1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * Copyright 2019 Raptor Engineering, LLC 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include <linux/slab.h> 28 29 #include "dm_services.h" 30 #include "dc.h" 31 32 #include "dcn20_init.h" 33 34 #include "resource.h" 35 #include "include/irq_service_interface.h" 36 #include "dcn20/dcn20_resource.h" 37 38 #include "dml/dcn20/dcn20_fpu.h" 39 40 #include "dcn10/dcn10_hubp.h" 41 #include "dcn10/dcn10_ipp.h" 42 #include "dcn20_hubbub.h" 43 #include "dcn20_mpc.h" 44 #include "dcn20_hubp.h" 45 #include "irq/dcn20/irq_service_dcn20.h" 46 #include "dcn20_dpp.h" 47 #include "dcn20_optc.h" 48 #include "dcn20_hwseq.h" 49 #include "dce110/dce110_hw_sequencer.h" 50 #include "dcn10/dcn10_resource.h" 51 #include "dcn20_opp.h" 52 53 #include "dcn20_dsc.h" 54 55 #include "dcn20_link_encoder.h" 56 #include "dcn20_stream_encoder.h" 57 #include "dce/dce_clock_source.h" 58 #include "dce/dce_audio.h" 59 #include "dce/dce_hwseq.h" 60 #include "virtual/virtual_stream_encoder.h" 61 #include "dce110/dce110_resource.h" 62 #include "dml/display_mode_vba.h" 63 #include "dcn20_dccg.h" 64 #include "dcn20_vmid.h" 65 #include "dce/dce_panel_cntl.h" 66 67 #include "navi10_ip_offset.h" 68 69 #include "dcn/dcn_2_0_0_offset.h" 70 #include "dcn/dcn_2_0_0_sh_mask.h" 71 #include "dpcs/dpcs_2_0_0_offset.h" 72 #include "dpcs/dpcs_2_0_0_sh_mask.h" 73 74 #include "nbio/nbio_2_3_offset.h" 75 76 #include "dcn20/dcn20_dwb.h" 77 #include "dcn20/dcn20_mmhubbub.h" 78 79 #include "mmhub/mmhub_2_0_0_offset.h" 80 #include "mmhub/mmhub_2_0_0_sh_mask.h" 81 82 #include "reg_helper.h" 83 #include "dce/dce_abm.h" 84 #include "dce/dce_dmcu.h" 85 #include "dce/dce_aux.h" 86 #include "dce/dce_i2c.h" 87 #include "vm_helper.h" 88 #include "link_enc_cfg.h" 89 90 #include "amdgpu_socbb.h" 91 92 #include "link.h" 93 #define DC_LOGGER_INIT(logger) 94 95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL 96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f 97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f 99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f 101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f 103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f 105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f 107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f 109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 110 #endif 111 112 113 enum dcn20_clk_src_array_id { 114 DCN20_CLK_SRC_PLL0, 115 DCN20_CLK_SRC_PLL1, 116 DCN20_CLK_SRC_PLL2, 117 DCN20_CLK_SRC_PLL3, 118 DCN20_CLK_SRC_PLL4, 119 DCN20_CLK_SRC_PLL5, 120 DCN20_CLK_SRC_TOTAL 121 }; 122 123 /* begin ********************* 124 * macros to expend register list macro defined in HW object header file */ 125 126 /* DCN */ 127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 128 129 #define BASE(seg) BASE_INNER(seg) 130 131 #define SR(reg_name)\ 132 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 133 mm ## reg_name 134 135 #define SRI(reg_name, block, id)\ 136 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRI2_DWB(reg_name, block, id)\ 140 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 141 mm ## reg_name 142 #define SF_DWB(reg_name, field_name, post_fix)\ 143 .field_name = reg_name ## __ ## field_name ## post_fix 144 145 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 146 .field_name = reg_name ## __ ## field_name ## post_fix 147 148 #define SRIR(var_name, reg_name, block, id)\ 149 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 150 mm ## block ## id ## _ ## reg_name 151 152 #define SRII(reg_name, block, id)\ 153 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 154 mm ## block ## id ## _ ## reg_name 155 156 #define DCCG_SRII(reg_name, block, id)\ 157 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 158 mm ## block ## id ## _ ## reg_name 159 160 #define VUPDATE_SRII(reg_name, block, id)\ 161 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 162 mm ## reg_name ## _ ## block ## id 163 164 /* NBIO */ 165 #define NBIO_BASE_INNER(seg) \ 166 NBIO_BASE__INST0_SEG ## seg 167 168 #define NBIO_BASE(seg) \ 169 NBIO_BASE_INNER(seg) 170 171 #define NBIO_SR(reg_name)\ 172 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 173 mm ## reg_name 174 175 /* MMHUB */ 176 #define MMHUB_BASE_INNER(seg) \ 177 MMHUB_BASE__INST0_SEG ## seg 178 179 #define MMHUB_BASE(seg) \ 180 MMHUB_BASE_INNER(seg) 181 182 #define MMHUB_SR(reg_name)\ 183 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 184 mmMM ## reg_name 185 186 static const struct bios_registers bios_regs = { 187 NBIO_SR(BIOS_SCRATCH_3), 188 NBIO_SR(BIOS_SCRATCH_6) 189 }; 190 191 #define clk_src_regs(index, pllid)\ 192 [index] = {\ 193 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 194 } 195 196 static const struct dce110_clk_src_regs clk_src_regs[] = { 197 clk_src_regs(0, A), 198 clk_src_regs(1, B), 199 clk_src_regs(2, C), 200 clk_src_regs(3, D), 201 clk_src_regs(4, E), 202 clk_src_regs(5, F) 203 }; 204 205 static const struct dce110_clk_src_shift cs_shift = { 206 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 207 }; 208 209 static const struct dce110_clk_src_mask cs_mask = { 210 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 211 }; 212 213 static const struct dce_dmcu_registers dmcu_regs = { 214 DMCU_DCN10_REG_LIST() 215 }; 216 217 static const struct dce_dmcu_shift dmcu_shift = { 218 DMCU_MASK_SH_LIST_DCN10(__SHIFT) 219 }; 220 221 static const struct dce_dmcu_mask dmcu_mask = { 222 DMCU_MASK_SH_LIST_DCN10(_MASK) 223 }; 224 225 static const struct dce_abm_registers abm_regs = { 226 ABM_DCN20_REG_LIST() 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN20(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN20(_MASK) 235 }; 236 237 #define audio_regs(id)\ 238 [id] = {\ 239 AUD_COMMON_REG_LIST(id)\ 240 } 241 242 static const struct dce_audio_registers audio_regs[] = { 243 audio_regs(0), 244 audio_regs(1), 245 audio_regs(2), 246 audio_regs(3), 247 audio_regs(4), 248 audio_regs(5), 249 audio_regs(6), 250 }; 251 252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 253 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 255 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 256 257 static const struct dce_audio_shift audio_shift = { 258 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 259 }; 260 261 static const struct dce_audio_mask audio_mask = { 262 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 263 }; 264 265 #define stream_enc_regs(id)\ 266 [id] = {\ 267 SE_DCN2_REG_LIST(id)\ 268 } 269 270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 271 stream_enc_regs(0), 272 stream_enc_regs(1), 273 stream_enc_regs(2), 274 stream_enc_regs(3), 275 stream_enc_regs(4), 276 stream_enc_regs(5), 277 }; 278 279 static const struct dcn10_stream_encoder_shift se_shift = { 280 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) 281 }; 282 283 static const struct dcn10_stream_encoder_mask se_mask = { 284 SE_COMMON_MASK_SH_LIST_DCN20(_MASK) 285 }; 286 287 288 #define aux_regs(id)\ 289 [id] = {\ 290 DCN2_AUX_REG_LIST(id)\ 291 } 292 293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 294 aux_regs(0), 295 aux_regs(1), 296 aux_regs(2), 297 aux_regs(3), 298 aux_regs(4), 299 aux_regs(5) 300 }; 301 302 #define hpd_regs(id)\ 303 [id] = {\ 304 HPD_REG_LIST(id)\ 305 } 306 307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 308 hpd_regs(0), 309 hpd_regs(1), 310 hpd_regs(2), 311 hpd_regs(3), 312 hpd_regs(4), 313 hpd_regs(5) 314 }; 315 316 #define link_regs(id, phyid)\ 317 [id] = {\ 318 LE_DCN10_REG_LIST(id), \ 319 UNIPHY_DCN2_REG_LIST(phyid), \ 320 DPCS_DCN2_REG_LIST(id), \ 321 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 322 } 323 324 static const struct dcn10_link_enc_registers link_enc_regs[] = { 325 link_regs(0, A), 326 link_regs(1, B), 327 link_regs(2, C), 328 link_regs(3, D), 329 link_regs(4, E), 330 link_regs(5, F) 331 }; 332 333 static const struct dcn10_link_enc_shift le_shift = { 334 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ 335 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 336 }; 337 338 static const struct dcn10_link_enc_mask le_mask = { 339 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ 340 DPCS_DCN2_MASK_SH_LIST(_MASK) 341 }; 342 343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 344 { DCN_PANEL_CNTL_REG_LIST() } 345 }; 346 347 static const struct dce_panel_cntl_shift panel_cntl_shift = { 348 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 349 }; 350 351 static const struct dce_panel_cntl_mask panel_cntl_mask = { 352 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 353 }; 354 355 #define ipp_regs(id)\ 356 [id] = {\ 357 IPP_REG_LIST_DCN20(id),\ 358 } 359 360 static const struct dcn10_ipp_registers ipp_regs[] = { 361 ipp_regs(0), 362 ipp_regs(1), 363 ipp_regs(2), 364 ipp_regs(3), 365 ipp_regs(4), 366 ipp_regs(5), 367 }; 368 369 static const struct dcn10_ipp_shift ipp_shift = { 370 IPP_MASK_SH_LIST_DCN20(__SHIFT) 371 }; 372 373 static const struct dcn10_ipp_mask ipp_mask = { 374 IPP_MASK_SH_LIST_DCN20(_MASK), 375 }; 376 377 #define opp_regs(id)\ 378 [id] = {\ 379 OPP_REG_LIST_DCN20(id),\ 380 } 381 382 static const struct dcn20_opp_registers opp_regs[] = { 383 opp_regs(0), 384 opp_regs(1), 385 opp_regs(2), 386 opp_regs(3), 387 opp_regs(4), 388 opp_regs(5), 389 }; 390 391 static const struct dcn20_opp_shift opp_shift = { 392 OPP_MASK_SH_LIST_DCN20(__SHIFT) 393 }; 394 395 static const struct dcn20_opp_mask opp_mask = { 396 OPP_MASK_SH_LIST_DCN20(_MASK) 397 }; 398 399 #define aux_engine_regs(id)\ 400 [id] = {\ 401 AUX_COMMON_REG_LIST0(id), \ 402 .AUXN_IMPCAL = 0, \ 403 .AUXP_IMPCAL = 0, \ 404 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 405 } 406 407 static const struct dce110_aux_registers aux_engine_regs[] = { 408 aux_engine_regs(0), 409 aux_engine_regs(1), 410 aux_engine_regs(2), 411 aux_engine_regs(3), 412 aux_engine_regs(4), 413 aux_engine_regs(5) 414 }; 415 416 #define tf_regs(id)\ 417 [id] = {\ 418 TF_REG_LIST_DCN20(id),\ 419 TF_REG_LIST_DCN20_COMMON_APPEND(id),\ 420 } 421 422 static const struct dcn2_dpp_registers tf_regs[] = { 423 tf_regs(0), 424 tf_regs(1), 425 