xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn20/dcn20_resource.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3  * Copyright 2019 Raptor Engineering, LLC
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include <linux/slab.h>
28 
29 #include "dm_services.h"
30 #include "dc.h"
31 
32 #include "dcn20_init.h"
33 
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37 
38 #include "dml/dcn20/dcn20_fpu.h"
39 
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20_hubbub.h"
43 #include "dcn20_mpc.h"
44 #include "dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20_dpp.h"
47 #include "dcn20_optc.h"
48 #include "dcn20_hwseq.h"
49 #include "dce110/dce110_hw_sequencer.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20_opp.h"
52 
53 #include "dcn20_dsc.h"
54 
55 #include "dcn20_link_encoder.h"
56 #include "dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20_dccg.h"
64 #include "dcn20_vmid.h"
65 #include "dc_link_ddc.h"
66 #include "dce/dce_panel_cntl.h"
67 
68 #include "navi10_ip_offset.h"
69 
70 #include "dcn/dcn_2_0_0_offset.h"
71 #include "dcn/dcn_2_0_0_sh_mask.h"
72 #include "dpcs/dpcs_2_0_0_offset.h"
73 #include "dpcs/dpcs_2_0_0_sh_mask.h"
74 
75 #include "nbio/nbio_2_3_offset.h"
76 
77 #include "dcn20/dcn20_dwb.h"
78 #include "dcn20/dcn20_mmhubbub.h"
79 
80 #include "mmhub/mmhub_2_0_0_offset.h"
81 #include "mmhub/mmhub_2_0_0_sh_mask.h"
82 
83 #include "reg_helper.h"
84 #include "dce/dce_abm.h"
85 #include "dce/dce_dmcu.h"
86 #include "dce/dce_aux.h"
87 #include "dce/dce_i2c.h"
88 #include "vm_helper.h"
89 #include "link_enc_cfg.h"
90 
91 #include "amdgpu_socbb.h"
92 
93 #define DC_LOGGER_INIT(logger)
94 
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96 	#define mmDP0_DP_DPHY_INTERNAL_CTRL		0x210f
97 	#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
98 	#define mmDP1_DP_DPHY_INTERNAL_CTRL		0x220f
99 	#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
100 	#define mmDP2_DP_DPHY_INTERNAL_CTRL		0x230f
101 	#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
102 	#define mmDP3_DP_DPHY_INTERNAL_CTRL		0x240f
103 	#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
104 	#define mmDP4_DP_DPHY_INTERNAL_CTRL		0x250f
105 	#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
106 	#define mmDP5_DP_DPHY_INTERNAL_CTRL		0x260f
107 	#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
108 	#define mmDP6_DP_DPHY_INTERNAL_CTRL		0x270f
109 	#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
110 #endif
111 
112 
113 enum dcn20_clk_src_array_id {
114 	DCN20_CLK_SRC_PLL0,
115 	DCN20_CLK_SRC_PLL1,
116 	DCN20_CLK_SRC_PLL2,
117 	DCN20_CLK_SRC_PLL3,
118 	DCN20_CLK_SRC_PLL4,
119 	DCN20_CLK_SRC_PLL5,
120 	DCN20_CLK_SRC_TOTAL
121 };
122 
123 /* begin *********************
124  * macros to expend register list macro defined in HW object header file */
125 
126 /* DCN */
127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
128 
129 #define BASE(seg) BASE_INNER(seg)
130 
131 #define SR(reg_name)\
132 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
133 					mm ## reg_name
134 
135 #define SRI(reg_name, block, id)\
136 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 					mm ## block ## id ## _ ## reg_name
138 
139 #define SRI2_DWB(reg_name, block, id)\
140 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
141 					mm ## reg_name
142 #define SF_DWB(reg_name, field_name, post_fix)\
143 	.field_name = reg_name ## __ ## field_name ## post_fix
144 
145 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
146 	.field_name = reg_name ## __ ## field_name ## post_fix
147 
148 #define SRIR(var_name, reg_name, block, id)\
149 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150 					mm ## block ## id ## _ ## reg_name
151 
152 #define SRII(reg_name, block, id)\
153 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 					mm ## block ## id ## _ ## reg_name
155 
156 #define DCCG_SRII(reg_name, block, id)\
157 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158 					mm ## block ## id ## _ ## reg_name
159 
160 #define VUPDATE_SRII(reg_name, block, id)\
161 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
162 					mm ## reg_name ## _ ## block ## id
163 
164 /* NBIO */
165 #define NBIO_BASE_INNER(seg) \
166 	NBIO_BASE__INST0_SEG ## seg
167 
168 #define NBIO_BASE(seg) \
169 	NBIO_BASE_INNER(seg)
170 
171 #define NBIO_SR(reg_name)\
172 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
173 					mm ## reg_name
174 
175 /* MMHUB */
176 #define MMHUB_BASE_INNER(seg) \
177 	MMHUB_BASE__INST0_SEG ## seg
178 
179 #define MMHUB_BASE(seg) \
180 	MMHUB_BASE_INNER(seg)
181 
182 #define MMHUB_SR(reg_name)\
183 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
184 					mmMM ## reg_name
185 
186 static const struct bios_registers bios_regs = {
187 		NBIO_SR(BIOS_SCRATCH_3),
188 		NBIO_SR(BIOS_SCRATCH_6)
189 };
190 
191 #define clk_src_regs(index, pllid)\
192 [index] = {\
193 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
194 }
195 
196 static const struct dce110_clk_src_regs clk_src_regs[] = {
197 	clk_src_regs(0, A),
198 	clk_src_regs(1, B),
199 	clk_src_regs(2, C),
200 	clk_src_regs(3, D),
201 	clk_src_regs(4, E),
202 	clk_src_regs(5, F)
203 };
204 
205 static const struct dce110_clk_src_shift cs_shift = {
206 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
207 };
208 
209 static const struct dce110_clk_src_mask cs_mask = {
210 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
211 };
212 
213 static const struct dce_dmcu_registers dmcu_regs = {
214 		DMCU_DCN10_REG_LIST()
215 };
216 
217 static const struct dce_dmcu_shift dmcu_shift = {
218 		DMCU_MASK_SH_LIST_DCN10(__SHIFT)
219 };
220 
221 static const struct dce_dmcu_mask dmcu_mask = {
222 		DMCU_MASK_SH_LIST_DCN10(_MASK)
223 };
224 
225 static const struct dce_abm_registers abm_regs = {
226 		ABM_DCN20_REG_LIST()
227 };
228 
229 static const struct dce_abm_shift abm_shift = {
230 		ABM_MASK_SH_LIST_DCN20(__SHIFT)
231 };
232 
233 static const struct dce_abm_mask abm_mask = {
234 		ABM_MASK_SH_LIST_DCN20(_MASK)
235 };
236 
237 #define audio_regs(id)\
238 [id] = {\
239 		AUD_COMMON_REG_LIST(id)\
240 }
241 
242 static const struct dce_audio_registers audio_regs[] = {
243 	audio_regs(0),
244 	audio_regs(1),
245 	audio_regs(2),
246 	audio_regs(3),
247 	audio_regs(4),
248 	audio_regs(5),
249 	audio_regs(6),
250 };
251 
252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
253 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
254 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
255 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
256 
257 static const struct dce_audio_shift audio_shift = {
258 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
259 };
260 
261 static const struct dce_audio_mask audio_mask = {
262 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
263 };
264 
265 #define stream_enc_regs(id)\
266 [id] = {\
267 	SE_DCN2_REG_LIST(id)\
268 }
269 
270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
271 	stream_enc_regs(0),
272 	stream_enc_regs(1),
273 	stream_enc_regs(2),
274 	stream_enc_regs(3),
275 	stream_enc_regs(4),
276 	stream_enc_regs(5),
277 };
278 
279 static const struct dcn10_stream_encoder_shift se_shift = {
280 		SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
281 };
282 
283 static const struct dcn10_stream_encoder_mask se_mask = {
284 		SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
285 };
286 
287 
288 #define aux_regs(id)\
289 [id] = {\
290 	DCN2_AUX_REG_LIST(id)\
291 }
292 
293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
294 		aux_regs(0),
295 		aux_regs(1),
296 		aux_regs(2),
297 		aux_regs(3),
298 		aux_regs(4),
299 		aux_regs(5)
300 };
301 
302 #define hpd_regs(id)\
303 [id] = {\
304 	HPD_REG_LIST(id)\
305 }
306 
307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
308 		hpd_regs(0),
309 		hpd_regs(1),
310 		hpd_regs(2),
311 		hpd_regs(3),
312 		hpd_regs(4),
313 		hpd_regs(5)
314 };
315 
316 #define link_regs(id, phyid)\
317 [id] = {\
318 	LE_DCN10_REG_LIST(id), \
319 	UNIPHY_DCN2_REG_LIST(phyid), \
320 	DPCS_DCN2_REG_LIST(id), \
321 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
322 }
323 
324 static const struct dcn10_link_enc_registers link_enc_regs[] = {
325 	link_regs(0, A),
326 	link_regs(1, B),
327 	link_regs(2, C),
328 	link_regs(3, D),
329 	link_regs(4, E),
330 	link_regs(5, F)
331 };
332 
333 static const struct dcn10_link_enc_shift le_shift = {
334 	LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
335 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
336 };
337 
338 static const struct dcn10_link_enc_mask le_mask = {
339 	LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
340 	DPCS_DCN2_MASK_SH_LIST(_MASK)
341 };
342 
343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
344 	{ DCN_PANEL_CNTL_REG_LIST() }
345 };
346 
347 static const struct dce_panel_cntl_shift panel_cntl_shift = {
348 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
349 };
350 
351 static const struct dce_panel_cntl_mask panel_cntl_mask = {
352 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
353 };
354 
355 #define ipp_regs(id)\
356 [id] = {\
357 	IPP_REG_LIST_DCN20(id),\
358 }
359 
360 static const struct dcn10_ipp_registers ipp_regs[] = {
361 	ipp_regs(0),
362 	ipp_regs(1),
363 	ipp_regs(2),
364 	ipp_regs(3),
365 	ipp_regs(4),
366 	ipp_regs(5),
367 };
368 
369 static const struct dcn10_ipp_shift ipp_shift = {
370 		IPP_MASK_SH_LIST_DCN20(__SHIFT)
371 };
372 
373 static const struct dcn10_ipp_mask ipp_mask = {
374 		IPP_MASK_SH_LIST_DCN20(_MASK),
375 };
376 
377 #define opp_regs(id)\
378 [id] = {\
379 	OPP_REG_LIST_DCN20(id),\
380 }
381 
382 static const struct dcn20_opp_registers opp_regs[] = {
383 	opp_regs(0),
384 	opp_regs(1),
385 	opp_regs(2),
386 	opp_regs(3),
387 	opp_regs(4),
388 	opp_regs(5),
389 };
390 
391 static const struct dcn20_opp_shift opp_shift = {
