1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * Copyright 2019 Raptor Engineering, LLC 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include <linux/slab.h> 28 29 #include "dm_services.h" 30 #include "dc.h" 31 32 #include "dcn20_init.h" 33 34 #include "resource.h" 35 #include "include/irq_service_interface.h" 36 #include "dcn20/dcn20_resource.h" 37 38 #include "dml/dcn20/dcn20_fpu.h" 39 40 #include "dcn10/dcn10_hubp.h" 41 #include "dcn10/dcn10_ipp.h" 42 #include "dcn20_hubbub.h" 43 #include "dcn20_mpc.h" 44 #include "dcn20_hubp.h" 45 #include "irq/dcn20/irq_service_dcn20.h" 46 #include "dcn20_dpp.h" 47 #include "dcn20_optc.h" 48 #include "dcn20_hwseq.h" 49 #include "dce110/dce110_hw_sequencer.h" 50 #include "dcn10/dcn10_resource.h" 51 #include "dcn20_opp.h" 52 53 #include "dcn20_dsc.h" 54 55 #include "dcn20_link_encoder.h" 56 #include "dcn20_stream_encoder.h" 57 #include "dce/dce_clock_source.h" 58 #include "dce/dce_audio.h" 59 #include "dce/dce_hwseq.h" 60 #include "virtual/virtual_stream_encoder.h" 61 #include "dce110/dce110_resource.h" 62 #include "dml/display_mode_vba.h" 63 #include "dcn20_dccg.h" 64 #include "dcn20_vmid.h" 65 #include "dc_link_ddc.h" 66 #include "dce/dce_panel_cntl.h" 67 68 #include "navi10_ip_offset.h" 69 70 #include "dcn/dcn_2_0_0_offset.h" 71 #include "dcn/dcn_2_0_0_sh_mask.h" 72 #include "dpcs/dpcs_2_0_0_offset.h" 73 #include "dpcs/dpcs_2_0_0_sh_mask.h" 74 75 #include "nbio/nbio_2_3_offset.h" 76 77 #include "dcn20/dcn20_dwb.h" 78 #include "dcn20/dcn20_mmhubbub.h" 79 80 #include "mmhub/mmhub_2_0_0_offset.h" 81 #include "mmhub/mmhub_2_0_0_sh_mask.h" 82 83 #include "reg_helper.h" 84 #include "dce/dce_abm.h" 85 #include "dce/dce_dmcu.h" 86 #include "dce/dce_aux.h" 87 #include "dce/dce_i2c.h" 88 #include "vm_helper.h" 89 #include "link_enc_cfg.h" 90 91 #include "amdgpu_socbb.h" 92 93 #define DC_LOGGER_INIT(logger) 94 95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL 96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f 97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f 99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f 101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f 103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f 105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f 107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f 109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 110 #endif 111 112 113 enum dcn20_clk_src_array_id { 114 DCN20_CLK_SRC_PLL0, 115 DCN20_CLK_SRC_PLL1, 116 DCN20_CLK_SRC_PLL2, 117 DCN20_CLK_SRC_PLL3, 118 DCN20_CLK_SRC_PLL4, 119 DCN20_CLK_SRC_PLL5, 120 DCN20_CLK_SRC_TOTAL 121 }; 122 123 /* begin ********************* 124 * macros to expend register list macro defined in HW object header file */ 125 126 /* DCN */ 127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 128 129 #define BASE(seg) BASE_INNER(seg) 130 131 #define SR(reg_name)\ 132 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 133 mm ## reg_name 134 135 #define SRI(reg_name, block, id)\ 136 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRI2_DWB(reg_name, block, id)\ 140 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 141 mm ## reg_name 142 #define SF_DWB(reg_name, field_name, post_fix)\ 143 .field_name = reg_name ## __ ## field_name ## post_fix 144 145 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 146 .field_name = reg_name ## __ ## field_name ## post_fix 147 148 #define SRIR(var_name, reg_name, block, id)\ 149 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 150 mm ## block ## id ## _ ## reg_name 151 152 #define SRII(reg_name, block, id)\ 153 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 154 mm ## block ## id ## _ ## reg_name 155 156 #define DCCG_SRII(reg_name, block, id)\ 157 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 158 mm ## block ## id ## _ ## reg_name 159 160 #define VUPDATE_SRII(reg_name, block, id)\ 161 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 162 mm ## reg_name ## _ ## block ## id 163 164 /* NBIO */ 165 #define NBIO_BASE_INNER(seg) \ 166 NBIO_BASE__INST0_SEG ## seg 167 168 #define NBIO_BASE(seg) \ 169 NBIO_BASE_INNER(seg) 170 171 #define NBIO_SR(reg_name)\ 172 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 173 mm ## reg_name 174 175 /* MMHUB */ 176 #define MMHUB_BASE_INNER(seg) \ 177 MMHUB_BASE__INST0_SEG ## seg 178 179 #define MMHUB_BASE(seg) \ 180 MMHUB_BASE_INNER(seg) 181 182 #define MMHUB_SR(reg_name)\ 183 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 184 mmMM ## reg_name 185 186 static const struct bios_registers bios_regs = { 187 NBIO_SR(BIOS_SCRATCH_3), 188 NBIO_SR(BIOS_SCRATCH_6) 189 }; 190 191 #define clk_src_regs(index, pllid)\ 192 [index] = {\ 193 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 194 } 195 196 static const struct dce110_clk_src_regs clk_src_regs[] = { 197 clk_src_regs(0, A), 198 clk_src_regs(1, B), 199 clk_src_regs(2, C), 200 clk_src_regs(3, D), 201 clk_src_regs(4, E), 202 clk_src_regs(5, F) 203 }; 204 205 static const struct dce110_clk_src_shift cs_shift = { 206 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 207 }; 208 209 static const struct dce110_clk_src_mask cs_mask = { 210 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 211 }; 212 213 static const struct dce_dmcu_registers dmcu_regs = { 214 DMCU_DCN10_REG_LIST() 215 }; 216 217 static const struct dce_dmcu_shift dmcu_shift = { 218 DMCU_MASK_SH_LIST_DCN10(__SHIFT) 219 }; 220 221 static const struct dce_dmcu_mask dmcu_mask = { 222 DMCU_MASK_SH_LIST_DCN10(_MASK) 223 }; 224 225 static const struct dce_abm_registers abm_regs = { 226 ABM_DCN20_REG_LIST() 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN20(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN20(_MASK) 235 }; 236 237 #define audio_regs(id)\ 238 [id] = {\ 239 AUD_COMMON_REG_LIST(id)\ 240 } 241 242 static const struct dce_audio_registers audio_regs[] = { 243 audio_regs(0), 244 audio_regs(1), 245 audio_regs(2), 246 audio_regs(3), 247 audio_regs(4), 248 audio_regs(5), 249 audio_regs(6), 250 }; 251 252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 253 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 255 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 256 257 static const struct dce_audio_shift audio_shift = { 258 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 259 }; 260 261 static const struct dce_audio_mask audio_mask = { 262 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 263 }; 264 265 #define stream_enc_regs(id)\ 266 [id] = {\ 267 SE_DCN2_REG_LIST(id)\ 268 } 269 270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 271 stream_enc_regs(0), 272 stream_enc_regs(1), 273 stream_enc_regs(2), 274 stream_enc_regs(3), 275 stream_enc_regs(4), 276 stream_enc_regs(5), 277 }; 278 279 static const struct dcn10_stream_encoder_shift se_shift = { 280 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) 281 }; 282 283 static const struct dcn10_stream_encoder_mask se_mask = { 284 SE_COMMON_MASK_SH_LIST_DCN20(_MASK) 285 }; 286 287 288 #define aux_regs(id)\ 289 [id] = {\ 290 DCN2_AUX_REG_LIST(id)\ 291 } 292 293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 294 aux_regs(0), 295 aux_regs(1), 296 aux_regs(2), 297 aux_regs(3), 298 aux_regs(4), 299 aux_regs(5) 300 }; 301 302 #define hpd_regs(id)\ 303 [id] = {\ 304 HPD_REG_LIST(id)\ 305 } 306 307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 308 hpd_regs(0), 309 hpd_regs(1), 310 hpd_regs(2), 311 hpd_regs(3), 312 hpd_regs(4), 313 hpd_regs(5) 314 }; 315 316 #define link_regs(id, phyid)\ 317 [id] = {\ 318 LE_DCN10_REG_LIST(id), \ 319 UNIPHY_DCN2_REG_LIST(phyid), \ 320 DPCS_DCN2_REG_LIST(id), \ 321 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 322 } 323 324 static const struct dcn10_link_enc_registers link_enc_regs[] = { 325 link_regs(0, A), 326 link_regs(1, B), 327 link_regs(2, C), 328 link_regs(3, D), 329 link_regs(4, E), 330 link_regs(5, F) 331 }; 332 333 static const struct dcn10_link_enc_shift le_shift = { 334 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ 335 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 336 }; 337 338 static const struct dcn10_link_enc_mask le_mask = { 339 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ 340 DPCS_DCN2_MASK_SH_LIST(_MASK) 341 }; 342 343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 344 { DCN_PANEL_CNTL_REG_LIST() } 345 }; 346 347 static const struct dce_panel_cntl_shift panel_cntl_shift = { 348 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 349 }; 350 351 static const struct dce_panel_cntl_mask panel_cntl_mask = { 352 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 353 }; 354 355 #define ipp_regs(id)\ 356 [id] = {\ 357 IPP_REG_LIST_DCN20(id),\ 358 } 359 360 static const struct dcn10_ipp_registers ipp_regs[] = { 361 ipp_regs(0), 362 ipp_regs(1), 363 ipp_regs(2), 364 ipp_regs(3), 365 ipp_regs(4), 366 ipp_regs(5), 367 }; 368 369 static const struct dcn10_ipp_shift ipp_shift = { 370 IPP_MASK_SH_LIST_DCN20(__SHIFT) 371 }; 372 373 static const struct dcn10_ipp_mask ipp_mask = { 374 IPP_MASK_SH_LIST_DCN20(_MASK), 375 }; 376 377 #define opp_regs(id)\ 378 [id] = {\ 379 OPP_REG_LIST_DCN20(id),\ 380 } 381 382 static const struct dcn20_opp_registers opp_regs[] = { 383 opp_regs(0), 384 opp_regs(1), 385 opp_regs(2), 386 opp_regs(3), 387 opp_regs(4), 388 opp_regs(5), 389 }; 390 391 static const struct dcn20_opp_shift opp_shift = { 392 OPP_MASK_SH_LIST_DCN20(__SHIFT) 393 }; 394 395 static const struct dcn20_opp_mask opp_mask = { 396 OPP_MASK_SH_LIST_DCN20(_MASK) 397 }; 398 399 #define aux_engine_regs(id)\ 400 [id] = {\ 401 AUX_COMMON_REG_LIST0(id), \ 402 .AUXN_IMPCAL = 0, \ 403 .AUXP_IMPCAL = 0, \ 404 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 405 } 406 407 static const struct dce110_aux_registers aux_engine_regs[] = { 408 aux_engine_regs(0), 409 aux_engine_regs(1), 410 aux_engine_regs(2), 411 aux_engine_regs(3), 412 aux_engine_regs(4), 413 aux_engine_regs(5) 414 }; 415 416 #define tf_regs(id)\ 417 [id] = {\ 418 TF_REG_LIST_DCN20(id),\ 419 TF_REG_LIST_DCN20_COMMON_APPEND(id),\ 420 } 421 422 static const struct dcn2_dpp_registers tf_regs[] = { 423 tf_regs(0), 424 tf_regs(1), 