 1800 odm_pipe = next_odm_pipe; 1801 } 1802 if (pipe->plane_state) 1803 resource_build_scaling_params(pipe); 1804 } 1805 1806 /* merge previously mpc split pipes since mode support needs to make the decision */ 1807 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1808 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1809 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 1810 1811 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) 1812 continue; 1813 1814 pipe->bottom_pipe = hsplit_pipe->bottom_pipe; 1815 if (hsplit_pipe->bottom_pipe) 1816 hsplit_pipe->bottom_pipe->top_pipe = pipe; 1817 hsplit_pipe->plane_state = NULL; 1818 hsplit_pipe->stream = NULL; 1819 hsplit_pipe->top_pipe = NULL; 1820 hsplit_pipe->bottom_pipe = NULL; 1821 1822 /* Clear plane_res and stream_res */ 1823 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); 1824 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); 1825 if (pipe->plane_state) 1826 resource_build_scaling_params(pipe); 1827 } 1828 } 1829 1830 int dcn20_validate_apply_pipe_split_flags( 1831 struct dc *dc, 1832 struct dc_state *context, 1833 int vlevel, 1834 int *split, 1835 bool *merge) 1836 { 1837 int i, pipe_idx, vlevel_split; 1838 int plane_count = 0; 1839 bool force_split = false; 1840 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID; 1841 struct vba_vars_st *v = &context->bw_ctx.dml.vba; 1842 int max_mpc_comb = v->maxMpcComb; 1843 1844 if (context->stream_count > 1) { 1845 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) 1846 avoid_split = true; 1847 } else if (dc->debug.force_single_disp_pipe_split) 1848 force_split = true; 1849 1850 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1851 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1852 1853 /** 1854 * Workaround for avoiding pipe-split in cases where we'd split 1855 * planes that are too small, resulting in splits that aren't 1856 * valid for the scaler. 1857 */ 1858 if (pipe->plane_state && 1859 (pipe->plane_state->dst_rect.width <= 16 || 1860 pipe->plane_state->dst_rect.height <= 16 || 1861 pipe->plane_state->src_rect.width <= 16 || 1862 pipe->plane_state->src_rect.height <= 16)) 1863 avoid_split = true; 1864 1865 /* TODO: fix dc bugs and remove this split threshold thing */ 1866 if (pipe->stream && !pipe->prev_odm_pipe && 1867 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) 1868 ++plane_count; 1869 } 1870 if (plane_count > dc->res_pool->pipe_count / 2) 1871 avoid_split = true; 1872 1873 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */ 1874 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1875 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1876 struct dc_crtc_timing timing; 1877 1878 if (!pipe->stream) 1879 continue; 1880 else { 1881 timing = pipe->stream->timing; 1882 if (timing.h_border_left + timing.h_border_right 1883 + timing.v_border_top + timing.v_border_bottom > 0) { 1884 avoid_split = true; 1885 break; 1886 } 1887 } 1888 } 1889 1890 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */ 1891 if (avoid_split) { 1892 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1893 if (!context->res_ctx.pipe_ctx[i].stream) 1894 continue; 1895 1896 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++) 1897 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 && 1898 v->ModeSupport[vlevel][0]) 1899 break; 1900 /* Impossible to not split this pipe */ 1901 if (vlevel > context->bw_ctx.dml.soc.num_states) 1902 vlevel = vlevel_split; 1903 else 1904 max_mpc_comb = 0; 1905 pipe_idx++; 1906 } 1907 v->maxMpcComb = max_mpc_comb; 1908 } 1909 1910 /* Split loop sets which pipe should be split based on dml outputs and dc flags */ 1911 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1912 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1913 int pipe_plane = v->pipe_plane[pipe_idx]; 1914 bool split4mpc = context->stream_count == 1 && plane_count == 1 1915 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4; 1916 1917 if (!context->res_ctx.pipe_ctx[i].stream) 1918 continue; 1919 1920 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4) 1921 split[i] = 4; 1922 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2) 1923 split[i] = 2; 1924 1925 if ((pipe->stream->view_format == 1926 VIEW_3D_FORMAT_SIDE_BY_SIDE || 1927 pipe->stream->view_format == 1928 VIEW_3D_FORMAT_TOP_AND_BOTTOM) && 1929 (pipe->stream->timing.timing_3d_format == 1930 TIMING_3D_FORMAT_TOP_AND_BOTTOM || 1931 pipe->stream->timing.timing_3d_format == 1932 TIMING_3D_FORMAT_SIDE_BY_SIDE)) 1933 split[i] = 2; 1934 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { 1935 split[i] = 2; 1936 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1; 1937 } 1938 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) { 1939 split[i] = 4; 1940 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1; 1941 } 1942 /*420 format workaround*/ 1943 if (pipe->stream->timing.h_addressable > 7680 && 1944 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { 1945 split[i] = 4; 1946 } 1947 v->ODMCombineEnabled[pipe_plane] = 1948 v->ODMCombineEnablePerState[vlevel][pipe_plane]; 1949 1950 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) { 1951 if (get_num_mpc_splits(pipe) == 1) { 1952 /*If need split for mpc but 2 way split already*/ 1953 if (split[i] == 4) 1954 split[i] = 2; /* 2 -> 4 MPC */ 1955 else if (split[i] == 2) 1956 split[i] = 0; /* 2 -> 2 MPC */ 1957 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) 1958 merge[i] = true; /* 2 -> 1 MPC */ 1959 } else if (get_num_mpc_splits(pipe) == 3) { 1960 /*If need split for mpc but 4 way split already*/ 1961 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe) 1962 || !pipe->bottom_pipe)) { 1963 merge[i] = true; /* 4 -> 2 MPC */ 1964 } else if (split[i] == 0 && pipe->top_pipe && 1965 pipe->top_pipe->plane_state == pipe->plane_state) 1966 merge[i] = true; /* 4 -> 1 MPC */ 1967 split[i] = 0; 1968 } else if (get_num_odm_splits(pipe)) { 1969 /* ODM -> MPC transition */ 1970 if (pipe->prev_odm_pipe) { 1971 split[i] = 0; 1972 merge[i] = true; 1973 } 1974 } 1975 } else { 1976 if (get_num_odm_splits(pipe) == 1) { 1977 /*If need split for odm but 2 way split already*/ 1978 if (split[i] == 4) 1979 split[i] = 2; /* 2 -> 4 ODM */ 1980 else if (split[i] == 2) 1981 split[i] = 0; /* 2 -> 2 ODM */ 1982 else if (pipe->prev_odm_pipe) { 1983 ASSERT(0); /* NOT expected yet */ 1984 merge[i] = true; /* exit ODM */ 1985 } 1986 } else if (get_num_odm_splits(pipe) == 3) { 1987 /*If need split for odm but 4 way split already*/ 1988 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe) 1989 || !pipe->next_odm_pipe)) { 1990 merge[i] = true; /* 4 -> 2 ODM */ 1991 } else if (split[i] == 0 && pipe->prev_odm_pipe) { 1992 ASSERT(0); /* NOT expected yet */ 1993 merge[i] = true; /* exit ODM */ 1994 } 1995 split[i] = 0; 1996 } else if (get_num_mpc_splits(pipe)) { 1997 /* MPC -> ODM transition */ 1998 ASSERT(0); /* NOT expected yet */ 1999 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2000 split[i] = 0; 2001 merge[i] = true; 2002 } 2003 } 2004 } 2005 2006 /* Adjust dppclk when split is forced, do not bother with dispclk */ 2007 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) { 2008 DC_FP_START(); 2009 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false); 2010 DC_FP_END(); 2011 } 2012 pipe_idx++; 2013 } 2014 2015 return vlevel; 2016 } 2017 2018 bool dcn20_fast_validate_bw( 2019 struct dc *dc, 2020 struct dc_state *context, 2021 display_e2e_pipe_params_st *pipes, 2022 int *pipe_cnt_out, 2023 int *pipe_split_from, 2024 int *vlevel_out, 2025 bool fast_validate) 2026 { 2027 bool out = false; 2028 int split[MAX_PIPES] = { 0 }; 2029 int pipe_cnt, i, pipe_idx, vlevel; 2030 2031 ASSERT(pipes); 2032 if (!pipes) 2033 return