392 		OPP_MASK_SH_LIST_DCN20(__SHIFT)
393 };
394 
395 static const struct dcn20_opp_mask opp_mask = {
396 		OPP_MASK_SH_LIST_DCN20(_MASK)
397 };
398 
399 #define aux_engine_regs(id)\
400 [id] = {\
401 	AUX_COMMON_REG_LIST0(id), \
402 	.AUXN_IMPCAL = 0, \
403 	.AUXP_IMPCAL = 0, \
404 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
405 }
406 
407 static const struct dce110_aux_registers aux_engine_regs[] = {
408 		aux_engine_regs(0),
409 		aux_engine_regs(1),
410 		aux_engine_regs(2),
411 		aux_engine_regs(3),
412 		aux_engine_regs(4),
413 		aux_engine_regs(5)
414 };
415 
416 #define tf_regs(id)\
417 [id] = {\
418 	TF_REG_LIST_DCN20(id),\
419 	TF_REG_LIST_DCN20_COMMON_APPEND(id),\
420 }
421 
422 static const struct dcn2_dpp_registers tf_regs[] = {
423 	tf_regs(0),
424 	tf_regs(1),
425 	tf_regs(2),
426 	tf_regs(3),
427 	tf_regs(4),
428 	tf_regs(5),
429 };
430 
431 static const struct dcn2_dpp_shift tf_shift = {
432 		TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
433 		TF_DEBUG_REG_LIST_SH_DCN20
434 };
435 
436 static const struct dcn2_dpp_mask tf_mask = {
437 		TF_REG_LIST_SH_MASK_DCN20(_MASK),
438 		TF_DEBUG_REG_LIST_MASK_DCN20
439 };
440 
441 #define dwbc_regs_dcn2(id)\
442 [id] = {\
443 	DWBC_COMMON_REG_LIST_DCN2_0(id),\
444 		}
445 
446 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
447 	dwbc_regs_dcn2(0),
448 };
449 
450 static const struct dcn20_dwbc_shift dwbc20_shift = {
451 	DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
452 };
453 
454 static const struct dcn20_dwbc_mask dwbc20_mask = {
455 	DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
456 };
457 
458 #define mcif_wb_regs_dcn2(id)\
459 [id] = {\
460 	MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
461 		}
462 
463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
464 	mcif_wb_regs_dcn2(0),
465 };
466 
467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
468 	MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
469 };
470 
471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
472 	MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
473 };
474 
475 static const struct dcn20_mpc_registers mpc_regs = {
476 		MPC_REG_LIST_DCN2_0(0),
477 		MPC_REG_LIST_DCN2_0(1),
478 		MPC_REG_LIST_DCN2_0(2),
479 		MPC_REG_LIST_DCN2_0(3),
480 		MPC_REG_LIST_DCN2_0(4),
481 		MPC_REG_LIST_DCN2_0(5),
482 		MPC_OUT_MUX_REG_LIST_DCN2_0(0),
483 		MPC_OUT_MUX_REG_LIST_DCN2_0(1),
484 		MPC_OUT_MUX_REG_LIST_DCN2_0(2),
485 		MPC_OUT_MUX_REG_LIST_DCN2_0(3),
486 		MPC_OUT_MUX_REG_LIST_DCN2_0(4),
487 		MPC_OUT_MUX_REG_LIST_DCN2_0(5),
488 		MPC_DBG_REG_LIST_DCN2_0()
489 };
490 
491 static const struct dcn20_mpc_shift mpc_shift = {
492 	MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
493 	MPC_DEBUG_REG_LIST_SH_DCN20
494 };
495 
496 static const struct dcn20_mpc_mask mpc_mask = {
497 	MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
498 	MPC_DEBUG_REG_LIST_MASK_DCN20
499 };
500 
501 #define tg_regs(id)\
502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
503 
504 
505 static const struct dcn_optc_registers tg_regs[] = {
506 	tg_regs(0),
507 	tg_regs(1),
508 	tg_regs(2),
509 	tg_regs(3),
510 	tg_regs(4),
511 	tg_regs(5)
512 };
513 
514 static const struct dcn_optc_shift tg_shift = {
515 	TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
516 };
517 
518 static const struct dcn_optc_mask tg_mask = {
519 	TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
520 };
521 
522 #define hubp_regs(id)\
523 [id] = {\
524 	HUBP_REG_LIST_DCN20(id)\
525 }
526 
527 static const struct dcn_hubp2_registers hubp_regs[] = {
528 		hubp_regs(0),
529 		hubp_regs(1),
530 		hubp_regs(2),
531 		hubp_regs(3),
532 		hubp_regs(4),
533 		hubp_regs(5)
534 };
535 
536 static const struct dcn_hubp2_shift hubp_shift = {
537 		HUBP_MASK_SH_LIST_DCN20(__SHIFT)
538 };
539 
540 static const struct dcn_hubp2_mask hubp_mask = {
541 		HUBP_MASK_SH_LIST_DCN20(_MASK)
542 };
543 
544 static const struct dcn_hubbub_registers hubbub_reg = {
545 		HUBBUB_REG_LIST_DCN20(0)
546 };
547 
548 static const struct dcn_hubbub_shift hubbub_shift = {
549 		HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
550 };
551 
552 static const struct dcn_hubbub_mask hubbub_mask = {
553 		HUBBUB_MASK_SH_LIST_DCN20(_MASK)
554 };
555 
556 #define vmid_regs(id)\
557 [id] = {\
558 		DCN20_VMID_REG_LIST(id)\
559 }
560 
561 static const struct dcn_vmid_registers vmid_regs[] = {
562 	vmid_regs(0),
563 	vmid_regs(1),
564 	vmid_regs(2),
565 	vmid_regs(3),
566 	vmid_regs(4),
567 	vmid_regs(5),
568 	vmid_regs(6),
569 	vmid_regs(7),
570 	vmid_regs(8),
571 	vmid_regs(9),
572 	vmid_regs(10),
573 	vmid_regs(11),
574 	vmid_regs(12),
575 	vmid_regs(13),
576 	vmid_regs(14),
577 	vmid_regs(15)
578 };
579 
580 static const struct dcn20_vmid_shift vmid_shifts = {
581 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
582 };
583 
584 static const struct dcn20_vmid_mask vmid_masks = {
585 		DCN20_VMID_MASK_SH_LIST(_MASK)
586 };
587 
588 static const struct dce110_aux_registers_shift aux_shift = {
589 		DCN_AUX_MASK_SH_LIST(__SHIFT)
590 };
591 
592 static const struct dce110_aux_registers_mask aux_mask = {
593 		DCN_AUX_MASK_SH_LIST(_MASK)
594 };
595 
596 static int map_transmitter_id_to_phy_instance(
597 	enum transmitter transmitter)
598 {
599 	switch (transmitter) {
600 	case TRANSMITTER_UNIPHY_A:
601 		return 0;
602 	break;
603 	case TRANSMITTER_UNIPHY_B:
604 		return 1;
605 	break;
606 	case TRANSMITTER_UNIPHY_C:
607 		return 2;
608 	break;
609 	case TRANSMITTER_UNIPHY_D:
610 		return 3;
611 	break;
612 	case TRANSMITTER_UNIPHY_E:
613 		return 4;
614 	break;
615 	case TRANSMITTER_UNIPHY_F:
616 		return 5;
617 	break;
618 	default:
619 		ASSERT(0);
620 		return 0;
621 	}
622 }
623 
624 #define dsc_regsDCN20(id)\
625 [id] = {\
626 	DSC_REG_LIST_DCN20(id)\
627 }
628 
629 static const struct dcn20_dsc_registers dsc_regs[] = {
630 	dsc_regsDCN20(0),
631 	dsc_regsDCN20(1),
632 	dsc_regsDCN20(2),
633 	dsc_regsDCN20(3),
634 	dsc_regsDCN20(4),
635 	dsc_regsDCN20(5)
636 };
637 
638 static const struct dcn20_dsc_shift dsc_shift = {
639 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
640 };
641 
642 static const struct dcn20_dsc_mask dsc_mask = {
643 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
644 };
645 
646 static const struct dccg_registers dccg_regs = {
647 		DCCG_REG_LIST_DCN2()
648 };
649 
650 static const struct dccg_shift dccg_shift = {
651 		DCCG_MASK_SH_LIST_DCN2(__SHIFT)
652 };
653 
654 static const struct dccg_mask dccg_mask = {
655 		DCCG_MASK_SH_LIST_DCN2(_MASK)
656 };
657 
658 static const struct resource_caps res_cap_nv10 = {
659 		.num_timing_generator = 6,
660 		.num_opp = 6,
661 		.num_video_plane = 6,
662 		.num_audio = 7,
663 		.num_stream_encoder = 6,
664 		.num_pll = 6,
665 		.num_dwb = 1,
666 		.num_ddc = 6,
667 		.num_vmid = 16,
668 		.num_dsc = 6,
669 };
670 
671 static const struct dc_plane_cap plane_cap = {
672 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
673 	.blends_with_above = true,
674 	.blends_with_below = true,
675 	.per_pixel_alpha = true,
676 
677 	.pixel_format_support = {
678 			.argb8888 = true,
679 			.nv12 = true,
680 			.fp16 = true,
681 			.p010 = true
682 	},
683 
684 	.max_upscale_factor = {
685 			.argb8888 = 16000,
686 			.nv12 = 16000,
687 			.fp16 = 1
688 	},
689 
690 	.max_downscale_factor = {
691 			.argb8888 = 250,
692 			.nv12 = 250,
693 			.fp16 = 1
694 	},
695 	16,
696 	16
697 };
698 static const struct resource_caps res_cap_nv14 = {
699 		.num_timing_generator = 5,
700 		.num_opp = 5,
701 		.num_video_plane = 5,
702 		.num_audio = 6,
703 		.num_stream_encoder = 5,
704 		.num_pll = 5,
705 		.num_dwb = 1,
706 		.num_ddc = 5,
707 		.num_vmid = 16,
708 		.num_dsc = 5,
709 };
710 
711 static const struct dc_debug_options debug_defaults_drv = {
712 		.disable_dmcu = false,
713 		.force_abm_enable = false,
714 		.timing_trace = false,
715 		.clock_trace = true,
716 		.disable_pplib_clock_request = true,
717 		.pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
718 		.force_single_disp_pipe_split = false,
719 		.disable_dcc = DCC_ENABLE,
720 		.vsr_support = true,
721 		.performance_trace = false,
722 		.max_downscale_src_width = 5120,/*upto 5K*/
723 		.disable_pplib_wm_range = false,
724 		.scl_reset_length10 = true,
725 		.sanity_checks = false,
726 		.underflow_assert_delay_us = 0xFFFFFFFF,
727 };
728 
729 static const struct dc_debug_options debug_defaults_diags = {
730 		.disable_dmcu = false,
731 		.force_abm_enable = false,
732 		.timing_trace = true,
733 		.clock_trace = true,
734 		.disable_dpp_power_gate = true,
735 		.disable_hubp_power_gate = true,
736 		.disable_clock_gate = true,
737 		.disable_pplib_clock_request = true,
738 		.disable_pplib_wm_range = true,
739 		.disable_stutter = true,
740 		.scl_reset_length10 = true,
741 		.underflow_assert_delay_us = 0xFFFFFFFF,
742 		.enable_tri_buf = true,
743 };
744 
745 void dcn20_dpp_destroy(struct dpp **dpp)
746 {
747 	kfree(TO_DCN20_DPP(*dpp));
748 	*dpp = NULL;
749 }
750 
751 struct dpp *dcn20_dpp_create(
752 	struct dc_context *ctx,
753 	uint32_t inst)
754 {
755 	struct dcn20_dpp *dpp =
756 		kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
757 
758 	if (!dpp)
759 		return NULL;
760 
761 	if (dpp2_construct(dpp, ctx, inst,
762 			&tf_regs[inst], &tf_shift, &tf_mask))
763 		return &dpp->base;
764 
765 	BREAK_TO_DEBUGGER();
766 	kfree(dpp);
767 	return NULL;
768 }
769 
770 struct input_pixel_processor *dcn20_ipp_create(
771 	struct dc_context *ctx, uint32_t inst)
772 {
773 	struct dcn10_ipp *ipp =
774 		kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
775 
776 	if (!ipp) {
777 		BREAK_TO_DEBUGGER();
778 		return NULL;
779 	}
780 
781 	dcn20_ipp_construct(ipp, ctx, inst,
782 			&ipp_regs[inst], &ipp_shift, &ipp_mask);
783 	return &ipp->base;
784 }
785 
786 
787 struct output_pixel_processor *dcn20_opp_create(
788 	struct dc_context *ctx, uint32_t inst)