425 tf_regs(2), 426 tf_regs(3), 427 tf_regs(4), 428 tf_regs(5), 429 }; 430 431 static const struct dcn2_dpp_shift tf_shift = { 432 TF_REG_LIST_SH_MASK_DCN20(__SHIFT), 433 TF_DEBUG_REG_LIST_SH_DCN20 434 }; 435 436 static const struct dcn2_dpp_mask tf_mask = { 437 TF_REG_LIST_SH_MASK_DCN20(_MASK), 438 TF_DEBUG_REG_LIST_MASK_DCN20 439 }; 440 441 #define dwbc_regs_dcn2(id)\ 442 [id] = {\ 443 DWBC_COMMON_REG_LIST_DCN2_0(id),\ 444 } 445 446 static const struct dcn20_dwbc_registers dwbc20_regs[] = { 447 dwbc_regs_dcn2(0), 448 }; 449 450 static const struct dcn20_dwbc_shift dwbc20_shift = { 451 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 452 }; 453 454 static const struct dcn20_dwbc_mask dwbc20_mask = { 455 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 456 }; 457 458 #define mcif_wb_regs_dcn2(id)\ 459 [id] = {\ 460 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ 461 } 462 463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { 464 mcif_wb_regs_dcn2(0), 465 }; 466 467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { 468 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 469 }; 470 471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { 472 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 473 }; 474 475 static const struct dcn20_mpc_registers mpc_regs = { 476 MPC_REG_LIST_DCN2_0(0), 477 MPC_REG_LIST_DCN2_0(1), 478 MPC_REG_LIST_DCN2_0(2), 479 MPC_REG_LIST_DCN2_0(3), 480 MPC_REG_LIST_DCN2_0(4), 481 MPC_REG_LIST_DCN2_0(5), 482 MPC_OUT_MUX_REG_LIST_DCN2_0(0), 483 MPC_OUT_MUX_REG_LIST_DCN2_0(1), 484 MPC_OUT_MUX_REG_LIST_DCN2_0(2), 485 MPC_OUT_MUX_REG_LIST_DCN2_0(3), 486 MPC_OUT_MUX_REG_LIST_DCN2_0(4), 487 MPC_OUT_MUX_REG_LIST_DCN2_0(5), 488 MPC_DBG_REG_LIST_DCN2_0() 489 }; 490 491 static const struct dcn20_mpc_shift mpc_shift = { 492 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), 493 MPC_DEBUG_REG_LIST_SH_DCN20 494 }; 495 496 static const struct dcn20_mpc_mask mpc_mask = { 497 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), 498 MPC_DEBUG_REG_LIST_MASK_DCN20 499 }; 500 501 #define tg_regs(id)\ 502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} 503 504 505 static const struct dcn_optc_registers tg_regs[] = { 506 tg_regs(0), 507 tg_regs(1), 508 tg_regs(2), 509 tg_regs(3), 510 tg_regs(4), 511 tg_regs(5) 512 }; 513 514 static const struct dcn_optc_shift tg_shift = { 515 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 516 }; 517 518 static const struct dcn_optc_mask tg_mask = { 519 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 520 }; 521 522 #define hubp_regs(id)\ 523 [id] = {\ 524 HUBP_REG_LIST_DCN20(id)\ 525 } 526 527 static const struct dcn_hubp2_registers hubp_regs[] = { 528 hubp_regs(0), 529 hubp_regs(1), 530 hubp_regs(2), 531 hubp_regs(3), 532 hubp_regs(4), 533 hubp_regs(5) 534 }; 535 536 static const struct dcn_hubp2_shift hubp_shift = { 537 HUBP_MASK_SH_LIST_DCN20(__SHIFT) 538 }; 539 540 static const struct dcn_hubp2_mask hubp_mask = { 541 HUBP_MASK_SH_LIST_DCN20(_MASK) 542 }; 543 544 static const struct dcn_hubbub_registers hubbub_reg = { 545 HUBBUB_REG_LIST_DCN20(0) 546 }; 547 548 static const struct dcn_hubbub_shift hubbub_shift = { 549 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) 550 }; 551 552 static const struct dcn_hubbub_mask hubbub_mask = { 553 HUBBUB_MASK_SH_LIST_DCN20(_MASK) 554 }; 555 556 #define vmid_regs(id)\ 557 [id] = {\ 558 DCN20_VMID_REG_LIST(id)\ 559 } 560 561 static const struct dcn_vmid_registers vmid_regs[] = { 562 vmid_regs(0), 563 vmid_regs(1), 564 vmid_regs(2), 565 vmid_regs(3), 566 vmid_regs(4), 567 vmid_regs(5), 568 vmid_regs(6), 569 vmid_regs(7), 570 vmid_regs(8), 571 vmid_regs(9), 572 vmid_regs(10), 573 vmid_regs(11), 574 vmid_regs(12), 575 vmid_regs(13), 576 vmid_regs(14), 577 vmid_regs(15) 578 }; 579 580 static const struct dcn20_vmid_shift vmid_shifts = { 581 DCN20_VMID_MASK_SH_LIST(__SHIFT) 582 }; 583 584 static const struct dcn20_vmid_mask vmid_masks = { 585 DCN20_VMID_MASK_SH_LIST(_MASK) 586 }; 587 588 static const struct dce110_aux_registers_shift aux_shift = { 589 DCN_AUX_MASK_SH_LIST(__SHIFT) 590 }; 591 592 static const struct dce110_aux_registers_mask aux_mask = { 593 DCN_AUX_MASK_SH_LIST(_MASK) 594 }; 595 596 static int map_transmitter_id_to_phy_instance( 597 enum transmitter transmitter) 598 { 599 switch (transmitter) { 600 case TRANSMITTER_UNIPHY_A: 601 return 0; 602 break; 603 case TRANSMITTER_UNIPHY_B: 604 return 1; 605 break; 606 case TRANSMITTER_UNIPHY_C: 607 return 2; 608 break; 609 case TRANSMITTER_UNIPHY_D: 610 return 3; 611 break; 612 case TRANSMITTER_UNIPHY_E: 613 return 4; 614 break; 615 case TRANSMITTER_UNIPHY_F: 616 return 5; 617 break; 618 default: 619 ASSERT(0); 620 return 0; 621 } 622 } 623 624 #define dsc_regsDCN20(id)\ 625 [id] = {\ 626 DSC_REG_LIST_DCN20(id)\ 627 } 628 629 static const struct dcn20_dsc_registers dsc_regs[] = { 630 dsc_regsDCN20(0), 631 dsc_regsDCN20(1), 632 dsc_regsDCN20(2), 633 dsc_regsDCN20(3), 634 dsc_regsDCN20(4), 635 dsc_regsDCN20(5) 636 }; 637 638 static const struct dcn20_dsc_shift dsc_shift = { 639 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 640 }; 641 642 static const struct dcn20_dsc_mask dsc_mask = { 643 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 644 }; 645 646 static const struct dccg_registers dccg_regs = { 647 DCCG_REG_LIST_DCN2() 648 }; 649 650 static const struct dccg_shift dccg_shift = { 651 DCCG_MASK_SH_LIST_DCN2(__SHIFT) 652 }; 653 654 static const struct dccg_mask dccg_mask = { 655 DCCG_MASK_SH_LIST_DCN2(_MASK) 656 }; 657 658 static const struct resource_caps res_cap_nv10 = { 659 .num_timing_generator = 6, 660 .num_opp = 6, 661 .num_video_plane = 6, 662 .num_audio = 7, 663 .num_stream_encoder = 6, 664 .num_pll = 6, 665 .num_dwb = 1, 666 .num_ddc = 6, 667 .num_vmid = 16, 668 .num_dsc = 6, 669 }; 670 671 static const struct dc_plane_cap plane_cap = { 672 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 673 .blends_with_above = true, 674 .blends_with_below = true, 675 .per_pixel_alpha = true, 676 677 .pixel_format_support = { 678 .argb8888 = true, 679 .nv12 = true, 680 .fp16 = true, 681 .p010 = true 682 }, 683 684 .max_upscale_factor = { 685 .argb8888 = 16000, 686 .nv12 = 16000, 687 .fp16 = 1 688 }, 689 690 .max_downscale_factor = { 691 .argb8888 = 250, 692 .nv12 = 250, 693 .fp16 = 1 694 }, 695 16, 696 16 697 }; 698 static const struct resource_caps res_cap_nv14 = { 699 .num_timing_generator = 5, 700 .num_opp = 5, 701 .num_video_plane = 5, 702 .num_audio = 6, 703 .num_stream_encoder = 5, 704 .num_pll = 5, 705 .num_dwb = 1, 706 .num_ddc = 5, 707 .num_vmid = 16, 708 .num_dsc = 5, 709 }; 710 711 static const struct dc_debug_options debug_defaults_drv = { 712 .disable_dmcu = false, 713 .force_abm_enable = false, 714 .timing_trace = false, 715 .clock_trace = true, 716 .disable_pplib_clock_request = true, 717 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP, 718 .force_single_disp_pipe_split = false, 719 .disable_dcc = DCC_ENABLE, 720 .vsr_support = true, 721 .performance_trace = false, 722 .max_downscale_src_width = 5120,/*upto 5K*/ 723 .disable_pplib_wm_range = false, 724 .scl_reset_length10 = true, 725 .sanity_checks = false, 726 .underflow_assert_delay_us = 0xFFFFFFFF, 727 }; 728 729 static const struct dc_debug_options debug_defaults_diags = { 730 .disable_dmcu = false, 731 .force_abm_enable = false, 732 .timing_trace = true, 733 .clock_trace = true, 734 .disable_dpp_power_gate = true, 735 .disable_hubp_power_gate = true, 736 .disable_clock_gate = true, 737 .disable_pplib_clock_request = true, 738 .disable_pplib_wm_range = true, 739 .disable_stutter = true, 740 .scl_reset_length10 = true, 741 .underflow_assert_delay_us = 0xFFFFFFFF, 742 .enable_tri_buf = true, 743 }; 744 745 void dcn20_dpp_destroy(struct dpp **dpp) 746 { 747 kfree(TO_DCN20_DPP(*dpp)); 748 *dpp = NULL; 749 } 750 751 struct dpp *dcn20_dpp_create( 752 struct dc_context *ctx, 753 uint32_t inst) 754 { 755 struct dcn20_dpp *dpp = 756 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC); 757 758 if (!dpp) 759 return NULL; 760 761 if (dpp2_construct(dpp, ctx, inst, 762 &tf_regs[inst], &tf_shift, &tf_mask)) 763 return &dpp->base; 764 765 BREAK_TO_DEBUGGER(); 766 kfree(dpp); 767 return NULL; 768 } 769 770 struct input_pixel_processor *dcn20_ipp_create( 771 struct dc_context *ctx, uint32_t inst) 772 { 773 struct dcn10_ipp *ipp = 774 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC); 775 776 if (!ipp) { 777 BREAK_TO_DEBUGGER(); 778 return NULL; 779 } 780 781 dcn20_ipp_construct(ipp, ctx, inst, 782 &ipp_regs[inst], &ipp_shift, &ipp_mask); 783 return &ipp->base; 784 } 785 786 787 struct output_pixel_processor *dcn20_opp_create( 788 struct dc_context *ctx, uint32_t inst) 789 { 790 struct dcn20_opp *opp = 791 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC); 792 793 if (!opp) { 794 BREAK_TO_DEBUGGER(); 795 return NULL; 796 } 797 798 dcn20_opp_construct(opp, ctx, inst, 799 &opp_regs[inst], &opp_shift, &opp_mask); 800 return &opp->base; 801 } 802 803 struct dce_aux *dcn20_aux_engine_create( 804 struct dc_context *ctx, 805 uint32_t inst) 806 { 807 struct aux_engine_dce110 *aux_engine = 808 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC); 809 810 if (!aux_engine) 811 return NULL; 812 813 dce110_aux_engine_construct(aux_engine, ctx, inst, 814 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 815 &aux_engine_regs[inst], 816 &aux_mask, 817 &aux_shift, 818 ctx->dc->caps.extended_aux_timeout_support); 819 820 return &aux_engine->base; 821 } 822 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } 823 824 static const struct dce_i2c_registers i2c_hw_regs[] = { 825 i2c_inst_regs(1), 826 i2c_inst_regs(2), 827 i2c_inst_regs(3), 828 i2c_inst_regs(4), 829 i2c_inst_regs(5), 830 i2c_inst_regs(6), 831 }; 832 833 static const struct dce_i2c_shift i2c_shifts = { 834 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) 835 }; 836 837 static const struct dce_i2c_mask i2c_masks = { 838 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) 839 }; 840 841 struct dce_i2c_hw *dcn20_i2c_hw_create( 842 struct dc_context *ctx, 843 uint32_t inst) 844 { 845 struct dce_i2c_hw *dce_i2c_hw = 846 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC); 847 848 if (!dce_i2c_hw) 849 return NULL; 850 851 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 852 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 853 854 return dce_i2c_hw; 855 } 856 struct mpc *dcn20_mpc_create(struct dc_context *ctx) 857 { 858 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), 859 GFP_ATOMIC); 860 861 if (!mpc20) 862 return NULL; 863 864 dcn20_mpc_construct(mpc20, ctx, 865 &mpc_regs, 866 &mpc_shift, 867 &mpc_mask, 868 6); 869 870 return &mpc20->base; 871 } 872 873 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) 874 { 875 int i; 876 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), 877 GFP_ATOMIC); 878 879 if (!hubbub) 880 return NULL; 881 882 hubbub2_construct(hubbub, ctx, 883 &hubbub_reg, 884 &hubbub_shift, 885 &hubbub_mask); 886 887 for (i = 0; i < res_cap_nv10.num_vmid; i++) { 888 struct dcn20_vmid *vmid = &hubbub->vmid[i]; 889 890 vmid->ctx = ctx; 891 892 vmid->regs = &vmid_regs[i]; 893 vmid->shifts = &vmid_shifts; 894 vmid->masks = &vmid_masks; 895 } 896 897 return &hubbub->base; 898 } 899 900 struct timing_generator *dcn20_timing_generator_create( 901 struct dc_context *ctx, 902 uint32_t instance) 903 { 904 struct optc *tgn10 = 905 kzalloc(sizeof(struct optc), GFP_ATOMIC); 906 907 if (!tgn10) 908 return NULL; 909 910 tgn10->base.inst = instance; 911 tgn10->base.ctx = ctx; 912 913 tgn10->tg_regs = &tg_regs[instance]; 914 tgn10->tg_shift = &tg_shift; 915 tgn10->tg_mask = &tg_mask; 916 917 dcn20_timing_generator_init(tgn10); 918 919 return &tgn10->base; 920 } 921 922 static const struct encoder_feature_support link_enc_feature = { 923 .max_hdmi_deep_color = COLOR_DEPTH_121212, 924 .max_hdmi_pixel_clock = 600000, 925 .hdmi_ycbcr420_supported = true, 926 .dp_ycbcr420_supported = true, 927 .fec_supported = true, 928 .flags.bits.IS_HBR2_CAPABLE = true, 929 .flags.bits.IS_HBR3_CAPABLE = true, 930 .flags.bits.IS_TPS3_CAPABLE = true, 931 .flags.bits.IS_TPS4_CAPABLE = true 932 }; 933 934 struct link_encoder *dcn20_link_encoder_create( 935 struct dc_context *ctx, 936 const struct encoder_init_data *enc_init_data) 937 { 938 struct dcn20_link_encoder *enc20 = 939 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 940 int link_regs_id; 941 942 if (!enc20) 943 return NULL; 944 945 link_regs_id = 946 map_transmitter_id_to_phy_instance(enc_init_data->transmitter); 947 948 dcn20_link_encoder_construct(enc20, 949 enc_init_data, 950 &link_enc_feature, 951 &link_enc_regs[link_regs_id], 952 &link_enc_aux_regs[enc_init_data->channel - 1], 953 &link_enc_hpd_regs[enc_init_data->hpd_source], 954 &le_shift, 955 &le_mask); 956 957 return &enc20->enc10.base; 958 } 959 960 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data) 961 { 962 struct dce_panel_cntl *panel_cntl = 963 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 964 965 if (!panel_cntl) 966 return NULL; 967 968 dce_panel_cntl_construct(panel_cntl, 969 init_data, 970 &panel_cntl_regs[init_data->inst], 971 &panel_cntl_shift, 972 &panel_cntl_mask); 973 974 return &panel_cntl->base; 975 } 976 977 static struct clock_source *dcn20_clock_source_create( 978 struct dc_context *ctx, 979 struct dc_bios *bios, 980 enum clock_source_id id, 981 const struct dce110_clk_src_regs *regs, 982 bool dp_clk_src) 983 { 984 struct dce110_clk_src *clk_src = 985 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC); 986 987 if (!clk_src) 988 return NULL; 989 990 if (dcn20_clk_src_construct(clk_src, ctx, bios, id, 991 regs, &cs_shift, &cs_mask)) { 992 clk_src->base.dp_clk_src = dp_clk_src; 993 return &clk_src->base; 994 } 995 996 kfree(clk_src); 997 BREAK_TO_DEBUGGER(); 998 return NULL; 999 } 1000 1001 static void read_dce_straps( 1002 struct dc_context *ctx, 1003 struct resource_straps *straps) 1004 { 1005 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 1006 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1007 } 1008 1009 static struct audio *dcn20_create_audio( 1010 struct dc_context *ctx, unsigned int inst) 1011 { 1012 return dce_audio_create(ctx, inst, 1013 &audio_regs[inst], &audio_shift, &audio_mask); 1014 } 1015 1016 struct stream_encoder *dcn20_stream_encoder_create( 1017 enum engine_id eng_id, 1018 struct dc_context *ctx) 1019 { 1020 struct dcn10_stream_encoder *enc1 = 1021 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1022 1023 if (!enc1) 1024 return NULL; 1025 1026 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 1027 if (eng_id >= ENGINE_ID_DIGD) 1028 eng_id++; 1029 } 1030 1031 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, 1032 &stream_enc_regs[eng_id], 1033 &se_shift, &se_mask); 1034 1035 return &enc1->base; 1036 } 1037 1038 static const struct dce_hwseq_registers hwseq_reg = { 1039 HWSEQ_DCN2_REG_LIST() 1040 }; 1041 1042 static const struct dce_hwseq_shift hwseq_shift = { 1043 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) 1044 }; 1045 1046 static const struct dce_hwseq_mask hwseq_mask = { 1047 HWSEQ_DCN2_MASK_SH_LIST(_MASK) 1048 }; 1049 1050 struct dce_hwseq *dcn20_hwseq_create( 1051 struct dc_context *ctx) 1052 { 1053 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1054 1055 if (hws) { 1056 hws->ctx = ctx; 1057 hws->regs = &hwseq_reg; 1058 hws->shifts = &hwseq_shift; 1059 hws->masks = &hwseq_mask; 1060 } 1061 return hws; 1062 } 1063 1064 static const struct resource_create_funcs res_create_funcs = { 1065 .read_dce_straps = read_dce_straps, 1066 .create_audio = dcn20_create_audio, 1067 .create_stream_encoder = dcn20_stream_encoder_create, 1068 .create_hwseq = dcn20_hwseq_create, 1069 }; 1070 1071 static const struct resource_create_funcs res_create_maximus_funcs = { 1072 .read_dce_straps = NULL, 1073 .create_audio = NULL, 1074 .create_stream_encoder = NULL, 1075 .create_hwseq = dcn20_hwseq_create, 1076 }; 1077 1078 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu); 1079 1080 void dcn20_clock_source_destroy(struct clock_source **clk_src) 1081 { 1082 kfree(TO_DCE110_CLK_SRC(*clk_src)); 1083 *clk_src = NULL; 1084 } 1085 1086 1087 struct display_stream_compressor *dcn20_dsc_create( 1088 struct dc_context *ctx, uint32_t inst) 1089 { 1090 struct dcn20_dsc *dsc = 1091 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC); 1092 1093 if (!dsc) { 1094 BREAK_TO_DEBUGGER(); 1095 return NULL; 1096 } 1097 1098 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1099 return &dsc->base; 1100 } 1101 1102 void dcn20_dsc_destroy(struct display_stream_compressor **dsc) 1103 { 1104 kfree(container_of(*dsc, struct dcn20_dsc, base)); 1105 *dsc = NULL; 1106 } 1107 1108 1109 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool) 1110 { 1111 unsigned int i; 1112 1113 for (i = 0; i < pool->base.stream_enc_count; i++) { 1114 if (pool->base.stream_enc[i] != NULL) { 1115 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1116 pool->base.stream_enc[i] = NULL; 1117 } 1118 } 1119 1120 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1121 if (pool->base.dscs[i] != NULL) 1122 dcn20_dsc_destroy(&pool->base.dscs[i]); 1123 } 1124 1125 if (pool->base.mpc != NULL) { 1126 kfree(TO_DCN20_MPC(pool->base.mpc)); 1127 pool->base.mpc = NULL; 1128 } 1129 if (pool->base.hubbub != NULL) { 1130 kfree(pool->base.hubbub); 1131 pool->base.hubbub = NULL; 1132 } 1133 for (i = 0; i < pool->base.pipe_count; i++) { 1134 if (pool->base.dpps[i] != NULL) 1135 dcn20_dpp_destroy(&pool->base.dpps[i]); 1136 1137 if (pool->base.ipps[i] != NULL) 1138 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1139 1140 if (pool->base.hubps[i] != NULL) { 1141 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1142 pool->base.hubps[i] = NULL; 1143 } 1144 1145 if (pool->base.irqs != NULL) { 1146 dal_irq_service_destroy(&pool->base.irqs); 1147 } 1148 } 1149 1150 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1151 if (pool->base.engines[i] != NULL) 1152 dce110_engine_destroy(&pool->base.engines[i]); 1153 if (pool->base.hw_i2cs[i] != NULL) { 1154 kfree(pool->base.hw_i2cs[i]); 1155 pool->base.hw_i2cs[i] = NULL; 1156 } 1157 if (pool->base.sw_i2cs[i] != NULL) { 1158 kfree(pool->base.sw_i2cs[i]); 1159 pool->base.sw_i2cs[i] = NULL; 1160 } 1161 } 1162 1163 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1164 if (pool->base.opps[i] != NULL) 1165 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1166 } 1167 1168 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1169 if (pool->base.timing_generators[i] != NULL) { 1170 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1171 pool->base.timing_generators[i] = NULL; 1172 } 1173 } 1174 1175 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1176 if (pool->base.dwbc[i] != NULL) { 1177 kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); 1178 pool->base.dwbc[i] = NULL; 1179 } 1180 if (pool->base.mcif_wb[i] != NULL) { 1181 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); 1182 pool->base.mcif_wb[i] = NULL; 1183 } 1184 } 1185 1186 for (i = 0; i < pool->base.audio_count; i++) { 1187 if (pool->base.audios[i]) 1188 dce_aud_destroy(&pool->base.audios[i]); 1189 } 1190 1191 for (i = 0; i < pool->base.clk_src_count; i++) { 1192 if (pool->base.clock_sources[i] != NULL) { 1193 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1194 pool->base.clock_sources[i] = NULL; 1195 } 1196 } 1197 1198 if (pool->base.dp_clock_source != NULL) { 1199 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1200 pool->base.dp_clock_source = NULL; 1201 } 1202 1203 1204 if (pool->base.abm != NULL) 1205 dce_abm_destroy(&pool->base.abm); 1206 1207 if (pool->base.dmcu != NULL) 1208 dce_dmcu_destroy(&pool->base.dmcu); 1209 1210 if (pool->base.dccg != NULL) 1211 dcn_dccg_destroy(&pool->base.dccg); 1212 1213 if (pool->base.pp_smu != NULL) 1214 dcn20_pp_smu_destroy(&pool->base.pp_smu); 1215 1216 if (pool->base.oem_device != NULL) 1217 dal_ddc_service_destroy(&pool->base.oem_device); 1218 } 1219 1220 struct hubp *dcn20_hubp_create( 1221 struct dc_context *ctx, 1222 uint32_t inst) 1223 { 1224 struct dcn20_hubp *hubp2 = 1225 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC); 1226 1227 if (!hubp2) 1228 return NULL; 1229 1230 if (hubp2_construct(hubp2, ctx, inst, 