tf_regs(2), 426 tf_regs(3), 427 tf_regs(4), 428 tf_regs(5), 429 }; 430 431 static const struct dcn2_dpp_shift tf_shift = { 432 TF_REG_LIST_SH_MASK_DCN20(__SHIFT), 433 TF_DEBUG_REG_LIST_SH_DCN20 434 }; 435 436 static const struct dcn2_dpp_mask tf_mask = { 437 TF_REG_LIST_SH_MASK_DCN20(_MASK), 438 TF_DEBUG_REG_LIST_MASK_DCN20 439 }; 440 441 #define dwbc_regs_dcn2(id)\ 442 [id] = {\ 443 DWBC_COMMON_REG_LIST_DCN2_0(id),\ 444 } 445 446 static const struct dcn20_dwbc_registers dwbc20_regs[] = { 447 dwbc_regs_dcn2(0), 448 }; 449 450 static const struct dcn20_dwbc_shift dwbc20_shift = { 451 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 452 }; 453 454 static const struct dcn20_dwbc_mask dwbc20_mask = { 455 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 456 }; 457 458 #define mcif_wb_regs_dcn2(id)\ 459 [id] = {\ 460 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ 461 } 462 463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { 464 mcif_wb_regs_dcn2(0), 465 }; 466 467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { 468 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 469 }; 470 471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { 472 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 473 }; 474 475 static const struct dcn20_mpc_registers mpc_regs = { 476 MPC_REG_LIST_DCN2_0(0), 477 MPC_REG_LIST_DCN2_0(1), 478 MPC_REG_LIST_DCN2_0(2), 479 MPC_REG_LIST_DCN2_0(3), 480 MPC_REG_LIST_DCN2_0(4), 481 MPC_REG_LIST_DCN2_0(5), 482 MPC_OUT_MUX_REG_LIST_DCN2_0(0), 483 MPC_OUT_MUX_REG_LIST_DCN2_0(1), 484 MPC_OUT_MUX_REG_LIST_DCN2_0(2), 485 MPC_OUT_MUX_REG_LIST_DCN2_0(3), 486 MPC_OUT_MUX_REG_LIST_DCN2_0(4), 487 MPC_OUT_MUX_REG_LIST_DCN2_0(5), 488 MPC_DBG_REG_LIST_DCN2_0() 489 }; 490 491 static const struct dcn20_mpc_shift mpc_shift = { 492 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), 493 MPC_DEBUG_REG_LIST_SH_DCN20 494 }; 495 496 static const struct dcn20_mpc_mask mpc_mask = { 497 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), 498 MPC_DEBUG_REG_LIST_MASK_DCN20 499 }; 500 501 #define tg_regs(id)\ 502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} 503 504 505 static const struct dcn_optc_registers tg_regs[] = { 506 tg_regs(0), 507 tg_regs(1), 508 tg_regs(2), 509 tg_regs(3), 510 tg_regs(4), 511 tg_regs(5) 512 }; 513 514 static const struct dcn_optc_shift tg_shift = { 515 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 516 }; 517 518 static const struct dcn_optc_mask tg_mask = { 519 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 520 }; 521 522 #define hubp_regs(id)\ 523 [id] = {\ 524 HUBP_REG_LIST_DCN20(id)\ 525 } 526 527 static const struct dcn_hubp2_registers hubp_regs[] = { 528 hubp_regs(0), 529 hubp_regs(1), 530 hubp_regs(2), 531 hubp_regs(3), 532 hubp_regs(4), 533 hubp_regs(5) 534 }; 535 536 static const struct dcn_hubp2_shift hubp_shift = { 537 HUBP_MASK_SH_LIST_DCN20(__SHIFT) 538 }; 539 540 static const struct dcn_hubp2_mask hubp_mask = { 541 HUBP_MASK_SH_LIST_DCN20(_MASK) 542 }; 543 544 static const struct dcn_hubbub_registers hubbub_reg = { 545 HUBBUB_REG_LIST_DCN20(0) 546 }; 547 548 static const struct dcn_hubbub_shift hubbub_shift = { 549 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) 550 }; 551 552 static const struct dcn_hubbub_mask hubbub_mask = { 553 HUBBUB_MASK_SH_LIST_DCN20(_MASK) 554 }; 555 556 #define vmid_regs(id)\ 557 [id] = {\ 558 DCN20_VMID_REG_LIST(id)\ 559 } 560 561 static const struct dcn_vmid_registers vmid_regs[] = { 562 vmid_regs(0), 563 vmid_regs(1), 564 vmid_regs(2), 565 vmid_regs(3), 566 vmid_regs(4), 567 vmid_regs(5), 568 vmid_regs(6), 569 vmid_regs(7), 570 vmid_regs(8), 571 vmid_regs(9), 572 vmid_regs(10), 573 vmid_regs(11), 574 vmid_regs(12), 575 vmid_regs(13), 576 vmid_regs(14), 577 vmid_regs(15) 578 }; 579 580 static const struct dcn20_vmid_shift vmid_shifts = { 581 DCN20_VMID_MASK_SH_LIST(__SHIFT) 582 }; 583 584 static const struct dcn20_vmid_mask vmid_masks = { 585 DCN20_VMID_MASK_SH_LIST(_MASK) 586 }; 587 588 static const struct dce110_aux_registers_shift aux_shift = { 589 DCN_AUX_MASK_SH_LIST(__SHIFT) 590 }; 591 592 static const struct dce110_aux_registers_mask aux_mask = { 593 DCN_AUX_MASK_SH_LIST(_MASK) 594 }; 595 596 static int map_transmitter_id_to_phy_instance( 597 enum transmitter transmitter) 598 { 599 switch (transmitter) { 600 case TRANSMITTER_UNIPHY_A: 601 return 0; 602 break; 603 case TRANSMITTER_UNIPHY_B: 604 return 1; 605 break; 606 case TRANSMITTER_UNIPHY_C: 607 return 2; 608 break; 609 case TRANSMITTER_UNIPHY_D: 610 return 3; 611 break; 612 case TRANSMITTER_UNIPHY_E: 613 return 4; 614 break; 615 case TRANSMITTER_UNIPHY_F: 616 return 5; 617 break; 618 default: 619 ASSERT(0); 620 return 0; 621 } 622 } 623 624 #define dsc_regsDCN20(id)\ 625 [id] = {\ 626 DSC_REG_LIST_DCN20(id)\ 627 } 628 629 static const struct dcn20_dsc_registers dsc_regs[] = { 630 dsc_regsDCN20(0), 631 dsc_regsDCN20(1), 632 dsc_regsDCN20(2), 633 dsc_regsDCN20(3), 634 dsc_regsDCN20(4), 635 dsc_regsDCN20(5) 636 }; 637 638 static const struct dcn20_dsc_shift dsc_shift = { 639 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 640 }; 641 642 static const struct dcn20_dsc_mask dsc_mask = { 643 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 644 }; 645 646 static const struct dccg_registers dccg_regs = { 647 DCCG_REG_LIST_DCN2() 648 }; 649 650 static const struct dccg_shift dccg_shift = { 651 DCCG_MASK_SH_LIST_DCN2(__SHIFT) 652 }; 653 654 static const struct dccg_mask dccg_mask = { 655 DCCG_MASK_SH_LIST_DCN2(_MASK) 656 }; 657 658 static const struct resource_caps res_cap_nv10 = { 659 .num_timing_generator = 6, 660 .num_opp = 6, 661 .num_video_plane = 6, 662 .num_audio = 7, 663 .num_stream_encoder = 6, 664 .num_pll = 6, 665 .num_dwb = 1, 666 .num_ddc = 6, 667 .num_vmid = 16, 668 .num_dsc = 6, 669 }; 670 671 static const struct dc_plane_cap plane_cap = { 672 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 673 .blends_with_above = true, 674 .blends_with_below = true, 675 .per_pixel_alpha = true, 676 677 .pixel_format_support = { 678 .argb8888 = true, 679 .nv12 = true, 680 .fp16 = true, 681 .p010 = true 682 }, 683 684 .max_upscale_factor = { 685 .argb8888 = 16000, 686 .nv12 = 16000, 687 .fp16 = 1 688 }, 689 690 .max_downscale_factor = { 691 .argb8888 = 250, 692 .nv12 = 250, 693 .fp16 = 1 694 }, 695 16, 696 16 697 }; 698 static const struct resource_caps res_cap_nv14 = { 699 .num_timing_generator = 5, 700 .num_opp = 5, 701 .num_video_plane = 5, 702 .num_audio = 6, 703 .num_stream_encoder = 5, 704 .num_pll = 5, 705 .num_dwb = 1, 706 .num_ddc = 5, 707 .num_vmid = 16, 708 .num_dsc = 5, 709 }; 710 711 static const struct dc_debug_options debug_defaults_drv = { 712 .disable_dmcu = false, 713 .force_abm_enable = false, 714 .timing_trace = false, 715 .clock_trace = true, 716 .disable_pplib_clock_request = true, 717 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP, 718 .force_single_disp_pipe_split = false, 719 .disable_dcc = DCC_ENABLE, 720 .vsr_support = true, 721 .performance_trace = false, 722 .max_downscale_src_width = 5120,/*upto 5K*/ 723 .disable_pplib_wm_range = false, 724 .scl_reset_length10 = true, 725 .sanity_checks = false, 726 .underflow_assert_delay_us = 0xFFFFFFFF, 727 }; 728 729 static const struct dc_debug_options debug_defaults_diags = { 730 .disable_dmcu = false, 731 .force_abm_enable = false, 732 .timing_trace = true, 733 .clock_trace = true, 734 .disable_dpp_power_gate = true, 735 .disable_hubp_power_gate = true, 736 .disable_clock_gate = true, 737 .disable_pplib_clock_request = true, 738 .disable_pplib_wm_range = true, 739 .disable_stutter = true, 740 .scl_reset_length10 = true, 741 .underflow_assert_delay_us = 0xFFFFFFFF, 742 .enable_tri_buf = true, 743 }; 744 745 void dcn20_dpp_destroy(struct dpp **dpp) 746 { 747 kfree(TO_DCN20_DPP(*dpp)); 748 *dpp = NULL; 749 } 750 751 struct dpp *dcn20_dpp_create( 752 struct dc_context *ctx, 753 uint32_t inst) 754 { 755 struct dcn20_dpp *dpp = 756 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC); 757 758 if (!dpp) 759 return NULL; 760 761 if (dpp2_construct(dpp, ctx, inst, 762 &tf_regs[inst], &tf_shift, &tf_mask)) 763 return &dpp->base; 764 765 BREAK_TO_DEBUGGER(); 766 kfree(dpp); 767 return NULL; 768 } 769 770 struct input_pixel_processor *dcn20_ipp_create( 771 struct dc_context *ctx, uint32_t inst) 772 { 773 struct dcn10_ipp *ipp = 774 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC); 775 776 if (!ipp) { 777 BREAK_TO_DEBUGGER(); 778 return NULL; 779 } 780 781 dcn20_ipp_construct(ipp, ctx, inst, 782 &ipp_regs[inst], &ipp_shift, &ipp_mask); 783 return &ipp->base; 784 } 785 786 787 struct output_pixel_processor *dcn20_opp_create( 788 struct dc_context *ctx, uint32_t inst) 789 { 790 struct dcn20_opp *opp = 791 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC); 792 793 if (!opp) { 794 BREAK_TO_DEBUGGER(); 795 return NULL; 796 } 797 798 dcn20_opp_construct(opp, ctx, inst, 799 &opp_regs[inst], &opp_shift, &opp_mask); 800 return &opp->base; 801 } 802 803 struct dce_aux *dcn20_aux_engine_create( 804 struct dc_context *ctx, 805 uint32_t inst) 806 { 807 struct aux_engine_dce110 *aux_engine = 808 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC); 809 810 if (!aux_engine) 811 return NULL; 812 813 dce110_aux_engine_construct(aux_engine, ctx, inst, 814 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 815 &aux_engine_regs[inst], 816 &aux_mask, 817 &aux_shift, 818 ctx->dc->caps.extended_aux_timeout_support); 819 820 return &aux_engine->base; 821 } 822 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } 823 824 static const struct dce_i2c_registers i2c_hw_regs[] = { 825 i2c_inst_regs(1), 826 i2c_inst_regs(2), 827 i2c_inst_regs(3), 828 i2c_inst_regs(4), 829 i2c_inst_regs(5), 830 i2c_inst_regs(6), 831 }; 832 833 static const struct dce_i2c_shift i2c_shifts = { 834 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) 835 }; 836 837 static const struct dce_i2c_mask i2c_masks = { 838 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) 839 }; 840 841 struct dce_i2c_hw *dcn20_i2c_hw_create( 842 struct dc_context *ctx, 843 uint32_t inst) 844 { 845 struct dce_i2c_hw *dce_i2c_hw = 