789 {
790 	struct dcn20_opp *opp =
791 		kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
792 
793 	if (!opp) {
794 		BREAK_TO_DEBUGGER();
795 		return NULL;
796 	}
797 
798 	dcn20_opp_construct(opp, ctx, inst,
799 			&opp_regs[inst], &opp_shift, &opp_mask);
800 	return &opp->base;
801 }
802 
803 struct dce_aux *dcn20_aux_engine_create(
804 	struct dc_context *ctx,
805 	uint32_t inst)
806 {
807 	struct aux_engine_dce110 *aux_engine =
808 		kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
809 
810 	if (!aux_engine)
811 		return NULL;
812 
813 	dce110_aux_engine_construct(aux_engine, ctx, inst,
814 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
815 				    &aux_engine_regs[inst],
816 					&aux_mask,
817 					&aux_shift,
818 					ctx->dc->caps.extended_aux_timeout_support);
819 
820 	return &aux_engine->base;
821 }
822 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
823 
824 static const struct dce_i2c_registers i2c_hw_regs[] = {
825 		i2c_inst_regs(1),
826 		i2c_inst_regs(2),
827 		i2c_inst_regs(3),
828 		i2c_inst_regs(4),
829 		i2c_inst_regs(5),
830 		i2c_inst_regs(6),
831 };
832 
833 static const struct dce_i2c_shift i2c_shifts = {
834 		I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
835 };
836 
837 static const struct dce_i2c_mask i2c_masks = {
838 		I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
839 };
840 
841 struct dce_i2c_hw *dcn20_i2c_hw_create(
842 	struct dc_context *ctx,
843 	uint32_t inst)
844 {
845 	struct dce_i2c_hw *dce_i2c_hw =
846 		kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
847 
848 	if (!dce_i2c_hw)
849 		return NULL;
850 
851 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
852 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
853 
854 	return dce_i2c_hw;
855 }
856 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
857 {
858 	struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
859 					  GFP_ATOMIC);
860 
861 	if (!mpc20)
862 		return NULL;
863 
864 	dcn20_mpc_construct(mpc20, ctx,
865 			&mpc_regs,
866 			&mpc_shift,
867 			&mpc_mask,
868 			6);
869 
870 	return &mpc20->base;
871 }
872 
873 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
874 {
875 	int i;
876 	struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
877 					  GFP_ATOMIC);
878 
879 	if (!hubbub)
880 		return NULL;
881 
882 	hubbub2_construct(hubbub, ctx,
883 			&hubbub_reg,
884 			&hubbub_shift,
885 			&hubbub_mask);
886 
887 	for (i = 0; i < res_cap_nv10.num_vmid; i++) {
888 		struct dcn20_vmid *vmid = &hubbub->vmid[i];
889 
890 		vmid->ctx = ctx;
891 
892 		vmid->regs = &vmid_regs[i];
893 		vmid->shifts = &vmid_shifts;
894 		vmid->masks = &vmid_masks;
895 	}
896 
897 	return &hubbub->base;
898 }
899 
900 struct timing_generator *dcn20_timing_generator_create(
901 		struct dc_context *ctx,
902 		uint32_t instance)
903 {
904 	struct optc *tgn10 =
905 		kzalloc(sizeof(struct optc), GFP_ATOMIC);
906 
907 	if (!tgn10)
908 		return NULL;
909 
910 	tgn10->base.inst = instance;
911 	tgn10->base.ctx = ctx;
912 
913 	tgn10->tg_regs = &tg_regs[instance];
914 	tgn10->tg_shift = &tg_shift;
915 	tgn10->tg_mask = &tg_mask;
916 
917 	dcn20_timing_generator_init(tgn10);
918 
919 	return &tgn10->base;
920 }
921 
922 static const struct encoder_feature_support link_enc_feature = {
923 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
924 		.max_hdmi_pixel_clock = 600000,
925 		.hdmi_ycbcr420_supported = true,
926 		.dp_ycbcr420_supported = true,
927 		.fec_supported = true,
928 		.flags.bits.IS_HBR2_CAPABLE = true,
929 		.flags.bits.IS_HBR3_CAPABLE = true,
930 		.flags.bits.IS_TPS3_CAPABLE = true,
931 		.flags.bits.IS_TPS4_CAPABLE = true
932 };
933 
934 struct link_encoder *dcn20_link_encoder_create(
935 	struct dc_context *ctx,
936 	const struct encoder_init_data *enc_init_data)
937 {
938 	struct dcn20_link_encoder *enc20 =
939 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
940 	int link_regs_id;
941 
942 	if (!enc20)
943 		return NULL;
944 
945 	link_regs_id =
946 		map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
947 
948 	dcn20_link_encoder_construct(enc20,
949 				      enc_init_data,
950 				      &link_enc_feature,
951 				      &link_enc_regs[link_regs_id],
952 				      &link_enc_aux_regs[enc_init_data->channel - 1],
953 				      &link_enc_hpd_regs[enc_init_data->hpd_source],
954 				      &le_shift,
955 				      &le_mask);
956 
957 	return &enc20->enc10.base;
958 }
959 
960 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
961 {
962 	struct dce_panel_cntl *panel_cntl =
963 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
964 
965 	if (!panel_cntl)
966 		return NULL;
967 
968 	dce_panel_cntl_construct(panel_cntl,
969 			init_data,
970 			&panel_cntl_regs[init_data->inst],
971 			&panel_cntl_shift,
972 			&panel_cntl_mask);
973 
974 	return &panel_cntl->base;
975 }
976 
977 static struct clock_source *dcn20_clock_source_create(
978 	struct dc_context *ctx,
979 	struct dc_bios *bios,
980 	enum clock_source_id id,
981 	const struct dce110_clk_src_regs *regs,
982 	bool dp_clk_src)
983 {
984 	struct dce110_clk_src *clk_src =
985 		kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
986 
987 	if (!clk_src)
988 		return NULL;
989 
990 	if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
991 			regs, &cs_shift, &cs_mask)) {
992 		clk_src->base.dp_clk_src = dp_clk_src;
993 		return &clk_src->base;
994 	}
995 
996 	kfree(clk_src);
997 	BREAK_TO_DEBUGGER();
998 	return NULL;
999 }
1000 
1001 static void read_dce_straps(
1002 	struct dc_context *ctx,
1003 	struct resource_straps *straps)
1004 {
1005 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
1006 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1007 }
1008 
1009 static struct audio *dcn20_create_audio(
1010 		struct dc_context *ctx, unsigned int inst)
1011 {
1012 	return dce_audio_create(ctx, inst,
1013 			&audio_regs[inst], &audio_shift, &audio_mask);
1014 }
1015 
1016 struct stream_encoder *dcn20_stream_encoder_create(
1017 	enum engine_id eng_id,
1018 	struct dc_context *ctx)
1019 {
1020 	struct dcn10_stream_encoder *enc1 =
1021 		kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1022 
1023 	if (!enc1)
1024 		return NULL;
1025 
1026 	if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1027 		if (eng_id >= ENGINE_ID_DIGD)
1028 			eng_id++;
1029 	}
1030 
1031 	dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1032 					&stream_enc_regs[eng_id],
1033 					&se_shift, &se_mask);
1034 
1035 	return &enc1->base;
1036 }
1037 
1038 static const struct dce_hwseq_registers hwseq_reg = {
1039 		HWSEQ_DCN2_REG_LIST()
1040 };
1041 
1042 static const struct dce_hwseq_shift hwseq_shift = {
1043 		HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1044 };
1045 
1046 static const struct dce_hwseq_mask hwseq_mask = {
1047 		HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1048 };
1049 
1050 struct dce_hwseq *dcn20_hwseq_create(
1051 	struct dc_context *ctx)
1052 {
1053 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1054 
1055 	if (hws) {
1056 		hws->ctx = ctx;
1057 		hws->regs = &hwseq_reg;
1058 		hws->shifts = &hwseq_shift;
1059 		hws->masks = &hwseq_mask;
1060 	}
1061 	return hws;
1062 }
1063 
1064 static const struct resource_create_funcs res_create_funcs = {
1065 	.read_dce_straps = read_dce_straps,
1066 	.create_audio = dcn20_create_audio,
1067 	.create_stream_encoder = dcn20_stream_encoder_create,
1068 	.create_hwseq = dcn20_hwseq_create,
1069 };
1070 
1071 static const struct resource_create_funcs res_create_maximus_funcs = {
1072 	.read_dce_straps = NULL,
1073 	.create_audio = NULL,
1074 	.create_stream_encoder = NULL,
1075 	.create_hwseq = dcn20_hwseq_create,
1076 };
1077 
1078 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1079 
1080 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1081 {
1082 	kfree(TO_DCE110_CLK_SRC(*clk_src));
1083 	*clk_src = NULL;
1084 }
1085 
1086 
1087 struct display_stream_compressor *dcn20_dsc_create(
1088 	struct dc_context *ctx, uint32_t inst)
1089 {
1090 	struct dcn20_dsc *dsc =
1091 		kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1092 
1093 	if (!dsc) {
1094 		BREAK_TO_DEBUGGER();
1095 		return NULL;
1096 	}
1097 
1098 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1099 	return &dsc->base;
1100 }
1101 
1102 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1103 {
1104 	kfree(container_of(*dsc, struct dcn20_dsc, base));
1105 	*dsc = NULL;
1106 }
1107 
1108 
1109 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1110 {
1111 	unsigned int i;
1112 
1113 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1114 		if (pool->base.stream_enc[i] != NULL) {
1115 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1116 			pool->base.stream_enc[i] = NULL;
1117 		}
1118 	}
1119 
1120 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1121 		if (pool->base.dscs[i] != NULL)
1122 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1123 	}
1124 
1125 	if (pool->base.mpc != NULL) {
1126 		kfree(TO_DCN20_MPC(pool->base.mpc));
1127 		pool->base.mpc = NULL;
1128 	}
1129 	if (pool->base.hubbub != NULL) {
1130 		kfree(pool->base.hubbub);
1131 		pool->base.hubbub = NULL;
1132 	}
1133 	for (i = 0; i < pool->base.pipe_count; i++) {
1134 		if (pool->base.dpps[i] != NULL)
1135 			dcn20_dpp_destroy(&pool->base.dpps[i]);
1136 
1137 		if (pool->base.ipps[i] != NULL)
1138 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1139 
1140 		if (pool->base.hubps[i] != NULL) {
1141 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1142 			pool->base.hubps[i] = NULL;
1143 		}
1144 
1145 		if (pool->base.irqs != NULL) {
1146 			dal_irq_service_destroy(&pool->base.irqs);
1147 		}
1148 	}
1149 
1150 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1151 		if (pool->base.engines[i] != NULL)
1152 			dce110_engine_destroy(&pool->base.engines[i]);
1153 		if (pool->base.hw_i2cs[i] != NULL) {