1231 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1232 return &hubp2->base; 1233 1234 BREAK_TO_DEBUGGER(); 1235 kfree(hubp2); 1236 return NULL; 1237 } 1238 1239 static void get_pixel_clock_parameters( 1240 struct pipe_ctx *pipe_ctx, 1241 struct pixel_clk_params *pixel_clk_params) 1242 { 1243 const struct dc_stream_state *stream = pipe_ctx->stream; 1244 struct pipe_ctx *odm_pipe; 1245 int opp_cnt = 1; 1246 struct dc_link *link = stream->link; 1247 struct link_encoder *link_enc = NULL; 1248 struct dc *dc = pipe_ctx->stream->ctx->dc; 1249 struct dce_hwseq *hws = dc->hwseq; 1250 1251 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1252 opp_cnt++; 1253 1254 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; 1255 1256 link_enc = link_enc_cfg_get_link_enc(link); 1257 if (link_enc) 1258 pixel_clk_params->encoder_object_id = link_enc->id; 1259 1260 pixel_clk_params->signal_type = pipe_ctx->stream->signal; 1261 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; 1262 /* TODO: un-hardcode*/ 1263 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */ 1264 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * 1265 LINK_RATE_REF_FREQ_IN_KHZ; 1266 pixel_clk_params->flags.ENABLE_SS = 0; 1267 pixel_clk_params->color_depth = 1268 stream->timing.display_color_depth; 1269 pixel_clk_params->flags.DISPLAY_BLANKED = 1; 1270 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; 1271 1272 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 1273 pixel_clk_params->color_depth = COLOR_DEPTH_888; 1274 1275 if (opp_cnt == 4) 1276 pixel_clk_params->requested_pix_clk_100hz /= 4; 1277 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) 1278 pixel_clk_params->requested_pix_clk_100hz /= 2; 1279 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) { 1280 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) 1281 pixel_clk_params->requested_pix_clk_100hz /= 2; 1282 } 1283 1284 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) 1285 pixel_clk_params->requested_pix_clk_100hz *= 2; 1286 1287 } 1288 1289 static void build_clamping_params(struct dc_stream_state *stream) 1290 { 1291 stream->clamping.clamping_level = CLAMPING_FULL_RANGE; 1292 stream->clamping.c_depth = stream->timing.display_color_depth; 1293 stream->clamping.pixel_encoding = stream->timing.pixel_encoding; 1294 } 1295 1296 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) 1297 { 1298 1299 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); 1300 1301 pipe_ctx->clock_source->funcs->get_pix_clk_dividers( 1302 pipe_ctx->clock_source, 1303 &pipe_ctx->stream_res.pix_clk_params, 1304 &pipe_ctx->pll_settings); 1305 1306 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; 1307 1308 resource_build_bit_depth_reduction_params(pipe_ctx->stream, 1309 &pipe_ctx->stream->bit_depth_params); 1310 build_clamping_params(pipe_ctx->stream); 1311 1312 return DC_OK; 1313 } 1314 1315 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) 1316 { 1317 enum dc_status status = DC_OK; 1318 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); 1319 1320 if (!pipe_ctx) 1321 return DC_ERROR_UNEXPECTED; 1322 1323 1324 status = build_pipe_hw_param(pipe_ctx); 1325 1326 return status; 1327 } 1328 1329 1330 void dcn20_acquire_dsc(const struct dc *dc, 1331 struct resource_context *res_ctx, 1332 struct display_stream_compressor **dsc, 1333 int pipe_idx) 1334 { 1335 int i; 1336 const struct resource_pool *pool = dc->res_pool; 1337 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc; 1338 1339 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */ 1340 *dsc = NULL; 1341 1342 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */ 1343 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) { 1344 *dsc = pool->dscs[pipe_idx]; 1345 res_ctx->is_dsc_acquired[pipe_idx] = true; 1346 return; 1347 } 1348 1349 /* Return old DSC to avoid the need for re-programming */ 1350 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) { 1351 *dsc = dsc_old; 1352 res_ctx->is_dsc_acquired[dsc_old->inst] = true; 1353 return ; 1354 } 1355 1356 /* Find first free DSC */ 1357 for (i = 0; i < pool->res_cap->num_dsc; i++) 1358 if (!res_ctx->is_dsc_acquired[i]) { 1359 *dsc = pool->dscs[i]; 1360 res_ctx->is_dsc_acquired[i] = true; 1361 break; 1362 } 1363 } 1364 1365 void dcn20_release_dsc(struct resource_context *res_ctx, 1366 const struct resource_pool *pool, 1367 struct display_stream_compressor **dsc) 1368 { 1369 int i; 1370 1371 for (i = 0; i < pool->res_cap->num_dsc; i++) 1372 if (pool->dscs[i] == *dsc) { 1373 res_ctx->is_dsc_acquired[i] = false; 1374 *dsc = NULL; 1375 break; 1376 } 1377 } 1378 1379 1380 1381 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc, 1382 struct dc_state *dc_ctx, 1383 struct dc_stream_state *dc_stream) 1384 { 1385 enum dc_status result = DC_OK; 1386 int i; 1387 1388 /* Get a DSC if required and available */ 1389 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1390 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; 1391 1392 if (pipe_ctx->stream != dc_stream) 1393 continue; 1394 1395 if (pipe_ctx->stream_res.dsc) 1396 continue; 1397 1398 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i); 1399 1400 /* The number of DSCs can be less than the number of pipes */ 1401 if (!pipe_ctx->stream_res.dsc) { 1402 result = DC_NO_DSC_RESOURCE; 1403 } 1404 1405 break; 1406 } 1407 1408 return result; 1409 } 1410 1411 1412 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, 1413 struct dc_state *new_ctx, 1414 struct dc_stream_state *dc_stream) 1415 { 1416 struct pipe_ctx *pipe_ctx = NULL; 1417 int i; 1418 1419 for (i = 0; i < MAX_PIPES; i++) { 1420 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { 1421 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1422 1423 if (pipe_ctx->stream_res.dsc) 1424 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); 1425 } 1426 } 1427 1428 if (!pipe_ctx) 1429 return DC_ERROR_UNEXPECTED; 1430 else 1431 return DC_OK; 1432 } 1433 1434 1435 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1436 { 1437 enum dc_status result = DC_ERROR_UNEXPECTED; 1438 1439 result = resource_map_pool_resources(dc, new_ctx, dc_stream); 1440 1441 if (result == DC_OK) 1442 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); 1443 1444 /* Get a DSC if required and available */ 1445 if (result == DC_OK && dc_stream->timing.flags.DSC) 1446 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream); 1447 1448 if (result == DC_OK) 1449 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); 1450 1451 return result; 1452 } 1453 1454 1455 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1456 { 1457 enum dc_status result = DC_OK; 1458 1459 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); 1460 1461 return result; 1462 } 1463 1464 /** 1465 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM 1466 * 1467 * @dc: DC object with resource pool info required for pipe split 1468 * @res_ctx: Persistent state of resources 1469 * @prev_odm_pipe: Reference to the previous ODM pipe 1470 * @next_odm_pipe: Reference to the next ODM pipe 1471 * 1472 * This function takes a logically active pipe and a logically free pipe and 1473 * halves all the scaling parameters that need to be halved while populating 1474 * the free pipe with the required resources and configuring the next/previous 1475 * ODM pipe pointers. 1476 * 1477 * Return: 1478 * Return true if split stream for ODM is possible, otherwise, return false. 1479 */ 1480 bool dcn20_split_stream_for_odm( 1481 const struct dc *dc, 1482 struct resource_context *res_ctx, 1483 struct pipe_ctx *prev_odm_pipe, 1484 struct pipe_ctx *next_odm_pipe) 1485 { 1486 int pipe_idx = next_odm_pipe->pipe_idx; 1487 const struct resource_pool *pool = dc->res_pool; 1488 1489 *next_odm_pipe = *prev_odm_pipe; 1490 1491 next_odm_pipe->pipe_idx = pipe_idx; 1492 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; 1493 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; 1494 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; 1495 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; 1496 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; 1497 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; 1498 next_odm_pipe->stream_res.dsc = NULL; 1499 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { 1500 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; 1501 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; 1502 } 1503 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) { 1504 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe; 1505 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe; 1506 } 1507 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) { 1508 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe; 1509 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe; 1510 } 1511 prev_odm_pipe->next_odm_pipe = next_odm_pipe; 1512 next_odm_pipe->prev_odm_pipe = prev_odm_pipe; 1513 1514 if (prev_odm_pipe->plane_state) { 1515 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; 1516 int new_width; 1517 1518 /* HACTIVE halved for odm combine */ 1519 sd->h_active /= 2; 1520 /* Calculate new vp and recout for left pipe */ 1521 /* Need at least 16 pixels width per side */ 1522 if (sd->recout.x + 16 >= sd->h_active) 1523 return false; 1524 new_width = sd->h_active - sd->recout.x; 1525 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1526 sd->ratios.horz, sd->recout.width - new_width)); 1527 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1528 sd->ratios.horz_c, sd->recout.width - new_width)); 1529 sd->recout.width = new_width; 1530 1531 /* Calculate new vp and recout for right pipe */ 1532 sd = &next_odm_pipe->plane_res.scl_data; 1533 /* HACTIVE halved for odm combine */ 1534 sd->h_active /= 2; 1535 /* Need at least 16 pixels width per side */ 1536 if (new_width <= 16) 1537 return false; 1538 new_width = sd->recout.width + sd->recout.x - sd->h_active; 1539 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1540 sd->ratios.horz, sd->recout.width - new_width)); 1541 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1542 sd->ratios.horz_c, sd->recout.width - new_width)); 1543 sd->recout.width = new_width; 1544 