1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3  * Copyright 2019 Raptor Engineering, LLC
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include <linux/slab.h>
28 
29 #include "dm_services.h"
30 #include "dc.h"
31 
32 #include "dcn20_init.h"
33 
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37 
38 #include "dml/dcn20/dcn20_fpu.h"
39 
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20_hubbub.h"
43 #include "dcn20_mpc.h"
44 #include "dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20_dpp.h"
47 #include "dcn20_optc.h"
48 #include "dcn20_hwseq.h"
49 #include "dce110/dce110_hw_sequencer.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20_opp.h"
52 
53 #include "dcn20_dsc.h"
54 
55 #include "dcn20_link_encoder.h"
56 #include "dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20_dccg.h"
64 #include "dcn20_vmid.h"
65 #include "dc_link_ddc.h"
66 #include "dce/dce_panel_cntl.h"
67 
68 #include "navi10_ip_offset.h"
69 
70 #include "dcn/dcn_2_0_0_offset.h"
71 #include "dcn/dcn_2_0_0_sh_mask.h"
72 #include "dpcs/dpcs_2_0_0_offset.h"
73 #include "dpcs/dpcs_2_0_0_sh_mask.h"
74 
75 #include "nbio/nbio_2_3_offset.h"
76 
77 #include "dcn20/dcn20_dwb.h"
78 #include "dcn20/dcn20_mmhubbub.h"
79 
80 #include "mmhub/mmhub_2_0_0_offset.h"
81 #include "mmhub/mmhub_2_0_0_sh_mask.h"
82 
83 #include "reg_helper.h"
84 #include "dce/dce_abm.h"
85 #include "dce/dce_dmcu.h"
86 #include "dce/dce_aux.h"
87 #include "dce/dce_i2c.h"
88 #include "vm_helper.h"
89 #include "link_enc_cfg.h"
90 
91 #include "amdgpu_socbb.h"
92 
93 #define DC_LOGGER_INIT(logger)
94 
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96 	#define mmDP0_DP_DPHY_INTERNAL_CTRL		0x210f
97 	#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
98 	#define mmDP1_DP_DPHY_INTERNAL_CTRL		0x220f
99 	#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
100 	#define mmDP2_DP_DPHY_INTERNAL_CTRL		0x230f
101 	#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
102 	#define mmDP3_DP_DPHY_INTERNAL_CTRL		0x240f
103 	#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
104 	#define mmDP4_DP_DPHY_INTERNAL_CTRL		0x250f
105 	#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
106 	#define mmDP5_DP_DPHY_INTERNAL_CTRL		0x260f
107 	#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
108 	#define mmDP6_DP_DPHY_INTERNAL_CTRL		0x270f
109 	#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
110 #endif
111 
112 
113 enum dcn20_clk_src_array_id {
114 	DCN20_CLK_SRC_PLL0,
115 	DCN20_CLK_SRC_PLL1,
116 	DCN20_CLK_SRC_PLL2,
117 	DCN20_CLK_SRC_PLL3,
118 	DCN20_CLK_SRC_PLL4,
119 	DCN20_CLK_SRC_PLL5,
120 	DCN20_CLK_SRC_TOTAL
121 };
122 
123 /* begin *********************
124  * macros to expend register list macro defined in HW object header file */
125 
126 /* DCN */
127 /* TODO awful hack. fixup dcn20_dwb.h */
128 #undef BASE_INNER
129 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
130 
131 #define BASE(seg) BASE_INNER(seg)
132 
133 #define SR(reg_name)\
134 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
135 					mm ## reg_name
136 
137 #define SRI(reg_name, block, id)\
138 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
139 					mm ## block ## id ## _ ## reg_name
140 
141 #define SRIR(var_name, reg_name, block, id)\
142 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
143 					mm ## block ## id ## _ ## reg_name
144 
145 #define SRII(reg_name, block, id)\
146 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
147 					mm ## block ## id ## _ ## reg_name
148 
149 #define DCCG_SRII(reg_name, block, id)\
150 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
151 					mm ## block ## id ## _ ## reg_name
152 
153 #define VUPDATE_SRII(reg_name, block, id)\
154 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
155 					mm ## reg_name ## _ ## block ## id
156 
157 /* NBIO */
158 #define NBIO_BASE_INNER(seg) \
159 	NBIO_BASE__INST0_SEG ## seg
160 
161 #define NBIO_BASE(seg) \
162 	NBIO_BASE_INNER(seg)
163 
164 #define NBIO_SR(reg_name)\
165 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
166 					mm ## reg_name
167 
168 /* MMHUB */
169 #define MMHUB_BASE_INNER(seg) \
170 	MMHUB_BASE__INST0_SEG ## seg
171 
172 #define MMHUB_BASE(seg) \
173 	MMHUB_BASE_INNER(seg)
174 
175 #define MMHUB_SR(reg_name)\
176 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
177 					mmMM ## reg_name
178 
179 static const struct bios_registers bios_regs = {
180 		NBIO_SR(BIOS_SCRATCH_3),
181 		NBIO_SR(BIOS_SCRATCH_6)
182 };
183 
184 #define clk_src_regs(index, pllid)\
185 [index] = {\
186 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
187 }
188 
189 static const struct dce110_clk_src_regs clk_src_regs[] = {
190 	clk_src_regs(0, A),
191 	clk_src_regs(1, B),
192 	clk_src_regs(2, C),
193 	clk_src_regs(3, D),
194 	clk_src_regs(4, E),
195 	clk_src_regs(5, F)
196 };
197 
198 static const struct dce110_clk_src_shift cs_shift = {
199 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
200 };
201 
202 static const struct dce110_clk_src_mask cs_mask = {
203 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
204 };
205 
206 static const struct dce_dmcu_registers dmcu_regs = {
207 		DMCU_DCN10_REG_LIST()
208 };
209 
210 static const struct dce_dmcu_shift dmcu_shift = {
211 		DMCU_MASK_SH_LIST_DCN10(__SHIFT)
212 };
213 
214 static const struct dce_dmcu_mask dmcu_mask = {
215 		DMCU_MASK_SH_LIST_DCN10(_MASK)
216 };
217 
218 static const struct dce_abm_registers abm_regs = {
219 		ABM_DCN20_REG_LIST()
220 };
221 
222 static const struct dce_abm_shift abm_shift = {
223 		ABM_MASK_SH_LIST_DCN20(__SHIFT)
224 };
225 
226 static const struct dce_abm_mask abm_mask = {
227 		ABM_MASK_SH_LIST_DCN20(_MASK)
228 };
229 
230 #define audio_regs(id)\
231 [id] = {\
232 		AUD_COMMON_REG_LIST(id)\
233 }
234 
235 static const struct dce_audio_registers audio_regs[] = {
236 	audio_regs(0),
237 	audio_regs(1),
238 	audio_regs(2),
239 	audio_regs(3),
240 	audio_regs(4),
241 	audio_regs(5),
242 	audio_regs(6),
243 };
244 
245 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
246 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
247 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
248 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
249 
250 static const struct dce_audio_shift audio_shift = {
251 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
252 };
253 
254 static const struct dce_audio_mask audio_mask = {
255 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
256 };
257 
258 #define stream_enc_regs(id)\
259 [id] = {\
260 	SE_DCN2_REG_LIST(id)\
261 }
262 
263 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
264 	stream_enc_regs(0),
265 	stream_enc_regs(1),
266 	stream_enc_regs(2),
267 	stream_enc_regs(3),
268 	stream_enc_regs(4),
269 	stream_enc_regs(5),
270 };
271 
272 static const struct dcn10_stream_encoder_shift se_shift = {
273 		SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
274 };
275 
276 static const struct dcn10_stream_encoder_mask se_mask = {
277 		SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
278 };
279 
280 
281 #define aux_regs(id)\
282 [id] = {\
283 	DCN2_AUX_REG_LIST(id)\
284 }
285 
286 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
287 		aux_regs(0),
288 		aux_regs(1),
289 		aux_regs(2),
290 		aux_regs(3),
291 		aux_regs(4),
292 		aux_regs(5)
293 };
294 
295 #define hpd_regs(id)\
296 [id] = {\
297 	HPD_REG_LIST(id)\
298 }
299 
300 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
301 		hpd_regs(0),
302 		hpd_regs(1),
303 		hpd_regs(2),
304 		hpd_regs(3),
305 		hpd_regs(4),
306 		hpd_regs(5)
307 };
308 
309 #define link_regs(id, phyid)\
310 [id] = {\
311 	LE_DCN10_REG_LIST(id), \
312 	UNIPHY_DCN2_REG_LIST(phyid), \
313 	DPCS_DCN2_REG_LIST(id), \
314 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
315 }
316 
317 static const struct dcn10_link_enc_registers link_enc_regs[] = {
318 	link_regs(0, A),
319 	link_regs(1, B),
320 	link_regs(2, C),
321 	link_regs(3, D),
322 	link_regs(4, E),
323 	link_regs(5, F)
324 };
325 
326 static const struct dcn10_link_enc_shift le_shift = {
327 	LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
328 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
329 };
330 
331 static const struct dcn10_link_enc_mask le_mask = {
332 	LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
333 	DPCS_DCN2_MASK_SH_LIST(_MASK)
334 };
335 
336 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
337 	{ DCN_PANEL_CNTL_REG_LIST() }
338 };
339 
340 static const struct dce_panel_cntl_shift panel_cntl_shift = {
341 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
342 };
343 
344 static const struct dce_panel_cntl_mask panel_cntl_mask = {
345 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
346 };
347 
348 #define ipp_regs(id)\
349 [id] = {\
350 	IPP_REG_LIST_DCN20(id),\
351 }
352 
353 static const struct dcn10_ipp_registers ipp_regs[] = {
354 	ipp_regs(0),
355 	ipp_regs(1),
356 	ipp_regs(2),
357 	ipp_regs(3),
358 	ipp_regs(4),
359 	ipp_regs(5),
360 };
361 
362 static const struct dcn10_ipp_shift ipp_shift = {
363 		IPP_MASK_SH_LIST_DCN20(__SHIFT)
364 };
365 
366 static const struct dcn10_ipp_mask ipp_mask = {
367 		IPP_MASK_SH_LIST_DCN20(_MASK),
368 };
369 
370 #define opp_regs(id)\
371 [id] = {\
372 	OPP_REG_LIST_DCN20(id),\
373 }
374 
375 static const struct dcn20_opp_registers opp_regs[] = {
376 	opp_regs(0),
377 	opp_regs(1),
378 	opp_regs(2),
379 	opp_regs(3),
380 	opp_regs(4),
381 	opp_regs(5),
382 };
383 
384 static const struct dcn20_opp_shift opp_shift = {
385 		OPP_MASK_SH_LIST_DCN20(__SHIFT)
386 };
387 
388 static const struct dcn20_opp_mask opp_mask = {
389 		OPP_MASK_SH_LIST_DCN20(_MASK)
390 };
391 
392 #define aux_engine_regs(id)\
393 [id] = {\
394 	AUX_COMMON_REG_LIST0(id), \
395 	.AUXN_IMPCAL = 0, \
396 	.AUXP_IMPCAL = 0, \