1154 			kfree(pool->base.hw_i2cs[i]);
1155 			pool->base.hw_i2cs[i] = NULL;
1156 		}
1157 		if (pool->base.sw_i2cs[i] != NULL) {
1158 			kfree(pool->base.sw_i2cs[i]);
1159 			pool->base.sw_i2cs[i] = NULL;
1160 		}
1161 	}
1162 
1163 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1164 		if (pool->base.opps[i] != NULL)
1165 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1166 	}
1167 
1168 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1169 		if (pool->base.timing_generators[i] != NULL)	{
1170 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1171 			pool->base.timing_generators[i] = NULL;
1172 		}
1173 	}
1174 
1175 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1176 		if (pool->base.dwbc[i] != NULL) {
1177 			kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1178 			pool->base.dwbc[i] = NULL;
1179 		}
1180 		if (pool->base.mcif_wb[i] != NULL) {
1181 			kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1182 			pool->base.mcif_wb[i] = NULL;
1183 		}
1184 	}
1185 
1186 	for (i = 0; i < pool->base.audio_count; i++) {
1187 		if (pool->base.audios[i])
1188 			dce_aud_destroy(&pool->base.audios[i]);
1189 	}
1190 
1191 	for (i = 0; i < pool->base.clk_src_count; i++) {
1192 		if (pool->base.clock_sources[i] != NULL) {
1193 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1194 			pool->base.clock_sources[i] = NULL;
1195 		}
1196 	}
1197 
1198 	if (pool->base.dp_clock_source != NULL) {
1199 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1200 		pool->base.dp_clock_source = NULL;
1201 	}
1202 
1203 
1204 	if (pool->base.abm != NULL)
1205 		dce_abm_destroy(&pool->base.abm);
1206 
1207 	if (pool->base.dmcu != NULL)
1208 		dce_dmcu_destroy(&pool->base.dmcu);
1209 
1210 	if (pool->base.dccg != NULL)
1211 		dcn_dccg_destroy(&pool->base.dccg);
1212 
1213 	if (pool->base.pp_smu != NULL)
1214 		dcn20_pp_smu_destroy(&pool->base.pp_smu);
1215 
1216 	if (pool->base.oem_device != NULL)
1217 		dal_ddc_service_destroy(&pool->base.oem_device);
1218 }
1219 
1220 struct hubp *dcn20_hubp_create(
1221 	struct dc_context *ctx,
1222 	uint32_t inst)
1223 {
1224 	struct dcn20_hubp *hubp2 =
1225 		kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1226 
1227 	if (!hubp2)
1228 		return NULL;
1229 
1230 	if (hubp2_construct(hubp2, ctx, inst,
1231 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1232 		return &hubp2->base;
1233 
1234 	BREAK_TO_DEBUGGER();
1235 	kfree(hubp2);
1236 	return NULL;
1237 }
1238 
1239 static void get_pixel_clock_parameters(
1240 	struct pipe_ctx *pipe_ctx,
1241 	struct pixel_clk_params *pixel_clk_params)
1242 {
1243 	const struct dc_stream_state *stream = pipe_ctx->stream;
1244 	struct pipe_ctx *odm_pipe;
1245 	int opp_cnt = 1;
1246 	struct dc_link *link = stream->link;
1247 	struct link_encoder *link_enc = NULL;
1248 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1249 	struct dce_hwseq *hws = dc->hwseq;
1250 
1251 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1252 		opp_cnt++;
1253 
1254 	pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1255 
1256 	link_enc = link_enc_cfg_get_link_enc(link);
1257 	if (link_enc)
1258 		pixel_clk_params->encoder_object_id = link_enc->id;
1259 
1260 	pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1261 	pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1262 	/* TODO: un-hardcode*/
1263 	/* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1264 	pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1265 		LINK_RATE_REF_FREQ_IN_KHZ;
1266 	pixel_clk_params->flags.ENABLE_SS = 0;
1267 	pixel_clk_params->color_depth =
1268 		stream->timing.display_color_depth;
1269 	pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1270 	pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1271 
1272 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1273 		pixel_clk_params->color_depth = COLOR_DEPTH_888;
1274 
1275 	if (opp_cnt == 4)
1276 		pixel_clk_params->requested_pix_clk_100hz /= 4;
1277 	else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1278 		pixel_clk_params->requested_pix_clk_100hz /= 2;
1279 	else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1280 		if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1281 			pixel_clk_params->requested_pix_clk_100hz /= 2;
1282 	}
1283 
1284 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1285 		pixel_clk_params->requested_pix_clk_100hz *= 2;
1286 
1287 }
1288 
1289 static void build_clamping_params(struct dc_stream_state *stream)
1290 {
1291 	stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1292 	stream->clamping.c_depth = stream->timing.display_color_depth;
1293 	stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1294 }
1295 
1296 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1297 {
1298 
1299 	get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1300 
1301 	pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1302 		pipe_ctx->clock_source,
1303 		&pipe_ctx->stream_res.pix_clk_params,
1304 		&pipe_ctx->pll_settings);
1305 
1306 	pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1307 
1308 	resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1309 					&pipe_ctx->stream->bit_depth_params);
1310 	build_clamping_params(pipe_ctx->stream);
1311 
1312 	return DC_OK;
1313 }
1314 
1315 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1316 {
1317 	enum dc_status status = DC_OK;
1318 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1319 
1320 	if (!pipe_ctx)
1321 		return DC_ERROR_UNEXPECTED;
1322 
1323 
1324 	status = build_pipe_hw_param(pipe_ctx);
1325 
1326 	return status;
1327 }
1328 
1329 
1330 void dcn20_acquire_dsc(const struct dc *dc,
1331 			struct resource_context *res_ctx,
1332 			struct display_stream_compressor **dsc,
1333 			int pipe_idx)
1334 {
1335 	int i;
1336 	const struct resource_pool *pool = dc->res_pool;
1337 	struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1338 
1339 	ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1340 	*dsc = NULL;
1341 
1342 	/* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1343 	if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1344 		*dsc = pool->dscs[pipe_idx];
1345 		res_ctx->is_dsc_acquired[pipe_idx] = true;
1346 		return;
1347 	}
1348 
1349 	/* Return old DSC to avoid the need for re-programming */
1350 	if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1351 		*dsc = dsc_old;
1352 		res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1353 		return ;
1354 	}
1355 
1356 	/* Find first free DSC */
1357 	for (i = 0; i < pool->res_cap->num_dsc; i++)
1358 		if (!res_ctx->is_dsc_acquired[i]) {
1359 			*dsc = pool->dscs[i];
1360 			res_ctx->is_dsc_acquired[i] = true;
1361 			break;
1362 		}
1363 }
1364 
1365 void dcn20_release_dsc(struct resource_context *res_ctx,
1366 			const struct resource_pool *pool,
1367 			struct display_stream_compressor **dsc)
1368 {
1369 	int i;
1370 
1371 	for (i = 0; i < pool->res_cap->num_dsc; i++)
1372 		if (pool->dscs[i] == *dsc) {
1373 			res_ctx->is_dsc_acquired[i] = false;
1374 			*dsc = NULL;
1375 			break;
1376 		}
1377 }
1378 
1379 
1380 
1381 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1382 		struct dc_state *dc_ctx,
1383 		struct dc_stream_state *dc_stream)
1384 {
1385 	enum dc_status result = DC_OK;
1386 	int i;
1387 
1388 	/* Get a DSC if required and available */
1389 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1390 		struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1391 
1392 		if (pipe_ctx->stream != dc_stream)
1393 			continue;
1394 
1395 		if (pipe_ctx->stream_res.dsc)
1396 			continue;
1397 
1398 		dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1399 
1400 		/* The number of DSCs can be less than the number of pipes */
1401 		if (!pipe_ctx->stream_res.dsc) {
1402 			result = DC_NO_DSC_RESOURCE;
1403 		}
1404 
1405 		break;
1406 	}
1407 
1408 	return result;
1409 }
1410 
1411 
1412 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1413 		struct dc_state *new_ctx,
1414 		struct dc_stream_state *dc_stream)
1415 {
1416 	struct pipe_ctx *pipe_ctx = NULL;
1417 	int i;
1418 
1419 	for (i = 0; i < MAX_PIPES; i++) {
1420 		if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1421 			pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1422 
1423 			if (pipe_ctx->stream_res.dsc)
1424 				dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1425 		}
1426 	}
1427 
1428 	if (!pipe_ctx)
1429 		return DC_ERROR_UNEXPECTED;
1430 	else
1431 		return DC_OK;
1432 }
1433 
1434 
1435 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1436 {
1437 	enum dc_status result = DC_ERROR_UNEXPECTED;
1438 
1439 	result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1440 
1441 	if (result == DC_OK)
1442 		result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1443 
1444 	/* Get a DSC if required and available */
1445 	if (result == DC_OK && dc_stream->timing.flags.DSC)
1446 		result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1447 
1448 	if (result == DC_OK)
1449 		result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1450 
1451 	return result;
1452 }
1453 
1454 
1455 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1456 {
1457 	enum dc_status result = DC_OK;
1458 
1459 	result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1460 
1461 	return result;
1462 }
1463 
1464 /**
1465  * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1466  *
1467  * @dc: DC object with resource pool info required for pipe split
1468  * @res_ctx: Persistent state of resources
1469  * @prev_odm_pipe: Reference to the previous ODM pipe
1470  * @next_odm_pipe: Reference to the next ODM pipe
1471  *
1472  * This function takes a logically active pipe and a logically free pipe and
1473  * halves all the scaling parameters that need to be halved while populating
1474  * the free pipe with the required resources and configuring the next/previous
1475  * ODM pipe pointers.