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( 1545 sd->ratios.horz, sd->h_active - sd->recout.x)); 1546 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( 1547 sd->ratios.horz_c, sd->h_active - sd->recout.x)); 1548 sd->recout.x = 0; 1549 } 1550 if (!next_odm_pipe->top_pipe) 1551 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; 1552 else 1553 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp; 1554 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) { 1555 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx); 1556 ASSERT(next_odm_pipe->stream_res.dsc); 1557 if (next_odm_pipe->stream_res.dsc == NULL) 1558 return false; 1559 } 1560 1561 return true; 1562 } 1563 1564 void dcn20_split_stream_for_mpc( 1565 struct resource_context *res_ctx, 1566 const struct resource_pool *pool, 1567 struct pipe_ctx *primary_pipe, 1568 struct pipe_ctx *secondary_pipe) 1569 { 1570 int pipe_idx = secondary_pipe->pipe_idx; 1571 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; 1572 1573 *secondary_pipe = *primary_pipe; 1574 secondary_pipe->bottom_pipe = sec_bot_pipe; 1575 1576 secondary_pipe->pipe_idx = pipe_idx; 1577 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; 1578 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; 1579 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; 1580 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; 1581 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; 1582 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; 1583 secondary_pipe->stream_res.dsc = NULL; 1584 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { 1585 ASSERT(!secondary_pipe->bottom_pipe); 1586 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; 1587 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; 1588 } 1589 primary_pipe->bottom_pipe = secondary_pipe; 1590 secondary_pipe->top_pipe = primary_pipe; 1591 1592 ASSERT(primary_pipe->plane_state); 1593 } 1594 1595 unsigned int dcn20_calc_max_scaled_time( 1596 unsigned int time_per_pixel, 1597 enum mmhubbub_wbif_mode mode, 1598 unsigned int urgent_watermark) 1599 { 1600 unsigned int time_per_byte = 0; 1601 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ 1602 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ 1603 unsigned int small_free_entry, max_free_entry; 1604 unsigned int buf_lh_capability; 1605 unsigned int max_scaled_time; 1606 1607 if (mode == PACKED_444) /* packed mode */ 1608 time_per_byte = time_per_pixel/4; 1609 else if (mode == PLANAR_420_8BPC) 1610 time_per_byte = time_per_pixel; 1611 else if (mode == PLANAR_420_10BPC) /* p010 */ 1612 time_per_byte = time_per_pixel * 819/1024; 1613 1614 if (time_per_byte == 0) 1615 time_per_byte = 1; 1616 1617 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; 1618 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; 1619 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ 1620 max_scaled_time = buf_lh_capability - urgent_watermark; 1621 return max_scaled_time; 1622 } 1623 1624 void dcn20_set_mcif_arb_params( 1625 struct dc *dc, 1626 struct dc_state *context, 1627 display_e2e_pipe_params_st *pipes, 1628 int pipe_cnt) 1629 { 1630 enum mmhubbub_wbif_mode wbif_mode; 1631 struct mcif_arb_params *wb_arb_params; 1632 int i, j, dwb_pipe; 1633 1634 /* Writeback MCIF_WB arbitration parameters */ 1635 dwb_pipe = 0; 1636 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1637 1638 if (!context->res_ctx.pipe_ctx[i].stream) 1639 continue; 1640 1641 for (j = 0; j < MAX_DWB_PIPES; j++) { 1642 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) 1643 continue; 1644 1645 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1646 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1647 1648 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { 1649 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) 1650 wbif_mode = PLANAR_420_8BPC; 1651 else 1652 wbif_mode = PLANAR_420_10BPC; 1653 } else 1654 wbif_mode = PACKED_444; 1655 1656 DC_FP_START(); 1657 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i); 1658 DC_FP_END(); 1659 1660 wb_arb_params->slice_lines = 32; 1661 wb_arb_params->arbitration_slice = 2; 1662 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1663 wbif_mode, 1664 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1665 1666 dwb_pipe++; 1667 1668 if (dwb_pipe >= MAX_DWB_PIPES) 1669 return; 1670 } 1671 if (dwb_pipe >= MAX_DWB_PIPES) 1672 return; 1673 } 1674 } 1675 1676 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) 1677 { 1678 int i; 1679 1680 /* Validate DSC config, dsc count validation is already done */ 1681 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1682 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1683 struct dc_stream_state *stream = pipe_ctx->stream; 1684 struct dsc_config dsc_cfg; 1685 struct pipe_ctx *odm_pipe; 1686 int opp_cnt = 1; 1687 1688 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1689 opp_cnt++; 1690 1691 /* Only need to validate top pipe */ 1692 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) 1693 continue; 1694 1695 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left 1696 + stream->timing.h_border_right) / opp_cnt; 1697 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top 1698 + stream->timing.v_border_bottom; 1699 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; 1700 dsc_cfg.color_depth = stream->timing.display_color_depth; 1701 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; 1702 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; 1703 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; 1704 1705 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) 1706 return false; 1707 } 1708 return true; 1709 } 1710 1711 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, 1712 struct resource_context *res_ctx, 1713 const struct resource_pool *pool, 1714 const struct pipe_ctx *primary_pipe) 1715 { 1716 struct pipe_ctx *secondary_pipe = NULL; 1717 1718 if (dc && primary_pipe) { 1719 int j; 1720 int preferred_pipe_idx = 0; 1721 1722 /* first check the prev dc state: 1723 * if this primary pipe has a bottom pipe in prev. state 1724 * and if the bottom pipe is still available (which it should be), 1725 * pick that pipe as secondary 1726 * Same logic applies for ODM pipes 1727 */ 1728 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { 1729 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; 1730 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1731 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1732 secondary_pipe->pipe_idx = preferred_pipe_idx; 1733 } 1734 } 1735 if (secondary_pipe == NULL && 1736 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { 1737 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; 1738 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1739 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1740 secondary_pipe->pipe_idx = preferred_pipe_idx; 1741 } 1742 } 1743 1744 /* 1745 * if this primary pipe does not have a bottom pipe in prev. state 1746 * start backward and find a pipe that did not used to be a bottom pipe in 1747 * prev. dc state. This way we make sure we keep the same assignment as 1748 * last state and will not have to reprogram every pipe 1749 */ 1750 if (secondary_pipe == NULL) { 1751 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1752 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL 1753 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) { 1754 preferred_pipe_idx = j; 1755 1756 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1757 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1758 secondary_pipe->pipe_idx = preferred_pipe_idx; 1759 break; 1760 } 1761 } 1762 } 1763 } 1764 /* 1765 * We should never hit this assert unless assignments are shuffled around 1766 * if this happens we will prob. hit a vsync tdr 1767 */ 1768 ASSERT(secondary_pipe); 1769 /* 1770 * search backwards for the second pipe to keep pipe 1771 * assignment more consistent 1772 */ 1773 if (secondary_pipe == NULL) { 1774 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1775 preferred_pipe_idx = j; 1776 1777 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1778 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1779 secondary_pipe->pipe_idx = preferred_pipe_idx; 1780 break; 1781 } 1782 } 1783 } 1784 } 1785 1786 return secondary_pipe; 1787 } 1788 1789 void dcn20_merge_pipes_for_validate( 1790 struct dc *dc, 1791 struct dc_state *context) 1792 { 1793 int i; 1794 1795 /* merge previously split odm pipes since mode support needs to make the decision */ 1796 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1797 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1798 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; 1799 1800 if (pipe->prev_odm_pipe) 1801 continue; 1802 1803 pipe->next_odm_pipe = NULL; 1804 while (odm_pipe) { 1805 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; 1806 1807 odm_pipe->plane_state = NULL; 1808 odm_pipe->stream = NULL; 1809 odm_pipe->top_pipe = NULL; 1810 odm_pipe->bottom_pipe = NULL; 1811 odm_pipe->prev_odm_pipe = NULL; 1812 odm_pipe->next_odm_pipe = NULL; 1813 if (odm_pipe->stream_res.dsc) 1814 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); 1815 /* Clear plane_res and stream_res */ 1816 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); 1817 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); 1818 odm_pipe = next_odm_pipe; 1819 } 1820 if (pipe->plane_state) 1821 resource_build_scaling_params(pipe); 1822 } 1823 1824 /* merge previously mpc split pipes since mode support needs to make the decision */ 1825 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1826 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1827 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 1828 1829 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) 1830 continue; 1831 1832 pipe->bottom_pipe = hsplit_pipe->bottom_pipe; 1833 if (hsplit_pipe->bottom_pipe) 1834 hsplit_pipe->bottom_pipe->top_pipe = pipe; 1835 hsplit_pipe->plane_state = NULL; 1836 hsplit_pipe->stream = NULL; 1837 hsplit_pipe->top_pipe = NULL; 1838 hsplit_pipe->bottom_pipe = NULL; 1839 1840 /* Clear plane_res and stream_res */ 1841 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); 1842 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); 1843 if (pipe->plane_state) 1844 resource_build_scaling_params(pipe); 1845 } 1846 } 1847 1848 int dcn20_validate_apply_pipe_split_flags( 1849 struct dc *dc, 1850 struct dc_state *context, 1851 int vlevel, 1852 int *split, 1853 bool *merge) 1854 { 1855 int i, pipe_idx, vlevel_split; 1856 int plane_count = 0; 1857 bool force_split = false; 1858 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID; 1859 struct vba_vars_st *v = &context->bw_ctx.dml.vba; 1860 int max_mpc_comb = v->maxMpcComb; 1861 1862 if (context->stream_count > 1) { 1863 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) 1864 avoid_split = true; 1865 } else if (dc->debug.force_single_disp_pipe_split) 1866 force_split = true; 1867 1868 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1869 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1870 1871 /** 1872 * Workaround for avoiding pipe-split in cases where we'd split 1873 * planes that are too small, resulting in splits that aren't 1874 * valid for the scaler. 