false; 2034 2035 dcn20_merge_pipes_for_validate(dc, context); 2036 2037 DC_FP_START(); 2038 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2039 DC_FP_END(); 2040 2041 *pipe_cnt_out = pipe_cnt; 2042 2043 if (!pipe_cnt) { 2044 out = true; 2045 goto validate_out; 2046 } 2047 2048 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2049 2050 if (vlevel > context->bw_ctx.dml.soc.num_states) 2051 goto validate_fail; 2052 2053 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); 2054 2055 /*initialize pipe_just_split_from to invalid idx*/ 2056 for (i = 0; i < MAX_PIPES; i++) 2057 pipe_split_from[i] = -1; 2058 2059 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2060 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2061 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 2062 2063 if (!pipe->stream || pipe_split_from[i] >= 0) 2064 continue; 2065 2066 pipe_idx++; 2067 2068 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2069 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2070 ASSERT(hsplit_pipe); 2071 if (!dcn20_split_stream_for_odm( 2072 dc, &context->res_ctx, 2073 pipe, hsplit_pipe)) 2074 goto validate_fail; 2075 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2076 dcn20_build_mapped_resource(dc, context, pipe->stream); 2077 } 2078 2079 if (!pipe->plane_state) 2080 continue; 2081 /* Skip 2nd half of already split pipe */ 2082 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) 2083 continue; 2084 2085 /* We do not support mpo + odm at the moment */ 2086 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state 2087 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) 2088 goto validate_fail; 2089 2090 if (split[i] == 2) { 2091 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { 2092 /* pipe not split previously needs split */ 2093 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2094 ASSERT(hsplit_pipe); 2095 if (!hsplit_pipe) { 2096 DC_FP_START(); 2097 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true); 2098 DC_FP_END(); 2099 continue; 2100 } 2101 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2102 if (!dcn20_split_stream_for_odm( 2103 dc, &context->res_ctx, 2104 pipe, hsplit_pipe)) 2105 goto validate_fail; 2106 dcn20_build_mapped_resource(dc, context, pipe->stream); 2107 } else { 2108 dcn20_split_stream_for_mpc( 2109 &context->res_ctx, dc->res_pool, 2110 pipe, hsplit_pipe); 2111 resource_build_scaling_params(pipe); 2112 resource_build_scaling_params(hsplit_pipe); 2113 } 2114 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2115 } 2116 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { 2117 /* merge should already have been done */ 2118 ASSERT(0); 2119 } 2120 } 2121 /* Actual dsc count per stream dsc validation*/ 2122 if (!dcn20_validate_dsc(dc, context)) { 2123 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = 2124 DML_FAIL_DSC_VALIDATION_FAILURE; 2125 goto validate_fail; 2126 } 2127 2128 *vlevel_out = vlevel; 2129 2130 out = true; 2131 goto validate_out; 2132 2133 validate_fail: 2134 out = false; 2135 2136 validate_out: 2137 return out; 2138 } 2139 2140 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, 2141 bool fast_validate) 2142 { 2143 bool voltage_supported; 2144 DC_FP_START(); 2145 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate); 2146 DC_FP_END(); 2147 return voltage_supported; 2148 } 2149 2150 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer( 2151 struct dc_state *state, 2152 const struct resource_pool *pool, 2153 struct dc_stream_state *stream) 2154 { 2155 struct resource_context *res_ctx = &state->res_ctx; 2156 struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); 2157 struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); 2158 2159 if (!head_pipe) 2160 ASSERT(0); 2161 2162 if (!idle_pipe) 2163 return NULL; 2164 2165 idle_pipe->stream = head_pipe->stream; 2166 