1476  *
1477  * Return:
1478  * Return true if split stream for ODM is possible, otherwise, return false.
1479  */
1480 bool dcn20_split_stream_for_odm(
1481 		const struct dc *dc,
1482 		struct resource_context *res_ctx,
1483 		struct pipe_ctx *prev_odm_pipe,
1484 		struct pipe_ctx *next_odm_pipe)
1485 {
1486 	int pipe_idx = next_odm_pipe->pipe_idx;
1487 	const struct resource_pool *pool = dc->res_pool;
1488 
1489 	*next_odm_pipe = *prev_odm_pipe;
1490 
1491 	next_odm_pipe->pipe_idx = pipe_idx;
1492 	next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1493 	next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1494 	next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1495 	next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1496 	next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1497 	next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1498 	next_odm_pipe->stream_res.dsc = NULL;
1499 	if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1500 		next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1501 		next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1502 	}
1503 	if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1504 		prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1505 		next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1506 	}
1507 	if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1508 		prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1509 		next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1510 	}
1511 	prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1512 	next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1513 
1514 	if (prev_odm_pipe->plane_state) {
1515 		struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1516 		int new_width;
1517 
1518 		/* HACTIVE halved for odm combine */
1519 		sd->h_active /= 2;
1520 		/* Calculate new vp and recout for left pipe */
1521 		/* Need at least 16 pixels width per side */
1522 		if (sd->recout.x + 16 >= sd->h_active)
1523 			return false;
1524 		new_width = sd->h_active - sd->recout.x;
1525 		sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1526 				sd->ratios.horz, sd->recout.width - new_width));
1527 		sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1528 				sd->ratios.horz_c, sd->recout.width - new_width));
1529 		sd->recout.width = new_width;
1530 
1531 		/* Calculate new vp and recout for right pipe */
1532 		sd = &next_odm_pipe->plane_res.scl_data;
1533 		/* HACTIVE halved for odm combine */
1534 		sd->h_active /= 2;
1535 		/* Need at least 16 pixels width per side */
1536 		if (new_width <= 16)
1537 			return false;
1538 		new_width = sd->recout.width + sd->recout.x - sd->h_active;
1539 		sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1540 				sd->ratios.horz, sd->recout.width - new_width));
1541 		sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1542 				sd->ratios.horz_c, sd->recout.width - new_width));
1543 		sd->recout.width = new_width;
1544 		sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1545 				sd->ratios.horz, sd->h_active - sd->recout.x));
1546 		sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1547 				sd->ratios.horz_c, sd->h_active - sd->recout.x));
1548 		sd->recout.x = 0;
1549 	}
1550 	if (!next_odm_pipe->top_pipe)
1551 		next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1552 	else
1553 		next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1554 	if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1555 		dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1556 		ASSERT(next_odm_pipe->stream_res.dsc);
1557 		if (next_odm_pipe->stream_res.dsc == NULL)
1558 			return false;
1559 	}
1560 
1561 	return true;
1562 }
1563 
1564 void dcn20_split_stream_for_mpc(
1565 		struct resource_context *res_ctx,
1566 		const struct resource_pool *pool,
1567 		struct pipe_ctx *primary_pipe,
1568 		struct pipe_ctx *secondary_pipe)
1569 {
1570 	int pipe_idx = secondary_pipe->pipe_idx;
1571 	struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1572 
1573 	*secondary_pipe = *primary_pipe;
1574 	secondary_pipe->bottom_pipe = sec_bot_pipe;
1575 
1576 	secondary_pipe->pipe_idx = pipe_idx;
1577 	secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1578 	secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1579 	secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1580 	secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1581 	secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1582 	secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1583 	secondary_pipe->stream_res.dsc = NULL;
1584 	if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1585 		ASSERT(!secondary_pipe->bottom_pipe);
1586 		secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1587 		secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1588 	}
1589 	primary_pipe->bottom_pipe = secondary_pipe;
1590 	secondary_pipe->top_pipe = primary_pipe;
1591 
1592 	ASSERT(primary_pipe->plane_state);
1593 }
1594 
1595 unsigned int dcn20_calc_max_scaled_time(
1596 		unsigned int time_per_pixel,
1597 		enum mmhubbub_wbif_mode mode,
1598 		unsigned int urgent_watermark)
1599 {
1600 	unsigned int time_per_byte = 0;
1601 	unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1602 	unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1603 	unsigned int small_free_entry, max_free_entry;
1604 	unsigned int buf_lh_capability;
1605 	unsigned int max_scaled_time;
1606 
1607 	if (mode == PACKED_444) /* packed mode */
1608 		time_per_byte = time_per_pixel/4;
1609 	else if (mode == PLANAR_420_8BPC)
1610 		time_per_byte  = time_per_pixel;
1611 	else if (mode == PLANAR_420_10BPC) /* p010 */
1612 		time_per_byte  = time_per_pixel * 819/1024;
1613 
1614 	if (time_per_byte == 0)
1615 		time_per_byte = 1;
1616 
1617 	small_free_entry  = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1618 	max_free_entry    = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1619 	buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1620 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1621 	return max_scaled_time;
1622 }
1623 
1624 void dcn20_set_mcif_arb_params(
1625 		struct dc *dc,
1626 		struct dc_state *context,
1627 		display_e2e_pipe_params_st *pipes,
1628 		int pipe_cnt)
1629 {
1630 	enum mmhubbub_wbif_mode wbif_mode;
1631 	struct mcif_arb_params *wb_arb_params;
1632 	int i, j, dwb_pipe;
1633 
1634 	/* Writeback MCIF_WB arbitration parameters */
1635 	dwb_pipe = 0;
1636 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1637 
1638 		if (!context->res_ctx.pipe_ctx[i].stream)
1639 			continue;
1640 
1641 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1642 			if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1643 				continue;
1644 
1645 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1646 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1647 
1648 			if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1649 				if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1650 					wbif_mode = PLANAR_420_8BPC;
1651 				else
1652 					wbif_mode = PLANAR_420_10BPC;
1653 			} else
1654 				wbif_mode = PACKED_444;
1655 
1656 			DC_FP_START();
1657 			dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1658 			DC_FP_END();
1659 
1660 			wb_arb_params->slice_lines = 32;
1661 			wb_arb_params->arbitration_slice = 2;
1662 			wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1663 				wbif_mode,
1664 				wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1665 
1666 			dwb_pipe++;
1667 
1668 			if (dwb_pipe >= MAX_DWB_PIPES)
1669 				return;
1670 		}
1671 		if (dwb_pipe >= MAX_DWB_PIPES)
1672 			return;
1673 	}
1674 }
1675 
1676 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1677 {
1678 	int i;
1679 
1680 	/* Validate DSC config, dsc count validation is already done */
1681 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1682 		struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1683 		struct dc_stream_state *stream = pipe_ctx->stream;
1684 		struct dsc_config dsc_cfg;
1685 		struct pipe_ctx *odm_pipe;
1686 		int opp_cnt = 1;
1687 
1688 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1689 			opp_cnt++;
1690 
1691 		/* Only need to validate top pipe */
1692 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1693 			continue;
1694 
1695 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1696 				+ stream->timing.h_border_right) / opp_cnt;
1697 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1698 				+ stream->timing.v_border_bottom;
1699 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1700 		dsc_cfg.color_depth = stream->timing.display_color_depth;
1701 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1702 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1703 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1704 
1705 		if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1706 			return false;
1707 	}
1708 	return true;
1709 }
1710 
1711 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1712 		struct resource_context *res_ctx,
1713 		const struct resource_pool *pool,
1714 		const struct pipe_ctx *primary_pipe)
1715 {
1716 	struct pipe_ctx *secondary_pipe = NULL;
1717 
1718 	if (dc && primary_pipe) {
1719 		int j;
1720 		int preferred_pipe_idx = 0;
1721 
1722 		/* first check the prev dc state:
1723 		 * if this primary pipe has a bottom pipe in prev. state
1724 		 * and if the bottom pipe is still available (which it should be),
1725 		 * pick that pipe as secondary
1726 		 * Same logic applies for ODM pipes
1727 		 */
1728 		if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1729 			preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1730 			if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1731 				secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1732 				secondary_pipe->pipe_idx = preferred_pipe_idx;
1733 			}
1734 		}
1735 		if (secondary_pipe == NULL &&
1736 				dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1737 			preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1738 			if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1739 				secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1740 				secondary_pipe->pipe_idx = preferred_pipe_idx;
1741 			}
1742 		}
1743 
1744 		/*
1745 		 * if this primary pipe does not have a bottom pipe in prev. state
1746 		 * start backward and find a pipe that did not used to be a bottom pipe in
1747 		 * prev. dc state. This way we make sure we keep the same assignment as
1748 		 * last state and will not have to reprogram every pipe
1749 		 */
1750 		if (secondary_pipe == NULL) {
1751 			for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1752 				if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1753 						&& dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1754 					preferred_pipe_idx = j;
1755 
1756 					if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1757 						secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1758 						secondary_pipe->pipe_idx = preferred_pipe_idx;
1759 						break;
1760 					}
1761 				}
1762 			}
1763 		}
1764 		/*
1765 		 * We should never hit this assert unless assignments are shuffled around
1766 		 * if this happens we will prob. hit a vsync tdr
1767 		 */
1768 		ASSERT(secondary_pipe);
1769 		/*
1770 		 * search backwards for the second pipe to keep pipe
1771 		 * assignment more consistent
1772 		 */
1773 		if (secondary_pipe == NULL) {
1774 			for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1775 				preferred_pipe_idx = j;
1776 
1777 				if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1778 					secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1779 					secondary_pipe->pipe_idx = preferred_pipe_idx;
1780 					break;
1781 				}
1782 			}
1783 		}
1784 	}
1785 
1786 	return secondary_pipe;
1787 }
1788 
1789 void dcn20_merge_pipes_for_validate(
1790 		struct dc *dc,
1791 		struct dc_state *context)
1792 {
1793 	int i;
1794 
1795 	/* merge previously split odm pipes since mode support needs to make the decision */
1796 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1797 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1798 		struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1799 
1800 		if (pipe->prev_odm_pipe)
1801 			continue;
1802 
1803 		pipe->next_odm_pipe = NULL;
1804 		while (odm_pipe) {
1805 			struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1806 
1807 			odm_pipe->plane_state = NULL;
1808 			odm_pipe->stream = NULL;
1809 			odm_pipe->top_pipe = NULL;
1810 			odm_pipe->bottom_pipe = NULL;
1811 			odm_pipe->prev_odm_pipe = NULL;
1812 			odm_pipe->next_odm_pipe = NULL;
1813 			if (odm_pipe->stream_res.dsc)
1814 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1815 			/* Clear plane_res and stream_res */
1816 			memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1817 			memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1818 			odm_pipe = next_odm_pipe;
1819 		}
1820 		if (pipe->plane_state)
1821 			resource_build_scaling_params(pipe);
1822 	}
1823 
1824 	/* merge previously mpc split pipes since mode support needs to make the decision */
1825 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1826 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1827 		struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1828 
1829 		if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1830 			continue;
1831 
1832 		pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1833 		if (hsplit_pipe->bottom_pipe)
1834 			hsplit_pipe->bottom_pipe->top_pipe = pipe;
1835 		hsplit_pipe->plane_state = NULL;
1836 		hsplit_pipe->stream = NULL;
1837 		hsplit_pipe->top_pipe = NULL;
1838 		hsplit_pipe->bottom_pipe = NULL;
1839 
1840 		/* Clear plane_res and stream_res */
1841 		memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1842 		memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1843 		if (pipe->plane_state)
1844 			resource_build_scaling_params(pipe);
1845 	}
1846 }
1847 
1848 int dcn20_validate_apply_pipe_split_flags(
1849 		struct dc *dc,
1850 		struct dc_state *context,
1851 		int vlevel,
1852 		int *split,
1853 		bool *merge)
1854 {
1855 	int i, pipe_idx, vlevel_split;
1856 	int plane_count = 0;
1857 	bool force_split = false;
1858 	bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1859 	struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1860 	int max_mpc_comb = v->maxMpcComb;
1861 
1862 	if (context->stream_count > 1) {
1863 		if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1864 			avoid_split = true;
1865 	} else if (dc->debug.force_single_disp_pipe_split)
1866 			force_split = true;
1867 
1868 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1869 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1870 
1871 		/**
1872 		 * Workaround for avoiding pipe-split in cases where we'd split
1873 		 * planes that are too small, resulting in splits that aren't
1874 		 * valid for the scaler.