846 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC); 847 848 if (!dce_i2c_hw) 849 return NULL; 850 851 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 852 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 853 854 return dce_i2c_hw; 855 } 856 struct mpc *dcn20_mpc_create(struct dc_context *ctx) 857 { 858 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), 859 GFP_ATOMIC); 860 861 if (!mpc20) 862 return NULL; 863 864 dcn20_mpc_construct(mpc20, ctx, 865 &mpc_regs, 866 &mpc_shift, 867 &mpc_mask, 868 6); 869 870 return &mpc20->base; 871 } 872 873 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) 874 { 875 int i; 876 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), 877 GFP_ATOMIC); 878 879 if (!hubbub) 880 return NULL; 881 882 hubbub2_construct(hubbub, ctx, 883 &hubbub_reg, 884 &hubbub_shift, 885 &hubbub_mask); 886 887 for (i = 0; i < res_cap_nv10.num_vmid; i++) { 888 struct dcn20_vmid *vmid = &hubbub->vmid[i]; 889 890 vmid->ctx = ctx; 891 892 vmid->regs = &vmid_regs[i]; 893 vmid->shifts = &vmid_shifts; 894 vmid->masks = &vmid_masks; 895 } 896 897 return &hubbub->base; 898 } 899 900 struct timing_generator *dcn20_timing_generator_create( 901 struct dc_context *ctx, 902 uint32_t instance) 903 { 904 struct optc *tgn10 = 905 kzalloc(sizeof(struct optc), GFP_ATOMIC); 906 907 if (!tgn10) 908 return NULL; 909 910 tgn10->base.inst = instance; 911 tgn10->base.ctx = ctx; 912 913 tgn10->tg_regs = &tg_regs[instance]; 914 tgn10->tg_shift = &tg_shift; 915 tgn10->tg_mask = &tg_mask; 916 917 dcn20_timing_generator_init(tgn10); 918 919 return &tgn10->base; 920 } 921 922 static const struct encoder_feature_support link_enc_feature = { 923 .max_hdmi_deep_color = COLOR_DEPTH_121212, 924 .max_hdmi_pixel_clock = 600000, 925 .hdmi_ycbcr420_supported = true, 926 .dp_ycbcr420_supported = true, 927 .fec_supported = true, 928 .flags.bits.IS_HBR2_CAPABLE = true, 929 .flags.bits.IS_HBR3_CAPABLE = true, 930 .flags.bits.IS_TPS3_CAPABLE = true, 931 .flags.bits.IS_TPS4_CAPABLE = true 932 }; 933 934 struct link_encoder *dcn20_link_encoder_create( 935 struct dc_context *ctx, 936 const struct encoder_init_data *enc_init_data) 937 { 938 struct dcn20_link_encoder *enc20 = 939 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 940 int link_regs_id; 941 942 if (!enc20) 943 return NULL; 944 945 link_regs_id = 946 map_transmitter_id_to_phy_instance(enc_init_data->transmitter); 947 948 dcn20_link_encoder_construct(enc20, 949 enc_init_data, 950 &link_enc_feature, 951 &link_enc_regs[link_regs_id], 952 &link_enc_aux_regs[enc_init_data->channel - 1], 953 &link_enc_hpd_regs[enc_init_data->hpd_source], 954 &le_shift, 955 &le_mask); 956 957 return &enc20->enc10.base; 958 } 959 960 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data) 961 { 962 struct dce_panel_cntl *panel_cntl = 963 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 964 965 if (!panel_cntl) 966 return NULL; 967 968 dce_panel_cntl_construct(panel_cntl, 969 init_data, 970 &panel_cntl_regs[init_data->inst], 971 &panel_cntl_shift, 972 &panel_cntl_mask); 973 974 return &panel_cntl->base; 975 } 976 977 static struct clock_source *dcn20_clock_source_create( 978 struct dc_context *ctx, 979 struct dc_bios *bios, 980 enum clock_source_id id, 981 const struct dce110_clk_src_regs *regs, 982 bool dp_clk_src) 983 { 984 struct dce110_clk_src *clk_src = 985 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC); 986 987 if (!clk_src) 988 return NULL; 989 990 if (dcn20_clk_src_construct(clk_src, ctx, bios, id, 991 regs, &cs_shift, &cs_mask)) { 992 clk_src->base.dp_clk_src = dp_clk_src; 993 return &clk_src->base; 994 } 995 996 kfree(clk_src); 997 BREAK_TO_DEBUGGER(); 998 return NULL; 999 } 1000 1001 static void read_dce_straps( 1002 struct dc_context *ctx, 1003 struct resource_straps *straps) 1004 { 1005 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 1006 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1007 } 1008 1009 static struct audio *dcn20_create_audio( 1010 struct dc_context *ctx, unsigned int inst) 1011 { 1012 return dce_audio_create(ctx, inst, 1013 &audio_regs[inst], &audio_shift, &audio_mask); 1014 } 1015 1016 struct stream_encoder *dcn20_stream_encoder_create( 1017 enum engine_id eng_id, 1018 struct dc_context *ctx) 1019 { 1020 struct dcn10_stream_encoder *enc1 = 1021 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1022 1023 if (!enc1) 1024 return NULL; 1025 1026 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 1027 if (eng_id >= ENGINE_ID_DIGD) 1028 eng_id++; 1029 } 1030 1031 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, 1032 &stream_enc_regs[eng_id], 1033 &se_shift, &se_mask); 1034 1035 return &enc1->base; 1036 } 1037 1038 static const struct dce_hwseq_registers hwseq_reg = { 1039 HWSEQ_DCN2_REG_LIST() 1040 }; 1041 1042 static const struct dce_hwseq_shift hwseq_shift = { 1043 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) 1044 }; 1045 1046 static const struct dce_hwseq_mask hwseq_mask = { 1047 HWSEQ_DCN2_MASK_SH_LIST(_MASK) 1048 }; 1049 1050 struct dce_hwseq *dcn20_hwseq_create( 1051 struct dc_context *ctx) 1052 { 1053 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1054 1055 if (hws) { 1056 hws->ctx = ctx; 1057 hws->regs = &hwseq_reg; 1058 hws->shifts = &hwseq_shift; 1059 hws->masks = &hwseq_mask; 1060 } 1061 return hws; 1062 } 1063 1064 static const struct resource_create_funcs res_create_funcs = { 1065 .read_dce_straps = read_dce_straps, 1066 .create_audio = dcn20_create_audio, 1067 .create_stream_encoder = dcn20_stream_encoder_create, 1068 .create_hwseq = dcn20_hwseq_create, 1069 }; 1070 1071 static const struct resource_create_funcs res_create_maximus_funcs = { 1072 .read_dce_straps = NULL, 1073 .create_audio = NULL, 1074 .create_stream_encoder = NULL, 1075 .create_hwseq = dcn20_hwseq_create, 1076 }; 1077 1078 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu); 1079 1080 void dcn20_clock_source_destroy(struct clock_source **clk_src) 1081 { 1082 kfree(TO_DCE110_CLK_SRC(*clk_src)); 1083 *clk_src = NULL; 1084 } 1085 1086 1087 struct display_stream_compressor *dcn20_dsc_create( 1088 struct dc_context *ctx, uint32_t inst) 1089 { 1090 struct dcn20_dsc *dsc = 1091 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC); 1092 1093 if (!dsc) { 1094 BREAK_TO_DEBUGGER(); 1095 return NULL; 1096 } 1097 1098 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1099 return &dsc->base; 1100 } 1101 1102 void dcn20_dsc_destroy(struct display_stream_compressor **dsc) 1103 { 1104 kfree(container_of(*dsc, struct dcn20_dsc, base)); 1105 *dsc = NULL; 1106 } 1107 1108 1109 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool) 1110 { 1111 unsigned int i; 1112 1113 for (i = 0; i < pool->base.stream_enc_count; i++) { 1114 if (pool->base.stream_enc[i] != NULL) { 1115 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1116 pool->base.stream_enc[i] = NULL; 1117 } 1118 } 1119 1120 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1121 if (pool->base.dscs[i] != NULL) 1122 dcn20_dsc_destroy(&pool->base.dscs[i]); 1123 } 1124 1125 if (pool->base.mpc != NULL) { 1126 kfree(TO_DCN20_MPC(pool->base.mpc)); 1127 pool->base.mpc = NULL; 1128 } 1129 if (pool->base.hubbub != NULL) { 1130 kfree(pool->base.hubbub); 1131 pool->base.hubbub = NULL; 1132 } 1133 for (i = 0; i < pool->base.pipe_count; i++) { 1134 if (pool->base.dpps[i] != NULL) 1135 dcn20_dpp_destroy(&pool->base.dpps[i]); 1136 1137 if (pool->base.ipps[i] != NULL) 1138 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1139 1140 if (pool->base.hubps[i] != NULL) { 1141 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1142 pool->base.hubps[i] = NULL; 1143 } 1144 1145 if (pool->base.irqs != NULL) { 1146 dal_irq_service_destroy(&pool->base.irqs); 1147 } 1148 } 1149 1150 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1151 if (pool->base.engines[i] != NULL) 1152 dce110_engine_destroy(&pool->base.engines[i]); 1153 if (pool->base.hw_i2cs[i] != NULL) { 1154 kfree(pool->base.hw_i2cs[i]); 1155 pool->base.hw_i2cs[i] = NULL; 1156 } 1157 if (pool->base.sw_i2cs[i] != NULL) { 1158 kfree(pool->base.sw_i2cs[i]); 1159 pool->base.sw_i2cs[i] = NULL; 1160 } 1161 } 1162 1163 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1164 if (pool->base.opps[i] != NULL) 1165 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1166 } 1167 1168 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1169 if (pool->base.timing_generators[i] != NULL) { 1170 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1171 pool->base.timing_generators[i] = NULL; 1172 } 1173 } 1174 1175 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1176 if (pool->base.dwbc[i] != NULL) { 1177 kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); 1178 pool->base.dwbc[i] = NULL; 1179 } 1180 if (pool->base.mcif_wb[i] != NULL) { 1181 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); 1182 pool->base.mcif_wb[i] = NULL; 1183 } 1184 } 1185 1186 for (i = 0; i < pool->base.audio_count; i++) { 1187 if (pool->base.audios[i]) 1188 dce_aud_destroy(&pool->base.audios[i]); 1189 } 1190 1191 for (i = 0; i < pool->base.clk_src_count; i++) { 1192 if (pool->base.clock_sources[i] != NULL) { 1193 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1194 pool->base.clock_sources[i] = NULL; 1195 } 1196 } 1197 1198 if (pool->base.dp_clock_source != NULL) { 1199 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1200 pool->base.dp_clock_source = NULL; 1201 } 1202 1203 1204 if (pool->base.abm != NULL) 1205 dce_abm_destroy(&pool->base.abm); 1206 1207 if (pool->base.dmcu != NULL) 1208 dce_dmcu_destroy(&pool->base.dmcu); 1209 1210 if (pool->base.dccg != NULL) 1211 dcn_dccg_destroy(&pool->base.dccg); 1212 1213 if (pool->base.pp_smu != NULL) 1214 dcn20_pp_smu_destroy(&pool->base.pp_smu); 1215 1216 if (pool->base.oem_device != NULL) 1217 link_destroy_ddc_service(&pool->base.oem_device); 1218 } 1219 1220 struct hubp *dcn20_hubp_create( 1221 struct dc_context *ctx, 1222 uint32_t inst) 1223 { 1224 struct dcn20_hubp *hubp2 = 1225 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC); 1226 1227 if (!hubp2) 1228 return NULL; 1229 1230 if (hubp2_construct(hubp2, ctx, inst, 1231 