397 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
398 }
399 
400 static const struct dce110_aux_registers aux_engine_regs[] = {
401 		aux_engine_regs(0),
402 		aux_engine_regs(1),
403 		aux_engine_regs(2),
404 		aux_engine_regs(3),
405 		aux_engine_regs(4),
406 		aux_engine_regs(5)
407 };
408 
409 #define tf_regs(id)\
410 [id] = {\
411 	TF_REG_LIST_DCN20(id),\
412 	TF_REG_LIST_DCN20_COMMON_APPEND(id),\
413 }
414 
415 static const struct dcn2_dpp_registers tf_regs[] = {
416 	tf_regs(0),
417 	tf_regs(1),
418 	tf_regs(2),
419 	tf_regs(3),
420 	tf_regs(4),
421 	tf_regs(5),
422 };
423 
424 static const struct dcn2_dpp_shift tf_shift = {
425 		TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
426 		TF_DEBUG_REG_LIST_SH_DCN20
427 };
428 
429 static const struct dcn2_dpp_mask tf_mask = {
430 		TF_REG_LIST_SH_MASK_DCN20(_MASK),
431 		TF_DEBUG_REG_LIST_MASK_DCN20
432 };
433 
434 #define dwbc_regs_dcn2(id)\
435 [id] = {\
436 	DWBC_COMMON_REG_LIST_DCN2_0(id),\
437 		}
438 
439 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
440 	dwbc_regs_dcn2(0),
441 };
442 
443 static const struct dcn20_dwbc_shift dwbc20_shift = {
444 	DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
445 };
446 
447 static const struct dcn20_dwbc_mask dwbc20_mask = {
448 	DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
449 };
450 
451 #define mcif_wb_regs_dcn2(id)\
452 [id] = {\
453 	MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
454 		}
455 
456 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
457 	mcif_wb_regs_dcn2(0),
458 };
459 
460 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
461 	MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
462 };
463 
464 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
465 	MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
466 };
467 
468 static const struct dcn20_mpc_registers mpc_regs = {
469 		MPC_REG_LIST_DCN2_0(0),
470 		MPC_REG_LIST_DCN2_0(1),
471 		MPC_REG_LIST_DCN2_0(2),
472 		MPC_REG_LIST_DCN2_0(3),
473 		MPC_REG_LIST_DCN2_0(4),
474 		MPC_REG_LIST_DCN2_0(5),
475 		MPC_OUT_MUX_REG_LIST_DCN2_0(0),
476 		MPC_OUT_MUX_REG_LIST_DCN2_0(1),
477 		MPC_OUT_MUX_REG_LIST_DCN2_0(2),
478 		MPC_OUT_MUX_REG_LIST_DCN2_0(3),
479 		MPC_OUT_MUX_REG_LIST_DCN2_0(4),
480 		MPC_OUT_MUX_REG_LIST_DCN2_0(5),
481 		MPC_DBG_REG_LIST_DCN2_0()
482 };
483 
484 static const struct dcn20_mpc_shift mpc_shift = {
485 	MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
486 	MPC_DEBUG_REG_LIST_SH_DCN20
487 };
488 
489 static const struct dcn20_mpc_mask mpc_mask = {
490 	MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
491 	MPC_DEBUG_REG_LIST_MASK_DCN20
492 };
493 
494 #define tg_regs(id)\
495 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
496 
497 
498 static const struct dcn_optc_registers tg_regs[] = {
499 	tg_regs(0),
500 	tg_regs(1),
501 	tg_regs(2),
502 	tg_regs(3),
503 	tg_regs(4),
504 	tg_regs(5)
505 };
506 
507 static const struct dcn_optc_shift tg_shift = {
508 	TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
509 };
510 
511 static const struct dcn_optc_mask tg_mask = {
512 	TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
513 };
514 
515 #define hubp_regs(id)\
516 [id] = {\
517 	HUBP_REG_LIST_DCN20(id)\
518 }
519 
520 static const struct dcn_hubp2_registers hubp_regs[] = {
521 		hubp_regs(0),
522 		hubp_regs(1),
523 		hubp_regs(2),
524 		hubp_regs(3),
525 		hubp_regs(4),
526 		hubp_regs(5)
527 };
528 
529 static const struct dcn_hubp2_shift hubp_shift = {
530 		HUBP_MASK_SH_LIST_DCN20(__SHIFT)
531 };
532 
533 static const struct dcn_hubp2_mask hubp_mask = {
534 		HUBP_MASK_SH_LIST_DCN20(_MASK)
535 };
536 
537 static const struct dcn_hubbub_registers hubbub_reg = {
538 		HUBBUB_REG_LIST_DCN20(0)
539 };
540 
541 static const struct dcn_hubbub_shift hubbub_shift = {
542 		HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
543 };
544 
545 static const struct dcn_hubbub_mask hubbub_mask = {
546 		HUBBUB_MASK_SH_LIST_DCN20(_MASK)
547 };
548 
549 #define vmid_regs(id)\
550 [id] = {\
551 		DCN20_VMID_REG_LIST(id)\
552 }
553 
554 static const struct dcn_vmid_registers vmid_regs[] = {
555 	vmid_regs(0),
556 	vmid_regs(1),
557 	vmid_regs(2),
558 	vmid_regs(3),
559 	vmid_regs(4),
560 	vmid_regs(5),
561 	vmid_regs(6),
562 	vmid_regs(7),
563 	vmid_regs(8),
564 	vmid_regs(9),
565 	vmid_regs(10),
566 	vmid_regs(11),
567 	vmid_regs(12),
568 	vmid_regs(13),
569 	vmid_regs(14),
570 	vmid_regs(15)
571 };
572 
573 static const struct dcn20_vmid_shift vmid_shifts = {
574 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
575 };
576 
577 static const struct dcn20_vmid_mask vmid_masks = {
578 		DCN20_VMID_MASK_SH_LIST(_MASK)
579 };
580 
581 static const struct dce110_aux_registers_shift aux_shift = {
582 		DCN_AUX_MASK_SH_LIST(__SHIFT)
583 };
584 
585 static const struct dce110_aux_registers_mask aux_mask = {
586 		DCN_AUX_MASK_SH_LIST(_MASK)
587 };
588 
589 static int map_transmitter_id_to_phy_instance(
590 	enum transmitter transmitter)
591 {
592 	switch (transmitter) {
593 	case TRANSMITTER_UNIPHY_A:
594 		return 0;
595 	break;
596 	case TRANSMITTER_UNIPHY_B:
597 		return 1;
598 	break;
599 	case TRANSMITTER_UNIPHY_C:
600 		return 2;
601 	break;
602 	case TRANSMITTER_UNIPHY_D:
603 		return 3;
604 	break;
605 	case TRANSMITTER_UNIPHY_E:
606 		return 4;
607 	break;
608 	case TRANSMITTER_UNIPHY_F:
609 		return 5;
610 	break;
611 	default:
612 		ASSERT(0);
613 		return 0;
614 	}
615 }
616 
617 #define dsc_regsDCN20(id)\
618 [id] = {\
619 	DSC_REG_LIST_DCN20(id)\
620 }
621 
622 static const struct dcn20_dsc_registers dsc_regs[] = {
623 	dsc_regsDCN20(0),
624 	dsc_regsDCN20(1),
625 	dsc_regsDCN20(2),
626 	dsc_regsDCN20(3),
627 	dsc_regsDCN20(4),
628 	dsc_regsDCN20(5)
629 };
630 
631 static const struct dcn20_dsc_shift dsc_shift = {
632 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
633 };
634 
635 static const struct dcn20_dsc_mask dsc_mask = {
636 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
637 };
638 
639 static const struct dccg_registers dccg_regs = {
640 		DCCG_REG_LIST_DCN2()
641 };
642 
643 static const struct dccg_shift dccg_shift = {
644 		DCCG_MASK_SH_LIST_DCN2(__SHIFT)
645 };
646 
647 static const struct dccg_mask dccg_mask = {
648 		DCCG_MASK_SH_LIST_DCN2(_MASK)
649 };
650 
651 static const struct resource_caps res_cap_nv10 = {
652 		.num_timing_generator = 6,
653 		.num_opp = 6,
654 		.num_video_plane = 6,
655 		.num_audio = 7,
656 		.num_stream_encoder = 6,
657 		.num_pll = 6,
658 		.num_dwb = 1,
659 		.num_ddc = 6,
660 		.num_vmid = 16,
661 		.num_dsc = 6,
662 };
663 
664 static const struct dc_plane_cap plane_cap = {
665 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
666 	.blends_with_above = true,
667 	.blends_with_below = true,
668 	.per_pixel_alpha = true,
669 
670 	.pixel_format_support = {
671 			.argb8888 = true,
672 			.nv12 = true,
673 			.fp16 = true,
674 			.p010 = true
675 	},
676 
677 	.max_upscale_factor = {
678 			.argb8888 = 16000,
679 			.nv12 = 16000,
680 			.fp16 = 1
681 	},
682 
683 	.max_downscale_factor = {
684 			.argb8888 = 250,
685 			.nv12 = 250,
686 			.fp16 = 1
687 	},
688 	16,
689 	16
690 };
691 static const struct resource_caps res_cap_nv14 = {
692 		.num_timing_generator = 5,
693 		.num_opp = 5,
694 		.num_video_plane = 5,
695 		.num_audio = 6,
696 		.num_stream_encoder = 5,
697 		.num_pll = 5,
698 		.num_dwb = 1,
699 		.num_ddc = 5,
700 		.num_vmid = 16,
701 		.num_dsc = 5,
702 };
703 
704 static const struct dc_debug_options debug_defaults_drv = {
705 		.disable_dmcu = false,
706 		.force_abm_enable = false,
707 		.timing_trace = false,
708 		.clock_trace = true,
709 		.disable_pplib_clock_request = true,
710 		.pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
711 		.force_single_disp_pipe_split = false,
712 		.disable_dcc = DCC_ENABLE,
713 		.vsr_support = true,
714 		.performance_trace = false,
715 		.max_downscale_src_width = 5120,/*upto 5K*/
716 		.disable_pplib_wm_range = false,
717 		.scl_reset_length10 = true,
718 		.sanity_checks = false,
719 		.underflow_assert_delay_us = 0xFFFFFFFF,
720 };
721 
722 static const struct dc_debug_options debug_defaults_diags = {
723 		.disable_dmcu = false,
724 		.force_abm_enable = false,
725 		.timing_trace = true,
726 		.clock_trace = true,
727 		.disable_dpp_power_gate = true,
728 		.disable_hubp_power_gate = true,
729 		.disable_clock_gate = true,
730 		.disable_pplib_clock_request = true,
731 		.disable_pplib_wm_range = true,
732 		.disable_stutter = true,
733 		.scl_reset_length10 = true,
734 		.underflow_assert_delay_us = 0xFFFFFFFF,
735 		.enable_tri_buf = true,
736 };
737 
738 void dcn20_dpp_destroy(struct dpp **dpp)
739 {
740 	kfree(TO_DCN20_DPP(*dpp));
741 	*dpp = NULL;
742 }
743 
744 struct dpp *dcn20_dpp_create(
745 	struct dc_context *ctx,
746 	uint32_t inst)
747 {
748 	struct dcn20_dpp *dpp =
749 		kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
750 
751 	if (!dpp)
752 		return NULL;
753 
754 	if (dpp2_construct(dpp, ctx, inst,
755 			&tf_regs[inst], &tf_shift, &tf_mask))
756 		return &dpp->base;
757 
758 	BREAK_TO_DEBUGGER();
759 	kfree(dpp);
760 	return NULL;
761 }
762 
763 struct input_pixel_processor *dcn20_ipp_create(
764 	struct dc_context *ctx, uint32_t inst)
765 {
766 	struct dcn10_ipp *ipp =
767 		kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
768 
769 	if (!ipp) {
770 		BREAK_TO_DEBUGGER();
771 		return NULL;
772 	}
773 
774 	dcn20_ipp_construct(ipp, ctx, inst,
775 			&ipp_regs[inst], &ipp_shift, &ipp_mask);
776 	return &ipp->base;
777 }
778 
779 
780 struct output_pixel_processor *dcn20_opp_create(
781 	struct dc_context *ctx, uint32_t inst)
782 {
783 	struct dcn20_opp *opp =
784 		kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
785 
786 	if (!opp) {
787 		BREAK_TO_DEBUGGER();
788 		return NULL;
