1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * Copyright 2019 Raptor Engineering, LLC 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include <linux/slab.h> 28 29 #include "dm_services.h" 30 #include "dc.h" 31 32 #include "dcn20_init.h" 33 34 #include "resource.h" 35 #include "include/irq_service_interface.h" 36 #include "dcn20/dcn20_resource.h" 37 38 #include "dml/dcn20/dcn20_fpu.h" 39 40 #include "dcn10/dcn10_hubp.h" 41 #include "dcn10/dcn10_ipp.h" 42 #include "dcn20_hubbub.h" 43 #include "dcn20_mpc.h" 44 #include "dcn20_hubp.h" 45 #include "irq/dcn20/irq_service_dcn20.h" 46 #include "dcn20_dpp.h" 47 #include "dcn20_optc.h" 48 #include "dcn20_hwseq.h" 49 #include "dce110/dce110_hw_sequencer.h" 50 #include "dcn10/dcn10_resource.h" 51 #include "dcn20_opp.h" 52 53 #include "dcn20_dsc.h" 54 55 #include "dcn20_link_encoder.h" 56 #include "dcn20_stream_encoder.h" 57 #include "dce/dce_clock_source.h" 58 #include "dce/dce_audio.h" 59 #include "dce/dce_hwseq.h" 60 #include "virtual/virtual_stream_encoder.h" 61 #include "dce110/dce110_resource.h" 62 #include "dml/display_mode_vba.h" 63 #include "dcn20_dccg.h" 64 #include "dcn20_vmid.h" 65 #include "dc_link_ddc.h" 66 #include "dce/dce_panel_cntl.h" 67 68 #include "navi10_ip_offset.h" 69 70 #include "dcn/dcn_2_0_0_offset.h" 71 #include "dcn/dcn_2_0_0_sh_mask.h" 72 #include "dpcs/dpcs_2_0_0_offset.h" 73 #include "dpcs/dpcs_2_0_0_sh_mask.h" 74 75 #include "nbio/nbio_2_3_offset.h" 76 77 #include "dcn20/dcn20_dwb.h" 78 #include "dcn20/dcn20_mmhubbub.h" 79 80 #include "mmhub/mmhub_2_0_0_offset.h" 81 #include "mmhub/mmhub_2_0_0_sh_mask.h" 82 83 #include "reg_helper.h" 84 #include "dce/dce_abm.h" 85 #include "dce/dce_dmcu.h" 86 #include "dce/dce_aux.h" 87 #include "dce/dce_i2c.h" 88 #include "vm_helper.h" 89 #include "link_enc_cfg.h" 90 91 #include "amdgpu_socbb.h" 92 93 #define DC_LOGGER_INIT(logger) 94 95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL 96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f 97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f 99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f 101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f 103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f 105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f 107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f 109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 110 #endif 111 112 113 enum dcn20_clk_src_array_id { 114 DCN20_CLK_SRC_PLL0, 115 DCN20_CLK_SRC_PLL1, 116 DCN20_CLK_SRC_PLL2, 117 DCN20_CLK_SRC_PLL3, 118 DCN20_CLK_SRC_PLL4, 119 DCN20_CLK_SRC_PLL5, 120 DCN20_CLK_SRC_TOTAL 121 }; 122 123 /* begin ********************* 124 * macros to expend register list macro defined in HW object header file */ 125 126 /* DCN */ 127 /* TODO awful hack. fixup dcn20_dwb.h */ 128 #undef BASE_INNER 129 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 130 131 #define BASE(seg) BASE_INNER(seg) 132 133 #define SR(reg_name)\ 134 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 135 mm ## reg_name 136 137 #define SRI(reg_name, block, id)\ 138 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 139 mm ## block ## id ## _ ## reg_name 140 141 #define SRIR(var_name, reg_name, block, id)\ 142 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 143 mm ## block ## id ## _ ## reg_name 144 145 #define SRII(reg_name, block, id)\ 146 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 147 mm ## block ## id ## _ ## reg_name 148 149 #define DCCG_SRII(reg_name, block, id)\ 150 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 151 mm ## block ## id ## _ ## reg_name 152 153 #define VUPDATE_SRII(reg_name, block, id)\ 154 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 155 mm ## reg_name ## _ ## block ## id 156 157 /* NBIO */ 158 #define NBIO_BASE_INNER(seg) \ 159 NBIO_BASE__INST0_SEG ## seg 160 161 #define NBIO_BASE(seg) \ 162 NBIO_BASE_INNER(seg) 163 164 #define NBIO_SR(reg_name)\ 165 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 166 mm ## reg_name 167 168 /* MMHUB */ 169 #define MMHUB_BASE_INNER(seg) \ 170 MMHUB_BASE__INST0_SEG ## seg 171 172 #define MMHUB_BASE(seg) \ 173 MMHUB_BASE_INNER(seg) 174 175 #define MMHUB_SR(reg_name)\ 176 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 177 mmMM ## reg_name 178 179 static const struct bios_registers bios_regs = { 180 NBIO_SR(BIOS_SCRATCH_3), 181 NBIO_SR(BIOS_SCRATCH_6) 182 }; 183 184 #define clk_src_regs(index, pllid)\ 185 [index] = {\ 186 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 187 } 188 189 static const struct dce110_clk_src_regs clk_src_regs[] = { 190 clk_src_regs(0, A), 191 clk_src_regs(1, B), 192 clk_src_regs(2, C), 193 clk_src_regs(3, D), 194 clk_src_regs(4, E), 195 clk_src_regs(5, F) 196 }; 197 198 static const struct dce110_clk_src_shift cs_shift = { 199 