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1232 return &hubp2->base; 1233 1234 BREAK_TO_DEBUGGER(); 1235 kfree(hubp2); 1236 return NULL; 1237 } 1238 1239 static void get_pixel_clock_parameters( 1240 struct pipe_ctx *pipe_ctx, 1241 struct pixel_clk_params *pixel_clk_params) 1242 { 1243 const struct dc_stream_state *stream = pipe_ctx->stream; 1244 struct pipe_ctx *odm_pipe; 1245 int opp_cnt = 1; 1246 struct dc_link *link = stream->link; 1247 struct link_encoder *link_enc = NULL; 1248 struct dc *dc = pipe_ctx->stream->ctx->dc; 1249 struct dce_hwseq *hws = dc->hwseq; 1250 1251 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1252 opp_cnt++; 1253 1254 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; 1255 1256 link_enc = link_enc_cfg_get_link_enc(link); 1257 if (link_enc) 1258 pixel_clk_params->encoder_object_id = link_enc->id; 1259 1260 pixel_clk_params->signal_type = pipe_ctx->stream->signal; 1261 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; 1262 /* TODO: un-hardcode*/ 1263 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */ 1264 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * 1265 LINK_RATE_REF_FREQ_IN_KHZ; 1266 pixel_clk_params->flags.ENABLE_SS = 0; 1267 pixel_clk_params->color_depth = 1268 stream->timing.display_color_depth; 1269 pixel_clk_params->flags.DISPLAY_BLANKED = 1; 1270 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; 1271 1272 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 1273 pixel_clk_params->color_depth = COLOR_DEPTH_888; 1274 1275 if (opp_cnt == 4) 1276 pixel_clk_params->requested_pix_clk_100hz /= 4; 1277 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) 1278 pixel_clk_params->requested_pix_clk_100hz /= 2; 1279 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) { 1280 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) 1281 pixel_clk_params->requested_pix_clk_100hz /= 2; 1282 } 1283 1284 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) 1285 pixel_clk_params->requested_pix_clk_100hz *= 2; 1286 1287 } 1288 1289 static void build_clamping_params(struct dc_stream_state *stream) 1290 { 1291 stream->clamping.clamping_level = CLAMPING_FULL_RANGE; 1292 stream->clamping.c_depth = stream->timing.display_color_depth; 1293 stream->clamping.pixel_encoding = stream->timing.pixel_encoding; 1294 } 1295 1296 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) 1297 { 1298 1299 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); 1300 1301 pipe_ctx->clock_source->funcs->get_pix_clk_dividers( 1302 pipe_ctx->clock_source, 1303 &pipe_ctx->stream_res.pix_clk_params, 1304 &pipe_ctx->pll_settings); 1305 1306 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; 1307 1308 resource_build_bit_depth_reduction_params(pipe_ctx->stream, 1309 &pipe_ctx->stream->bit_depth_params); 1310 build_clamping_params(pipe_ctx->stream); 1311 1312 return DC_OK; 1313 } 1314 1315 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) 1316 { 1317 enum dc_status status = DC_OK; 1318 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); 1319 1320 if (!pipe_ctx) 1321 return DC_ERROR_UNEXPECTED; 1322 1323 1324 status = build_pipe_hw_param(pipe_ctx); 1325 1326 return status; 1327 } 1328 1329 1330 void dcn20_acquire_dsc(const struct dc *dc, 1331 struct resource_context *res_ctx, 1332 struct display_stream_compressor **dsc, 1333 int pipe_idx) 1334 { 1335 int i; 1336 const struct resource_pool *pool = dc->res_pool; 1337 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc; 1338 1339 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */ 1340 *dsc = NULL; 1341 1342 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */ 1343 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) { 1344 *dsc = pool->dscs[pipe_idx]; 1345 res_ctx->is_dsc_acquired[pipe_idx] = true; 1346 return; 1347 } 1348 1349 /* Return old DSC to avoid the need for re-programming */ 1350 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) { 1351 *dsc = dsc_old; 1352 res_ctx->is_dsc_acquired[dsc_old->inst] = true; 1353 return ; 1354 } 1355 1356 /* Find first free DSC */ 1357 for (i = 0; i < pool->res_cap->num_dsc; i++) 1358 if (!res_ctx->is_dsc_acquired[i]) { 1359 *dsc = pool->dscs[i]; 1360 res_ctx->is_dsc_acquired[i] = true; 1361 break; 1362 } 1363 } 1364 1365 void dcn20_release_dsc(struct resource_context *res_ctx, 1366 const struct resource_pool *pool, 1367 struct display_stream_compressor **dsc) 1368 { 1369 int i; 1370 1371 for (i = 0; i < pool->res_cap->num_dsc; i++) 1372 if (pool->dscs[i] == *dsc) { 1373 res_ctx->is_dsc_acquired[i] = false; 1374 *dsc = NULL; 1375 break; 1376 } 1377 } 1378 1379 1380 1381 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc, 1382 struct dc_state *dc_ctx, 1383 struct dc_stream_state *dc_stream) 1384 { 1385 enum dc_status result = DC_OK; 1386 int i; 1387 1388 /* Get a DSC if required and available */ 1389 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1390 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; 1391 1392 if (pipe_ctx->top_pipe) 1393 continue; 1394 1395 if (pipe_ctx->stream != dc_stream) 1396 continue; 1397 1398 if (pipe_ctx->stream_res.dsc) 1399 continue; 1400 1401 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i); 1402 1403 /* The number of DSCs can be less than the number of pipes */ 1404 if (!pipe_ctx->stream_res.dsc) { 1405 result = DC_NO_DSC_RESOURCE; 1406 } 1407 1408 break; 1409 } 1410 1411 return result; 1412 } 1413 1414 1415 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, 1416 struct dc_state *new_ctx, 1417 struct dc_stream_state *dc_stream) 1418 { 1419 struct pipe_ctx *pipe_ctx = NULL; 1420 int i; 1421 1422 for (i = 0; i < MAX_PIPES; i++) { 1423 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { 1424 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1425 1426 if (pipe_ctx->stream_res.dsc) 1427 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); 1428 } 1429 } 1430 1431 if (!pipe_ctx) 1432 return DC_ERROR_UNEXPECTED; 1433 else 1434 return DC_OK; 1435 } 1436 1437 1438 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1439 { 1440 enum dc_status result = DC_ERROR_UNEXPECTED; 1441 1442 result = resource_map_pool_resources(dc, new_ctx, dc_stream); 1443 1444 if (result == DC_OK) 1445 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); 1446 1447 /* Get a DSC if required and available */ 1448 if (result == DC_OK && dc_stream->timing.flags.DSC) 1449 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream); 1450 1451 if (result == DC_OK) 1452 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); 1453 1454 return result; 1455 } 1456 1457 1458 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1459 { 1460 enum dc_status result = DC_OK; 1461 1462 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); 1463 1464 return result; 1465 } 1466 1467 /** 1468 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM 1469 * 1470 * @dc: DC object with resource pool info required for pipe split 1471 * @res_ctx: Persistent state of resources 1472 * @prev_odm_pipe: Reference to the previous ODM pipe 1473 * @next_odm_pipe: Reference to the next ODM pipe 1474 * 1475 * This function takes a logically active pipe and a logically free pipe and 1476 * halves all the scaling parameters that need to be halved while populating 1477 * the free pipe with the required resources and configuring the next/previous 1478 * ODM pipe pointers. 1479 * 1480 * Return: 1481 * Return true if split stream for ODM is possible, otherwise, return false. 1482 */ 1483 bool dcn20_split_stream_for_odm( 1484 const struct dc *dc, 1485 struct resource_context *res_ctx, 1486 struct pipe_ctx *prev_odm_pipe, 1487 struct pipe_ctx *next_odm_pipe) 1488 { 1489 int pipe_idx = next_odm_pipe->pipe_idx; 1490 const struct resource_pool *pool = dc->res_pool; 1491 1492 *next_odm_pipe = *prev_odm_pipe; 1493 1494 next_odm_pipe->pipe_idx = pipe_idx; 1495 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; 1496 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; 1497 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; 1498 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; 1499 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; 1500 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; 1501 next_odm_pipe->stream_res.dsc = NULL; 1502 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { 1503 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; 1504 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; 1505 } 1506 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) { 1507 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe; 1508 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe; 1509 } 1510 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) { 1511 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe; 1512 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe; 1513 } 1514 prev_odm_pipe->next_odm_pipe = next_odm_pipe; 1515 next_odm_pipe->prev_odm_pipe = prev_odm_pipe; 1516 1517 if (prev_odm_pipe->plane_state) { 1518 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; 1519 int new_width; 1520 1521 /* HACTIVE halved for odm combine */ 1522 sd->h_active /= 2; 1523 /* Calculate new vp and recout for left pipe */ 1524 /* Need at least 16 pixels width per side */ 1525 if (sd->recout.x + 16 >= sd->h_active) 1526 return false; 1527 new_width = sd->h_active - sd->recout.x; 1528 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1529 sd->ratios.horz, sd->recout.width - new_width)); 1530 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1531 sd->ratios.horz_c, sd->recout.width - new_width)); 1532 sd->recout.width = new_width; 1533 1534 /* Calculate new vp and recout for right pipe */ 1535 sd = &next_odm_pipe->plane_res.scl_data; 1536 /* HACTIVE halved for odm combine */ 1537 sd->h_active /= 2; 1538 /* Need at least 16 pixels width per side */ 1539 if (new_width <= 16) 1540 return false; 1541 new_width = sd->recout.width + sd->recout.x - sd->h_active; 1542 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1543 sd->ratios.horz, sd->recout.width - new_width)); 1544 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1545 sd->ratios.horz_c, sd->recout.width - new_width)); 