789 	}
790 
791 	dcn20_opp_construct(opp, ctx, inst,
792 			&opp_regs[inst], &opp_shift, &opp_mask);
793 	return &opp->base;
794 }
795 
796 struct dce_aux *dcn20_aux_engine_create(
797 	struct dc_context *ctx,
798 	uint32_t inst)
799 {
800 	struct aux_engine_dce110 *aux_engine =
801 		kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
802 
803 	if (!aux_engine)
804 		return NULL;
805 
806 	dce110_aux_engine_construct(aux_engine, ctx, inst,
807 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
808 				    &aux_engine_regs[inst],
809 					&aux_mask,
810 					&aux_shift,
811 					ctx->dc->caps.extended_aux_timeout_support);
812 
813 	return &aux_engine->base;
814 }
815 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
816 
817 static const struct dce_i2c_registers i2c_hw_regs[] = {
818 		i2c_inst_regs(1),
819 		i2c_inst_regs(2),
820 		i2c_inst_regs(3),
821 		i2c_inst_regs(4),
822 		i2c_inst_regs(5),
823 		i2c_inst_regs(6),
824 };
825 
826 static const struct dce_i2c_shift i2c_shifts = {
827 		I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
828 };
829 
830 static const struct dce_i2c_mask i2c_masks = {
831 		I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
832 };
833 
834 struct dce_i2c_hw *dcn20_i2c_hw_create(
835 	struct dc_context *ctx,
836 	uint32_t inst)
837 {
838 	struct dce_i2c_hw *dce_i2c_hw =
839 		kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
840 
841 	if (!dce_i2c_hw)
842 		return NULL;
843 
844 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
845 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
846 
847 	return dce_i2c_hw;
848 }
849 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
850 {
851 	struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
852 					  GFP_ATOMIC);
853 
854 	if (!mpc20)
855 		return NULL;
856 
857 	dcn20_mpc_construct(mpc20, ctx,
858 			&mpc_regs,
859 			&mpc_shift,
860 			&mpc_mask,
861 			6);
862 
863 	return &mpc20->base;
864 }
865 
866 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
867 {
868 	int i;
869 	struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
870 					  GFP_ATOMIC);
871 
872 	if (!hubbub)
873 		return NULL;
874 
875 	hubbub2_construct(hubbub, ctx,
876 			&hubbub_reg,
877 			&hubbub_shift,
878 			&hubbub_mask);
879 
880 	for (i = 0; i < res_cap_nv10.num_vmid; i++) {
881 		struct dcn20_vmid *vmid = &hubbub->vmid[i];
882 
883 		vmid->ctx = ctx;
884 
885 		vmid->regs = &vmid_regs[i];
886 		vmid->shifts = &vmid_shifts;
887 		vmid->masks = &vmid_masks;
888 	}
889 
890 	return &hubbub->base;
891 }
892 
893 struct timing_generator *dcn20_timing_generator_create(
894 		struct dc_context *ctx,
895 		uint32_t instance)
896 {
897 	struct optc *tgn10 =
898 		kzalloc(sizeof(struct optc), GFP_ATOMIC);
899 
900 	if (!tgn10)
901 		return NULL;
902 
903 	tgn10->base.inst = instance;
904 	tgn10->base.ctx = ctx;
905 
906 	tgn10->tg_regs = &tg_regs[instance];
907 	tgn10->tg_shift = &tg_shift;
908 	tgn10->tg_mask = &tg_mask;
909 
910 	dcn20_timing_generator_init(tgn10);
911 
912 	return &tgn10->base;
913 }
914 
915 static const struct encoder_feature_support link_enc_feature = {
916 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
917 		.max_hdmi_pixel_clock = 600000,
918 		.hdmi_ycbcr420_supported = true,
919 		.dp_ycbcr420_supported = true,
920 		.fec_supported = true,
921 		.flags.bits.IS_HBR2_CAPABLE = true,
922 		.flags.bits.IS_HBR3_CAPABLE = true,
923 		.flags.bits.IS_TPS3_CAPABLE = true,
924 		.flags.bits.IS_TPS4_CAPABLE = true
925 };
926 
927 struct link_encoder *dcn20_link_encoder_create(
928 	struct dc_context *ctx,
929 	const struct encoder_init_data *enc_init_data)
930 {
931 	struct dcn20_link_encoder *enc20 =
932 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
933 	int link_regs_id;
934 
935 	if (!enc20)
936 		return NULL;
937 
938 	link_regs_id =
939 		map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
940 
941 	dcn20_link_encoder_construct(enc20,
942 				      enc_init_data,
943 				      &link_enc_feature,
944 				      &link_enc_regs[link_regs_id],
945 				      &link_enc_aux_regs[enc_init_data->channel - 1],
946 				      &link_enc_hpd_regs[enc_init_data->hpd_source],
947 				      &le_shift,
948 				      &le_mask);
949 
950 	return &enc20->enc10.base;
951 }
952 
953 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
954 {
955 	struct dce_panel_cntl *panel_cntl =
956 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
957 
958 	if (!panel_cntl)
959 		return NULL;
960 
961 	dce_panel_cntl_construct(panel_cntl,
962 			init_data,
963 			&panel_cntl_regs[init_data->inst],
964 			&panel_cntl_shift,
965 			&panel_cntl_mask);
966 
967 	return &panel_cntl->base;
968 }
969 
970 static struct clock_source *dcn20_clock_source_create(
971 	struct dc_context *ctx,
972 	struct dc_bios *bios,
973 	enum clock_source_id id,
974 	const struct dce110_clk_src_regs *regs,
975 	bool dp_clk_src)
976 {
977 	struct dce110_clk_src *clk_src =
978 		kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
979 
980 	if (!clk_src)
981 		return NULL;
982 
983 	if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
984 			regs, &cs_shift, &cs_mask)) {
985 		clk_src->base.dp_clk_src = dp_clk_src;
986 		return &clk_src->base;
987 	}
988 
989 	kfree(clk_src);
990 	BREAK_TO_DEBUGGER();
991 	return NULL;
992 }
993 
994 static void read_dce_straps(
995 	struct dc_context *ctx,
996 	struct resource_straps *straps)
997 {
998 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
999 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1000 }
1001 
1002 static struct audio *dcn20_create_audio(
1003 		struct dc_context *ctx, unsigned int inst)
1004 {
1005 	return dce_audio_create(ctx, inst,
1006 			&audio_regs[inst], &audio_shift, &audio_mask);
1007 }
1008 
1009 struct stream_encoder *dcn20_stream_encoder_create(
1010 	enum engine_id eng_id,
1011 	struct dc_context *ctx)
1012 {
1013 	struct dcn10_stream_encoder *enc1 =
1014 		kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1015 
1016 	if (!enc1)
1017 		return NULL;
1018 
1019 	if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1020 		if (eng_id >= ENGINE_ID_DIGD)
1021 			eng_id++;
1022 	}
1023 
1024 	dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1025 					&stream_enc_regs[eng_id],
1026 					&se_shift, &se_mask);
1027 
1028 	return &enc1->base;
1029 }
1030 
1031 static const struct dce_hwseq_registers hwseq_reg = {
1032 		HWSEQ_DCN2_REG_LIST()
1033 };
1034 
1035 static const struct dce_hwseq_shift hwseq_shift = {
1036 		HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1037 };
1038 
1039 static const struct dce_hwseq_mask hwseq_mask = {
1040 		HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1041 };
1042 
1043 struct dce_hwseq *dcn20_hwseq_create(
1044 	struct dc_context *ctx)
1045 {
1046 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1047 
1048 	if (hws) {
1049 		hws->ctx = ctx;
1050 		hws->regs = &hwseq_reg;
1051 		hws->shifts = &hwseq_shift;
1052 		hws->masks = &hwseq_mask;
1053 	}
1054 	return hws;
1055 }
1056 
1057 static const struct resource_create_funcs res_create_funcs = {
1058 	.read_dce_straps = read_dce_straps,
1059 	.create_audio = dcn20_create_audio,
1060 	.create_stream_encoder = dcn20_stream_encoder_create,
1061 	.create_hwseq = dcn20_hwseq_create,
1062 };
1063 
1064 static const struct resource_create_funcs res_create_maximus_funcs = {
1065 	.read_dce_straps = NULL,
1066 	.create_audio = NULL,
1067 	.create_stream_encoder = NULL,
1068 	.create_hwseq = dcn20_hwseq_create,
1069 };
1070 
1071 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1072 
1073 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1074 {
1075 	kfree(TO_DCE110_CLK_SRC(*clk_src));
1076 	*clk_src = NULL;
1077 }
1078 
1079 
1080 struct display_stream_compressor *dcn20_dsc_create(
1081 	struct dc_context *ctx, uint32_t inst)
1082 {
1083 	struct dcn20_dsc *dsc =
1084 		kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1085 
1086 	if (!dsc) {
1087 		BREAK_TO_DEBUGGER();
1088 		return NULL;
1089 	}
1090 
1091 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1092 	return &dsc->base;
1093 }
1094 
1095 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1096 {
1097 	kfree(container_of(*dsc, struct dcn20_dsc, base));
1098 	*dsc = NULL;
1099 }
1100 
1101 
1102 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1103 {
1104 	unsigned int i;
1105 
1106 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1107 		if (pool->base.stream_enc[i] != NULL) {
1108 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1109 			pool->base.stream_enc[i] = NULL;
1110 		}
1111 	}
1112 
1113 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1114 		if (pool->base.dscs[i] != NULL)
1115 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1116 	}
1117 
1118 	if (pool->base.mpc != NULL) {
1119 		kfree(TO_DCN20_MPC(pool->base.mpc));
1120 		pool->base.mpc = NULL;
1121 	}
1122 	if (pool->base.hubbub != NULL) {
1123 		kfree(pool->base.hubbub);
1124 		pool->base.hubbub = NULL;
1125 	}
1126 	for (i = 0; i < pool->base.pipe_count; i++) {
1127 		if (pool->base.dpps[i] != NULL)
1128 			dcn20_dpp_destroy(&pool->base.dpps[i]);
1129 
1130 		if (pool->base.ipps[i] != NULL)
1131 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1132 
1133 		if (pool->base.hubps[i] != NULL) {
1134 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1135 			pool->base.hubps[i] = NULL;
1136 		}
1137 
1138 		if (pool->base.irqs != NULL) {
1139 			dal_irq_service_destroy(&pool->base.irqs);
1140 		}
1141 	}
1142 
1143 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1144 		if (pool->base.engines[i] != NULL)
1145 			dce110_engine_destroy(&pool->base.engines[i]);
1146 		if (pool->base.hw_i2cs[i] != NULL) {
1147 			kfree(pool->base.hw_i2cs[i]);
1148 			pool->base.hw_i2cs[i] = NULL;
1149 		}