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 200 }; 201 202 static const struct dce110_clk_src_mask cs_mask = { 203 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 204 }; 205 206 static const struct dce_dmcu_registers dmcu_regs = { 207 DMCU_DCN10_REG_LIST() 208 }; 209 210 static const struct dce_dmcu_shift dmcu_shift = { 211 DMCU_MASK_SH_LIST_DCN10(__SHIFT) 212 }; 213 214 static const struct dce_dmcu_mask dmcu_mask = { 215 DMCU_MASK_SH_LIST_DCN10(_MASK) 216 }; 217 218 static const struct dce_abm_registers abm_regs = { 219 ABM_DCN20_REG_LIST() 220 }; 221 222 static const struct dce_abm_shift abm_shift = { 223 ABM_MASK_SH_LIST_DCN20(__SHIFT) 224 }; 225 226 static const struct dce_abm_mask abm_mask = { 227 ABM_MASK_SH_LIST_DCN20(_MASK) 228 }; 229 230 #define audio_regs(id)\ 231 [id] = {\ 232 AUD_COMMON_REG_LIST(id)\ 233 } 234 235 static const struct dce_audio_registers audio_regs[] = { 236 audio_regs(0), 237 audio_regs(1), 238 audio_regs(2), 239 audio_regs(3), 240 audio_regs(4), 241 audio_regs(5), 242 audio_regs(6), 243 }; 244 245 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 246 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 247 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 248 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 249 250 static const struct dce_audio_shift audio_shift = { 251 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 252 }; 253 254 static const struct dce_audio_mask audio_mask = { 255 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 256 }; 257 258 #define stream_enc_regs(id)\ 259 [id] = {\ 260 SE_DCN2_REG_LIST(id)\ 261 } 262 263 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 264 stream_enc_regs(0), 265 stream_enc_regs(1), 266 stream_enc_regs(2), 267 stream_enc_regs(3), 268 stream_enc_regs(4), 269 stream_enc_regs(5), 270 }; 271 272 static const struct dcn10_stream_encoder_shift se_shift = { 273 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) 274 }; 275 276 static const struct dcn10_stream_encoder_mask se_mask = { 277 SE_COMMON_MASK_SH_LIST_DCN20(_MASK) 278 }; 279 280 281 #define aux_regs(id)\ 282 [id] = {\ 283 DCN2_AUX_REG_LIST(id)\ 284 } 285 286 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 287 aux_regs(0), 288 aux_regs(1), 289 aux_regs(2), 290 aux_regs(3), 291 aux_regs(4), 292 aux_regs(5) 293 }; 294 295 #define hpd_regs(id)\ 296 [id] = {\ 297 HPD_REG_LIST(id)\ 298 } 299 300 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 301 hpd_regs(0), 302 hpd_regs(1), 303 hpd_regs(2), 304 hpd_regs(3), 305 hpd_regs(4), 306 hpd_regs(5) 307 }; 308 309 #define link_regs(id, phyid)\ 310 [id] = {\ 311 LE_DCN10_REG_LIST(id), \ 312 UNIPHY_DCN2_REG_LIST(phyid), \ 313 DPCS_DCN2_REG_LIST(id), \ 314 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 315 } 316 317 static const struct dcn10_link_enc_registers link_enc_regs[] = { 318 link_regs(0, A), 319 link_regs(1, B), 320 link_regs(2, C), 321 link_regs(3, D), 322 link_regs(4, E), 323 link_regs(5, F) 324 }; 325 326 static const struct dcn10_link_enc_shift le_shift = { 327 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ 328 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 329 }; 330 331 static const struct dcn10_link_enc_mask le_mask = { 332 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ 333 DPCS_DCN2_MASK_SH_LIST(_MASK) 334 }; 335 336 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 337 { DCN_PANEL_CNTL_REG_LIST() } 338 }; 339 340 static const struct dce_panel_cntl_shift panel_cntl_shift = { 341 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 342 }; 343 344 static const struct dce_panel_cntl_mask panel_cntl_mask = { 345 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 346 }; 347 348 #define ipp_regs(id)\ 349 [id] = {\ 350 IPP_REG_LIST_DCN20(id),\ 351 } 352 353 static const struct dcn10_ipp_registers ipp_regs[] = { 354 ipp_regs(0), 355 ipp_regs(1), 356 ipp_regs(2), 357 ipp_regs(3), 358 ipp_regs(4), 359 ipp_regs(5), 360 }; 361 362 static const struct dcn10_ipp_shift ipp_shift = { 363 IPP_MASK_SH_LIST_DCN20(__SHIFT) 364 }; 365 366 static const struct dcn10_ipp_mask ipp_mask = { 367 IPP_MASK_SH_LIST_DCN20(_MASK), 368 }; 369 370 #define opp_regs(id)\ 371 [id] = {\ 372 OPP_REG_LIST_DCN20(id),\ 373 } 374 375 static const struct dcn20_opp_registers opp_regs[] = { 376 opp_regs(0), 377 opp_regs(1), 378 opp_regs(2), 379 opp_regs(3), 380 opp_regs(4), 381 opp_regs(5), 382 }; 383 384 static const struct dcn20_opp_shift opp_shift = { 385 OPP_MASK_SH_LIST_DCN20(__SHIFT) 386 }; 387 388 static const struct dcn20_opp_mask opp_mask = { 389 OPP_MASK_SH_LIST_DCN20(_MASK) 390 }; 391 392 #define aux_engine_regs(id)\ 393 [id] = {\ 394 AUX_COMMON_REG_LIST0(id), \ 395 .AUXN_IMPCAL = 0, \ 396 .AUXP_IMPCAL = 0, \ 397 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 398 } 399 400 static const struct dce110_aux_registers