1546 sd->recout.width = new_width; 1547 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( 1548 sd->ratios.horz, sd->h_active - sd->recout.x)); 1549 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( 1550 sd->ratios.horz_c, sd->h_active - sd->recout.x)); 1551 sd->recout.x = 0; 1552 } 1553 if (!next_odm_pipe->top_pipe) 1554 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; 1555 else 1556 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp; 1557 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) { 1558 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx); 1559 ASSERT(next_odm_pipe->stream_res.dsc); 1560 if (next_odm_pipe->stream_res.dsc == NULL) 1561 return false; 1562 } 1563 1564 return true; 1565 } 1566 1567 void dcn20_split_stream_for_mpc( 1568 struct resource_context *res_ctx, 1569 const struct resource_pool *pool, 1570 struct pipe_ctx *primary_pipe, 1571 struct pipe_ctx *secondary_pipe) 1572 { 1573 int pipe_idx = secondary_pipe->pipe_idx; 1574 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; 1575 1576 *secondary_pipe = *primary_pipe; 1577 secondary_pipe->bottom_pipe = sec_bot_pipe; 1578 1579 secondary_pipe->pipe_idx = pipe_idx; 1580 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; 1581 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; 1582 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; 1583 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; 1584 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; 1585 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; 1586 secondary_pipe->stream_res.dsc = NULL; 1587 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { 1588 ASSERT(!secondary_pipe->bottom_pipe); 1589 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; 1590 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; 1591 } 1592 primary_pipe->bottom_pipe = secondary_pipe; 1593 secondary_pipe->top_pipe = primary_pipe; 1594 1595 ASSERT(primary_pipe->plane_state); 1596 } 1597 1598 unsigned int dcn20_calc_max_scaled_time( 1599 unsigned int time_per_pixel, 1600 enum mmhubbub_wbif_mode mode, 1601 unsigned int urgent_watermark) 1602 { 1603 unsigned int time_per_byte = 0; 1604 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ 1605 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ 1606 unsigned int small_free_entry, max_free_entry; 1607 unsigned int buf_lh_capability; 1608 unsigned int max_scaled_time; 1609 1610 if (mode == PACKED_444) /* packed mode */ 1611 time_per_byte = time_per_pixel/4; 1612 else if (mode == PLANAR_420_8BPC) 1613 time_per_byte = time_per_pixel; 1614 else if (mode == PLANAR_420_10BPC) /* p010 */ 1615 time_per_byte = time_per_pixel * 819/1024; 1616 1617 if (time_per_byte == 0) 1618 time_per_byte = 1; 1619 1620 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; 1621 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; 1622 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ 1623 max_scaled_time = buf_lh_capability - urgent_watermark; 1624 return max_scaled_time; 1625 } 1626 1627 void dcn20_set_mcif_arb_params( 1628 struct dc *dc, 1629 struct dc_state *context, 1630 display_e2e_pipe_params_st *pipes, 1631 int pipe_cnt) 1632 { 1633 enum mmhubbub_wbif_mode wbif_mode; 1634 struct mcif_arb_params *wb_arb_params; 1635 int i, j, dwb_pipe; 1636 1637 /* Writeback MCIF_WB arbitration parameters */ 1638 dwb_pipe = 0; 1639 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1640 1641 if (!context->res_ctx.pipe_ctx[i].stream) 1642 continue; 1643 1644 for (j = 0; j < MAX_DWB_PIPES; j++) { 1645 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) 1646 continue; 1647 1648 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1649 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1650 1651 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { 1652 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) 1653 wbif_mode = PLANAR_420_8BPC; 1654 else 1655 wbif_mode = PLANAR_420_10BPC; 1656 } else 1657 wbif_mode = PACKED_444; 1658 1659 DC_FP_START(); 1660 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i); 1661 DC_FP_END(); 1662 1663 wb_arb_params->slice_lines = 32; 1664 wb_arb_params->arbitration_slice = 2; 1665 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1666 wbif_mode, 1667 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1668 1669 dwb_pipe++; 1670 1671 if (dwb_pipe >= MAX_DWB_PIPES) 1672 return; 1673 } 1674 if (dwb_pipe >= MAX_DWB_PIPES) 1675 return; 1676 } 1677 } 1678 1679 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) 1680 { 1681 int i; 1682 1683 /* Validate DSC config, dsc count validation is already done */ 1684 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1685 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1686 struct dc_stream_state *stream = pipe_ctx->stream; 1687 struct dsc_config dsc_cfg; 1688 struct pipe_ctx *odm_pipe; 1689 int opp_cnt = 1; 1690 1691 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1692 opp_cnt++; 1693 1694 /* Only need to validate top pipe */ 1695 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) 1696 continue; 1697 1698 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left 1699 + stream->timing.h_border_right) / opp_cnt; 1700 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top 1701 + stream->timing.v_border_bottom; 1702 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; 1703 dsc_cfg.color_depth = stream->timing.display_color_depth; 1704 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; 1705 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; 1706 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; 1707 1708 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) 1709 return false; 1710 } 1711 return true; 1712 } 1713 1714 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, 1715 struct resource_context *res_ctx, 1716 const struct resource_pool *pool, 1717 const struct pipe_ctx *primary_pipe) 1718 { 1719 struct pipe_ctx *secondary_pipe = NULL; 1720 1721 if (dc && primary_pipe) { 1722 int j; 1723 int preferred_pipe_idx = 0; 1724 1725 /* first check the prev dc state: 1726 * if this primary pipe has a bottom pipe in prev. state 1727 * and if the bottom pipe is still available (which it should be), 1728 * pick that pipe as secondary 1729 * Same logic applies for ODM pipes 1730 */ 1731 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { 1732 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; 1733 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1734 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1735 secondary_pipe->pipe_idx = preferred_pipe_idx; 1736 } 1737 } 1738 if (secondary_pipe == NULL && 1739 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { 1740 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; 1741 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1742 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1743 secondary_pipe->pipe_idx = preferred_pipe_idx; 1744 } 1745 } 1746 1747 /* 1748 * if this primary pipe does not have a bottom pipe in prev. state 1749 * start backward and find a pipe that did not used to be a bottom pipe in 1750 * prev. dc state. This way we make sure we keep the same assignment as 1751 * last state and will not have to reprogram every pipe 1752 */ 1753 if (secondary_pipe == NULL) { 1754 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1755 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL 1756 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) { 1757 preferred_pipe_idx = j; 1758 1759 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1760 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1761 secondary_pipe->pipe_idx = preferred_pipe_idx; 1762 break; 1763 } 1764 } 1765 } 1766 } 1767 /* 1768 * We should never hit this assert unless assignments are shuffled around 1769 * if this happens we will prob. hit a vsync tdr 1770 */ 1771 ASSERT(secondary_pipe); 1772 /* 1773 * search backwards for the second pipe to keep pipe 1774 * assignment more consistent 1775 */ 1776 if (secondary_pipe == NULL) { 1777 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1778 preferred_pipe_idx = j; 1779 1780 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1781 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1782 secondary_pipe->pipe_idx = preferred_pipe_idx; 1783 break; 1784 } 1785 } 1786 } 1787 } 1788 1789 return secondary_pipe; 1790 } 1791 1792 void dcn20_merge_pipes_for_validate( 1793 struct dc *dc, 1794 struct dc_state *context) 1795 { 1796 int i; 1797 1798 /* merge previously split odm pipes since mode support needs to make the decision */ 1799 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1800 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1801 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; 1802 1803 if (pipe->prev_odm_pipe) 1804 continue; 1805 1806 pipe->next_odm_pipe = NULL; 1807 while (odm_pipe) { 1808 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; 1809 1810 odm_pipe->plane_state = NULL; 1811 odm_pipe->stream = NULL; 1812 odm_pipe->top_pipe = NULL; 1813 odm_pipe->bottom_pipe = NULL; 1814 odm_pipe->prev_odm_pipe = NULL; 1815 odm_pipe->next_odm_pipe = NULL; 1816 if (odm_pipe->stream_res.dsc) 1817 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); 1818 /* Clear plane_res and stream_res */ 1819 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); 1820 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); 1821 odm_pipe = next_odm_pipe; 1822 } 1823 if (pipe->plane_state) 1824 resource_build_scaling_params(pipe); 1825 } 1826 1827 /* merge previously mpc split pipes since mode support needs to make the decision */ 1828 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1829 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1830 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 1831 1832 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) 1833 continue; 1834 1835 pipe->bottom_pipe = hsplit_pipe->bottom_pipe; 1836 if (hsplit_pipe->bottom_pipe) 1837 hsplit_pipe->bottom_pipe->top_pipe = pipe; 1838 hsplit_pipe->plane_state = NULL; 1839 hsplit_pipe->stream = NULL; 1840 hsplit_pipe->top_pipe = NULL; 1841 hsplit_pipe->bottom_pipe = NULL; 1842 1843 /* Clear plane_res and stream_res */ 1844 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); 1845 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); 1846 if (pipe->plane_state) 1847 resource_build_scaling_params(pipe); 1848 } 1849 } 1850 1851 int dcn20_validate_apply_pipe_split_flags( 1852 struct dc *dc, 1853 struct dc_state *context, 1854 int vlevel, 1855 int *split, 1856 bool *merge) 1857 { 1858 int i, pipe_idx, vlevel_split; 1859 int plane_count = 0; 1860 bool force_split = false; 1861 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID; 1862 struct vba_vars_st *v = &context->bw_ctx.dml.vba; 1863 int max_mpc_comb = v->maxMpcComb; 1864 1865 if (context->stream_count > 1) { 1866 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) 1867 avoid_split = true; 1868 } else if (dc->debug.force_single_disp_pipe_split) 1869 force_split = true; 1870 1871 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1872 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1873 1874 /** 1875 * Workaround for avoiding pipe-split in cases where we'd split 1876 * planes that are too small, resulting in splits that aren't 1877 * valid for the scaler. 