1150 		if (pool->base.sw_i2cs[i] != NULL) {
1151 			kfree(pool->base.sw_i2cs[i]);
1152 			pool->base.sw_i2cs[i] = NULL;
1153 		}
1154 	}
1155 
1156 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1157 		if (pool->base.opps[i] != NULL)
1158 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1159 	}
1160 
1161 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1162 		if (pool->base.timing_generators[i] != NULL)	{
1163 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1164 			pool->base.timing_generators[i] = NULL;
1165 		}
1166 	}
1167 
1168 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1169 		if (pool->base.dwbc[i] != NULL) {
1170 			kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1171 			pool->base.dwbc[i] = NULL;
1172 		}
1173 		if (pool->base.mcif_wb[i] != NULL) {
1174 			kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1175 			pool->base.mcif_wb[i] = NULL;
1176 		}
1177 	}
1178 
1179 	for (i = 0; i < pool->base.audio_count; i++) {
1180 		if (pool->base.audios[i])
1181 			dce_aud_destroy(&pool->base.audios[i]);
1182 	}
1183 
1184 	for (i = 0; i < pool->base.clk_src_count; i++) {
1185 		if (pool->base.clock_sources[i] != NULL) {
1186 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1187 			pool->base.clock_sources[i] = NULL;
1188 		}
1189 	}
1190 
1191 	if (pool->base.dp_clock_source != NULL) {
1192 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1193 		pool->base.dp_clock_source = NULL;
1194 	}
1195 
1196 
1197 	if (pool->base.abm != NULL)
1198 		dce_abm_destroy(&pool->base.abm);
1199 
1200 	if (pool->base.dmcu != NULL)
1201 		dce_dmcu_destroy(&pool->base.dmcu);
1202 
1203 	if (pool->base.dccg != NULL)
1204 		dcn_dccg_destroy(&pool->base.dccg);
1205 
1206 	if (pool->base.pp_smu != NULL)
1207 		dcn20_pp_smu_destroy(&pool->base.pp_smu);
1208 
1209 	if (pool->base.oem_device != NULL)
1210 		dal_ddc_service_destroy(&pool->base.oem_device);
1211 }
1212 
1213 struct hubp *dcn20_hubp_create(
1214 	struct dc_context *ctx,
1215 	uint32_t inst)
1216 {
1217 	struct dcn20_hubp *hubp2 =
1218 		kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1219 
1220 	if (!hubp2)
1221 		return NULL;
1222 
1223 	if (hubp2_construct(hubp2, ctx, inst,
1224 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1225 		return &hubp2->base;
1226 
1227 	BREAK_TO_DEBUGGER();
1228 	kfree(hubp2);
1229 	return NULL;
1230 }
1231 
1232 static void get_pixel_clock_parameters(
1233 	struct pipe_ctx *pipe_ctx,
1234 	struct pixel_clk_params *pixel_clk_params)
1235 {
1236 	const struct dc_stream_state *stream = pipe_ctx->stream;
1237 	struct pipe_ctx *odm_pipe;
1238 	int opp_cnt = 1;
1239 	struct dc_link *link = stream->link;
1240 	struct link_encoder *link_enc = NULL;
1241 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1242 	struct dce_hwseq *hws = dc->hwseq;
1243 
1244 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1245 		opp_cnt++;
1246 
1247 	pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1248 
1249 	link_enc = link_enc_cfg_get_link_enc(link);
1250 	if (link_enc)
1251 		pixel_clk_params->encoder_object_id = link_enc->id;
1252 
1253 	pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1254 	pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1255 	/* TODO: un-hardcode*/
1256 	/* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1257 	pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1258 		LINK_RATE_REF_FREQ_IN_KHZ;
1259 	pixel_clk_params->flags.ENABLE_SS = 0;
1260 	pixel_clk_params->color_depth =
1261 		stream->timing.display_color_depth;
1262 	pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1263 	pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1264 
1265 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1266 		pixel_clk_params->color_depth = COLOR_DEPTH_888;
1267 
1268 	if (opp_cnt == 4)
1269 		pixel_clk_params->requested_pix_clk_100hz /= 4;
1270 	else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1271 		pixel_clk_params->requested_pix_clk_100hz /= 2;
1272 	else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1273 		if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1274 			pixel_clk_params->requested_pix_clk_100hz /= 2;
1275 	}
1276 
1277 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1278 		pixel_clk_params->requested_pix_clk_100hz *= 2;
1279 
1280 }
1281 
1282 static void build_clamping_params(struct dc_stream_state *stream)
1283 {
1284 	stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1285 	stream->clamping.c_depth = stream->timing.display_color_depth;
1286 	stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1287 }
1288 
1289 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1290 {
1291 
1292 	get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1293 
1294 	pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1295 		pipe_ctx->clock_source,
1296 		&pipe_ctx->stream_res.pix_clk_params,
1297 		&pipe_ctx->pll_settings);
1298 
1299 	pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1300 
1301 	resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1302 					&pipe_ctx->stream->bit_depth_params);
1303 	build_clamping_params(pipe_ctx->stream);
1304 
1305 	return DC_OK;
1306 }
1307 
1308 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1309 {
1310 	enum dc_status status = DC_OK;
1311 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1312 
1313 	if (!pipe_ctx)
1314 		return DC_ERROR_UNEXPECTED;
1315 
1316 
1317 	status = build_pipe_hw_param(pipe_ctx);
1318 
1319 	return status;
1320 }
1321 
1322 
1323 void dcn20_acquire_dsc(const struct dc *dc,
1324 			struct resource_context *res_ctx,
1325 			struct display_stream_compressor **dsc,
1326 			int pipe_idx)
1327 {
1328 	int i;
1329 	const struct resource_pool *pool = dc->res_pool;
1330 	struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1331 
1332 	ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1333 	*dsc = NULL;
1334 
1335 	/* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1336 	if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1337 		*dsc = pool->dscs[pipe_idx];
1338 		res_ctx->is_dsc_acquired[pipe_idx] = true;
1339 		return;
1340 	}
1341 
1342 	/* Return old DSC to avoid the need for re-programming */
1343 	if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1344 		*dsc = dsc_old;
1345 		res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1346 		return ;
1347 	}
1348 
1349 	/* Find first free DSC */
1350 	for (i = 0; i < pool->res_cap->num_dsc; i++)
1351 		if (!res_ctx->is_dsc_acquired[i]) {
1352 			*dsc = pool->dscs[i];
1353 			res_ctx->is_dsc_acquired[i] = true;
1354 			break;
1355 		}
1356 }
1357 
1358 void dcn20_release_dsc(struct resource_context *res_ctx,
1359 			const struct resource_pool *pool,
1360 			struct display_stream_compressor **dsc)
1361 {
1362 	int i;
1363 
1364 	for (i = 0; i < pool->res_cap->num_dsc; i++)
1365 		if (pool->dscs[i] == *dsc) {
1366 			res_ctx->is_dsc_acquired[i] = false;
1367 			*dsc = NULL;
1368 			break;
1369 		}
1370 }
1371 
1372 
1373 
1374 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1375 		struct dc_state *dc_ctx,
1376 		struct dc_stream_state *dc_stream)
1377 {
1378 	enum dc_status result = DC_OK;
1379 	int i;
1380 
1381 	/* Get a DSC if required and available */
1382 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1383 		struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1384 
1385 		if (pipe_ctx->stream != dc_stream)
1386 			continue;
1387 
1388 		if (pipe_ctx->stream_res.dsc)
1389 			continue;
1390 
1391 		dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1392 
1393 		/* The number of DSCs can be less than the number of pipes */
1394 		if (!pipe_ctx->stream_res.dsc) {
1395 			result = DC_NO_DSC_RESOURCE;
1396 		}
1397 
1398 		break;
1399 	}
1400 
1401 	return result;
1402 }
1403 
1404 
1405 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1406 		struct dc_state *new_ctx,
1407 		struct dc_stream_state *dc_stream)
1408 {
1409 	struct pipe_ctx *pipe_ctx = NULL;
1410 	int i;
1411 
1412 	for (i = 0; i < MAX_PIPES; i++) {
1413 		if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1414 			pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1415 
1416 			if (pipe_ctx->stream_res.dsc)
1417 				dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1418 		}
1419 	}
1420 
1421 	if (!pipe_ctx)
1422 		return DC_ERROR_UNEXPECTED;
1423 	else
1424 		return DC_OK;
1425 }
1426 
1427 
1428 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1429 {
1430 	enum dc_status result = DC_ERROR_UNEXPECTED;
1431 
1432 	result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1433 
1434 	if (result == DC_OK)
1435 		result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1436 
1437 	/* Get a DSC if required and available */
1438 	if (result == DC_OK && dc_stream->timing.flags.DSC)
1439 		result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1440 
1441 	if (result == DC_OK)
1442 		result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1443 
1444 	return result;
1445 }
1446 
1447 
1448 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1449 {
1450 	enum dc_status result = DC_OK;
1451 
1452 	result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1453 
1454 	return result;
1455 }
1456 
1457 /**
1458  * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1459  *
1460  * @dc: DC object with resource pool info required for pipe split
1461  * @res_ctx: Persistent state of resources
1462  * @prev_odm_pipe: Reference to the previous ODM pipe
1463  * @next_odm_pipe: Reference to the next ODM pipe
1464  *
1465  * This function takes a logically active pipe and a logically free pipe and
1466  * halves all the scaling parameters that need to be halved while populating
1467  * the free pipe with the required resources and configuring the next/previous
1468  * ODM pipe pointers.