1875 */ 1876 if (pipe->plane_state && 1877 (pipe->plane_state->dst_rect.width <= 16 || 1878 pipe->plane_state->dst_rect.height <= 16 || 1879 pipe->plane_state->src_rect.width <= 16 || 1880 pipe->plane_state->src_rect.height <= 16)) 1881 avoid_split = true; 1882 1883 /* TODO: fix dc bugs and remove this split threshold thing */ 1884 if (pipe->stream && !pipe->prev_odm_pipe && 1885 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) 1886 ++plane_count; 1887 } 1888 if (plane_count > dc->res_pool->pipe_count / 2) 1889 avoid_split = true; 1890 1891 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */ 1892 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1893 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1894 struct dc_crtc_timing timing; 1895 1896 if (!pipe->stream) 1897 continue; 1898 else { 1899 timing = pipe->stream->timing; 1900 if (timing.h_border_left + timing.h_border_right 1901 + timing.v_border_top + timing.v_border_bottom > 0) { 1902 avoid_split = true; 1903 break; 1904 } 1905 } 1906 } 1907 1908 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */ 1909 if (avoid_split) { 1910 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1911 if (!context->res_ctx.pipe_ctx[i].stream) 1912 continue; 1913 1914 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++) 1915 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 && 1916 v->ModeSupport[vlevel][0]) 1917 break; 1918 /* Impossible to not split this pipe */ 1919 if (vlevel > context->bw_ctx.dml.soc.num_states) 1920 vlevel = vlevel_split; 1921 else 1922 max_mpc_comb = 0; 1923 pipe_idx++; 1924 } 1925 v->maxMpcComb = max_mpc_comb; 1926 } 1927 1928 /* Split loop sets which pipe should be split based on dml outputs and dc flags */ 1929 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1930 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1931 int pipe_plane = v->pipe_plane[pipe_idx]; 1932 bool split4mpc = context->stream_count == 1 && plane_count == 1 1933 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4; 1934 1935 if (!context->res_ctx.pipe_ctx[i].stream) 1936 continue; 1937 1938 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4) 1939 split[i] = 4; 1940 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2) 1941 split[i] = 2; 1942 1943 if ((pipe->stream->view_format == 1944 VIEW_3D_FORMAT_SIDE_BY_SIDE || 1945 pipe->stream->view_format == 1946 VIEW_3D_FORMAT_TOP_AND_BOTTOM) && 1947 (pipe->stream->timing.timing_3d_format == 1948 TIMING_3D_FORMAT_TOP_AND_BOTTOM || 1949 pipe->stream->timing.timing_3d_format == 1950 TIMING_3D_FORMAT_SIDE_BY_SIDE)) 1951 split[i] = 2; 1952 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { 1953 split[i] = 2; 1954 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1; 1955 } 1956 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) { 1957 split[i] = 4; 1958 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1; 1959 } 1960 /*420 format workaround*/ 1961 if (pipe->stream->timing.h_addressable > 7680 && 1962 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { 1963 split[i] = 4; 1964 } 1965 v->ODMCombineEnabled[pipe_plane] = 1966 v->ODMCombineEnablePerState[vlevel][pipe_plane]; 1967 1968 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) { 1969 if (get_num_mpc_splits(pipe) == 1) { 1970 /*If need split for mpc but 2 way split already*/ 1971 if (split[i] == 4) 1972 split[i] = 2; /* 2 -> 4 MPC */ 1973 else if (split[i] == 2) 1974 split[i] = 0; /* 2 -> 2 MPC */ 1975 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) 1976 merge[i] = true; /* 2 -> 1 MPC */ 1977 } else if (get_num_mpc_splits(pipe) == 3) { 1978 /*If need split for mpc but 4 way split already*/ 1979 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe) 1980 || !pipe->bottom_pipe)) { 1981 merge[i] = true; /* 4 -> 2 MPC */ 1982 } else if (split[i] == 0 && pipe->top_pipe && 1983 pipe->top_pipe->plane_state == pipe->plane_state) 1984 merge[i] = true; /* 4 -> 1 MPC */ 1985 split[i] = 0; 1986 } else if (get_num_odm_splits(pipe)) { 1987 /* ODM -> MPC transition */ 1988 if (pipe->prev_odm_pipe) { 1989 split[i] = 0; 1990 merge[i] = true; 1991 } 1992 } 1993 } else { 1994 if (get_num_odm_splits(pipe) == 1) { 1995 /*If need split for odm but 2 way split already*/ 1996 if (split[i] == 4) 1997 split[i] = 2; /* 2 -> 4 ODM */ 1998 else if (split[i] == 2) 1999 split[i] = 0; /* 2 -> 2 ODM */ 2000 else if (pipe->prev_odm_pipe) { 2001 ASSERT(0); /* NOT expected yet */ 2002 merge[i] = true; /* exit ODM */ 2003 } 2004 } else if (get_num_odm_splits(pipe) == 3) { 2005 /*If need split for odm but 4 way split already*/ 2006 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe) 2007 || !pipe->next_odm_pipe)) { 2008 merge[i] = true; /* 4 -> 2 ODM */ 2009 } else if (split[i] == 0 && pipe->prev_odm_pipe) { 2010 ASSERT(0); /* NOT expected yet */ 2011 merge[i] = true; /* exit ODM */ 2012 } 2013 split[i] = 0; 2014 } else if (get_num_mpc_splits(pipe)) { 2015 /* MPC -> ODM transition */ 2016 ASSERT(0); /* NOT expected yet */ 2017 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2018 split[i] = 0; 2019 merge[i] = true; 2020 } 2021 } 2022 } 2023 2024 /* Adjust dppclk when split is forced, do not bother with dispclk */ 2025 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) { 2026 DC_FP_START(); 2027 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false); 2028 DC_FP_END(); 2029 } 2030 pipe_idx++; 2031 } 2032 2033 return vlevel; 2034 } 2035 2036 bool dcn20_fast_validate_bw( 2037 struct dc *dc, 2038 struct dc_state *context, 2039 display_e2e_pipe_params_st *pipes, 2040 int *pipe_cnt_out, 2041 int *pipe_split_from, 2042 int *vlevel_out, 2043 bool fast_validate) 2044 { 2045 bool out = false; 2046 int split[MAX_PIPES] = { 0 }; 2047 int pipe_cnt, i, pipe_idx, vlevel; 2048 2049 ASSERT(pipes); 2050 if (!pipes) 2051 return false; 2052 2053 dcn20_merge_pipes_for_validate(dc, context); 2054 2055 DC_FP_START(); 2056 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2057 DC_FP_END(); 2058 2059 *pipe_cnt_out = pipe_cnt; 2060 2061 if (!pipe_cnt) { 2062 out = true; 2063 goto validate_out; 2064 } 2065 2066 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2067 2068 if (vlevel > context->bw_ctx.dml.soc.num_states) 2069 goto validate_fail; 2070 2071 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); 2072 2073 /*initialize pipe_just_split_from to invalid idx*/ 2074 for (i = 0; i < MAX_PIPES; i++) 2075 pipe_split_from[i] = -1; 2076 2077 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2078 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2079 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 2080 2081 if (!pipe->stream || pipe_split_from[i] >= 0) 2082 continue; 2083 2084 pipe_idx++; 2085 2086 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2087 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2088 ASSERT(hsplit_pipe); 2089 if (!dcn20_split_stream_for_odm( 2090 dc, &context->res_ctx, 2091 pipe, hsplit_pipe)) 2092 goto validate_fail; 2093 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2094 dcn20_build_mapped_resource(dc, context, pipe->stream); 2095 } 2096 2097 if (!pipe->plane_state) 2098 continue; 2099 /* Skip 2nd half of already split pipe */ 2100 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) 2101 continue; 2102 2103 /* We do not support mpo + odm at the moment */ 2104 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state 2105 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) 2106 goto validate_fail; 2107 2108 if (split[i] == 2) { 2109 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { 2110 /* pipe not split previously needs split */ 2111 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2112 ASSERT(hsplit_pipe); 2113 if (!hsplit_pipe) { 2114 DC_FP_START(); 2115 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true); 2116 DC_FP_END(); 2117 continue; 2118 } 2119 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2120 if (!dcn20_split_stream_for_odm( 2121 dc, &context->res_ctx, 2122 pipe, hsplit_pipe)) 2123 goto validate_fail; 2124 dcn20_build_mapped_resource(dc, context, pipe->stream); 2125 } else { 2126 dcn20_split_stream_for_mpc( 2127 &context->res_ctx, dc->res_pool, 2128 pipe, hsplit_pipe); 2129 resource_build_scaling_params(pipe); 2130 resource_build_scaling_params(hsplit_pipe); 2131 } 2132 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2133 } 2134 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { 2135 /* merge should already have been done */ 2136 ASSERT(0); 2137 } 2138 } 2139 /* Actual dsc count per stream dsc validation*/ 2140 if (!dcn20_validate_dsc(dc, context)) { 2141 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = 2142 DML_FAIL_DSC_VALIDATION_FAILURE; 2143 goto validate_fail; 2144 } 2145 2146 *vlevel_out = vlevel; 2147 2148 out = true; 2149 goto validate_out; 2150 2151 validate_fail: 2152 out = false; 2153 2154 validate_out: 2155 return out; 2156 } 2157 2158 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, 2159 bool fast_validate) 2160 { 2161 bool voltage_supported; 2162 DC_FP_START(); 2163 