1878 */ 1879 if (pipe->plane_state && 1880 (pipe->plane_state->dst_rect.width <= 16 || 1881 pipe->plane_state->dst_rect.height <= 16 || 1882 pipe->plane_state->src_rect.width <= 16 || 1883 pipe->plane_state->src_rect.height <= 16)) 1884 avoid_split = true; 1885 1886 /* TODO: fix dc bugs and remove this split threshold thing */ 1887 if (pipe->stream && !pipe->prev_odm_pipe && 1888 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) 1889 ++plane_count; 1890 } 1891 if (plane_count > dc->res_pool->pipe_count / 2) 1892 avoid_split = true; 1893 1894 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */ 1895 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1896 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1897 struct dc_crtc_timing timing; 1898 1899 if (!pipe->stream) 1900 continue; 1901 else { 1902 timing = pipe->stream->timing; 1903 if (timing.h_border_left + timing.h_border_right 1904 + timing.v_border_top + timing.v_border_bottom > 0) { 1905 avoid_split = true; 1906 break; 1907 } 1908 } 1909 } 1910 1911 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */ 1912 if (avoid_split) { 1913 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1914 if (!context->res_ctx.pipe_ctx[i].stream) 1915 continue; 1916 1917 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++) 1918 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 && 1919 v->ModeSupport[vlevel][0]) 1920 break; 1921 /* Impossible to not split this pipe */ 1922 if (vlevel > context->bw_ctx.dml.soc.num_states) 1923 vlevel = vlevel_split; 1924 else 1925 max_mpc_comb = 0; 1926 pipe_idx++; 1927 } 1928 v->maxMpcComb = max_mpc_comb; 1929 } 1930 1931 /* Split loop sets which pipe should be split based on dml outputs and dc flags */ 1932 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1933 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1934 int pipe_plane = v->pipe_plane[pipe_idx]; 1935 bool split4mpc = context->stream_count == 1 && plane_count == 1 1936 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4; 1937 1938 if (!context->res_ctx.pipe_ctx[i].stream) 1939 continue; 1940 1941 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4) 1942 split[i] = 4; 1943 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2) 1944 split[i] = 2; 1945 1946 if ((pipe->stream->view_format == 1947 VIEW_3D_FORMAT_SIDE_BY_SIDE || 1948 pipe->stream->view_format == 1949 VIEW_3D_FORMAT_TOP_AND_BOTTOM) && 1950 (pipe->stream->timing.timing_3d_format == 1951 TIMING_3D_FORMAT_TOP_AND_BOTTOM || 1952 pipe->stream->timing.timing_3d_format == 1953 TIMING_3D_FORMAT_SIDE_BY_SIDE)) 1954 split[i] = 2; 1955 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { 1956 split[i] = 2; 1957 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1; 1958 } 1959 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) { 1960 split[i] = 4; 1961 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1; 1962 } 1963 /*420 format workaround*/ 1964 if (pipe->stream->timing.h_addressable > 7680 && 1965 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { 1966 split[i] = 4; 1967 } 1968 v->ODMCombineEnabled[pipe_plane] = 1969 v->ODMCombineEnablePerState[vlevel][pipe_plane]; 1970 1971 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) { 1972 if (get_num_mpc_splits(pipe) == 1) { 1973 /*If need split for mpc but 2 way split already*/ 1974 if (split[i] == 4) 1975 split[i] = 2; /* 2 -> 4 MPC */ 1976 else if (split[i] == 2) 1977 split[i] = 0; /* 2 -> 2 MPC */ 1978 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) 1979 merge[i] = true; /* 2 -> 1 MPC */ 1980 } else if (get_num_mpc_splits(pipe) == 3) { 1981 /*If need split for mpc but 4 way split already*/ 1982 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe) 1983 || !pipe->bottom_pipe)) { 1984 merge[i] = true; /* 4 -> 2 MPC */ 1985 } else if (split[i] == 0 && pipe->top_pipe && 1986 pipe->top_pipe->plane_state == pipe->plane_state) 1987 merge[i] = true; /* 4 -> 1 MPC */ 1988 split[i] = 0; 1989 } else if (get_num_odm_splits(pipe)) { 1990 /* ODM -> MPC transition */ 1991 if (pipe->prev_odm_pipe) { 1992 split[i] = 0; 1993 merge[i] = true; 1994 } 1995 } 1996 } else { 1997 if (get_num_odm_splits(pipe) == 1) { 1998 /*If need split for odm but 2 way split already*/ 1999 if (split[i] == 4) 2000 split[i] = 2; /* 2 -> 4 ODM */ 2001 else if (split[i] == 2) 2002 split[i] = 0; /* 2 -> 2 ODM */ 2003 else if (pipe->prev_odm_pipe) { 2004 ASSERT(0); /* NOT expected yet */ 2005 merge[i] = true; /* exit ODM */ 2006 } 2007 } else if (get_num_odm_splits(pipe) == 3) { 2008 /*If need split for odm but 4 way split already*/ 2009 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe) 2010 || !pipe->next_odm_pipe)) { 2011 merge[i] = true; /* 4 -> 2 ODM */ 2012 } else if (split[i] == 0 && pipe->prev_odm_pipe) { 2013 ASSERT(0); /* NOT expected yet */ 2014 merge[i] = true; /* exit ODM */ 2015 } 2016 split[i] = 0; 2017 } else if (get_num_mpc_splits(pipe)) { 2018 /* MPC -> ODM transition */ 2019 ASSERT(0); /* NOT expected yet */ 2020 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2021 split[i] = 0; 2022 merge[i] = true; 2023 } 2024 } 2025 } 2026 2027 /* Adjust dppclk when split is forced, do not bother with dispclk */ 2028 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) { 2029 DC_FP_START(); 2030 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false); 2031 DC_FP_END(); 2032 } 2033 pipe_idx++; 2034 } 2035 2036 return vlevel; 2037 } 2038 2039 bool dcn20_fast_validate_bw( 2040 struct dc *dc, 2041 struct dc_state *context, 2042 display_e2e_pipe_params_st *pipes, 2043 int *pipe_cnt_out, 2044 int *pipe_split_from, 2045 int *vlevel_out, 2046 bool fast_validate) 2047 { 2048 bool out = false; 2049 int split[MAX_PIPES] = { 0 }; 2050 int pipe_cnt, i, pipe_idx, vlevel; 2051 2052 ASSERT(pipes); 2053 if (!pipes) 2054 return false; 2055 2056 dcn20_merge_pipes_for_validate(dc, context); 2057 2058 DC_FP_START(); 2059 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2060 DC_FP_END(); 2061 2062 *pipe_cnt_out = pipe_cnt; 2063 2064 if (!pipe_cnt) { 2065 out = true; 2066 goto validate_out; 2067 } 2068 2069 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2070 2071 if (vlevel > context->bw_ctx.dml.soc.num_states) 2072 goto validate_fail; 2073 2074 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); 2075 2076 /*initialize pipe_just_split_from to invalid idx*/ 2077 for (i = 0; i < MAX_PIPES; i++) 2078 pipe_split_from[i] = -1; 2079 2080 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2081 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2082 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 2083 2084 if (!pipe->stream || pipe_split_from[i] >= 0) 2085 continue; 2086 2087 pipe_idx++; 2088 2089 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2090 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2091 ASSERT(hsplit_pipe); 2092 if (!dcn20_split_stream_for_odm( 2093 dc, &context->res_ctx, 2094 pipe, hsplit_pipe)) 2095 goto validate_fail; 2096 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2097 dcn20_build_mapped_resource(dc, context, pipe->stream); 2098 } 2099 2100 if (!pipe->plane_state) 2101 continue; 2102 /* Skip 2nd half of already split pipe */ 2103 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) 2104 continue; 2105 2106 /* We do not support mpo + odm at the moment */ 2107 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state 2108 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) 2109 goto validate_fail; 2110 2111 if (split[i] == 2) { 2112 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { 2113 /* pipe not split previously needs split */ 2114 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2115 ASSERT(hsplit_pipe); 2116 if (!hsplit_pipe) { 2117 DC_FP_START(); 2118 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true); 2119 DC_FP_END(); 2120 continue; 2121 } 2122 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2123 if (!dcn20_split_stream_for_odm( 2124 dc, &context->res_ctx, 2125 pipe, hsplit_pipe)) 2126 goto validate_fail; 2127 dcn20_build_mapped_resource(dc, context, pipe->stream); 2128 } else { 2129 dcn20_split_stream_for_mpc( 2130 &context->res_ctx, dc->res_pool, 2131 pipe, hsplit_pipe); 2132 resource_build_scaling_params(pipe); 2133 resource_build_scaling_params(hsplit_pipe); 2134 } 2135 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2136 } 2137 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { 2138 /* merge should already have been done */ 2139 ASSERT(0); 2140 } 2141 } 2142 /* Actual dsc count per stream dsc validation*/ 2143 if (!dcn20_validate_dsc(dc, context)) { 2144 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = 2145 DML_FAIL_DSC_VALIDATION_FAILURE; 2146 goto validate_fail; 2147 } 2148 2149 *vlevel_out = vlevel; 2150 2151 out = true; 2152 goto validate_out; 2153 2154 validate_fail: 2155 out = false; 2156 2157 validate_out: 2158 return out; 2159 } 2160 2161 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, 2162 bool fast_validate) 2163 { 2164 bool voltage_supported; 