1469  *
1470  * Return:
1471  * Return true if split stream for ODM is possible, otherwise, return false.
1472  */
1473 bool dcn20_split_stream_for_odm(
1474 		const struct dc *dc,
1475 		struct resource_context *res_ctx,
1476 		struct pipe_ctx *prev_odm_pipe,
1477 		struct pipe_ctx *next_odm_pipe)
1478 {
1479 	int pipe_idx = next_odm_pipe->pipe_idx;
1480 	const struct resource_pool *pool = dc->res_pool;
1481 
1482 	*next_odm_pipe = *prev_odm_pipe;
1483 
1484 	next_odm_pipe->pipe_idx = pipe_idx;
1485 	next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1486 	next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1487 	next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1488 	next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1489 	next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1490 	next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1491 	next_odm_pipe->stream_res.dsc = NULL;
1492 	if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1493 		next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1494 		next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1495 	}
1496 	if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1497 		prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1498 		next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1499 	}
1500 	if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1501 		prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1502 		next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1503 	}
1504 	prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1505 	next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1506 
1507 	if (prev_odm_pipe->plane_state) {
1508 		struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1509 		int new_width;
1510 
1511 		/* HACTIVE halved for odm combine */
1512 		sd->h_active /= 2;
1513 		/* Calculate new vp and recout for left pipe */
1514 		/* Need at least 16 pixels width per side */
1515 		if (sd->recout.x + 16 >= sd->h_active)
1516 			return false;
1517 		new_width = sd->h_active - sd->recout.x;
1518 		sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1519 				sd->ratios.horz, sd->recout.width - new_width));
1520 		sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1521 				sd->ratios.horz_c, sd->recout.width - new_width));
1522 		sd->recout.width = new_width;
1523 
1524 		/* Calculate new vp and recout for right pipe */
1525 		sd = &next_odm_pipe->plane_res.scl_data;
1526 		/* HACTIVE halved for odm combine */
1527 		sd->h_active /= 2;
1528 		/* Need at least 16 pixels width per side */
1529 		if (new_width <= 16)
1530 			return false;
1531 		new_width = sd->recout.width + sd->recout.x - sd->h_active;
1532 		sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1533 				sd->ratios.horz, sd->recout.width - new_width));
1534 		sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1535 				sd->ratios.horz_c, sd->recout.width - new_width));
1536 		sd->recout.width = new_width;
1537 		sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1538 				sd->ratios.horz, sd->h_active - sd->recout.x));
1539 		sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1540 				sd->ratios.horz_c, sd->h_active - sd->recout.x));
1541 		sd->recout.x = 0;
1542 	}
1543 	if (!next_odm_pipe->top_pipe)
1544 		next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1545 	else
1546 		next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1547 	if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1548 		dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1549 		ASSERT(next_odm_pipe->stream_res.dsc);
1550 		if (next_odm_pipe->stream_res.dsc == NULL)
1551 			return false;
1552 	}
1553 
1554 	return true;
1555 }
1556 
1557 void dcn20_split_stream_for_mpc(
1558 		struct resource_context *res_ctx,
1559 		const struct resource_pool *pool,
1560 		struct pipe_ctx *primary_pipe,
1561 		struct pipe_ctx *secondary_pipe)
1562 {
1563 	int pipe_idx = secondary_pipe->pipe_idx;
1564 	struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1565 
1566 	*secondary_pipe = *primary_pipe;
1567 	secondary_pipe->bottom_pipe = sec_bot_pipe;
1568 
1569 	secondary_pipe->pipe_idx = pipe_idx;
1570 	secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1571 	secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1572 	secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1573 	secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1574 	secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1575 	secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1576 	secondary_pipe->stream_res.dsc = NULL;
1577 	if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1578 		ASSERT(!secondary_pipe->bottom_pipe);
1579 		secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1580 		secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1581 	}
1582 	primary_pipe->bottom_pipe = secondary_pipe;
1583 	secondary_pipe->top_pipe = primary_pipe;
1584 
1585 	ASSERT(primary_pipe->plane_state);
1586 }
1587 
1588 unsigned int dcn20_calc_max_scaled_time(
1589 		unsigned int time_per_pixel,
1590 		enum mmhubbub_wbif_mode mode,
1591 		unsigned int urgent_watermark)
1592 {
1593 	unsigned int time_per_byte = 0;
1594 	unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1595 	unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1596 	unsigned int small_free_entry, max_free_entry;
1597 	unsigned int buf_lh_capability;
1598 	unsigned int max_scaled_time;
1599 
1600 	if (mode == PACKED_444) /* packed mode */
1601 		time_per_byte = time_per_pixel/4;
1602 	else if (mode == PLANAR_420_8BPC)
1603 		time_per_byte  = time_per_pixel;
1604 	else if (mode == PLANAR_420_10BPC) /* p010 */
1605 		time_per_byte  = time_per_pixel * 819/1024;
1606 
1607 	if (time_per_byte == 0)
1608 		time_per_byte = 1;
1609 
1610 	small_free_entry  = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1611 	max_free_entry    = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1612 	buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1613 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1614 	return max_scaled_time;
1615 }
1616 
1617 void dcn20_set_mcif_arb_params(
1618 		struct dc *dc,
1619 		struct dc_state *context,
1620 		display_e2e_pipe_params_st *pipes,
1621 		int pipe_cnt)
1622 {
1623 	enum mmhubbub_wbif_mode wbif_mode;
1624 	struct mcif_arb_params *wb_arb_params;
1625 	int i, j, dwb_pipe;
1626 
1627 	/* Writeback MCIF_WB arbitration parameters */
1628 	dwb_pipe = 0;
1629 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1630 
1631 		if (!context->res_ctx.pipe_ctx[i].stream)
1632 			continue;
1633 
1634 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1635 			if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1636 				continue;
1637 
1638 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1639 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1640 
1641 			if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1642 				if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1643 					wbif_mode = PLANAR_420_8BPC;
1644 				else
1645 					wbif_mode = PLANAR_420_10BPC;
1646 			} else
1647 				wbif_mode = PACKED_444;
1648 
1649 			DC_FP_START();
1650 			dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1651 			DC_FP_END();
1652 
1653 			wb_arb_params->slice_lines = 32;
1654 			wb_arb_params->arbitration_slice = 2;
1655 			wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1656 				wbif_mode,
1657 				wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1658 
1659 			dwb_pipe++;
1660 
1661 			if (dwb_pipe >= MAX_DWB_PIPES)
1662 				return;
1663 		}
1664 		if (dwb_pipe >= MAX_DWB_PIPES)
1665 			return;
1666 	}
1667 }
1668 
1669 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1670 {
1671 	int i;
1672 
1673 	/* Validate DSC config, dsc count validation is already done */
1674 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1675 		struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1676 		struct dc_stream_state *stream = pipe_ctx->stream;
1677 		struct dsc_config dsc_cfg;
1678 		struct pipe_ctx *odm_pipe;
1679 		int opp_cnt = 1;
1680 
1681 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1682 			opp_cnt++;
1683 
1684 		/* Only need to validate top pipe */
1685 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1686 			continue;
1687 
1688 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1689 				+ stream->timing.h_border_right) / opp_cnt;
1690 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1691 				+ stream->timing.v_border_bottom;
1692 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1693 		dsc_cfg.color_depth = stream->timing.display_color_depth;
1694 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1695 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1696 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1697 
1698 		if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1699 			return false;
1700 	}
1701 	return true;
1702 }
1703 
1704 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1705 		struct resource_context *res_ctx,
1706 		const struct resource_pool *pool,
1707 		const struct pipe_ctx *primary_pipe)
1708 {
1709 	struct pipe_ctx *secondary_pipe = NULL;
1710 
1711 	if (dc && primary_pipe) {
1712 		int j;
1713 		int preferred_pipe_idx = 0;
1714 
1715 		/* first check the prev dc state:
1716 		 * if this primary pipe has a bottom pipe in prev. state
1717 		 * and if the bottom pipe is still available (which it should be),
1718 		 * pick that pipe as secondary
1719 		 * Same logic applies for ODM pipes
1720 		 */
1721 		if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1722 			preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1723 			if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1724 				secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1725 				secondary_pipe->pipe_idx = preferred_pipe_idx;
1726 			}
1727 		}
1728 		if (secondary_pipe == NULL &&
1729 				dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1730 			preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1731 			if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1732 				secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1733 				secondary_pipe->pipe_idx = preferred_pipe_idx;
1734 			}
1735 		}
1736 
1737 		/*
1738 		 * if this primary pipe does not have a bottom pipe in prev. state
1739 		 * start backward and find a pipe that did not used to be a bottom pipe in
1740 		 * prev. dc state. This way we make sure we keep the same assignment as
1741 		 * last state and will not have to reprogram every pipe
1742 		 */
1743 		if (secondary_pipe == NULL) {
1744 			for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1745 				if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1746 						&& dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1747 					preferred_pipe_idx = j;
1748 
1749 					if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1750 						secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1751 						secondary_pipe->pipe_idx = preferred_pipe_idx;
1752 						break;
1753 					}
1754 				}
1755 			}
1756 		}
1757 		/*
1758 		 * We should never hit this assert unless assignments are shuffled around
1759 		 * if this happens we will prob. hit a vsync tdr
1760 		 */
1761 		ASSERT(secondary_pipe);
1762 		/*
1763 		 * search backwards for the second pipe to keep pipe
1764 		 * assignment more consistent
1765 		 */
1766 		if (secondary_pipe == NULL) {
1767 			for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1768 				preferred_pipe_idx = j;
1769 
1770 				if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1771 					secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1772 					secondary_pipe->pipe_idx = preferred_pipe_idx;
1773 					break;
1774 				}
1775 			}
1776 		}
1777 	}
1778 
1779 	return secondary_pipe;
1780 }
1781 
1782 void dcn20_merge_pipes_for_validate(
1783 		struct dc *dc,
1784 		struct dc_state *context)
1785 {
1786 	int i;
1787 
1788 	/* merge previously split odm pipes since mode support needs to make the decision */
1789 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1790 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1791 		struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1792 
1793 		if (pipe->prev_odm_pipe)
1794 			continue;
1795 
1796 		pipe->next_odm_pipe = NULL;
1797 		while (odm_pipe) {
1798 			struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1799 
1800 			odm_pipe->plane_state = NULL;
1801 			odm_pipe->stream = NULL;
1802 			odm_pipe->top_pipe = NULL;
1803 			odm_pipe->bottom_pipe = NULL;
1804 			odm_pipe->prev_odm_pipe = NULL;
1805 			odm_pipe->next_odm_pipe = NULL;
1806 			if (odm_pipe->stream_res.dsc)
1807 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1808 			/* Clear plane_res and stream_res */
1809 			memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1810 			memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1811 			odm_pipe = next_odm_pipe;
1812 		}
1813 		if (pipe->plane_state)
1814 			resource_build_scaling_params(pipe);
1815 	}
1816 
1817 	/* merge previously mpc split pipes since mode support needs to make the decision */
1818 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1819 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1820 		struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1821 
1822 		if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1823 			continue;
1824 
1825 		pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1826 		if (hsplit_pipe->bottom_pipe)
1827 			hsplit_pipe->bottom_pipe->top_pipe = pipe;
1828 		hsplit_pipe->plane_state = NULL;
1829 		hsplit_pipe->stream = NULL;
1830 		hsplit_pipe->top_pipe = NULL;
1831 		hsplit_pipe->bottom_pipe = NULL;
1832 
1833 		/* Clear plane_res and stream_res */
1834 		memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1835 		memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1836 		if (pipe->plane_state)
1837 			resource_build_scaling_params(pipe);
1838 	}
1839 }
1840 
1841 int dcn20_validate_apply_pipe_split_flags(
1842 		struct dc *dc,
1843 		struct dc_state *context,
1844 		int vlevel,
1845 		int *split,
1846 		bool *merge)
1847 {
1848 	int i, pipe_idx, vlevel_split;
1849 	int plane_count = 0;
1850 	bool force_split = false;
1851 	bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1852 	struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1853 	int max_mpc_comb = v->maxMpcComb;
1854 
1855 	if (context->stream_count > 1) {
1856 		if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1857 			avoid_split = true;
1858 	} else if (dc->debug.force_single_disp_pipe_split)
1859 			force_split = true;
1860 
1861 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1862 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1863 
1864 		/**
1865 		 * Workaround for avoiding pipe-split in cases where we'd split
1866 		 * planes that are too small, resulting in splits that aren't
1867 		 * valid for the scaler.