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate); 2164 DC_FP_END(); 2165 return voltage_supported; 2166 } 2167 2168 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer( 2169 struct dc_state *state, 2170 const struct resource_pool *pool, 2171 struct dc_stream_state *stream) 2172 { 2173 struct resource_context *res_ctx = &state->res_ctx; 2174 struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); 2175 struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); 2176 2177 if (!head_pipe) 2178 ASSERT(0); 2179 2180 if (!idle_pipe) 2181 return NULL; 2182 2183 idle_pipe->stream = head_pipe->stream; 2184 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2185 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2186 2187 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2188 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2189 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2190 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2191 2192 return idle_pipe; 2193 } 2194 2195 bool dcn20_get_dcc_compression_cap(const struct dc *dc, 2196 const struct dc_dcc_surface_param *input, 2197 struct dc_surface_dcc_cap *output) 2198 { 2199 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( 2200 dc->res_pool->hubbub, 2201 input, 2202 output); 2203 } 2204 2205 static void dcn20_destroy_resource_pool(struct resource_pool **pool) 2206 { 2207 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); 2208 2209 dcn20_resource_destruct(dcn20_pool); 2210 kfree(dcn20_pool); 2211 *pool = NULL; 2212 } 2213 2214 2215 static struct dc_cap_funcs cap_funcs = { 2216 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2217 }; 2218 2219 2220 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state) 2221 { 2222 enum surface_pixel_format surf_pix_format = plane_state->format; 2223 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); 2224 2225 enum swizzle_mode_values swizzle = DC_SW_LINEAR; 2226 2227 if (bpp == 64) 2228 swizzle = DC_SW_64KB_D; 2229 else 2230 swizzle = DC_SW_64KB_S; 2231 2232 plane_state->tiling_info.gfx9.swizzle = swizzle; 2233 return DC_OK; 2234 } 2235 2236 static const struct resource_funcs dcn20_res_pool_funcs = { 2237 .destroy = dcn20_destroy_resource_pool, 2238 .link_enc_create = dcn20_link_encoder_create, 2239 .panel_cntl_create = dcn20_panel_cntl_create, 2240 .validate_bandwidth = dcn20_validate_bandwidth, 2241 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2242 .add_stream_to_ctx = dcn20_add_stream_to_ctx, 2243 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2244 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2245 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, 2246 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2247 .set_mcif_arb_params = dcn20_set_mcif_arb_params, 2248 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context, 2249 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link 2250 }; 2251 2252 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 2253 { 2254 int i; 2255 uint32_t pipe_count = pool->res_cap->num_dwb; 2256 2257 for (i = 0; i < pipe_count; i++) { 2258 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), 2259 GFP_KERNEL); 2260 2261 if (!dwbc20) { 2262 dm_error("DC: failed to create dwbc20!\n"); 2263 return false; 2264 } 2265 dcn20_dwbc_construct(dwbc20, ctx, 2266 &dwbc20_regs[i], 2267 &dwbc20_shift, 2268 &dwbc20_mask, 2269 i); 2270 pool->dwbc[i] = &dwbc20->base; 2271 } 2272 return true; 2273 } 2274 2275 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 2276 { 2277 int i; 2278 uint32_t pipe_count = pool->res_cap->num_dwb; 2279 2280 ASSERT(pipe_count > 0); 2281 2282 for (i = 0; i < pipe_count; i++) { 2283 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), 2284 GFP_KERNEL); 2285 2286 if (!mcif_wb20) { 2287 dm_error("DC: failed to create mcif_wb20!\n"); 2288 return false; 2289 } 2290 2291 dcn20_mmhubbub_construct(mcif_wb20, ctx, 2292 &mcif_wb20_regs[i], 2293 &mcif_wb20_shift, 2294 &mcif_wb20_mask, 2295 i); 2296 2297 pool->mcif_wb[i] = &mcif_wb20->base; 2298 } 2299 return true; 2300 } 2301 2302 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) 2303 { 2304 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC); 2305 2306 if (!pp_smu) 2307 return pp_smu; 2308 2309 dm_pp_get_funcs(ctx, pp_smu); 2310 2311 if (pp_smu->ctx.ver != PP_SMU_VER_NV) 2312 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); 2313 2314 return pp_smu; 2315 } 2316 2317 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) 2318 { 2319 if (pp_smu && *pp_smu) { 2320 kfree(*pp_smu); 2321 *pp_smu = NULL; 2322 } 2323 } 2324 2325 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( 2326 uint32_t hw_internal_rev) 2327 { 2328 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2329 return &dcn2_0_nv14_soc; 2330 2331 if (ASICREV_IS_NAVI12_P(hw_internal_rev)) 2332 return &dcn2_0_nv12_soc; 2333 2334 return &dcn2_0_soc; 2335 } 2336 2337 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( 2338 uint32_t hw_internal_rev) 2339 { 2340 /* NV14 */ 2341 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2342 return &dcn2_0_nv14_ip; 2343 2344 /* NV12 and NV10 */ 2345 return &dcn2_0_ip; 2346 } 2347 2348 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) 2349 { 2350 return DML_PROJECT_NAVI10v2; 2351 } 2352 2353 static bool init_soc_bounding_box(struct dc *dc, 2354 struct dcn20_resource_pool *pool) 2355 { 2356 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2357 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); 2358 struct _vcs_dpi_ip_params_st *loaded_ip = 2359 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); 2360 2361 DC_LOGGER_INIT(dc->ctx->logger); 2362 2363 if (pool->base.pp_smu) { 2364 struct pp_smu_nv_clock_table max_clocks = {0}; 2365 unsigned int uclk_states[8] = {0}; 2366 unsigned int num_states = 0; 2367 enum pp_smu_status status; 2368 bool clock_limits_available = false; 2369 bool uclk_states_available = false; 2370 2371 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { 2372 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) 2373 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); 2374 2375 uclk_states_available = (status == PP_SMU_RESULT_OK); 2376 } 2377 2378 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { 2379 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) 2380 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); 2381 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock 2382 */ 2383 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) 2384 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; 2385 clock_limits_available = (status == PP_SMU_RESULT_OK); 2386 } 2387 2388 if (clock_limits_available && uclk_states_available && num_states) { 2389 DC_FP_START(); 2390 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); 2391 DC_FP_END(); 2392 } else if (clock_limits_available) { 2393 DC_FP_START(); 2394 dcn20_cap_soc_clocks(loaded_bb, max_clocks); 2395 DC_FP_END(); 2396 } 2397 } 2398 2399 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 2400 loaded_ip->max_num_dpp = pool->base.pipe_count; 2401 DC_FP_START(); 2402 dcn20_patch_bounding_box(dc, loaded_bb); 2403 DC_FP_END(); 2404 return true; 2405 } 2406 2407 static bool dcn20_resource_construct( 2408 uint8_t num_virtual_links, 2409 struct dc *dc, 2410 struct dcn20_resource_pool *pool) 2411 { 2412 int i; 2413 struct dc_context *ctx = dc->ctx; 2414 struct irq_service_init_data init_data; 2415 struct ddc_service_init_data ddc_init_data = {0}; 2416 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2417 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); 2418 struct _vcs_dpi_ip_params_st *loaded_ip = 2419 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); 2420 enum dml_project dml_project_version = 2421 get_dml_project_version(ctx->asic_id.hw_internal_rev); 2422 2423 ctx->dc_bios->regs = &bios_regs; 2424 pool->base.funcs = &dcn20_res_pool_funcs; 2425 2426 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 2427 pool->base.res_cap = &res_cap_nv14; 2428 pool->base.pipe_count = 5; 2429 pool->base.mpcc_count = 5; 2430 } else { 2431 pool->base.res_cap = &res_cap_nv10; 2432 pool->base.pipe_count = 6; 2433 pool->base.mpcc_count = 6; 2434 } 2435 /************************************************* 2436 * Resource + asic cap harcoding * 2437 *************************************************/ 2438 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2439 2440 dc->caps.max_downscale_ratio = 200; 2441 dc->caps.i2c_speed_in_khz = 100; 2442 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2443 dc->caps.max_cursor_size = 256; 2444 dc->caps.min_horizontal_blanking_period = 80; 2445 dc->caps.dmdata_alloc_size = 2048; 2446 2447 dc->caps.max_slave_planes = 1; 2448 dc->caps.max_slave_yuv_planes = 1; 2449 dc->caps.max_slave_rgb_planes = 1; 2450 dc->caps.post_blend_color_processing = true; 2451 dc->caps.force_dp_tps4_for_cp2520 = true; 2452 dc->caps.extended_aux_timeout_support = true; 2453 2454 /* Color pipeline capabilities */ 2455 dc->caps.color.dpp.dcn_arch = 1; 2456 dc->caps.color.dpp.input_lut_shared = 0; 2457 dc->caps.color.dpp.icsc = 1; 2458 dc->caps.color.dpp.dgam_ram = 1; 2459 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2460 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2461 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; 2462 dc->caps.color.dpp.dgam_rom_caps.pq = 0; 2463 dc->caps.color.dpp.dgam_rom_caps.hlg = 0; 2464 dc->caps.color.dpp.post_csc = 0; 2465 dc->caps.color.dpp.gamma_corr = 0; 2466 dc->caps.color.dpp.dgam_rom_for_yuv = 1; 2467 2468 dc->caps.color.dpp.hw_3d_lut = 1; 2469 dc->caps.color.dpp.ogam_ram = 1; 2470 // no OGAM ROM on DCN2, only MPC ROM 2471 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2472 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2473 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2474 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2475 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2476 dc->caps.color.dpp.ocsc = 0; 2477 2478 dc->caps.color.mpc.gamut_remap = 0; 2479 dc->caps.color.mpc.num_3dluts = 0; 2480 dc->caps.color.mpc.shared_3d_lut = 0; 2481 dc->caps.color.mpc.ogam_ram = 1; 2482 