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2167 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2168 2169 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2170 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2171 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2172 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2173 2174 return idle_pipe; 2175 } 2176 2177 bool dcn20_get_dcc_compression_cap(const struct dc *dc, 2178 const struct dc_dcc_surface_param *input, 2179 struct dc_surface_dcc_cap *output) 2180 { 2181 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( 2182 dc->res_pool->hubbub, 2183 input, 2184 output); 2185 } 2186 2187 static void dcn20_destroy_resource_pool(struct resource_pool **pool) 2188 { 2189 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); 2190 2191 dcn20_resource_destruct(dcn20_pool); 2192 kfree(dcn20_pool); 2193 *pool = NULL; 2194 } 2195 2196 2197 static struct dc_cap_funcs cap_funcs = { 2198 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2199 }; 2200 2201 2202 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state) 2203 { 2204 enum surface_pixel_format surf_pix_format = plane_state->format; 2205 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); 2206 2207 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S; 2208 if (bpp == 64) 2209 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D; 2210 2211 return DC_OK; 2212 } 2213 2214 static const struct resource_funcs dcn20_res_pool_funcs = { 2215 .destroy = dcn20_destroy_resource_pool, 2216 .link_enc_create = dcn20_link_encoder_create, 2217 .panel_cntl_create = dcn20_panel_cntl_create, 2218 .validate_bandwidth = dcn20_validate_bandwidth, 2219 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2220 .add_stream_to_ctx = dcn20_add_stream_to_ctx, 2221 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2222 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2223 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, 2224 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2225 .set_mcif_arb_params = dcn20_set_mcif_arb_params, 2226 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context, 2227 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link 2228 }; 2229 2230 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 2231 { 2232 int i; 2233 uint32_t pipe_count = pool->res_cap->num_dwb; 2234 2235 for (i = 0; i < pipe_count; i++) { 2236 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), 2237 GFP_KERNEL); 2238 2239 if (!dwbc20) { 2240 dm_error("DC: failed to create dwbc20!\n"); 2241 return false; 2242 } 2243 dcn20_dwbc_construct(dwbc20, ctx, 2244 &dwbc20_regs[i], 2245 &dwbc20_shift, 2246 &dwbc20_mask, 2247 i); 2248 pool->dwbc[i] = &dwbc20->base; 2249 } 2250 return true; 2251 } 2252 2253 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 2254 { 2255 int i; 2256 uint32_t pipe_count = pool->res_cap->num_dwb; 2257 2258 ASSERT(pipe_count > 0); 2259 2260 for (i = 0; i < pipe_count; i++) { 2261 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), 2262 GFP_KERNEL); 2263 2264 if (!mcif_wb20) { 2265 dm_error("DC: failed to create mcif_wb20!\n"); 2266 return false; 2267 } 2268 2269 dcn20_mmhubbub_construct(mcif_wb20, ctx, 2270 &mcif_wb20_regs[i], 2271 &mcif_wb20_shift, 2272 &mcif_wb20_mask, 2273 i); 2274 2275 pool->mcif_wb[i] = &mcif_wb20->base; 2276 } 2277 return true; 2278 } 2279 2280 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) 2281 { 2282 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC); 2283 2284 if (!pp_smu) 2285 return pp_smu; 2286 2287 dm_pp_get_funcs(ctx, pp_smu); 2288 2289 if (pp_smu->ctx.ver != PP_SMU_VER_NV) 2290 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); 2291 2292 return pp_smu; 2293 } 2294 2295 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) 2296 { 2297 if (pp_smu && *pp_smu) { 2298 kfree(*pp_smu); 2299 *pp_smu = NULL; 2300 } 2301 } 2302 2303 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( 2304 uint32_t hw_internal_rev) 2305 { 2306 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2307 return &dcn2_0_nv14_soc; 2308 2309 if (ASICREV_IS_NAVI12_P(hw_internal_rev)) 2310 return &dcn2_0_nv12_soc; 2311 2312 return &dcn2_0_soc; 2313 } 2314 2315 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( 2316 uint32_t hw_internal_rev) 2317 { 2318 /* NV14 */ 2319 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2320 return &dcn2_0_nv14_ip; 2321 2322 /* NV12 and NV10 */ 2323 return &dcn2_0_ip; 2324 } 2325 2326 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) 2327 { 2328 return DML_PROJECT_NAVI10v2; 2329 } 2330 2331 static bool init_soc_bounding_box(struct dc *dc, 2332 struct dcn20_resource_pool *pool) 2333 { 2334 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2335 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); 2336 struct _vcs_dpi_ip_params_st *loaded_ip = 2337 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); 2338 2339 DC_LOGGER_INIT(dc->ctx->logger); 2340 2341 if (pool->base.pp_smu) { 2342 struct pp_smu_nv_clock_table max_clocks = {0}; 2343 unsigned int uclk_states[8] = {0}; 2344 unsigned int num_states = 0; 2345 enum pp_smu_status status; 2346 bool clock_limits_available = false; 2347 bool uclk_states_available = false; 2348 2349 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { 2350 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) 2351 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); 2352 2353 uclk_states_available = (status == PP_SMU_RESULT_OK); 2354 } 2355 2356 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { 2357 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) 2358 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); 2359 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock 2360 */ 2361 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) 2362 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; 2363 clock_limits_available = (status == PP_SMU_RESULT_OK); 2364 } 2365 2366 if (clock_limits_available && uclk_states_available && num_states) { 2367 DC_FP_START(); 2368 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); 2369 DC_FP_END(); 2370 } else if (clock_limits_available) { 2371 DC_FP_START(); 2372 dcn20_cap_soc_clocks(loaded_bb, max_clocks); 2373 DC_FP_END(); 2374 } 2375 } 2376 2377 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 2378 loaded_ip->max_num_dpp = pool->base.pipe_count; 2379 DC_FP_START(); 2380 dcn20_patch_bounding_box(dc, loaded_bb); 2381 DC_FP_END(); 2382 return true; 2383 } 2384 2385 static bool dcn20_resource_construct( 2386 uint8_t num_virtual_links, 2387 struct dc *dc, 2388 struct dcn20_resource_pool *pool) 2389 { 2390 int i; 2391 struct dc_context *ctx = dc->ctx; 2392 struct irq_service_init_data init_data; 2393 struct ddc_service_init_data ddc_init_data = {0}; 2394 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2395 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); 2396 struct _vcs_dpi_ip_params_st *loaded_ip = 2397 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); 2398 enum dml_project dml_project_version = 2399 get_dml_project_version(ctx->asic_id.hw_internal_rev); 2400 2401 ctx->dc_bios->regs = &bios_regs; 2402 pool->base.funcs = &dcn20_res_pool_funcs; 2403 2404 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 2405 pool->base.res_cap = &res_cap_nv14; 2406 pool->base.pipe_count = 5; 2407 pool->base.mpcc_count = 5; 2408 } else { 2409 pool->base.res_cap = &res_cap_nv10; 2410 pool->base.pipe_count = 6; 2411 pool->base.mpcc_count = 6; 2412 } 2413 /************************************************* 2414 * Resource + asic cap harcoding * 2415 *************************************************/ 2416 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2417 2418 