2165 DC_FP_START(); 2166 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate); 2167 DC_FP_END(); 2168 return voltage_supported; 2169 } 2170 2171 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer( 2172 struct dc_state *state, 2173 const struct resource_pool *pool, 2174 struct dc_stream_state *stream) 2175 { 2176 struct resource_context *res_ctx = &state->res_ctx; 2177 struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); 2178 struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); 2179 2180 if (!head_pipe) 2181 ASSERT(0); 2182 2183 if (!idle_pipe) 2184 return NULL; 2185 2186 idle_pipe->stream = head_pipe->stream; 2187 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2188 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2189 2190 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2191 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2192 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2193 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2194 2195 return idle_pipe; 2196 } 2197 2198 bool dcn20_get_dcc_compression_cap(const struct dc *dc, 2199 const struct dc_dcc_surface_param *input, 2200 struct dc_surface_dcc_cap *output) 2201 { 2202 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( 2203 dc->res_pool->hubbub, 2204 input, 2205 output); 2206 } 2207 2208 static void dcn20_destroy_resource_pool(struct resource_pool **pool) 2209 { 2210 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); 2211 2212 dcn20_resource_destruct(dcn20_pool); 2213 kfree(dcn20_pool); 2214 *pool = NULL; 2215 } 2216 2217 2218 static struct dc_cap_funcs cap_funcs = { 2219 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2220 }; 2221 2222 2223 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state) 2224 { 2225 enum surface_pixel_format surf_pix_format = plane_state->format; 2226 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); 2227 2228 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S; 2229 if (bpp == 64) 2230 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D; 2231 2232 return DC_OK; 2233 } 2234 2235 static const struct resource_funcs dcn20_res_pool_funcs = { 2236 .destroy = dcn20_destroy_resource_pool, 2237 .link_enc_create = dcn20_link_encoder_create, 2238 .panel_cntl_create = dcn20_panel_cntl_create, 2239 .validate_bandwidth = dcn20_validate_bandwidth, 2240 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2241 .add_stream_to_ctx = dcn20_add_stream_to_ctx, 2242 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2243 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2244 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, 2245 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2246 .set_mcif_arb_params = dcn20_set_mcif_arb_params, 2247 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context, 2248 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link 2249 }; 2250 2251 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 2252 { 2253 int i; 2254 uint32_t pipe_count = pool->res_cap->num_dwb; 2255 2256 for (i = 0; i < pipe_count; i++) { 2257 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), 2258 GFP_KERNEL); 2259 2260 if (!dwbc20) { 2261 dm_error("DC: failed to create dwbc20!\n"); 2262 return false; 2263 } 2264 dcn20_dwbc_construct(dwbc20, ctx, 2265 &dwbc20_regs[i], 2266 &dwbc20_shift, 2267 &dwbc20_mask, 2268 i); 2269 pool->dwbc[i] = &dwbc20->base; 2270 } 2271 return true; 2272 } 2273 2274 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 2275 { 2276 int i; 2277 uint32_t pipe_count = pool->res_cap->num_dwb; 2278 2279 ASSERT(pipe_count > 0); 2280 2281 for (i = 0; i < pipe_count; i++) { 2282 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), 2283 GFP_KERNEL); 2284 2285 if (!mcif_wb20) { 2286 dm_error("DC: failed to create mcif_wb20!\n"); 2287 return false; 2288 } 2289 2290 dcn20_mmhubbub_construct(mcif_wb20, ctx, 2291 &mcif_wb20_regs[i], 2292 &mcif_wb20_shift, 2293 &mcif_wb20_mask, 2294 i); 2295 2296 pool->mcif_wb[i] = &mcif_wb20->base; 2297 } 2298 return true; 2299 } 2300 2301 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) 2302 { 2303 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC); 2304 2305 if (!pp_smu) 2306 return pp_smu; 2307 2308 dm_pp_get_funcs(ctx, pp_smu); 2309 2310 if (pp_smu->ctx.ver != PP_SMU_VER_NV) 2311 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); 2312 2313 return pp_smu; 2314 } 2315 2316 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) 2317 { 2318 if (pp_smu && *pp_smu) { 2319 kfree(*pp_smu); 2320 *pp_smu = NULL; 2321 } 2322 } 2323 2324 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( 2325 uint32_t hw_internal_rev) 2326 { 2327 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2328 return &dcn2_0_nv14_soc; 2329 2330 if (ASICREV_IS_NAVI12_P(hw_internal_rev)) 2331 return &dcn2_0_nv12_soc; 2332 2333 return &dcn2_0_soc; 2334 } 2335 2336 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( 2337 uint32_t hw_internal_rev) 2338 { 2339 /* NV14 */ 2340 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2341 return &dcn2_0_nv14_ip; 2342 2343 /* NV12 and NV10 */ 2344 return &dcn2_0_ip; 2345 } 2346 2347 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) 2348 { 2349 return DML_PROJECT_NAVI10v2; 2350 } 2351 2352 static bool init_soc_bounding_box(struct dc *dc, 2353 struct dcn20_resource_pool *pool) 2354 { 2355 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2356 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); 2357 struct _vcs_dpi_ip_params_st *loaded_ip = 2358 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); 2359 2360 DC_LOGGER_INIT(dc->ctx->logger); 2361 2362 if (pool->base.pp_smu) { 2363 struct pp_smu_nv_clock_table max_clocks = {0}; 2364 unsigned int uclk_states[8] = {0}; 2365 unsigned int num_states = 0; 2366 enum pp_smu_status status; 2367 bool clock_limits_available = false; 2368 bool uclk_states_available = false; 2369 2370 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { 2371 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) 2372 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); 2373 2374 uclk_states_available = (status == PP_SMU_RESULT_OK); 2375 } 2376 2377 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { 2378 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) 2379 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); 2380 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock 2381 */ 2382 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) 2383 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; 2384 clock_limits_available = (status == PP_SMU_RESULT_OK); 2385 } 2386 2387 if (clock_limits_available && uclk_states_available && num_states) { 2388 DC_FP_START(); 2389 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); 2390 DC_FP_END(); 2391 } else if (clock_limits_available) { 2392 DC_FP_START(); 2393 dcn20_cap_soc_clocks(loaded_bb, max_clocks); 2394 DC_FP_END(); 2395 } 2396 } 2397 2398 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 2399 loaded_ip->max_num_dpp = pool->base.pipe_count; 2400 DC_FP_START(); 2401 dcn20_patch_bounding_box(dc, loaded_bb); 2402 DC_FP_END(); 2403 return true; 2404 } 2405 2406 static bool dcn20_resource_construct( 2407 uint8_t num_virtual_links, 2408 struct dc *dc, 2409 struct dcn20_resource_pool *pool) 2410 { 2411 int i; 2412 struct dc_context *ctx = dc->ctx; 2413 struct irq_service_init_data init_data; 2414 struct ddc_service_init_data ddc_init_data = {0}; 2415 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2416 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); 2417 struct _vcs_dpi_ip_params_st *loaded_ip = 2418 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); 2419 enum dml_project dml_project_version = 2420 get_dml_project_version(ctx->asic_id.hw_internal_rev); 2421 2422 ctx->dc_bios->regs = &bios_regs; 2423 pool->base.funcs = &dcn20_res_pool_funcs; 2424 2425 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 2426 pool->base.res_cap = &res_cap_nv14; 2427 pool->base.pipe_count = 5; 2428 pool->base.mpcc_count = 5; 2429 } else { 2430 pool->base.res_cap = &res_cap_nv10; 2431 pool->base.pipe_count = 6; 2432 pool->base.mpcc_count = 6; 2433 } 2434 /************************************************* 2435 * Resource + asic cap harcoding * 2436 *************************************************/ 2437 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2438 2439 dc->caps.max_downscale_ratio = 200; 2440 dc->caps.i2c_speed_in_khz = 100; 2441 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2442 dc->caps.max_cursor_size = 256; 2443 dc->caps.min_horizontal_blanking_period = 80; 2444 dc->caps.dmdata_alloc_size = 2048; 2445 2446 dc->caps.max_slave_planes = 1; 2447 dc->caps.max_slave_yuv_planes = 1; 2448 dc->caps.max_slave_rgb_planes = 1; 2449 dc->caps.post_blend_color_processing = true; 2450 dc->caps.force_dp_tps4_for_cp2520 = true; 2451 dc->caps.extended_aux_timeout_support = true; 2452 2453 /* Color pipeline capabilities */ 2454 dc->caps.color.dpp.dcn_arch = 1; 2455 dc->caps.color.dpp.input_lut_shared = 0; 2456 dc->caps.color.dpp.icsc = 1; 2457 dc->caps.color.dpp.dgam_ram = 1; 2458 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2459 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2460 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; 2461 dc->caps.color.dpp.dgam_rom_caps.pq = 0; 2462 dc->caps.color.dpp.dgam_rom_caps.hlg = 0; 2463 dc->caps.color.dpp.post_csc = 0; 2464 dc->caps.color.dpp.gamma_corr = 0; 2465 dc->caps.color.dpp.dgam_rom_for_yuv = 1; 2466 2467 dc->caps.color.dpp.hw_3d_lut = 1; 2468 dc->caps.color.dpp.ogam_ram = 1; 2469 // no OGAM ROM on DCN2, only MPC ROM 2470 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2471 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2472 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2473 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2474 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2475 dc->caps.color.dpp.ocsc = 0; 2476 2477 dc->caps.color.mpc.gamut_remap = 0; 2478 dc->caps.color.mpc.num_3dluts = 0; 2479 dc->caps.color.mpc.shared_3d_lut = 0; 2480 dc->caps.color.mpc.ogam_ram = 1; 2481 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2482 