1875 		 */
1876 		if (pipe->plane_state &&
1877 		    (pipe->plane_state->dst_rect.width <= 16 ||
1878 		     pipe->plane_state->dst_rect.height <= 16 ||
1879 		     pipe->plane_state->src_rect.width <= 16 ||
1880 		     pipe->plane_state->src_rect.height <= 16))
1881 			avoid_split = true;
1882 
1883 		/* TODO: fix dc bugs and remove this split threshold thing */
1884 		if (pipe->stream && !pipe->prev_odm_pipe &&
1885 				(!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1886 			++plane_count;
1887 	}
1888 	if (plane_count > dc->res_pool->pipe_count / 2)
1889 		avoid_split = true;
1890 
1891 	/* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1892 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1893 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1894 		struct dc_crtc_timing timing;
1895 
1896 		if (!pipe->stream)
1897 			continue;
1898 		else {
1899 			timing = pipe->stream->timing;
1900 			if (timing.h_border_left + timing.h_border_right
1901 					+ timing.v_border_top + timing.v_border_bottom > 0) {
1902 				avoid_split = true;
1903 				break;
1904 			}
1905 		}
1906 	}
1907 
1908 	/* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1909 	if (avoid_split) {
1910 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1911 			if (!context->res_ctx.pipe_ctx[i].stream)
1912 				continue;
1913 
1914 			for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1915 				if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1916 						v->ModeSupport[vlevel][0])
1917 					break;
1918 			/* Impossible to not split this pipe */
1919 			if (vlevel > context->bw_ctx.dml.soc.num_states)
1920 				vlevel = vlevel_split;
1921 			else
1922 				max_mpc_comb = 0;
1923 			pipe_idx++;
1924 		}
1925 		v->maxMpcComb = max_mpc_comb;
1926 	}
1927 
1928 	/* Split loop sets which pipe should be split based on dml outputs and dc flags */
1929 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1930 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1931 		int pipe_plane = v->pipe_plane[pipe_idx];
1932 		bool split4mpc = context->stream_count == 1 && plane_count == 1
1933 				&& dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1934 
1935 		if (!context->res_ctx.pipe_ctx[i].stream)
1936 			continue;
1937 
1938 		if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1939 			split[i] = 4;
1940 		else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1941 				split[i] = 2;
1942 
1943 		if ((pipe->stream->view_format ==
1944 				VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1945 				pipe->stream->view_format ==
1946 				VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1947 				(pipe->stream->timing.timing_3d_format ==
1948 				TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1949 				 pipe->stream->timing.timing_3d_format ==
1950 				TIMING_3D_FORMAT_SIDE_BY_SIDE))
1951 			split[i] = 2;
1952 		if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1953 			split[i] = 2;
1954 			v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1955 		}
1956 		if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1957 			split[i] = 4;
1958 			v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1959 		}
1960 		/*420 format workaround*/
1961 		if (pipe->stream->timing.h_addressable > 7680 &&
1962 				pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1963 			split[i] = 4;
1964 		}
1965 		v->ODMCombineEnabled[pipe_plane] =
1966 			v->ODMCombineEnablePerState[vlevel][pipe_plane];
1967 
1968 		if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1969 			if (get_num_mpc_splits(pipe) == 1) {
1970 				/*If need split for mpc but 2 way split already*/
1971 				if (split[i] == 4)
1972 					split[i] = 2; /* 2 -> 4 MPC */
1973 				else if (split[i] == 2)
1974 					split[i] = 0; /* 2 -> 2 MPC */
1975 				else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1976 					merge[i] = true; /* 2 -> 1 MPC */
1977 			} else if (get_num_mpc_splits(pipe) == 3) {
1978 				/*If need split for mpc but 4 way split already*/
1979 				if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1980 						|| !pipe->bottom_pipe)) {
1981 					merge[i] = true; /* 4 -> 2 MPC */
1982 				} else if (split[i] == 0 && pipe->top_pipe &&
1983 						pipe->top_pipe->plane_state == pipe->plane_state)
1984 					merge[i] = true; /* 4 -> 1 MPC */
1985 				split[i] = 0;
1986 			} else if (get_num_odm_splits(pipe)) {
1987 				/* ODM -> MPC transition */
1988 				if (pipe->prev_odm_pipe) {
1989 					split[i] = 0;
1990 					merge[i] = true;
1991 				}
1992 			}
1993 		} else {
1994 			if (get_num_odm_splits(pipe) == 1) {
1995 				/*If need split for odm but 2 way split already*/
1996 				if (split[i] == 4)
1997 					split[i] = 2; /* 2 -> 4 ODM */
1998 				else if (split[i] == 2)
1999 					split[i] = 0; /* 2 -> 2 ODM */
2000 				else if (pipe->prev_odm_pipe) {
2001 					ASSERT(0); /* NOT expected yet */
2002 					merge[i] = true; /* exit ODM */
2003 				}
2004 			} else if (get_num_odm_splits(pipe) == 3) {
2005 				/*If need split for odm but 4 way split already*/
2006 				if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
2007 						|| !pipe->next_odm_pipe)) {
2008 					merge[i] = true; /* 4 -> 2 ODM */
2009 				} else if (split[i] == 0 && pipe->prev_odm_pipe) {
2010 					ASSERT(0); /* NOT expected yet */
2011 					merge[i] = true; /* exit ODM */
2012 				}
2013 				split[i] = 0;
2014 			} else if (get_num_mpc_splits(pipe)) {
2015 				/* MPC -> ODM transition */
2016 				ASSERT(0); /* NOT expected yet */
2017 				if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2018 					split[i] = 0;
2019 					merge[i] = true;
2020 				}
2021 			}
2022 		}
2023 
2024 		/* Adjust dppclk when split is forced, do not bother with dispclk */
2025 		if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2026 			DC_FP_START();
2027 			dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2028 			DC_FP_END();
2029 		}
2030 		pipe_idx++;
2031 	}
2032 
2033 	return vlevel;
2034 }
2035 
2036 bool dcn20_fast_validate_bw(
2037 		struct dc *dc,
2038 		struct dc_state *context,
2039 		display_e2e_pipe_params_st *pipes,
2040 		int *pipe_cnt_out,
2041 		int *pipe_split_from,
2042 		int *vlevel_out,
2043 		bool fast_validate)
2044 {
2045 	bool out = false;
2046 	int split[MAX_PIPES] = { 0 };
2047 	int pipe_cnt, i, pipe_idx, vlevel;
2048 
2049 	ASSERT(pipes);
2050 	if (!pipes)
2051 		return false;
2052 
2053 	dcn20_merge_pipes_for_validate(dc, context);
2054 
2055 	DC_FP_START();
2056 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2057 	DC_FP_END();
2058 
2059 	*pipe_cnt_out = pipe_cnt;
2060 
2061 	if (!pipe_cnt) {
2062 		out = true;
2063 		goto validate_out;
2064 	}
2065 
2066 	vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2067 
2068 	if (vlevel > context->bw_ctx.dml.soc.num_states)
2069 		goto validate_fail;
2070 
2071 	vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2072 
2073 	/*initialize pipe_just_split_from to invalid idx*/
2074 	for (i = 0; i < MAX_PIPES; i++)
2075 		pipe_split_from[i] = -1;
2076 
2077 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2078 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2079 		struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2080 
2081 		if (!pipe->stream || pipe_split_from[i] >= 0)
2082 			continue;
2083 
2084 		pipe_idx++;
2085 
2086 		if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2087 			hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2088 			ASSERT(hsplit_pipe);
2089 			if (!dcn20_split_stream_for_odm(
2090 					dc, &context->res_ctx,
2091 					pipe, hsplit_pipe))
2092 				goto validate_fail;
2093 			pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2094 			dcn20_build_mapped_resource(dc, context, pipe->stream);
2095 		}
2096 
2097 		if (!pipe->plane_state)
2098 			continue;
2099 		/* Skip 2nd half of already split pipe */
2100 		if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2101 			continue;
2102 
2103 		/* We do not support mpo + odm at the moment */
2104 		if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2105 				&& context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2106 			goto validate_fail;
2107 
2108 		if (split[i] == 2) {
2109 			if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2110 				/* pipe not split previously needs split */
2111 				hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2112 				ASSERT(hsplit_pipe);
2113 				if (!hsplit_pipe) {
2114 					DC_FP_START();
2115 					dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2116 					DC_FP_END();
2117 					continue;
2118 				}
2119 				if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2120 					if (!dcn20_split_stream_for_odm(
2121 							dc, &context->res_ctx,
2122 							pipe, hsplit_pipe))
2123 						goto validate_fail;
2124 					dcn20_build_mapped_resource(dc, context, pipe->stream);
2125 				} else {
2126 					dcn20_split_stream_for_mpc(
2127 							&context->res_ctx, dc->res_pool,
2128 							pipe, hsplit_pipe);
2129 					resource_build_scaling_params(pipe);
2130 					resource_build_scaling_params(hsplit_pipe);
2131 				}
2132 				pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2133 			}
2134 		} else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2135 			/* merge should already have been done */
2136 			ASSERT(0);
2137 		}
2138 	}
2139 	/* Actual dsc count per stream dsc validation*/
2140 	if (!dcn20_validate_dsc(dc, context)) {
2141 		context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2142 				DML_FAIL_DSC_VALIDATION_FAILURE;
2143 		goto validate_fail;
2144 	}
2145 
2146 	*vlevel_out = vlevel;
2147 
2148 	out = true;
2149 	goto validate_out;
2150 
2151 validate_fail:
2152 	out = false;
2153 
2154 validate_out:
2155 	return out;
2156 }
2157 
2158 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2159 		bool fast_validate)
2160 {
2161 	bool voltage_supported;
2162 	DC_FP_START();
2163 	voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
2164 	DC_FP_END();
2165 	return voltage_supported;
2166 }
2167 
2168 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
2169 		struct dc_state *state,
2170 		const struct resource_pool *pool,
2171 		struct dc_stream_state *stream)
2172 {
2173 	struct resource_context *res_ctx = &state->res_ctx;
2174 	struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
2175 	struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
2176 
2177 	if (!head_pipe)
2178 		ASSERT(0);
2179 
2180 	if (!idle_pipe)
2181 		return NULL;
2182 