aux_engine_regs[] = { 401 aux_engine_regs(0), 402 aux_engine_regs(1), 403 aux_engine_regs(2), 404 aux_engine_regs(3), 405 aux_engine_regs(4), 406 aux_engine_regs(5) 407 }; 408 409 #define tf_regs(id)\ 410 [id] = {\ 411 TF_REG_LIST_DCN20(id),\ 412 TF_REG_LIST_DCN20_COMMON_APPEND(id),\ 413 } 414 415 static const struct dcn2_dpp_registers tf_regs[] = { 416 tf_regs(0), 417 tf_regs(1), 418 tf_regs(2), 419 tf_regs(3), 420 tf_regs(4), 421 tf_regs(5), 422 }; 423 424 static const struct dcn2_dpp_shift tf_shift = { 425 TF_REG_LIST_SH_MASK_DCN20(__SHIFT), 426 TF_DEBUG_REG_LIST_SH_DCN20 427 }; 428 429 static const struct dcn2_dpp_mask tf_mask = { 430 TF_REG_LIST_SH_MASK_DCN20(_MASK), 431 TF_DEBUG_REG_LIST_MASK_DCN20 432 }; 433 434 #define dwbc_regs_dcn2(id)\ 435 [id] = {\ 436 DWBC_COMMON_REG_LIST_DCN2_0(id),\ 437 } 438 439 static const struct dcn20_dwbc_registers dwbc20_regs[] = { 440 dwbc_regs_dcn2(0), 441 }; 442 443 static const struct dcn20_dwbc_shift dwbc20_shift = { 444 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 445 }; 446 447 static const struct dcn20_dwbc_mask dwbc20_mask = { 448 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 449 }; 450 451 #define mcif_wb_regs_dcn2(id)\ 452 [id] = {\ 453 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ 454 } 455 456 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { 457 mcif_wb_regs_dcn2(0), 458 }; 459 460 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { 461 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 462 }; 463 464 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { 465 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 466 }; 467 468 static const struct dcn20_mpc_registers mpc_regs = { 469 MPC_REG_LIST_DCN2_0(0), 470 MPC_REG_LIST_DCN2_0(1), 471 MPC_REG_LIST_DCN2_0(2), 472 MPC_REG_LIST_DCN2_0(3), 473 MPC_REG_LIST_DCN2_0(4), 474 MPC_REG_LIST_DCN2_0(5), 475 MPC_OUT_MUX_REG_LIST_DCN2_0(0), 476 MPC_OUT_MUX_REG_LIST_DCN2_0(1), 477 MPC_OUT_MUX_REG_LIST_DCN2_0(2), 478 MPC_OUT_MUX_REG_LIST_DCN2_0(3), 479 MPC_OUT_MUX_REG_LIST_DCN2_0(4), 480 MPC_OUT_MUX_REG_LIST_DCN2_0(5), 481 MPC_DBG_REG_LIST_DCN2_0() 482 }; 483 484 static const struct dcn20_mpc_shift mpc_shift = { 485 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), 486 MPC_DEBUG_REG_LIST_SH_DCN20 487 }; 488 489 static const struct dcn20_mpc_mask mpc_mask = { 490 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), 491 MPC_DEBUG_REG_LIST_MASK_DCN20 492 }; 493 494 #define tg_regs(id)\ 495 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} 496 497 498 static const struct dcn_optc_registers tg_regs[] = { 499 tg_regs(0), 500 tg_regs(1), 501 tg_regs(2), 502 tg_regs(3), 503 tg_regs(4), 504 tg_regs(5) 505 }; 506 507 static const struct dcn_optc_shift tg_shift = { 508 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 509 }; 510 511 static const struct dcn_optc_mask tg_mask = { 512 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 513 }; 514 515 #define hubp_regs(id)\ 516 [id] = {\ 517 HUBP_REG_LIST_DCN20(id)\ 518 } 519 520 static const struct dcn_hubp2_registers hubp_regs[] = { 521 hubp_regs(0), 522 hubp_regs(1), 523 hubp_regs(2), 524 hubp_regs(3), 525 hubp_regs(4), 526 hubp_regs(5) 527 }; 528 529 static const struct dcn_hubp2_shift hubp_shift = { 530 HUBP_MASK_SH_LIST_DCN20(__SHIFT) 531 }; 532 533 static const struct dcn_hubp2_mask hubp_mask = { 534 HUBP_MASK_SH_LIST_DCN20(_MASK) 535 }; 536 537 static const struct dcn_hubbub_registers hubbub_reg = { 538 HUBBUB_REG_LIST_DCN20(0) 539 }; 540 541 static const struct dcn_hubbub_shift hubbub_shift = { 542 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) 543 }; 544 545 static const struct dcn_hubbub_mask hubbub_mask = { 546 HUBBUB_MASK_SH_LIST_DCN20(_MASK) 547 }; 548 549 #define vmid_regs(id)\ 550 [id] = {\ 551 DCN20_VMID_REG_LIST(id)\ 552 } 553 554 static const struct dcn_vmid_registers vmid_regs[] = { 555 vmid_regs(0), 556 vmid_regs(1), 557 vmid_regs(2), 558 vmid_regs(3), 559 vmid_regs(4), 560 vmid_regs(5), 561 vmid_regs(6), 562 vmid_regs(7), 563 vmid_regs(8), 564 vmid_regs(9), 565 vmid_regs(10), 566 vmid_regs(11), 567 vmid_regs(12), 568 vmid_regs(13), 569 vmid_regs(14), 570 vmid_regs(15) 571 }; 572 573 static const struct dcn20_vmid_shift vmid_shifts = { 574 DCN20_VMID_MASK_SH_LIST(__SHIFT) 575 }; 576 577 static const struct dcn20_vmid_mask vmid_masks = { 578 DCN20_VMID_MASK_SH_LIST(_MASK) 579 }; 580 581 static const struct dce110_aux_registers_shift aux_shift = { 582 DCN_AUX_MASK_SH_LIST(__SHIFT) 583 }; 584 585 static const struct dce110_aux_registers_mask aux_mask = { 586 DCN_AUX_MASK_SH_LIST(_MASK) 587 }; 588 589 static int map_transmitter_id_to_phy_instance( 590 enum transmitter transmitter) 591 { 592 switch (transmitter) { 593 case TRANSMITTER_UNIPHY_A: 594 return 0; 595 break; 596 case TRANSMITTER_UNIPHY_B: 597 return 1; 598 break; 599 case TRANSMITTER_UNIPHY_C: 