1868 		 */
1869 		if (pipe->plane_state &&
1870 		    (pipe->plane_state->dst_rect.width <= 16 ||
1871 		     pipe->plane_state->dst_rect.height <= 16 ||
1872 		     pipe->plane_state->src_rect.width <= 16 ||
1873 		     pipe->plane_state->src_rect.height <= 16))
1874 			avoid_split = true;
1875 
1876 		/* TODO: fix dc bugs and remove this split threshold thing */
1877 		if (pipe->stream && !pipe->prev_odm_pipe &&
1878 				(!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1879 			++plane_count;
1880 	}
1881 	if (plane_count > dc->res_pool->pipe_count / 2)
1882 		avoid_split = true;
1883 
1884 	/* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1885 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1886 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1887 		struct dc_crtc_timing timing;
1888 
1889 		if (!pipe->stream)
1890 			continue;
1891 		else {
1892 			timing = pipe->stream->timing;
1893 			if (timing.h_border_left + timing.h_border_right
1894 					+ timing.v_border_top + timing.v_border_bottom > 0) {
1895 				avoid_split = true;
1896 				break;
1897 			}
1898 		}
1899 	}
1900 
1901 	/* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1902 	if (avoid_split) {
1903 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1904 			if (!context->res_ctx.pipe_ctx[i].stream)
1905 				continue;
1906 
1907 			for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1908 				if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1909 						v->ModeSupport[vlevel][0])
1910 					break;
1911 			/* Impossible to not split this pipe */
1912 			if (vlevel > context->bw_ctx.dml.soc.num_states)
1913 				vlevel = vlevel_split;
1914 			else
1915 				max_mpc_comb = 0;
1916 			pipe_idx++;
1917 		}
1918 		v->maxMpcComb = max_mpc_comb;
1919 	}
1920 
1921 	/* Split loop sets which pipe should be split based on dml outputs and dc flags */
1922 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1923 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1924 		int pipe_plane = v->pipe_plane[pipe_idx];
1925 		bool split4mpc = context->stream_count == 1 && plane_count == 1
1926 				&& dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1927 
1928 		if (!context->res_ctx.pipe_ctx[i].stream)
1929 			continue;
1930 
1931 		if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1932 			split[i] = 4;
1933 		else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1934 				split[i] = 2;
1935 
1936 		if ((pipe->stream->view_format ==
1937 				VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1938 				pipe->stream->view_format ==
1939 				VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1940 				(pipe->stream->timing.timing_3d_format ==
1941 				TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1942 				 pipe->stream->timing.timing_3d_format ==
1943 				TIMING_3D_FORMAT_SIDE_BY_SIDE))
1944 			split[i] = 2;
1945 		if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1946 			split[i] = 2;
1947 			v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1948 		}
1949 		if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1950 			split[i] = 4;
1951 			v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1952 		}
1953 		/*420 format workaround*/
1954 		if (pipe->stream->timing.h_addressable > 7680 &&
1955 				pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1956 			split[i] = 4;
1957 		}
1958 		v->ODMCombineEnabled[pipe_plane] =
1959 			v->ODMCombineEnablePerState[vlevel][pipe_plane];
1960 
1961 		if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1962 			if (get_num_mpc_splits(pipe) == 1) {
1963 				/*If need split for mpc but 2 way split already*/
1964 				if (split[i] == 4)
1965 					split[i] = 2; /* 2 -> 4 MPC */
1966 				else if (split[i] == 2)
1967 					split[i] = 0; /* 2 -> 2 MPC */
1968 				else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1969 					merge[i] = true; /* 2 -> 1 MPC */
1970 			} else if (get_num_mpc_splits(pipe) == 3) {
1971 				/*If need split for mpc but 4 way split already*/
1972 				if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1973 						|| !pipe->bottom_pipe)) {
1974 					merge[i] = true; /* 4 -> 2 MPC */
1975 				} else if (split[i] == 0 && pipe->top_pipe &&
1976 						pipe->top_pipe->plane_state == pipe->plane_state)
1977 					merge[i] = true; /* 4 -> 1 MPC */
1978 				split[i] = 0;
1979 			} else if (get_num_odm_splits(pipe)) {
1980 				/* ODM -> MPC transition */
1981 				if (pipe->prev_odm_pipe) {
1982 					split[i] = 0;
1983 					merge[i] = true;
1984 				}
1985 			}
1986 		} else {
1987 			if (get_num_odm_splits(pipe) == 1) {
1988 				/*If need split for odm but 2 way split already*/
1989 				if (split[i] == 4)
1990 					split[i] = 2; /* 2 -> 4 ODM */
1991 				else if (split[i] == 2)
1992 					split[i] = 0; /* 2 -> 2 ODM */
1993 				else if (pipe->prev_odm_pipe) {
1994 					ASSERT(0); /* NOT expected yet */
1995 					merge[i] = true; /* exit ODM */
1996 				}
1997 			} else if (get_num_odm_splits(pipe) == 3) {
1998 				/*If need split for odm but 4 way split already*/
1999 				if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
2000 						|| !pipe->next_odm_pipe)) {
2001 					merge[i] = true; /* 4 -> 2 ODM */
2002 				} else if (split[i] == 0 && pipe->prev_odm_pipe) {
2003 					ASSERT(0); /* NOT expected yet */
2004 					merge[i] = true; /* exit ODM */
2005 				}
2006 				split[i] = 0;
2007 			} else if (get_num_mpc_splits(pipe)) {
2008 				/* MPC -> ODM transition */
2009 				ASSERT(0); /* NOT expected yet */
2010 				if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2011 					split[i] = 0;
2012 					merge[i] = true;
2013 				}
2014 			}
2015 		}
2016 
2017 		/* Adjust dppclk when split is forced, do not bother with dispclk */
2018 		if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2019 			DC_FP_START();
2020 			dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2021 			DC_FP_END();
2022 		}
2023 		pipe_idx++;
2024 	}
2025 
2026 	return vlevel;
2027 }
2028 
2029 bool dcn20_fast_validate_bw(
2030 		struct dc *dc,
2031 		struct dc_state *context,
2032 		display_e2e_pipe_params_st *pipes,
2033 		int *pipe_cnt_out,
2034 		int *pipe_split_from,
2035 		int *vlevel_out,
2036 		bool fast_validate)
2037 {
2038 	bool out = false;
2039 	int split[MAX_PIPES] = { 0 };
2040 	int pipe_cnt, i, pipe_idx, vlevel;
2041 
2042 	ASSERT(pipes);
2043 	if (!pipes)
2044 		return false;
2045 
2046 	dcn20_merge_pipes_for_validate(dc, context);
2047 
2048 	DC_FP_START();
2049 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2050 	DC_FP_END();
2051 
2052 	*pipe_cnt_out = pipe_cnt;
2053 
2054 	if (!pipe_cnt) {
2055 		out = true;
2056 		goto validate_out;
2057 	}
2058 
2059 	vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2060 
2061 	if (vlevel > context->bw_ctx.dml.soc.num_states)
2062 		goto validate_fail;
2063 
2064 	vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2065 
2066 	/*initialize pipe_just_split_from to invalid idx*/
2067 	for (i = 0; i < MAX_PIPES; i++)
2068 		pipe_split_from[i] = -1;
2069 
2070 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2071 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2072 		struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2073 
2074 		if (!pipe->stream || pipe_split_from[i] >= 0)
2075 			continue;
2076 
2077 		pipe_idx++;
2078 
2079 		if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2080 			hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2081 			ASSERT(hsplit_pipe);
2082 			if (!dcn20_split_stream_for_odm(
2083 					dc, &context->res_ctx,
2084 					pipe, hsplit_pipe))
2085 				goto validate_fail;
2086 			pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2087 			dcn20_build_mapped_resource(dc, context, pipe->stream);
2088 		}
2089 
2090 		if (!pipe->plane_state)
2091 			continue;
2092 		/* Skip 2nd half of already split pipe */
2093 		if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2094 			continue;
2095 
2096 		/* We do not support mpo + odm at the moment */
2097 		if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2098 				&& context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2099 			goto validate_fail;
2100 
2101 		if (split[i] == 2) {
2102 			if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2103 				/* pipe not split previously needs split */
2104 				hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2105 				ASSERT(hsplit_pipe);
2106 				if (!hsplit_pipe) {
2107 					DC_FP_START();
2108 					dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2109 					DC_FP_END();
2110 					continue;
2111 				}
2112 				if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2113 					if (!dcn20_split_stream_for_odm(
2114 							dc, &context->res_ctx,
2115 							pipe, hsplit_pipe))
2116 						goto validate_fail;
2117 					dcn20_build_mapped_resource(dc, context, pipe->stream);
2118 				} else {
2119 					dcn20_split_stream_for_mpc(
2120 							&context->res_ctx, dc->res_pool,
2121 							pipe, hsplit_pipe);
2122 					resource_build_scaling_params(pipe);
2123 					resource_build_scaling_params(hsplit_pipe);
2124 				}
2125 				pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2126 			}
2127 		} else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2128 			/* merge should already have been done */
2129 			ASSERT(0);
2130 		}
2131 	}
2132 	/* Actual dsc count per stream dsc validation*/
2133 	if (!dcn20_validate_dsc(dc, context)) {
2134 		context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2135 				DML_FAIL_DSC_VALIDATION_FAILURE;
2136 		goto validate_fail;
2137 	}
2138 
2139 	*vlevel_out = vlevel;
2140 
2141 	out = true;
2142 	goto validate_out;
2143 
2144 validate_fail:
2145 	out = false;
2146 
2147 validate_out:
2148 	return out;
2149 }
2150 
2151 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2152 		bool fast_validate)
2153 {
2154 	bool voltage_supported;
2155 	DC_FP_START();
2156 	voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
2157 	DC_FP_END();
2158 	return voltage_supported;
2159 }
2160 
2161 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
2162 		struct dc_state *state,
2163 		const struct resource_pool *pool,
2164 		struct dc_stream_state *stream)
2165 {
2166 	struct resource_context *res_ctx = &state->res_ctx;
2167 	struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
2168 	struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
2169 
2170 	if (!head_pipe)
2171 		ASSERT(0);
2172 
2173 	if (!idle_pipe)
2174 		return NULL;
2175 