2183 	idle_pipe->stream = head_pipe->stream;
2184 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2185 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2186 
2187 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2188 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2189 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2190 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2191 
2192 	return idle_pipe;
2193 }
2194 
2195 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2196 		const struct dc_dcc_surface_param *input,
2197 		struct dc_surface_dcc_cap *output)
2198 {
2199 	return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2200 			dc->res_pool->hubbub,
2201 			input,
2202 			output);
2203 }
2204 
2205 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2206 {
2207 	struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2208 
2209 	dcn20_resource_destruct(dcn20_pool);
2210 	kfree(dcn20_pool);
2211 	*pool = NULL;
2212 }
2213 
2214 
2215 static struct dc_cap_funcs cap_funcs = {
2216 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2217 };
2218 
2219 
2220 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2221 {
2222 	enum surface_pixel_format surf_pix_format = plane_state->format;
2223 	unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2224 
2225 	enum swizzle_mode_values swizzle = DC_SW_LINEAR;
2226 
2227 	if (bpp == 64)
2228 		swizzle = DC_SW_64KB_D;
2229 	else
2230 		swizzle = DC_SW_64KB_S;
2231 
2232 	plane_state->tiling_info.gfx9.swizzle = swizzle;
2233 	return DC_OK;
2234 }
2235 
2236 static const struct resource_funcs dcn20_res_pool_funcs = {
2237 	.destroy = dcn20_destroy_resource_pool,
2238 	.link_enc_create = dcn20_link_encoder_create,
2239 	.panel_cntl_create = dcn20_panel_cntl_create,
2240 	.validate_bandwidth = dcn20_validate_bandwidth,
2241 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2242 	.add_stream_to_ctx = dcn20_add_stream_to_ctx,
2243 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2244 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2245 	.populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2246 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2247 	.set_mcif_arb_params = dcn20_set_mcif_arb_params,
2248 	.populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2249 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2250 };
2251 
2252 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2253 {
2254 	int i;
2255 	uint32_t pipe_count = pool->res_cap->num_dwb;
2256 
2257 	for (i = 0; i < pipe_count; i++) {
2258 		struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2259 						    GFP_KERNEL);
2260 
2261 		if (!dwbc20) {
2262 			dm_error("DC: failed to create dwbc20!\n");
2263 			return false;
2264 		}
2265 		dcn20_dwbc_construct(dwbc20, ctx,
2266 				&dwbc20_regs[i],
2267 				&dwbc20_shift,
2268 				&dwbc20_mask,
2269 				i);
2270 		pool->dwbc[i] = &dwbc20->base;
2271 	}
2272 	return true;
2273 }
2274 
2275 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2276 {
2277 	int i;
2278 	uint32_t pipe_count = pool->res_cap->num_dwb;
2279 
2280 	ASSERT(pipe_count > 0);
2281 
2282 	for (i = 0; i < pipe_count; i++) {
2283 		struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2284 						    GFP_KERNEL);
2285 
2286 		if (!mcif_wb20) {
2287 			dm_error("DC: failed to create mcif_wb20!\n");
2288 			return false;
2289 		}
2290 
2291 		dcn20_mmhubbub_construct(mcif_wb20, ctx,
2292 				&mcif_wb20_regs[i],
2293 				&mcif_wb20_shift,
2294 				&mcif_wb20_mask,
2295 				i);
2296 
2297 		pool->mcif_wb[i] = &mcif_wb20->base;
2298 	}
2299 	return true;
2300 }
2301 
2302 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2303 {
2304 	struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2305 
2306 	if (!pp_smu)
2307 		return pp_smu;
2308 
2309 	dm_pp_get_funcs(ctx, pp_smu);
2310 
2311 	if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2312 		pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2313 
2314 	return pp_smu;
2315 }
2316 
2317 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2318 {
2319 	if (pp_smu && *pp_smu) {
2320 		kfree(*pp_smu);
2321 		*pp_smu = NULL;
2322 	}
2323 }
2324 
2325 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2326 	uint32_t hw_internal_rev)
2327 {
2328 	if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2329 		return &dcn2_0_nv14_soc;
2330 
2331 	if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2332 		return &dcn2_0_nv12_soc;
2333 
2334 	return &dcn2_0_soc;
2335 }
2336 
2337 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2338 	uint32_t hw_internal_rev)
2339 {
2340 	/* NV14 */
2341 	if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2342 		return &dcn2_0_nv14_ip;
2343 
2344 	/* NV12 and NV10 */
2345 	return &dcn2_0_ip;
2346 }
2347 
2348 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2349 {
2350 	return DML_PROJECT_NAVI10v2;
2351 }
2352 
2353 static bool init_soc_bounding_box(struct dc *dc,
2354 				  struct dcn20_resource_pool *pool)
2355 {
2356 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2357 			get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2358 	struct _vcs_dpi_ip_params_st *loaded_ip =
2359 			get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2360 
2361 	DC_LOGGER_INIT(dc->ctx->logger);
2362 
2363 	if (pool->base.pp_smu) {
2364 		struct pp_smu_nv_clock_table max_clocks = {0};
2365 		unsigned int uclk_states[8] = {0};
2366 		unsigned int num_states = 0;
2367 		enum pp_smu_status status;
2368 		bool clock_limits_available = false;
2369 		bool uclk_states_available = false;
2370 
2371 		if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2372 			status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2373 				(&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2374 
2375 			uclk_states_available = (status == PP_SMU_RESULT_OK);
2376 		}
2377 
2378 		if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2379 			status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2380 					(&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2381 			/* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2382 			 */
2383 			if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2384 				max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2385 			clock_limits_available = (status == PP_SMU_RESULT_OK);
2386 		}
2387 
2388 		if (clock_limits_available && uclk_states_available && num_states) {
2389 			DC_FP_START();
2390 			dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2391 			DC_FP_END();
2392 		} else if (clock_limits_available) {
2393 			DC_FP_START();
2394 			dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2395 			DC_FP_END();
2396 		}
2397 	}
2398 
2399 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2400 	loaded_ip->max_num_dpp = pool->base.pipe_count;
2401 	DC_FP_START();
2402 	dcn20_patch_bounding_box(dc, loaded_bb);
2403 	DC_FP_END();
2404 	return true;
2405 }
2406 
2407 static bool dcn20_resource_construct(
2408 	uint8_t num_virtual_links,
2409 	struct dc *dc,
2410 	struct dcn20_resource_pool *pool)
2411 {
2412 	int i;
2413 	struct dc_context *ctx = dc->ctx;
2414 	struct irq_service_init_data init_data;
2415 	struct ddc_service_init_data ddc_init_data = {0};
2416 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2417 			get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2418 	struct _vcs_dpi_ip_params_st *loaded_ip =
2419 			get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2420 	enum dml_project dml_project_version =
2421 			get_dml_project_version(ctx->asic_id.hw_internal_rev);
2422 
2423 	ctx->dc_bios->regs = &bios_regs;
2424 	pool->base.funcs = &dcn20_res_pool_funcs;
2425 
2426 	if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2427 		pool->base.res_cap = &res_cap_nv14;
2428 		pool->base.pipe_count = 5;
2429 		pool->base.mpcc_count = 5;
2430 	} else {
2431 		pool->base.res_cap = &res_cap_nv10;
2432 		pool->base.pipe_count = 6;
2433 		pool->base.mpcc_count = 6;
2434 	}
2435 	/*************************************************
2436 	 *  Resource + asic cap harcoding                *
2437 	 *************************************************/
2438 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2439 
2440 	dc->caps.max_downscale_ratio = 200;
2441 	dc->caps.i2c_speed_in_khz = 100;
2442 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2443 	dc->caps.max_cursor_size = 256;
2444 	dc->caps.min_horizontal_blanking_period = 80;
2445 	dc->caps.dmdata_alloc_size = 2048;
2446 
2447 	dc->caps.max_slave_planes = 1;
2448 	dc->caps.max_slave_yuv_planes = 1;
2449 	dc->caps.max_slave_rgb_planes = 1;
2450 	dc->caps.post_blend_color_processing = true;
2451 	dc->caps.force_dp_tps4_for_cp2520 = true;
2452 	dc->caps.extended_aux_timeout_support = true;
2453 
2454 	/* Color pipeline capabilities */
2455 	dc->caps.color.dpp.dcn_arch = 1;
2456 	dc->caps.color.dpp.input_lut_shared = 0;
2457 	dc->caps.color.dpp.icsc = 1;
2458 	dc->caps.color.dpp.dgam_ram = 1;
2459 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2460 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2461 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2462 	dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2463 	dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2464 	dc->caps.color.dpp.post_csc = 0;
2465 	dc->caps.color.dpp.gamma_corr = 0;
2466 	dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2467 
2468 	dc->caps.color.dpp.hw_3d_lut = 1;
2469 	dc->caps.color.dpp.ogam_ram = 1;
2470 	// no OGAM ROM on DCN2, only MPC ROM
2471 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2472 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2473 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2474 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2475 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2476 	dc->caps.color.dpp.ocsc = 0;
2477 
2478 	dc->caps.color.mpc.gamut_remap = 0;
2479 	dc->caps.color.mpc.num_3dluts = 0;
2480 	dc->caps.color.mpc.shared_3d_lut = 0;
2481 	dc->caps.color.mpc.ogam_ram = 1;
2482 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2483 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2484 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2485 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2486 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2487 	dc->caps.color.mpc.ocsc = 1;
2488 
2489 	dc->caps.dp_hdmi21_pcon_support = true;
2490 
2491 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) {
2492 		dc->debug = debug_defaults_drv;