600 return 2; 601 break; 602 case TRANSMITTER_UNIPHY_D: 603 return 3; 604 break; 605 case TRANSMITTER_UNIPHY_E: 606 return 4; 607 break; 608 case TRANSMITTER_UNIPHY_F: 609 return 5; 610 break; 611 default: 612 ASSERT(0); 613 return 0; 614 } 615 } 616 617 #define dsc_regsDCN20(id)\ 618 [id] = {\ 619 DSC_REG_LIST_DCN20(id)\ 620 } 621 622 static const struct dcn20_dsc_registers dsc_regs[] = { 623 dsc_regsDCN20(0), 624 dsc_regsDCN20(1), 625 dsc_regsDCN20(2), 626 dsc_regsDCN20(3), 627 dsc_regsDCN20(4), 628 dsc_regsDCN20(5) 629 }; 630 631 static const struct dcn20_dsc_shift dsc_shift = { 632 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 633 }; 634 635 static const struct dcn20_dsc_mask dsc_mask = { 636 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 637 }; 638 639 static const struct dccg_registers dccg_regs = { 640 DCCG_REG_LIST_DCN2() 641 }; 642 643 static const struct dccg_shift dccg_shift = { 644 DCCG_MASK_SH_LIST_DCN2(__SHIFT) 645 }; 646 647 static const struct dccg_mask dccg_mask = { 648 DCCG_MASK_SH_LIST_DCN2(_MASK) 649 }; 650 651 static const struct resource_caps res_cap_nv10 = { 652 .num_timing_generator = 6, 653 .num_opp = 6, 654 .num_video_plane = 6, 655 .num_audio = 7, 656 .num_stream_encoder = 6, 657 .num_pll = 6, 658 .num_dwb = 1, 659 .num_ddc = 6, 660 .num_vmid = 16, 661 .num_dsc = 6, 662 }; 663 664 static const struct dc_plane_cap plane_cap = { 665 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 666 .blends_with_above = true, 667 .blends_with_below = true, 668 .per_pixel_alpha = true, 669 670 .pixel_format_support = { 671 .argb8888 = true, 672 .nv12 = true, 673 .fp16 = true, 674 .p010 = true 675 }, 676 677 .max_upscale_factor = { 678 .argb8888 = 16000, 679 .nv12 = 16000, 680 .fp16 = 1 681 }, 682 683 .max_downscale_factor = { 684 .argb8888 = 250, 685 .nv12 = 250, 686 .fp16 = 1 687 }, 688 16, 689 16 690 }; 691 static const struct resource_caps res_cap_nv14 = { 692 .num_timing_generator = 5, 693 .num_opp = 5, 694 .num_video_plane = 5, 695 .num_audio = 6, 696 .num_stream_encoder = 5, 697 .num_pll = 5, 698 .num_dwb = 1, 699 .num_ddc = 5, 700 .num_vmid = 16, 701 .num_dsc = 5, 702 }; 703 704 static const struct dc_debug_options debug_defaults_drv = { 705 .disable_dmcu = false, 706 .force_abm_enable = false, 707 .timing_trace = false, 708 .clock_trace = true, 709 .disable_pplib_clock_request = true, 710 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP, 711 .force_single_disp_pipe_split = false, 712 .disable_dcc = DCC_ENABLE, 713 .vsr_support = true, 714 .performance_trace = false, 715 .max_downscale_src_width = 5120,/*upto 5K*/ 716 .disable_pplib_wm_range = false, 717 .scl_reset_length10 = true, 718 .sanity_checks = false, 719 .underflow_assert_delay_us = 0xFFFFFFFF, 720 }; 721 722 static const struct dc_debug_options debug_defaults_diags = { 723 .disable_dmcu = false, 724 .force_abm_enable = false, 725 .timing_trace = true, 726 .clock_trace = true, 727 .disable_dpp_power_gate = true, 728 .disable_hubp_power_gate = true, 729 .disable_clock_gate = true, 730 .disable_pplib_clock_request = true, 731 .disable_pplib_wm_range = true, 732 .disable_stutter = true, 733 .scl_reset_length10 = true, 734 .underflow_assert_delay_us = 0xFFFFFFFF, 735 .enable_tri_buf = true, 736 }; 737 738 void dcn20_dpp_destroy(struct dpp **dpp) 739 { 740 kfree(TO_DCN20_DPP(*dpp)); 741 *dpp = NULL; 742 } 743 744 struct dpp *dcn20_dpp_create( 745 struct dc_context *ctx, 746 uint32_t inst) 747 { 748 struct dcn20_dpp *dpp = 749 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC); 750 751 if (!dpp) 752 return NULL; 753 754 if (dpp2_construct(dpp, ctx, inst, 755 &tf_regs[inst], &tf_shift, &tf_mask)) 756 return &dpp->base; 757 758 BREAK_TO_DEBUGGER(); 759 kfree(dpp); 760 return NULL; 761 } 762 763 struct input_pixel_processor *dcn20_ipp_create( 764 struct dc_context *ctx, uint32_t inst) 765 { 766 struct dcn10_ipp *ipp = 767 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC); 768 769 if (!ipp) { 770 BREAK_TO_DEBUGGER(); 771 return NULL; 772 } 773 774 dcn20_ipp_construct(ipp, ctx, inst, 775 &ipp_regs[inst], &ipp_shift, &ipp_mask); 776 return &ipp->base; 777 } 778 779 780 struct output_pixel_processor *dcn20_opp_create( 781 struct dc_context *ctx, uint32_t inst) 782 { 783 struct dcn20_opp *opp = 784 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC); 785 786 if (!opp) { 787 BREAK_TO_DEBUGGER(); 788 return NULL; 789 } 790 791 dcn20_opp_construct(opp, ctx, inst, 792 &opp_regs[inst], &opp_shift, &opp_mask); 793 return &opp->base; 794 } 795 796 struct dce_aux *dcn20_aux_engine_create( 797 struct dc_context *ctx, 798 uint32_t inst) 799 { 800 struct aux_engine_dce110 *aux_engine = 801 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC); 802 803 if (!aux_engine) 804 return NULL; 805 806 dce110_aux_engine_construct(aux_engine, ctx, inst, 