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2483 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2484 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2485 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2486 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2487 dc->caps.color.mpc.ocsc = 1; 2488 2489 dc->caps.dp_hdmi21_pcon_support = true; 2490 2491 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) { 2492 dc->debug = debug_defaults_drv; 2493 } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2494 pool->base.pipe_count = 4; 2495 pool->base.mpcc_count = pool->base.pipe_count; 2496 dc->debug = debug_defaults_diags; 2497 } else { 2498 dc->debug = debug_defaults_diags; 2499 } 2500 //dcn2.0x 2501 dc->work_arounds.dedcn20_305_wa = true; 2502 2503 // Init the vm_helper 2504 if (dc->vm_helper) 2505 vm_helper_init(dc->vm_helper, 16); 2506 2507 /************************************************* 2508 * Create resources * 2509 *************************************************/ 2510 2511 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = 2512 dcn20_clock_source_create(ctx, ctx->dc_bios, 2513 CLOCK_SOURCE_COMBO_PHY_PLL0, 2514 &clk_src_regs[0], false); 2515 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = 2516 dcn20_clock_source_create(ctx, ctx->dc_bios, 2517 CLOCK_SOURCE_COMBO_PHY_PLL1, 2518 &clk_src_regs[1], false); 2519 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = 2520 dcn20_clock_source_create(ctx, ctx->dc_bios, 2521 CLOCK_SOURCE_COMBO_PHY_PLL2, 2522 &clk_src_regs[2], false); 2523 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = 2524 dcn20_clock_source_create(ctx, ctx->dc_bios, 2525 CLOCK_SOURCE_COMBO_PHY_PLL3, 2526 &clk_src_regs[3], false); 2527 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = 2528 dcn20_clock_source_create(ctx, ctx->dc_bios, 2529 CLOCK_SOURCE_COMBO_PHY_PLL4, 2530 &clk_src_regs[4], false); 2531 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = 2532 dcn20_clock_source_create(ctx, ctx->dc_bios, 2533 CLOCK_SOURCE_COMBO_PHY_PLL5, 2534 &clk_src_regs[5], false); 2535 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; 2536 /* todo: not reuse phy_pll registers */ 2537 pool->base.dp_clock_source = 2538 dcn20_clock_source_create(ctx, ctx->dc_bios, 2539 CLOCK_SOURCE_ID_DP_DTO, 2540 &clk_src_regs[0], true); 2541 2542 for (i = 0; i < pool->base.clk_src_count; i++) { 2543 if (pool->base.clock_sources[i] == NULL) { 2544 dm_error("DC: failed to create clock sources!\n"); 2545 BREAK_TO_DEBUGGER(); 2546 goto create_fail; 2547 } 2548 } 2549 2550 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2551 if (pool->base.dccg == NULL) { 2552 dm_error("DC: failed to create dccg!\n"); 2553 BREAK_TO_DEBUGGER(); 2554 goto create_fail; 2555 } 2556 2557 pool->base.dmcu = dcn20_dmcu_create(ctx, 2558 &dmcu_regs, 2559 &dmcu_shift, 2560 &dmcu_mask); 2561 if (pool->base.dmcu == NULL) { 2562 dm_error("DC: failed to create dmcu!\n"); 2563 BREAK_TO_DEBUGGER(); 2564 goto create_fail; 2565 } 2566 2567 pool->base.abm = dce_abm_create(ctx, 2568 &abm_regs, 2569 &abm_shift, 2570 &abm_mask); 2571 if (pool->base.abm == NULL) { 2572 dm_error("DC: failed to create abm!\n"); 2573 BREAK_TO_DEBUGGER(); 2574 goto create_fail; 2575 } 2576 2577 pool->base.pp_smu = dcn20_pp_smu_create(ctx); 2578 2579 2580 if (!init_soc_bounding_box(dc, pool)) { 2581 dm_error("DC: failed to initialize soc bounding box!\n"); 2582 BREAK_TO_DEBUGGER(); 2583 goto create_fail; 2584 } 2585 2586 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); 2587 2588 if (!dc->debug.disable_pplib_wm_range) { 2589 struct pp_smu_wm_range_sets ranges = {0}; 2590 int i = 0; 2591 2592 ranges.num_reader_wm_sets = 0; 2593 2594 if (loaded_bb->num_states == 1) { 2595 ranges.reader_wm_sets[0].wm_inst = i; 2596 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2597 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2598 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2599 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2600 2601 ranges.num_reader_wm_sets = 1; 2602 } else if (loaded_bb->num_states > 1) { 2603 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { 2604 ranges.reader_wm_sets[i].wm_inst = i; 2605 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2606 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2607 DC_FP_START(); 2608 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb); 2609 DC_FP_END(); 2610 2611 ranges.num_reader_wm_sets = i + 1; 2612 } 2613 2614 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2615 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2616 } 2617 2618 ranges.num_writer_wm_sets = 1; 2619 2620 ranges.writer_wm_sets[0].wm_inst = 0; 2621 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2622 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2623 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2624 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2625 2626 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ 2627 if (pool->base.pp_smu->nv_funcs.set_wm_ranges) 2628 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); 2629 } 2630 2631 init_data.ctx = dc->ctx; 2632 pool->base.irqs = dal_irq_service_dcn20_create(&init_data); 2633 if (!pool->base.irqs) 2634 goto create_fail; 2635 2636 /* mem input -> ipp -> dpp -> opp -> TG */ 2637 for (i = 0; i < pool->base.pipe_count; i++) { 2638 pool->base.hubps[i] = dcn20_hubp_create(ctx, i); 2639 if (pool->base.hubps[i] == NULL) { 2640 BREAK_TO_DEBUGGER(); 2641 dm_error( 2642 "DC: failed to create memory input!\n"); 2643 goto create_fail; 2644 } 2645 2646 pool->base.ipps[i] = dcn20_ipp_create(ctx, i); 2647 if (pool->base.ipps[i] == NULL) { 2648 BREAK_TO_DEBUGGER(); 2649 dm_error( 2650 "DC: failed to create input pixel processor!\n"); 2651 goto create_fail; 2652 } 2653 2654 pool->base.dpps[i] = dcn20_dpp_create(ctx, i); 2655 if (pool->base.dpps[i] == NULL) { 2656 BREAK_TO_DEBUGGER(); 2657 dm_error( 2658 "DC: failed to create dpps!\n"); 2659 goto create_fail; 2660 } 2661 } 2662 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2663 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); 2664 if (pool->base.engines[i] == NULL) { 2665 BREAK_TO_DEBUGGER(); 2666 dm_error( 2667 "DC:failed to create aux engine!!\n"); 2668 goto create_fail; 2669 } 2670 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); 2671 if (pool->base.hw_i2cs[i] == NULL) { 2672 BREAK_TO_DEBUGGER(); 2673 dm_error( 2674 "DC:failed to create hw i2c!!\n"); 2675 goto create_fail; 2676 } 2677 pool->base.sw_i2cs[i] = NULL; 2678 } 2679 2680 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2681 pool->base.opps[i] = dcn20_opp_create(ctx, i); 2682 if (pool->base.opps[i] == NULL) { 2683 BREAK_TO_DEBUGGER(); 2684 dm_error( 2685 "DC: failed to create output pixel processor!\n"); 2686 goto create_fail; 2687 } 2688 } 2689 2690 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2691 pool->base.timing_generators[i] = dcn20_timing_generator_create( 2692 ctx, i); 2693 if (pool->base.timing_generators[i] == NULL) { 2694 BREAK_TO_DEBUGGER(); 2695 dm_error("DC: failed to create tg!\n"); 2696 goto create_fail; 2697 } 2698 } 2699 2700 pool->base.timing_generator_count = i; 2701 2702 pool->base.mpc = dcn20_mpc_create(ctx); 2703 if (pool->base.mpc == NULL) { 2704 BREAK_TO_DEBUGGER(); 2705 dm_error("DC: failed to create mpc!\n"); 2706 goto create_fail; 2707 } 2708 2709 pool->base.hubbub = dcn20_hubbub_create(ctx); 2710 if (pool->base.hubbub == NULL) { 2711 BREAK_TO_DEBUGGER(); 2712 dm_error("DC: failed to create hubbub!\n"); 2713 goto create_fail; 2714 } 2715 2716 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2717 pool->base.dscs[i] = dcn20_dsc_create(ctx, i); 2718 if (pool->base.dscs[i] == NULL) { 2719 BREAK_TO_DEBUGGER(); 2720 dm_error("DC: failed to create display stream compressor %d!\n", i); 2721 goto create_fail; 2722 } 2723 } 2724 2725 if (!dcn20_dwbc_create(ctx, &pool->base)) { 2726 BREAK_TO_DEBUGGER(); 2727 dm_error("DC: failed to create dwbc!\n"); 2728 goto create_fail; 2729 } 2730 if (!dcn20_mmhubbub_create(ctx, &pool->base)) { 2731 BREAK_TO_DEBUGGER(); 2732 dm_error("DC: failed to create mcif_wb!\n"); 2733 goto create_fail; 2734 } 2735 2736 if (!resource_construct(num_virtual_links, dc, &pool->base, 2737 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2738 &res_create_funcs : &res_create_maximus_funcs))) 2739 goto create_fail; 2740 2741 dcn20_hw_sequencer_construct(dc); 2742 2743 // IF NV12, set PG function pointer to NULL. It's not that 2744 // PG isn't supported for NV12, it's that we don't want to 2745 // program the registers because that will cause more power 2746 // to be consumed. We could have created dcn20_init_hw to get 2747 // the same effect by checking ASIC rev, but there was a 2748 // request at some point to not check ASIC rev on hw sequencer. 2749 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) { 2750 dc->hwseq->funcs.enable_power_gating_plane = NULL; 2751 dc->debug.disable_dpp_power_gate = true; 2752 dc->debug.disable_hubp_power_gate = true; 2753 } 2754 2755 2756 dc->caps.max_planes = pool->base.pipe_count; 2757 2758 for (i = 0; i < dc->caps.max_planes; ++i) 2759 dc->caps.planes[i] = plane_cap; 2760 2761 dc->cap_funcs = cap_funcs; 2762 2763 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2764 ddc_init_data.ctx = dc->ctx; 2765 ddc_init_data.link = NULL; 2766 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2767 ddc_init_data.id.enum_id = 0; 2768 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2769 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2770 } else { 2771 pool->base.oem_device = NULL; 2772 } 2773 2774 return true; 2775 2776 create_fail: 2777 2778 dcn20_resource_destruct(pool); 2779 2780 return false; 2781 } 2782 2783 struct resource_pool *dcn20_create_resource_pool( 2784 const struct dc_init_data *init_data, 2785 struct dc *dc) 2786 { 2787 struct dcn20_resource_pool *pool = 2788 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC); 2789 2790 if (!pool) 2791 return NULL; 2792 2793 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool)) 2794 return &pool->base; 2795 2796 BREAK_TO_DEBUGGER(); 2797 kfree(pool); 2798 return NULL; 2799 } 2800