2176 	idle_pipe->stream = head_pipe->stream;
2177 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2178 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2179 
2180 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2181 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2182 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2183 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2184 
2185 	return idle_pipe;
2186 }
2187 
2188 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2189 		const struct dc_dcc_surface_param *input,
2190 		struct dc_surface_dcc_cap *output)
2191 {
2192 	return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2193 			dc->res_pool->hubbub,
2194 			input,
2195 			output);
2196 }
2197 
2198 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2199 {
2200 	struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2201 
2202 	dcn20_resource_destruct(dcn20_pool);
2203 	kfree(dcn20_pool);
2204 	*pool = NULL;
2205 }
2206 
2207 
2208 static struct dc_cap_funcs cap_funcs = {
2209 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2210 };
2211 
2212 
2213 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2214 {
2215 	enum surface_pixel_format surf_pix_format = plane_state->format;
2216 	unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2217 
2218 	enum swizzle_mode_values swizzle = DC_SW_LINEAR;
2219 
2220 	if (bpp == 64)
2221 		swizzle = DC_SW_64KB_D;
2222 	else
2223 		swizzle = DC_SW_64KB_S;
2224 
2225 	plane_state->tiling_info.gfx9.swizzle = swizzle;
2226 	return DC_OK;
2227 }
2228 
2229 static const struct resource_funcs dcn20_res_pool_funcs = {
2230 	.destroy = dcn20_destroy_resource_pool,
2231 	.link_enc_create = dcn20_link_encoder_create,
2232 	.panel_cntl_create = dcn20_panel_cntl_create,
2233 	.validate_bandwidth = dcn20_validate_bandwidth,
2234 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2235 	.add_stream_to_ctx = dcn20_add_stream_to_ctx,
2236 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2237 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2238 	.populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2239 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2240 	.set_mcif_arb_params = dcn20_set_mcif_arb_params,
2241 	.populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2242 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2243 };
2244 
2245 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2246 {
2247 	int i;
2248 	uint32_t pipe_count = pool->res_cap->num_dwb;
2249 
2250 	for (i = 0; i < pipe_count; i++) {
2251 		struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2252 						    GFP_KERNEL);
2253 
2254 		if (!dwbc20) {
2255 			dm_error("DC: failed to create dwbc20!\n");
2256 			return false;
2257 		}
2258 		dcn20_dwbc_construct(dwbc20, ctx,
2259 				&dwbc20_regs[i],
2260 				&dwbc20_shift,
2261 				&dwbc20_mask,
2262 				i);
2263 		pool->dwbc[i] = &dwbc20->base;
2264 	}
2265 	return true;
2266 }
2267 
2268 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2269 {
2270 	int i;
2271 	uint32_t pipe_count = pool->res_cap->num_dwb;
2272 
2273 	ASSERT(pipe_count > 0);
2274 
2275 	for (i = 0; i < pipe_count; i++) {
2276 		struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2277 						    GFP_KERNEL);
2278 
2279 		if (!mcif_wb20) {
2280 			dm_error("DC: failed to create mcif_wb20!\n");
2281 			return false;
2282 		}
2283 
2284 		dcn20_mmhubbub_construct(mcif_wb20, ctx,
2285 				&mcif_wb20_regs[i],
2286 				&mcif_wb20_shift,
2287 				&mcif_wb20_mask,
2288 				i);
2289 
2290 		pool->mcif_wb[i] = &mcif_wb20->base;
2291 	}
2292 	return true;
2293 }
2294 
2295 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2296 {
2297 	struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2298 
2299 	if (!pp_smu)
2300 		return pp_smu;
2301 
2302 	dm_pp_get_funcs(ctx, pp_smu);
2303 
2304 	if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2305 		pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2306 
2307 	return pp_smu;
2308 }
2309 
2310 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2311 {
2312 	if (pp_smu && *pp_smu) {
2313 		kfree(*pp_smu);
2314 		*pp_smu = NULL;
2315 	}
2316 }
2317 
2318 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2319 	uint32_t hw_internal_rev)
2320 {
2321 	if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2322 		return &dcn2_0_nv14_soc;
2323 
2324 	if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2325 		return &dcn2_0_nv12_soc;
2326 
2327 	return &dcn2_0_soc;
2328 }
2329 
2330 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2331 	uint32_t hw_internal_rev)
2332 {
2333 	/* NV14 */
2334 	if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2335 		return &dcn2_0_nv14_ip;
2336 
2337 	/* NV12 and NV10 */
2338 	return &dcn2_0_ip;
2339 }
2340 
2341 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2342 {
2343 	return DML_PROJECT_NAVI10v2;
2344 }
2345 
2346 static bool init_soc_bounding_box(struct dc *dc,
2347 				  struct dcn20_resource_pool *pool)
2348 {
2349 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2350 			get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2351 	struct _vcs_dpi_ip_params_st *loaded_ip =
2352 			get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2353 
2354 	DC_LOGGER_INIT(dc->ctx->logger);
2355 
2356 	if (pool->base.pp_smu) {
2357 		struct pp_smu_nv_clock_table max_clocks = {0};
2358 		unsigned int uclk_states[8] = {0};
2359 		unsigned int num_states = 0;
2360 		enum pp_smu_status status;
2361 		bool clock_limits_available = false;
2362 		bool uclk_states_available = false;
2363 
2364 		if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2365 			status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2366 				(&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2367 
2368 			uclk_states_available = (status == PP_SMU_RESULT_OK);
2369 		}
2370 
2371 		if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2372 			status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2373 					(&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2374 			/* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2375 			 */
2376 			if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2377 				max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2378 			clock_limits_available = (status == PP_SMU_RESULT_OK);
2379 		}
2380 
2381 		if (clock_limits_available && uclk_states_available && num_states) {
2382 			DC_FP_START();
2383 			dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2384 			DC_FP_END();
2385 		} else if (clock_limits_available) {
2386 			DC_FP_START();
2387 			dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2388 			DC_FP_END();
2389 		}
2390 	}
2391 
2392 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2393 	loaded_ip->max_num_dpp = pool->base.pipe_count;
2394 	DC_FP_START();
2395 	dcn20_patch_bounding_box(dc, loaded_bb);
2396 	DC_FP_END();
2397 	return true;
2398 }
2399 
2400 static bool dcn20_resource_construct(
2401 	uint8_t num_virtual_links,
2402 	struct dc *dc,
2403 	struct dcn20_resource_pool *pool)
2404 {
2405 	int i;
2406 	struct dc_context *ctx = dc->ctx;
2407 	struct irq_service_init_data init_data;
2408 	struct ddc_service_init_data ddc_init_data = {0};
2409 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2410 			get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2411 	struct _vcs_dpi_ip_params_st *loaded_ip =
2412 			get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2413 	enum dml_project dml_project_version =
2414 			get_dml_project_version(ctx->asic_id.hw_internal_rev);
2415 
2416 	ctx->dc_bios->regs = &bios_regs;
2417 	pool->base.funcs = &dcn20_res_pool_funcs;
2418 
2419 	if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2420 		pool->base.res_cap = &res_cap_nv14;
2421 		pool->base.pipe_count = 5;
2422 		pool->base.mpcc_count = 5;
2423 	} else {
2424 		pool->base.res_cap = &res_cap_nv10;
2425 		pool->base.pipe_count = 6;
2426 		pool->base.mpcc_count = 6;
2427 	}
2428 	/*************************************************
2429 	 *  Resource + asic cap harcoding                *
2430 	 *************************************************/
2431 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2432 
2433 	dc->caps.max_downscale_ratio = 200;
2434 	dc->caps.i2c_speed_in_khz = 100;
2435 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2436 	dc->caps.max_cursor_size = 256;
2437 	dc->caps.min_horizontal_blanking_period = 80;
2438 	dc->caps.dmdata_alloc_size = 2048;
2439 
2440 	dc->caps.max_slave_planes = 1;
2441 	dc->caps.max_slave_yuv_planes = 1;
2442 	dc->caps.max_slave_rgb_planes = 1;
2443 	dc->caps.post_blend_color_processing = true;
2444 	dc->caps.force_dp_tps4_for_cp2520 = true;
2445 	dc->caps.extended_aux_timeout_support = true;
2446 
2447 	/* Color pipeline capabilities */
2448 	dc->caps.color.dpp.dcn_arch = 1;
2449 	dc->caps.color.dpp.input_lut_shared = 0;
2450 	dc->caps.color.dpp.icsc = 1;
2451 	dc->caps.color.dpp.dgam_ram = 1;
2452 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2453 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2454 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2455 	dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2456 	dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2457 	dc->caps.color.dpp.post_csc = 0;
2458 	dc->caps.color.dpp.gamma_corr = 0;
2459 	dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2460 
2461 	dc->caps.color.dpp.hw_3d_lut = 1;
2462 	dc->caps.color.dpp.ogam_ram = 1;
2463 	// no OGAM ROM on DCN2, only MPC ROM
2464 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2465 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2466 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2467 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2468 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2469 	dc->caps.color.dpp.ocsc = 0;
2470 
2471 	dc->caps.color.mpc.gamut_remap = 0;
2472 	dc->caps.color.mpc.num_3dluts = 0;
2473 	dc->caps.color.mpc.shared_3d_lut = 0;
2474 	dc->caps.color.mpc.ogam_ram = 1;
2475 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2476 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2477 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2478 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2479 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2480 	dc->caps.color.mpc.ocsc = 1;
2481 
2482 	dc->caps.dp_hdmi21_pcon_support = true;
2483 
2484 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) {
2485 		dc->debug = debug_defaults_drv;