dc->caps.max_downscale_ratio = 200; 2419 dc->caps.i2c_speed_in_khz = 100; 2420 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2421 dc->caps.max_cursor_size = 256; 2422 dc->caps.min_horizontal_blanking_period = 80; 2423 dc->caps.dmdata_alloc_size = 2048; 2424 2425 dc->caps.max_slave_planes = 1; 2426 dc->caps.max_slave_yuv_planes = 1; 2427 dc->caps.max_slave_rgb_planes = 1; 2428 dc->caps.post_blend_color_processing = true; 2429 dc->caps.force_dp_tps4_for_cp2520 = true; 2430 dc->caps.extended_aux_timeout_support = true; 2431 2432 /* Color pipeline capabilities */ 2433 dc->caps.color.dpp.dcn_arch = 1; 2434 dc->caps.color.dpp.input_lut_shared = 0; 2435 dc->caps.color.dpp.icsc = 1; 2436 dc->caps.color.dpp.dgam_ram = 1; 2437 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2438 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2439 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; 2440 dc->caps.color.dpp.dgam_rom_caps.pq = 0; 2441 dc->caps.color.dpp.dgam_rom_caps.hlg = 0; 2442 dc->caps.color.dpp.post_csc = 0; 2443 dc->caps.color.dpp.gamma_corr = 0; 2444 dc->caps.color.dpp.dgam_rom_for_yuv = 1; 2445 2446 dc->caps.color.dpp.hw_3d_lut = 1; 2447 dc->caps.color.dpp.ogam_ram = 1; 2448 // no OGAM ROM on DCN2, only MPC ROM 2449 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2450 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2451 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2452 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2453 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2454 dc->caps.color.dpp.ocsc = 0; 2455 2456 dc->caps.color.mpc.gamut_remap = 0; 2457 dc->caps.color.mpc.num_3dluts = 0; 2458 dc->caps.color.mpc.shared_3d_lut = 0; 2459 dc->caps.color.mpc.ogam_ram = 1; 2460 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2461 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2462 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2463 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2464 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2465 dc->caps.color.mpc.ocsc = 1; 2466 2467 dc->caps.dp_hdmi21_pcon_support = true; 2468 2469 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2470 dc->debug = debug_defaults_drv; 2471 2472 //dcn2.0x 2473 dc->work_arounds.dedcn20_305_wa = true; 2474 2475 // Init the vm_helper 2476 if (dc->vm_helper) 2477 vm_helper_init(dc->vm_helper, 16); 2478 2479 /************************************************* 2480 * Create resources * 2481 *************************************************/ 2482 2483 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = 2484 dcn20_clock_source_create(ctx, ctx->dc_bios, 2485 CLOCK_SOURCE_COMBO_PHY_PLL0, 2486 &clk_src_regs[0], false); 2487 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = 2488 dcn20_clock_source_create(ctx, ctx->dc_bios, 2489 CLOCK_SOURCE_COMBO_PHY_PLL1, 2490 &clk_src_regs[1], false); 2491 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = 2492 dcn20_clock_source_create(ctx, ctx->dc_bios, 2493 CLOCK_SOURCE_COMBO_PHY_PLL2, 2494 &clk_src_regs[2], false); 2495 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = 2496 dcn20_clock_source_create(ctx, ctx->dc_bios, 2497 CLOCK_SOURCE_COMBO_PHY_PLL3, 2498 &clk_src_regs[3], false); 2499 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = 2500 dcn20_clock_source_create(ctx, ctx->dc_bios, 2501 CLOCK_SOURCE_COMBO_PHY_PLL4, 2502 &clk_src_regs[4], false); 2503 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = 2504 dcn20_clock_source_create(ctx, ctx->dc_bios, 2505 CLOCK_SOURCE_COMBO_PHY_PLL5, 2506 &clk_src_regs[5], false); 2507 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; 2508 /* todo: not reuse phy_pll registers */ 2509 pool->base.dp_clock_source = 2510 dcn20_clock_source_create(ctx, ctx->dc_bios, 2511 CLOCK_SOURCE_ID_DP_DTO, 2512 &clk_src_regs[0], true); 2513 2514 for (i = 0; i < pool->base.clk_src_count; i++) { 2515 if (pool->base.clock_sources[i] == NULL) { 2516 dm_error("DC: failed to create clock sources!