807 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 808 &aux_engine_regs[inst], 809 &aux_mask, 810 &aux_shift, 811 ctx->dc->caps.extended_aux_timeout_support); 812 813 return &aux_engine->base; 814 } 815 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } 816 817 static const struct dce_i2c_registers i2c_hw_regs[] = { 818 i2c_inst_regs(1), 819 i2c_inst_regs(2), 820 i2c_inst_regs(3), 821 i2c_inst_regs(4), 822 i2c_inst_regs(5), 823 i2c_inst_regs(6), 824 }; 825 826 static const struct dce_i2c_shift i2c_shifts = { 827 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) 828 }; 829 830 static const struct dce_i2c_mask i2c_masks = { 831 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) 832 }; 833 834 struct dce_i2c_hw *dcn20_i2c_hw_create( 835 struct dc_context *ctx, 836 uint32_t inst) 837 { 838 struct dce_i2c_hw *dce_i2c_hw = 839 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC); 840 841 if (!dce_i2c_hw) 842 return NULL; 843 844 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 845 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 846 847 return dce_i2c_hw; 848 } 849 struct mpc *dcn20_mpc_create(struct dc_context *ctx) 850 { 851 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), 852 GFP_ATOMIC); 853 854 if (!mpc20) 855 return NULL; 856 857 dcn20_mpc_construct(mpc20, ctx, 858 &mpc_regs, 859 &mpc_shift, 860 &mpc_mask, 861 6); 862 863 return &mpc20->base; 864 } 865 866 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) 867 { 868 int i; 869 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), 870 GFP_ATOMIC); 871 872 if (!hubbub) 873 return NULL; 874 875 hubbub2_construct(hubbub, ctx, 876 &hubbub_reg, 877 &hubbub_shift, 878 &hubbub_mask); 879 880 for (i = 0; i < res_cap_nv10.num_vmid; i++) { 881 struct dcn20_vmid *vmid = &hubbub->vmid[i]; 882 883 vmid->ctx = ctx; 884 885 vmid->regs = &vmid_regs[i]; 886 vmid->shifts = &vmid_shifts; 887 vmid->masks = &vmid_masks; 888 } 889 890 return &hubbub->base; 891 } 892 893 struct timing_generator *dcn20_timing_generator_create( 894 struct dc_context *ctx, 895 uint32_t instance) 896 { 897 struct optc *tgn10 = 898 kzalloc(sizeof(struct optc), GFP_ATOMIC); 899 900 if (!tgn10) 901 return NULL; 902 903 tgn10->base.inst = instance; 904 tgn10->base.ctx = ctx; 905 906 tgn10->tg_regs = &tg_regs[instance]; 907 tgn10->tg_shift = &tg_shift; 908 tgn10->tg_mask = &tg_mask; 909 910 dcn20_timing_generator_init(tgn10); 911 912 return &tgn10->base; 913 } 914 915 static const struct encoder_feature_support link_enc_feature = { 916 .max_hdmi_deep_color = COLOR_DEPTH_121212, 917 .max_hdmi_pixel_clock = 600000, 918 .hdmi_ycbcr420_supported = true, 919 .dp_ycbcr420_supported = true, 920 .fec_supported = true, 921 .flags.bits.IS_HBR2_CAPABLE = true, 922 .flags.bits.IS_HBR3_CAPABLE = true, 923 .flags.bits.IS_TPS3_CAPABLE = true, 924 .flags.bits.IS_TPS4_CAPABLE = true 925 }; 926 927 struct link_encoder *dcn20_link_encoder_create( 928 struct dc_context *ctx, 929 const struct encoder_init_data *enc_init_data) 930 { 931 struct dcn20_link_encoder *enc20 = 932 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 933 int link_regs_id; 934 935 if (!enc20) 936 return NULL; 937 938 link_regs_id = 939 map_transmitter_id_to_phy_instance(enc_init_data->transmitter); 940 941 dcn20_link_encoder_construct(enc20, 942 enc_init_data, 943 &link_enc_feature, 944 &link_enc_regs[link_regs_id], 945 &link_enc_aux_regs[enc_init_data->channel - 1], 946 &link_enc_hpd_regs[enc_init_data->hpd_source], 947 &le_shift, 948 &le_mask); 949 950 return &enc20->enc10.base; 951 } 952 953 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data) 954 { 955 struct dce_panel_cntl *panel_cntl = 956 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 957 958 if (!panel_cntl) 959 return NULL; 960 961 dce_panel_cntl_construct(panel_cntl, 962 init_data, 963 &panel_cntl_regs[init_data->inst], 964 &panel_cntl_shift, 965 &panel_cntl_mask); 966 967 return &panel_cntl->base; 968 } 969 970 static struct clock_source *dcn20_clock_source_create( 971 struct dc_context *ctx, 972 struct dc_bios *bios, 973 enum clock_source_id id, 974 const struct dce110_clk_src_regs *regs, 975 bool dp_clk_src) 976 { 977 struct dce110_clk_src *clk_src = 978 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC); 979 980 if (!clk_src) 981 return NULL; 982 983 if (dcn20_clk_src_construct(clk_src, ctx, bios, id, 984 regs, &cs_shift, &cs_mask)) { 985 clk_src->base.dp_clk_src = dp_clk_src; 986 return &clk_src->base; 987 } 988 989 kfree(clk_src); 990 BREAK_TO_DEBUGGER(); 991 return NULL; 992 } 993 994 static void read_dce_straps( 995 struct dc_context *ctx, 996 struct resource_straps *straps) 997 { 998 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 999 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1000 } 1001 1002 static struct audio *dcn20_create_audio( 