2493 	} else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2494 		pool->base.pipe_count = 4;
2495 		pool->base.mpcc_count = pool->base.pipe_count;
2496 		dc->debug = debug_defaults_diags;
2497 	} else {
2498 		dc->debug = debug_defaults_diags;
2499 	}
2500 	//dcn2.0x
2501 	dc->work_arounds.dedcn20_305_wa = true;
2502 
2503 	// Init the vm_helper
2504 	if (dc->vm_helper)
2505 		vm_helper_init(dc->vm_helper, 16);
2506 
2507 	/*************************************************
2508 	 *  Create resources                             *
2509 	 *************************************************/
2510 
2511 	pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2512 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2513 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2514 				&clk_src_regs[0], false);
2515 	pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2516 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2517 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2518 				&clk_src_regs[1], false);
2519 	pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2520 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2521 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2522 				&clk_src_regs[2], false);
2523 	pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2524 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2525 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2526 				&clk_src_regs[3], false);
2527 	pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2528 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2529 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2530 				&clk_src_regs[4], false);
2531 	pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2532 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2533 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2534 				&clk_src_regs[5], false);
2535 	pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2536 	/* todo: not reuse phy_pll registers */
2537 	pool->base.dp_clock_source =
2538 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2539 				CLOCK_SOURCE_ID_DP_DTO,
2540 				&clk_src_regs[0], true);
2541 
2542 	for (i = 0; i < pool->base.clk_src_count; i++) {
2543 		if (pool->base.clock_sources[i] == NULL) {
2544 			dm_error("DC: failed to create clock sources!\n");
2545 			BREAK_TO_DEBUGGER();
2546 			goto create_fail;
2547 		}
2548 	}
2549 
2550 	pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2551 	if (pool->base.dccg == NULL) {
2552 		dm_error("DC: failed to create dccg!\n");
2553 		BREAK_TO_DEBUGGER();
2554 		goto create_fail;
2555 	}
2556 
2557 	pool->base.dmcu = dcn20_dmcu_create(ctx,
2558 			&dmcu_regs,
2559 			&dmcu_shift,
2560 			&dmcu_mask);
2561 	if (pool->base.dmcu == NULL) {
2562 		dm_error("DC: failed to create dmcu!\n");
2563 		BREAK_TO_DEBUGGER();
2564 		goto create_fail;
2565 	}
2566 
2567 	pool->base.abm = dce_abm_create(ctx,
2568 			&abm_regs,
2569 			&abm_shift,
2570 			&abm_mask);
2571 	if (pool->base.abm == NULL) {
2572 		dm_error("DC: failed to create abm!\n");
2573 		BREAK_TO_DEBUGGER();
2574 		goto create_fail;
2575 	}
2576 
2577 	pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2578 
2579 
2580 	if (!init_soc_bounding_box(dc, pool)) {
2581 		dm_error("DC: failed to initialize soc bounding box!\n");
2582 		BREAK_TO_DEBUGGER();
2583 		goto create_fail;
2584 	}
2585 
2586 	dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2587 
2588 	if (!dc->debug.disable_pplib_wm_range) {
2589 		struct pp_smu_wm_range_sets ranges = {0};
2590 		int i = 0;
2591 
2592 		ranges.num_reader_wm_sets = 0;
2593 
2594 		if (loaded_bb->num_states == 1) {
2595 			ranges.reader_wm_sets[0].wm_inst = i;
2596 			ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2597 			ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2598 			ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2599 			ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2600 
2601 			ranges.num_reader_wm_sets = 1;
2602 		} else if (loaded_bb->num_states > 1) {
2603 			for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2604 				ranges.reader_wm_sets[i].wm_inst = i;
2605 				ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2606 				ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2607 				DC_FP_START();
2608 				dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2609 				DC_FP_END();
2610 
2611 				ranges.num_reader_wm_sets = i + 1;
2612 			}
2613 
2614 			ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2615 			ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2616 		}
2617 
2618 		ranges.num_writer_wm_sets = 1;
2619 
2620 		ranges.writer_wm_sets[0].wm_inst = 0;
2621 		ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2622 		ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2623 		ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2624 		ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2625 
2626 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2627 		if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2628 			pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2629 	}
2630 
2631 	init_data.ctx = dc->ctx;
2632 	pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2633 	if (!pool->base.irqs)
2634 		goto create_fail;
2635 
2636 	/* mem input -> ipp -> dpp -> opp -> TG */
2637 	for (i = 0; i < pool->base.pipe_count; i++) {
2638 		pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2639 		if (pool->base.hubps[i] == NULL) {
2640 			BREAK_TO_DEBUGGER();
2641 			dm_error(
2642 				"DC: failed to create memory input!\n");
2643 			goto create_fail;
2644 		}
2645 
2646 		pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2647 		if (pool->base.ipps[i] == NULL) {
2648 			BREAK_TO_DEBUGGER();
2649 			dm_error(
2650 				"DC: failed to create input pixel processor!\n");
2651 			goto create_fail;
2652 		}
2653 
2654 		pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2655 		if (pool->base.dpps[i] == NULL) {
2656 			BREAK_TO_DEBUGGER();
2657 			dm_error(
2658 				"DC: failed to create dpps!\n");
2659 			goto create_fail;
2660 		}
2661 	}
2662 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2663 		pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2664 		if (pool->base.engines[i] == NULL) {
2665 			BREAK_TO_DEBUGGER();
2666 			dm_error(
2667 				"DC:failed to create aux engine!!\n");
2668 			goto create_fail;
2669 		}
2670 		pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2671 		if (pool->base.hw_i2cs[i] == NULL) {
2672 			BREAK_TO_DEBUGGER();
2673 			dm_error(
2674 				"DC:failed to create hw i2c!!\n");
2675 			goto create_fail;
2676 		}
2677 		pool->base.sw_i2cs[i] = NULL;
2678 	}
2679 
2680 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2681 		pool->base.opps[i] = dcn20_opp_create(ctx, i);
2682 		if (pool->base.opps[i] == NULL) {
2683 			BREAK_TO_DEBUGGER();
2684 			dm_error(
2685 				"DC: failed to create output pixel processor!\n");
2686 			goto create_fail;
2687 		}
2688 	}
2689 
2690 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2691 		pool->base.timing_generators[i] = dcn20_timing_generator_create(
2692 				ctx, i);
2693 		if (pool->base.timing_generators[i] == NULL) {
2694 			BREAK_TO_DEBUGGER();
2695 			dm_error("DC: failed to create tg!\n");
2696 			goto create_fail;
2697 		}
2698 	}
2699 
2700 	pool->base.timing_generator_count = i;
2701 
2702 	pool->base.mpc = dcn20_mpc_create(ctx);
2703 	if (pool->base.mpc == NULL) {
2704 		BREAK_TO_DEBUGGER();
2705 		dm_error("DC: failed to create mpc!\n");
2706 		goto create_fail;
2707 	}
2708 
2709 	pool->base.hubbub = dcn20_hubbub_create(ctx);
2710 	if (pool->base.hubbub == NULL) {
2711 		BREAK_TO_DEBUGGER();
2712 		dm_error("DC: failed to create hubbub!\n");
2713 		goto create_fail;
2714 	}
2715 
2716 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2717 		pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2718 		if (pool->base.dscs[i] == NULL) {
2719 			BREAK_TO_DEBUGGER();
2720 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2721 			goto create_fail;
2722 		}
2723 	}
2724 
2725 	if (!dcn20_dwbc_create(ctx, &pool->base)) {
2726 		BREAK_TO_DEBUGGER();
2727 		dm_error("DC: failed to create dwbc!\n");
2728 		goto create_fail;
2729 	}
2730 	if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2731 		BREAK_TO_DEBUGGER();
2732 		dm_error("DC: failed to create mcif_wb!\n");
2733 		goto create_fail;
2734 	}
2735 
2736 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2737 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2738 			&res_create_funcs : &res_create_maximus_funcs)))
2739 			goto create_fail;
2740 
2741 	dcn20_hw_sequencer_construct(dc);
2742 
2743 	// IF NV12, set PG function pointer to NULL. It's not that
2744 	// PG isn't supported for NV12, it's that we don't want to
2745 	// program the registers because that will cause more power
2746 	// to be consumed. We could have created dcn20_init_hw to get
2747 	// the same effect by checking ASIC rev, but there was a
2748 	// request at some point to not check ASIC rev on hw sequencer.
2749 	if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2750 		dc->hwseq->funcs.enable_power_gating_plane = NULL;
2751 		dc->debug.disable_dpp_power_gate = true;
2752 		dc->debug.disable_hubp_power_gate = true;
2753 	}
2754 
2755 
2756 	dc->caps.max_planes =  pool->base.pipe_count;
2757 
2758 	for (i = 0; i < dc->caps.max_planes; ++i)
2759 		dc->caps.planes[i] = plane_cap;
2760 
2761 	dc->cap_funcs = cap_funcs;
2762 
2763 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2764 		ddc_init_data.ctx = dc->ctx;
2765 		ddc_init_data.link = NULL;
2766 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2767 		ddc_init_data.id.enum_id = 0;
2768 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2769 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2770 	} else {
2771 		pool->base.oem_device = NULL;
2772 	}
2773 
2774 	return true;
2775 
2776 create_fail:
2777 
2778 	dcn20_resource_destruct(pool);
2779 
2780 	return false;
2781 }
2782 
2783 struct resource_pool *dcn20_create_resource_pool(
2784 		const struct dc_init_data *init_data,
2785 		struct dc *dc)
2786 {
2787 	struct dcn20_resource_pool *pool =
2788 		kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2789 
2790 	if (!pool)
2791 		return NULL;
2792 
2793 	if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2794 		return &pool->base;
2795 
2796 	BREAK_TO_DEBUGGER();
2797 	kfree(pool);
2798 	return NULL;
2799 }
2800