2486 	} else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2487 		pool->base.pipe_count = 4;
2488 		pool->base.mpcc_count = pool->base.pipe_count;
2489 		dc->debug = debug_defaults_diags;
2490 	} else {
2491 		dc->debug = debug_defaults_diags;
2492 	}
2493 	//dcn2.0x
2494 	dc->work_arounds.dedcn20_305_wa = true;
2495 
2496 	// Init the vm_helper
2497 	if (dc->vm_helper)
2498 		vm_helper_init(dc->vm_helper, 16);
2499 
2500 	/*************************************************
2501 	 *  Create resources                             *
2502 	 *************************************************/
2503 
2504 	pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2505 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2506 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2507 				&clk_src_regs[0], false);
2508 	pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2509 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2510 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2511 				&clk_src_regs[1], false);
2512 	pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2513 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2514 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2515 				&clk_src_regs[2], false);
2516 	pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2517 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2518 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2519 				&clk_src_regs[3], false);
2520 	pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2521 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2522 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2523 				&clk_src_regs[4], false);
2524 	pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2525 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2526 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2527 				&clk_src_regs[5], false);
2528 	pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2529 	/* todo: not reuse phy_pll registers */
2530 	pool->base.dp_clock_source =
2531 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2532 				CLOCK_SOURCE_ID_DP_DTO,
2533 				&clk_src_regs[0], true);
2534 
2535 	for (i = 0; i < pool->base.clk_src_count; i++) {
2536 		if (pool->base.clock_sources[i] == NULL) {
2537 			dm_error("DC: failed to create clock sources!\n");
2538 			BREAK_TO_DEBUGGER();
2539 			goto create_fail;
2540 		}
2541 	}
2542 
2543 	pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2544 	if (pool->base.dccg == NULL) {
2545 		dm_error("DC: failed to create dccg!\n");
2546 		BREAK_TO_DEBUGGER();
2547 		goto create_fail;
2548 	}
2549 
2550 	pool->base.dmcu = dcn20_dmcu_create(ctx,
2551 			&dmcu_regs,
2552 			&dmcu_shift,
2553 			&dmcu_mask);
2554 	if (pool->base.dmcu == NULL) {
2555 		dm_error("DC: failed to create dmcu!\n");
2556 		BREAK_TO_DEBUGGER();
2557 		goto create_fail;
2558 	}
2559 
2560 	pool->base.abm = dce_abm_create(ctx,
2561 			&abm_regs,
2562 			&abm_shift,
2563 			&abm_mask);
2564 	if (pool->base.abm == NULL) {
2565 		dm_error("DC: failed to create abm!\n");
2566 		BREAK_TO_DEBUGGER();
2567 		goto create_fail;
2568 	}
2569 
2570 	pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2571 
2572 
2573 	if (!init_soc_bounding_box(dc, pool)) {
2574 		dm_error("DC: failed to initialize soc bounding box!\n");
2575 		BREAK_TO_DEBUGGER();
2576 		goto create_fail;
2577 	}
2578 
2579 	dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2580 
2581 	if (!dc->debug.disable_pplib_wm_range) {
2582 		struct pp_smu_wm_range_sets ranges = {0};
2583 		int i = 0;
2584 
2585 		ranges.num_reader_wm_sets = 0;
2586 
2587 		if (loaded_bb->num_states == 1) {
2588 			ranges.reader_wm_sets[0].wm_inst = i;
2589 			ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2590 			ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2591 			ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2592 			ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2593 
2594 			ranges.num_reader_wm_sets = 1;
2595 		} else if (loaded_bb->num_states > 1) {
2596 			for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2597 				ranges.reader_wm_sets[i].wm_inst = i;
2598 				ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2599 				ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2600 				DC_FP_START();
2601 				dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2602 				DC_FP_END();
2603 
2604 				ranges.num_reader_wm_sets = i + 1;
2605 			}
2606 
2607 			ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2608 			ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2609 		}
2610 
2611 		ranges.num_writer_wm_sets = 1;
2612 
2613 		ranges.writer_wm_sets[0].wm_inst = 0;
2614 		ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2615 		ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2616 		ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2617 		ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2618 
2619 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2620 		if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2621 			pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2622 	}
2623 
2624 	init_data.ctx = dc->ctx;
2625 	pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2626 	if (!pool->base.irqs)
2627 		goto create_fail;
2628 
2629 	/* mem input -> ipp -> dpp -> opp -> TG */
2630 	for (i = 0; i < pool->base.pipe_count; i++) {
2631 		pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2632 		if (pool->base.hubps[i] == NULL) {
2633 			BREAK_TO_DEBUGGER();
2634 			dm_error(
2635 				"DC: failed to create memory input!\n");
2636 			goto create_fail;
2637 		}
2638 
2639 		pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2640 		if (pool->base.ipps[i] == NULL) {
2641 			BREAK_TO_DEBUGGER();
2642 			dm_error(
2643 				"DC: failed to create input pixel processor!\n");
2644 			goto create_fail;
2645 		}
2646 
2647 		pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2648 		if (pool->base.dpps[i] == NULL) {
2649 			BREAK_TO_DEBUGGER();
2650 			dm_error(
2651 				"DC: failed to create dpps!\n");
2652 			goto create_fail;
2653 		}
2654 	}
2655 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2656 		pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2657 		if (pool->base.engines[i] == NULL) {
2658 			BREAK_TO_DEBUGGER();
2659 			dm_error(
2660 				"DC:failed to create aux engine!!\n");
2661 			goto create_fail;
2662 		}
2663 		pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2664 		if (pool->base.hw_i2cs[i] == NULL) {
2665 			BREAK_TO_DEBUGGER();
2666 			dm_error(
2667 				"DC:failed to create hw i2c!!\n");
2668 			goto create_fail;
2669 		}
2670 		pool->base.sw_i2cs[i] = NULL;
2671 	}
2672 
2673 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2674 		pool->base.opps[i] = dcn20_opp_create(ctx, i);
2675 		if (pool->base.opps[i] == NULL) {
2676 			BREAK_TO_DEBUGGER();
2677 			dm_error(
2678 				"DC: failed to create output pixel processor!\n");
2679 			goto create_fail;
2680 		}
2681 	}
2682 
2683 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2684 		pool->base.timing_generators[i] = dcn20_timing_generator_create(
2685 				ctx, i);
2686 		if (pool->base.timing_generators[i] == NULL) {
2687 			BREAK_TO_DEBUGGER();
2688 			dm_error("DC: failed to create tg!\n");
2689 			goto create_fail;
2690 		}
2691 	}
2692 
2693 	pool->base.timing_generator_count = i;
2694 
2695 	pool->base.mpc = dcn20_mpc_create(ctx);
2696 	if (pool->base.mpc == NULL) {
2697 		BREAK_TO_DEBUGGER();
2698 		dm_error("DC: failed to create mpc!\n");
2699 		goto create_fail;
2700 	}
2701 
2702 	pool->base.hubbub = dcn20_hubbub_create(ctx);
2703 	if (pool->base.hubbub == NULL) {
2704 		BREAK_TO_DEBUGGER();
2705 		dm_error("DC: failed to create hubbub!\n");
2706 		goto create_fail;
2707 	}
2708 
2709 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2710 		pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2711 		if (pool->base.dscs[i] == NULL) {
2712 			BREAK_TO_DEBUGGER();
2713 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2714 			goto create_fail;
2715 		}
2716 	}
2717 
2718 	if (!dcn20_dwbc_create(ctx, &pool->base)) {
2719 		BREAK_TO_DEBUGGER();
2720 		dm_error("DC: failed to create dwbc!\n");
2721 		goto create_fail;
2722 	}
2723 	if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2724 		BREAK_TO_DEBUGGER();
2725 		dm_error("DC: failed to create mcif_wb!\n");
2726 		goto create_fail;
2727 	}
2728 
2729 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2730 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2731 			&res_create_funcs : &res_create_maximus_funcs)))
2732 			goto create_fail;
2733 
2734 	dcn20_hw_sequencer_construct(dc);
2735 
2736 	// IF NV12, set PG function pointer to NULL. It's not that
2737 	// PG isn't supported for NV12, it's that we don't want to
2738 	// program the registers because that will cause more power
2739 	// to be consumed. We could have created dcn20_init_hw to get
2740 	// the same effect by checking ASIC rev, but there was a
2741 	// request at some point to not check ASIC rev on hw sequencer.
2742 	if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2743 		dc->hwseq->funcs.enable_power_gating_plane = NULL;
2744 		dc->debug.disable_dpp_power_gate = true;
2745 		dc->debug.disable_hubp_power_gate = true;
2746 	}
2747 
2748 
2749 	dc->caps.max_planes =  pool->base.pipe_count;
2750 
2751 	for (i = 0; i < dc->caps.max_planes; ++i)
2752 		dc->caps.planes[i] = plane_cap;
2753 
2754 	dc->cap_funcs = cap_funcs;
2755 
2756 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2757 		ddc_init_data.ctx = dc->ctx;
2758 		ddc_init_data.link = NULL;
2759 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2760 		ddc_init_data.id.enum_id = 0;
2761 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2762 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2763 	} else {
2764 		pool->base.oem_device = NULL;
2765 	}
2766 
2767 	return true;
2768 
2769 create_fail:
2770 
2771 	dcn20_resource_destruct(pool);
2772 
2773 	return false;
2774 }
2775 
2776 struct resource_pool *dcn20_create_resource_pool(
2777 		const struct dc_init_data *init_data,
2778 		struct dc *dc)
2779 {
2780 	struct dcn20_resource_pool *pool =
2781 		kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2782 
2783 	if (!pool)
2784 		return NULL;
2785 
2786 	if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2787 		return &pool->base;
2788 
2789 	BREAK_TO_DEBUGGER();
2790 	kfree(pool);
2791 	return NULL;
2792 }
2793