1003 struct dc_context *ctx, unsigned int inst) 1004 { 1005 return dce_audio_create(ctx, inst, 1006 &audio_regs[inst], &audio_shift, &audio_mask); 1007 } 1008 1009 struct stream_encoder *dcn20_stream_encoder_create( 1010 enum engine_id eng_id, 1011 struct dc_context *ctx) 1012 { 1013 struct dcn10_stream_encoder *enc1 = 1014 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1015 1016 if (!enc1) 1017 return NULL; 1018 1019 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 1020 if (eng_id >= ENGINE_ID_DIGD) 1021 eng_id++; 1022 } 1023 1024 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, 1025 &stream_enc_regs[eng_id], 1026 &se_shift, &se_mask); 1027 1028 return &enc1->base; 1029 } 1030 1031 static const struct dce_hwseq_registers hwseq_reg = { 1032 HWSEQ_DCN2_REG_LIST() 1033 }; 1034 1035 static const struct dce_hwseq_shift hwseq_shift = { 1036 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) 1037 }; 1038 1039 static const struct dce_hwseq_mask hwseq_mask = { 1040 HWSEQ_DCN2_MASK_SH_LIST(_MASK) 1041 }; 1042 1043 struct dce_hwseq *dcn20_hwseq_create( 1044 struct dc_context *ctx) 1045 { 1046 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1047 1048 if (hws) { 1049 hws->ctx = ctx; 1050 hws->regs = &hwseq_reg; 1051 hws->shifts = &hwseq_shift; 1052 hws->masks = &hwseq_mask; 1053 } 1054 return hws; 1055 } 1056 1057 static const struct resource_create_funcs res_create_funcs = { 1058 .read_dce_straps = read_dce_straps, 1059 .create_audio = dcn20_create_audio, 1060 .create_stream_encoder = dcn20_stream_encoder_create, 1061 .create_hwseq = dcn20_hwseq_create, 1062 }; 1063 1064 static const struct resource_create_funcs res_create_maximus_funcs = { 1065 .read_dce_straps = NULL, 1066 .create_audio = NULL, 1067 .create_stream_encoder = NULL, 1068 .create_hwseq = dcn20_hwseq_create, 1069 }; 1070 1071 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu); 1072 1073 void dcn20_clock_source_destroy(struct clock_source **clk_src) 1074 { 1075 kfree(TO_DCE110_CLK_SRC(*clk_src)); 1076 *clk_src = NULL; 1077 } 1078 1079 1080 struct display_stream_compressor *dcn20_dsc_create( 1081 struct dc_context *ctx, uint32_t inst) 1082 { 1083 struct dcn20_dsc *dsc = 1084 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC); 1085 1086 if (!dsc) { 1087 BREAK_TO_DEBUGGER(); 1088 return NULL; 1089 } 1090 1091 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1092 return &dsc->base; 1093 } 1094 1095 void dcn20_dsc_destroy(struct display_stream_compressor **dsc) 1096 { 1097 kfree(container_of(*dsc, struct dcn20_dsc, base)); 1098 *dsc = NULL; 1099 } 1100 1101 1102 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool) 1103 { 1104 unsigned int i; 1105 1106 for (i = 0; i < pool->base.stream_enc_count; i++) { 1107 if (pool->base.stream_enc[i] != NULL) { 1108 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1109 pool->base.stream_enc[i] = NULL; 1110 } 1111 } 1112 1113 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1114 if (pool->base.dscs[i] != NULL) 1115 dcn20_dsc_destroy(&pool->base.dscs[i]); 1116 } 1117 1118 if (pool->base.mpc != NULL) { 1119 kfree(TO_DCN20_MPC(pool->base.mpc)); 1120 pool->base.mpc = NULL; 1121 } 1122 if (pool->base.hubbub != NULL) { 1123 kfree(pool->base.hubbub); 1124 pool->base.hubbub = NULL; 1125 } 1126 for (i = 0; i < pool->base.pipe_count; i++) { 1127 if (pool->base.dpps[i] != NULL) 1128 dcn20_dpp_destroy(&pool->base.dpps[i]); 1129 1130 if (pool->base.ipps[i] != NULL) 1131 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1132 1133 if (pool->base.hubps[i] != NULL) { 1134 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1135 pool->base.hubps[i] = NULL; 1136 } 1137 1138 if (pool->base.irqs != NULL) { 1139 dal_irq_service_destroy(&pool->base.irqs); 1140 } 1141 } 1142 1143 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1144 if (pool->base.engines[i] != NULL) 1145 dce110_engine_destroy(&pool->base.engines[i]); 1146 if (pool->base.hw_i2cs[i] != NULL) { 1147 kfree(pool->base.hw_i2cs[i]); 1148 pool->base.hw_i2cs[i] = NULL; 1149 } 1150 if (pool->base.sw_i2cs[i] != NULL) { 1151 kfree(pool->base.sw_i2cs[i]); 1152 pool->base.sw_i2cs[i] = NULL; 1153 } 1154 } 1155 1156 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1157 if (pool->base.opps[i] != NULL) 1158 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1159 } 1160 1161 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1162 if (pool->base.timing_generators[i] != NULL) { 1163 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1164 pool->base.timing_generators[i] = NULL; 1165 } 1166 } 1167 1168 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1169 if (pool->base.dwbc[i] != NULL) { 1170 kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); 1171 pool->base.dwbc[i] = NULL; 1172 } 1173 if (pool->base.mcif_wb[i] != NULL) { 1174 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); 