\n"); 2517 BREAK_TO_DEBUGGER(); 2518 goto create_fail; 2519 } 2520 } 2521 2522 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2523 if (pool->base.dccg == NULL) { 2524 dm_error("DC: failed to create dccg!\n"); 2525 BREAK_TO_DEBUGGER(); 2526 goto create_fail; 2527 } 2528 2529 pool->base.dmcu = dcn20_dmcu_create(ctx, 2530 &dmcu_regs, 2531 &dmcu_shift, 2532 &dmcu_mask); 2533 if (pool->base.dmcu == NULL) { 2534 dm_error("DC: failed to create dmcu!\n"); 2535 BREAK_TO_DEBUGGER(); 2536 goto create_fail; 2537 } 2538 2539 pool->base.abm = dce_abm_create(ctx, 2540 &abm_regs, 2541 &abm_shift, 2542 &abm_mask); 2543 if (pool->base.abm == NULL) { 2544 dm_error("DC: failed to create abm!\n"); 2545 BREAK_TO_DEBUGGER(); 2546 goto create_fail; 2547 } 2548 2549 pool->base.pp_smu = dcn20_pp_smu_create(ctx); 2550 2551 2552 if (!init_soc_bounding_box(dc, pool)) { 2553 dm_error("DC: failed to initialize soc bounding box!\n"); 2554 BREAK_TO_DEBUGGER(); 2555 goto create_fail; 2556 } 2557 2558 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); 2559 2560 if (!dc->debug.disable_pplib_wm_range) { 2561 struct pp_smu_wm_range_sets ranges = {0}; 2562 int i = 0; 2563 2564 ranges.num_reader_wm_sets = 0; 2565 2566 if (loaded_bb->num_states == 1) { 2567 ranges.reader_wm_sets[0].wm_inst = i; 2568 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2569 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2570 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2571 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2572 2573 ranges.num_reader_wm_sets = 1; 2574 } else if (loaded_bb->num_states > 1) { 2575 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { 2576 ranges.reader_wm_sets[i].wm_inst = i; 2577 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2578 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2579 DC_FP_START(); 2580 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb); 2581 DC_FP_END(); 2582 2583 ranges.num_reader_wm_sets = i + 1; 2584 } 2585 2586 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2587 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2588 } 2589 2590 ranges.num_writer_wm_sets = 1; 2591 2592 ranges.writer_wm_sets[0].wm_inst = 0; 2593 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2594 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2595 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2596 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2597 2598 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ 2599 if (pool->base.pp_smu->nv_funcs.set_wm_ranges) 2600 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); 2601 } 2602 2603 init_data.ctx = dc->ctx; 2604 pool->base.irqs = dal_irq_service_dcn20_create(&init_data); 2605 if (!pool->base.irqs) 2606 goto create_fail; 2607 2608 /* mem input -> ipp -> dpp -> opp -> TG */ 2609 for (i = 0; i < pool->base.pipe_count; i++) { 2610 pool->base.hubps[i] = dcn20_hubp_create(ctx, i); 2611 if (pool->base.hubps[i] == NULL) { 2612 BREAK_TO_DEBUGGER(); 2613 dm_error( 2614 "DC: failed to create memory input!\n"); 2615 goto create_fail; 2616 } 2617 2618 pool->base.ipps[i] = dcn20_ipp_create(ctx, i); 2619 if (pool->base.ipps[i] == NULL) { 2620 BREAK_TO_DEBUGGER(); 2621 dm_error( 2622 "DC: failed to create input pixel processor!\n"); 2623 goto create_fail; 2624 } 2625 2626 pool->base.dpps[i] = dcn20_dpp_create(ctx, i); 2627 if (pool->base.dpps[i] == NULL) { 2628 BREAK_TO_DEBUGGER(); 2629 dm_error( 2630 "DC: failed to create dpps!\n"); 2631 goto create_fail; 2632 } 2633 } 2634 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2635 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); 2636 if (pool->base.engines[i] == NULL) { 2637 BREAK_TO_DEBUGGER(); 2638 dm_error( 2639 "DC:failed to create aux engine!!