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2483 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2484 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2485 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2486 dc->caps.color.mpc.ocsc = 1; 2487 2488 dc->caps.dp_hdmi21_pcon_support = true; 2489 2490 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) { 2491 dc->debug = debug_defaults_drv; 2492 } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2493 pool->base.pipe_count = 4; 2494 pool->base.mpcc_count = pool->base.pipe_count; 2495 dc->debug = debug_defaults_diags; 2496 } else { 2497 dc->debug = debug_defaults_diags; 2498 } 2499 //dcn2.0x 2500 dc->work_arounds.dedcn20_305_wa = true; 2501 2502 // Init the vm_helper 2503 if (dc->vm_helper) 2504 vm_helper_init(dc->vm_helper, 16); 2505 2506 /************************************************* 2507 * Create resources * 2508 *************************************************/ 2509 2510 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = 2511 dcn20_clock_source_create(ctx, ctx->dc_bios, 2512 CLOCK_SOURCE_COMBO_PHY_PLL0, 2513 &clk_src_regs[0], false); 2514 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = 2515 dcn20_clock_source_create(ctx, ctx->dc_bios, 2516 CLOCK_SOURCE_COMBO_PHY_PLL1, 2517 &clk_src_regs[1], false); 2518 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = 2519 dcn20_clock_source_create(ctx, ctx->dc_bios, 2520 CLOCK_SOURCE_COMBO_PHY_PLL2, 2521 &clk_src_regs[2], false); 2522 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = 2523 dcn20_clock_source_create(ctx, ctx->dc_bios, 2524 CLOCK_SOURCE_COMBO_PHY_PLL3, 2525 &clk_src_regs[3], false); 2526 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = 2527 dcn20_clock_source_create(ctx, ctx->dc_bios, 2528 CLOCK_SOURCE_COMBO_PHY_PLL4, 2529 &clk_src_regs[4], false); 2530 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = 2531 dcn20_clock_source_create(ctx, ctx->dc_bios, 2532 CLOCK_SOURCE_COMBO_PHY_PLL5, 2533 &clk_src_regs[5], false); 2534 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; 2535 /* todo: not reuse phy_pll registers */ 2536 pool->base.dp_clock_source = 2537 dcn20_clock_source_create(ctx, ctx->dc_bios, 2538 CLOCK_SOURCE_ID_DP_DTO, 2539 &clk_src_regs[0], true); 2540 2541 for (i = 0; i < pool->base.clk_src_count; i++) { 2542 if (pool->base.clock_sources[i] == NULL) { 2543 dm_error("DC: failed to create clock sources!\n"); 2544 BREAK_TO_DEBUGGER(); 2545 goto create_fail; 2546 } 2547 } 2548 2549 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2550 if (pool->base.dccg == NULL) { 2551 dm_error("DC: failed to create dccg!\n"); 2552 BREAK_TO_DEBUGGER(); 2553 goto create_fail; 2554 } 2555 2556 pool->base.dmcu = dcn20_dmcu_create(ctx, 2557 &dmcu_regs, 2558 &dmcu_shift, 2559 &dmcu_mask); 2560 if (pool->base.dmcu == NULL) { 2561 dm_error("DC: failed to create dmcu!\n"); 2562 BREAK_TO_DEBUGGER(); 2563 goto create_fail; 2564 } 2565 2566 pool->base.abm = dce_abm_create(ctx, 2567 &abm_regs, 2568 &abm_shift, 2569 &abm_mask); 2570 if (pool->base.abm == NULL) { 2571 dm_error("DC: failed to create abm!\n"); 2572 BREAK_TO_DEBUGGER(); 2573 goto create_fail; 2574 } 2575 2576 pool->base.pp_smu = dcn20_pp_smu_create(ctx); 2577 2578 2579 if (!init_soc_bounding_box(dc, pool)) { 2580 dm_error("DC: failed to initialize soc bounding box!\n"); 2581 BREAK_TO_DEBUGGER(); 2582 goto create_fail; 2583 } 2584 2585 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); 2586 2587 if (!dc->debug.disable_pplib_wm_range) { 2588 struct pp_smu_wm_range_sets ranges = {0}; 2589 int i = 0; 2590 2591 ranges.num_reader_wm_sets = 0; 2592 2593 if (loaded_bb->num_states == 1) { 2594 ranges.reader_wm_sets[0].wm_inst = i; 2595 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2596 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2597 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2598 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2599 2600 ranges.num_reader_wm_sets = 1; 2601 } else if (loaded_bb->num_states > 1) { 2602 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { 2603 ranges.reader_wm_sets[i].wm_inst = i; 2604 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2605 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2606 DC_FP_START(); 2607 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb); 2608 DC_FP_END(); 2609 2610 ranges.num_reader_wm_sets = i + 1; 2611 } 2612 2613 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2614 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2615 } 2616 2617 ranges.num_writer_wm_sets = 1; 2618 2619 ranges.writer_wm_sets[0].wm_inst = 0; 2620 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2621 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2622 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2623 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2624 2625 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ 2626 if (pool->base.pp_smu->nv_funcs.set_wm_ranges) 2627 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); 2628 } 2629 2630 init_data.ctx = dc->ctx; 2631 pool->base.irqs = dal_irq_service_dcn20_create(&init_data); 2632 if (!pool->base.irqs) 2633 goto create_fail; 2634 2635 /* mem input -> ipp -> dpp -> opp -> TG */ 2636 for (i = 0; i < pool->base.pipe_count; i++) { 2637 pool->base.hubps[i] = dcn20_hubp_create(ctx, i); 2638 if (pool->base.hubps[i] == NULL) { 2639 BREAK_TO_DEBUGGER(); 2640 dm_error( 2641 "DC: failed to create memory input!\n"); 2642 goto create_fail; 2643 } 2644 2645 pool->base.ipps[i] = dcn20_ipp_create(ctx, i); 2646 if (pool->base.ipps[i] == NULL) { 2647 BREAK_TO_DEBUGGER(); 2648 dm_error( 2649 "DC: failed to create input pixel processor!\n"); 2650 goto create_fail; 2651 } 2652 2653 pool->base.dpps[i] = dcn20_dpp_create(ctx, i); 2654 if (pool->base.dpps[i] == NULL) { 2655 BREAK_TO_DEBUGGER(); 2656 dm_error( 2657 "DC: failed to create dpps!\n"); 2658 goto create_fail; 2659 } 2660 } 2661 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2662 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); 2663 if (pool->base.engines[i] == NULL) { 2664 BREAK_TO_DEBUGGER(); 2665 dm_error( 2666 "DC:failed to create aux engine!!\n"); 2667 goto create_fail; 2668 } 2669 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); 2670 if (pool->base.hw_i2cs[i] == NULL) { 2671 BREAK_TO_DEBUGGER(); 2672 dm_error( 2673 "DC:failed to create hw i2c!!\n"); 2674 goto create_fail; 2675 } 2676 pool->base.sw_i2cs[i] = NULL; 2677 } 2678 2679 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2680 pool->base.opps[i] = dcn20_opp_create(ctx, i); 2681 if (pool->base.opps[i] == NULL) { 2682 BREAK_TO_DEBUGGER(); 2683 dm_error( 2684 "DC: failed to create output pixel processor!\n"); 2685 goto create_fail; 2686 } 2687 } 2688 2689 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2690 pool->base.timing_generators[i] = dcn20_timing_generator_create( 2691 ctx, i); 2692 if (pool->base.timing_generators[i] == NULL) { 2693 BREAK_TO_DEBUGGER(); 2694 dm_error("DC: failed to create tg!\n"); 2695 goto create_fail; 2696 } 2697 } 2698 2699 pool->base.timing_generator_count = i; 2700 2701 pool->base.mpc = dcn20_mpc_create(ctx); 2702 if (pool->base.mpc == NULL) { 2703 BREAK_TO_DEBUGGER(); 2704 dm_error("DC: failed to create mpc!\n"); 2705 goto create_fail; 2706 } 2707 2708 pool->base.hubbub = dcn20_hubbub_create(ctx); 2709 if (pool->base.hubbub == NULL) { 2710 BREAK_TO_DEBUGGER(); 2711 dm_error("DC: failed to create hubbub!\n"); 2712 goto create_fail; 2713 } 2714 2715 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2716 pool->base.dscs[i] = dcn20_dsc_create(ctx, i); 2717 if (pool->base.dscs[i] == NULL) { 2718 BREAK_TO_DEBUGGER(); 2719 dm_error("DC: failed to create display stream compressor %d!\n", i); 2720 goto create_fail; 2721 } 2722 } 2723 2724 if (!dcn20_dwbc_create(ctx, &pool->base)) { 2725 BREAK_TO_DEBUGGER(); 2726 dm_error("DC: failed to create dwbc!\n"); 2727 goto create_fail; 2728 } 2729 if (!dcn20_mmhubbub_create(ctx, &pool->base)) { 2730 BREAK_TO_DEBUGGER(); 2731 dm_error("DC: failed to create mcif_wb!\n"); 2732 goto create_fail; 2733 } 2734 2735 if (!resource_construct(num_virtual_links, dc, &pool->base, 2736 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2737 &res_create_funcs : &res_create_maximus_funcs))) 2738 goto create_fail; 2739 2740 dcn20_hw_sequencer_construct(dc); 2741 2742 // IF NV12, set PG function pointer to NULL. It's not that 2743 // PG isn't supported for NV12, it's that we don't want to 2744 // program the registers because that will cause more power 2745 // to be consumed. We could have created dcn20_init_hw to get 2746 // the same effect by checking ASIC rev, but there was a 2747 // request at some point to not check ASIC rev on hw sequencer. 2748 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) { 2749 dc->hwseq->funcs.enable_power_gating_plane = NULL; 2750 dc->debug.disable_dpp_power_gate = true; 2751 dc->debug.disable_hubp_power_gate = true; 2752 } 2753 2754 2755 dc->caps.max_planes = pool->base.pipe_count; 2756 2757 for (i = 0; i < dc->caps.max_planes; ++i) 2758 dc->caps.planes[i] = plane_cap; 2759 2760 dc->cap_funcs = cap_funcs; 2761 2762 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2763 ddc_init_data.ctx = dc->ctx; 2764 ddc_init_data.link = NULL; 2765 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2766 ddc_init_data.id.enum_id = 0; 2767 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2768 pool->base.oem_device = link_create_ddc_service(&ddc_init_data); 2769 } else { 2770 pool->base.oem_device = NULL; 2771 } 2772 2773 return true; 2774 2775 create_fail: 2776 2777 dcn20_resource_destruct(pool); 2778 2779 return false; 2780 } 2781 2782 struct resource_pool *dcn20_create_resource_pool( 2783 const struct dc_init_data *init_data, 2784 struct dc *dc) 2785 { 2786 struct dcn20_resource_pool *pool = 2787 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC); 2788 2789 if (!pool) 2790 return NULL; 2791 2792 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool)) 2793 return &pool->base; 2794 2795 BREAK_TO_DEBUGGER(); 2796 kfree(pool); 2797 return NULL; 2798 } 2799