\n"); 2640 goto create_fail; 2641 } 2642 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); 2643 if (pool->base.hw_i2cs[i] == NULL) { 2644 BREAK_TO_DEBUGGER(); 2645 dm_error( 2646 "DC:failed to create hw i2c!!\n"); 2647 goto create_fail; 2648 } 2649 pool->base.sw_i2cs[i] = NULL; 2650 } 2651 2652 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2653 pool->base.opps[i] = dcn20_opp_create(ctx, i); 2654 if (pool->base.opps[i] == NULL) { 2655 BREAK_TO_DEBUGGER(); 2656 dm_error( 2657 "DC: failed to create output pixel processor!\n"); 2658 goto create_fail; 2659 } 2660 } 2661 2662 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2663 pool->base.timing_generators[i] = dcn20_timing_generator_create( 2664 ctx, i); 2665 if (pool->base.timing_generators[i] == NULL) { 2666 BREAK_TO_DEBUGGER(); 2667 dm_error("DC: failed to create tg!\n"); 2668 goto create_fail; 2669 } 2670 } 2671 2672 pool->base.timing_generator_count = i; 2673 2674 pool->base.mpc = dcn20_mpc_create(ctx); 2675 if (pool->base.mpc == NULL) { 2676 BREAK_TO_DEBUGGER(); 2677 dm_error("DC: failed to create mpc!\n"); 2678 goto create_fail; 2679 } 2680 2681 pool->base.hubbub = dcn20_hubbub_create(ctx); 2682 if (pool->base.hubbub == NULL) { 2683 BREAK_TO_DEBUGGER(); 2684 dm_error("DC: failed to create hubbub!\n"); 2685 goto create_fail; 2686 } 2687 2688 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2689 pool->base.dscs[i] = dcn20_dsc_create(ctx, i); 2690 if (pool->base.dscs[i] == NULL) { 2691 BREAK_TO_DEBUGGER(); 2692 dm_error("DC: failed to create display stream compressor %d!\n", i); 2693 goto create_fail; 2694 } 2695 } 2696 2697 if (!dcn20_dwbc_create(ctx, &pool->base)) { 2698 BREAK_TO_DEBUGGER(); 2699 dm_error("DC: failed to create dwbc!\n"); 2700 goto create_fail; 2701 } 2702 if (!dcn20_mmhubbub_create(ctx, &pool->base)) { 2703 BREAK_TO_DEBUGGER(); 2704 dm_error("DC: failed to create mcif_wb!\n"); 2705 goto create_fail; 2706 } 2707 2708 if (!resource_construct(num_virtual_links, dc, &pool->base, 2709 &res_create_funcs)) 2710 goto create_fail; 2711 2712 dcn20_hw_sequencer_construct(dc); 2713 2714 // IF NV12, set PG function pointer to NULL. It's not that 2715 // PG isn't supported for NV12, it's that we don't want to 2716 // program the registers because that will cause more power 2717 // to be consumed. We could have created dcn20_init_hw to get 2718 // the same effect by checking ASIC rev, but there was a 2719 // request at some point to not check ASIC rev on hw sequencer. 2720 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) { 2721 dc->hwseq->funcs.enable_power_gating_plane = NULL; 2722 dc->debug.disable_dpp_power_gate = true; 2723 dc->debug.disable_hubp_power_gate = true; 2724 } 2725 2726 2727 dc->caps.max_planes = pool->base.pipe_count; 2728 2729 for (i = 0; i < dc->caps.max_planes; ++i) 2730 dc->caps.planes[i] = plane_cap; 2731 2732 dc->cap_funcs = cap_funcs; 2733 2734 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2735 ddc_init_data.ctx = dc->ctx; 2736 ddc_init_data.link = NULL; 2737 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2738 ddc_init_data.id.enum_id = 0; 2739 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2740 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); 2741 } else { 2742 pool->base.oem_device = NULL; 2743 } 2744 2745 return true; 2746 2747 create_fail: 2748 2749 dcn20_resource_destruct(pool); 2750 2751 return false; 2752 } 2753 2754 struct resource_pool *dcn20_create_resource_pool( 2755 const struct dc_init_data *init_data, 2756 struct dc *dc) 2757 { 2758 struct dcn20_resource_pool *pool = 2759 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC); 2760 2761 if (!pool) 2762 return NULL; 2763 2764 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool)) 2765 return &pool->base; 2766 2767 BREAK_TO_DEBUGGER(); 2768 kfree(pool); 2769 return NULL; 2770 } 2771