1175 pool->base.mcif_wb[i] = NULL; 1176 } 1177 } 1178 1179 for (i = 0; i < pool->base.audio_count; i++) { 1180 if (pool->base.audios[i]) 1181 dce_aud_destroy(&pool->base.audios[i]); 1182 } 1183 1184 for (i = 0; i < pool->base.clk_src_count; i++) { 1185 if (pool->base.clock_sources[i] != NULL) { 1186 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1187 pool->base.clock_sources[i] = NULL; 1188 } 1189 } 1190 1191 if (pool->base.dp_clock_source != NULL) { 1192 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1193 pool->base.dp_clock_source = NULL; 1194 } 1195 1196 1197 if (pool->base.abm != NULL) 1198 dce_abm_destroy(&pool->base.abm); 1199 1200 if (pool->base.dmcu != NULL) 1201 dce_dmcu_destroy(&pool->base.dmcu); 1202 1203 if (pool->base.dccg != NULL) 1204 dcn_dccg_destroy(&pool->base.dccg); 1205 1206 if (pool->base.pp_smu != NULL) 1207 dcn20_pp_smu_destroy(&pool->base.pp_smu); 1208 1209 if (pool->base.oem_device != NULL) 1210 dal_ddc_service_destroy(&pool->base.oem_device); 1211 } 1212 1213 struct hubp *dcn20_hubp_create( 1214 struct dc_context *ctx, 1215 uint32_t inst) 1216 { 1217 struct dcn20_hubp *hubp2 = 1218 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC); 1219 1220 if (!hubp2) 1221 return NULL; 1222 1223 if (hubp2_construct(hubp2, ctx, inst, 1224 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1225 return &hubp2->base; 1226 1227 BREAK_TO_DEBUGGER(); 1228 kfree(hubp2); 1229 return NULL; 1230 } 1231 1232 static void get_pixel_clock_parameters( 1233 struct pipe_ctx *pipe_ctx, 1234 struct pixel_clk_params *pixel_clk_params) 1235 { 1236 const struct dc_stream_state *stream = pipe_ctx->stream; 1237 struct pipe_ctx *odm_pipe; 1238 int opp_cnt = 1; 1239 struct dc_link *link = stream->link; 1240 struct link_encoder *link_enc = NULL; 1241 struct dc *dc = pipe_ctx->stream->ctx->dc; 1242 struct dce_hwseq *hws = dc->hwseq; 1243 1244 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1245 opp_cnt++; 1246 1247 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; 1248 1249 link_enc = link_enc_cfg_get_link_enc(link); 1250 if (link_enc) 1251 pixel_clk_params->encoder_object_id = link_enc->id; 1252 1253 pixel_clk_params->signal_type = pipe_ctx->stream->signal; 1254 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; 1255 /* TODO: un-hardcode*/ 1256 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */ 1257 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * 1258 LINK_RATE_REF_FREQ_IN_KHZ; 1259 pixel_clk_params->flags.ENABLE_SS = 0; 1260 pixel_clk_params->color_depth = 1261 stream->timing.display_color_depth; 1262 pixel_clk_params->flags.DISPLAY_BLANKED = 1; 1263 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; 1264 1265 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 1266 pixel_clk_params->color_depth = COLOR_DEPTH_888; 1267 1268 if (opp_cnt == 4) 1269 pixel_clk_params->requested_pix_clk_100hz /= 4; 1270 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) 1271 pixel_clk_params->requested_pix_clk_100hz /= 2; 1272 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) { 1273 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) 1274 pixel_clk_params->requested_pix_clk_100hz /= 2; 1275 } 1276 1277 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) 1278 pixel_clk_params->requested_pix_clk_100hz *= 2; 1279 1280 } 1281 1282 static void build_clamping_params(struct dc_stream_state *stream) 1283 { 1284 stream->clamping.clamping_level = CLAMPING_FULL_RANGE; 1285 stream->clamping.c_depth = stream->timing.display_color_depth; 1286 stream->clamping.pixel_encoding = stream->timing.pixel_encoding; 1287 } 1288 1289 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) 1290 { 1291 1292 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); 1293 1294 pipe_ctx->clock_source->funcs->get_pix_clk_dividers( 1295 pipe_ctx->clock_source, 1296 &pipe_ctx->stream_res.pix_clk_params, 1297 &pipe_ctx->pll_settings); 1298 1299 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; 1300 1301 resource_build_bit_depth_reduction_params(pipe_ctx->stream, 1302 &pipe_ctx->stream->bit_depth_params); 1303 build_clamping_params(pipe_ctx->stream); 1304 1305 return DC_OK; 1306 } 1307 1308 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) 1309 { 1310 enum dc_status status = DC_OK; 1311 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); 1312 1313 if (!pipe_ctx) 1314 return DC_ERROR_UNEXPECTED; 1315 1316 1317 status = build_pipe_hw_param(pipe_ctx); 1318 1319 return status; 1320 } 1321 1322 1323 void dcn20_acquire_dsc(const struct dc *dc, 1324 struct resource_context *res_ctx, 1325 struct display_stream_compressor **dsc, 1326 int pipe_idx) 1327 { 1328 int i; 1329 const struct resource_pool *pool = dc->res_pool; 1330 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc; 1331 1332 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */ 1333 *dsc = NULL; 1334 1335 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */ 1336 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) { 1337 *dsc = pool->dscs[pipe_idx]; 1338 res_ctx->is_dsc_acquired[pipe_idx] = true; 1339 return; 1340 } 1341 1342 /* Return old DSC to avoid the need for re-programming */ 1343 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) { 1344 *dsc = dsc_old; 1345 res_ctx->is_dsc_acquired[dsc_old->inst] = true; 1346 return ; 1347 } 1348 1349 /* Find first free DSC */ 1350 for (i = 0; i < pool->res_cap->num_dsc; i++) 1351 if (!res_ctx->is_dsc_acquired[i]) { 1352 *dsc = pool->dscs[i]; 1353 res_ctx->is_dsc_acquired[i] = true; 1354 break; 1355 } 1356 } 1357 1358 void dcn20_release_dsc(struct resource_context *res_ctx, 1359 const struct resource_pool *pool, 1360 struct display_stream_compressor **dsc) 1361 { 1362 int i; 1363 1364 for (i = 0; i < pool->res_cap->num_dsc; i++) 1365 if (pool->dscs[i] == *dsc) { 1366 res_ctx->is_dsc_acquired[i] = false; 1367 *dsc = NULL; 1368 break; 1369 } 1370 } 1371 1372 1373 1374 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc, 1375 struct dc_state *dc_ctx, 1376 struct dc_stream_state *dc_stream) 1377 { 1378 enum dc_status result = DC_OK; 1379 int i; 1380 1381 /* Get a DSC if required and available */ 1382 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1383 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; 1384 1385 if (pipe_ctx->stream != dc_stream) 1386 continue; 1387 1388 if (pipe_ctx->stream_res.dsc) 1389 continue; 1390 1391 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i); 1392 1393 /* The number of DSCs can be less than the number of pipes */ 1394 if (!pipe_ctx->stream_res.dsc) { 1395 result = DC_NO_DSC_RESOURCE; 1396 } 1397 1398 break; 1399 } 1400 1401 return result; 1402 } 1403 1404 1405 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, 1406 struct dc_state *new_ctx, 1407 struct dc_stream_state *dc_stream) 1408 { 1409 struct pipe_ctx *pipe_ctx = NULL; 1410 int i; 1411 1412 for (i = 0; i < MAX_PIPES; i++) { 1413 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { 1414 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1415 1416 if (pipe_ctx->stream_res.dsc) 1417 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); 1418 } 1419 } 1420 1421 if (!pipe_ctx) 1422 return DC_ERROR_UNEXPECTED; 1423 else 1424 return DC_OK; 1425 } 1426 1427 1428 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1429 { 1430 enum dc_status result = DC_ERROR_UNEXPECTED; 1431 1432 result = resource_map_pool_resources(dc, new_ctx, dc_stream); 1433 1434 if (result == DC_OK) 1435 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); 1436 1437 /* Get a DSC if required and available */ 1438 if (result == DC_OK && dc_stream->timing.flags.DSC) 1439 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream); 1440 1441 if (result == DC_OK) 1442 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); 1443 1444 return result; 1445 } 1446 1447 1448 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1449 { 1450 enum dc_status result = DC_OK; 1451 1452 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); 1453 1454 return result; 1455 } 1456 1457 bool dcn20_split_stream_for_odm( 1458 const struct dc *dc, 1459 struct resource_context *res_ctx, 1460 struct pipe_ctx *prev_odm_pipe, 1461 struct pipe_ctx *next_odm_pipe) 1462 { 1463 int pipe_idx = next_odm_pipe->pipe_idx; 1464 const struct resource_pool *pool = dc->res_pool; 1465 1466 *next_odm_pipe = *prev_odm_pipe; 1467 1468 next_odm_pipe->pipe_idx = pipe_idx; 1469 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; 1470 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; 1471 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; 1472 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; 1473 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; 1474 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; 1475 next_odm_pipe->stream_res.dsc = NULL; 1476 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { 1477 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; 1478 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; 1479 } 1480 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) { 1481 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe; 1482 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe; 1483 } 1484 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) { 1485 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe; 1486 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe; 1487 } 1488 prev_odm_pipe->next_odm_pipe = next_odm_pipe; 1489 next_odm_pipe->prev_odm_pipe = prev_odm_pipe; 1490 1491 if (prev_odm_pipe->plane_state) { 1492 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; 1493 int new_width; 1494 1495 /* HACTIVE halved for odm combine */ 1496 sd->h_active /= 2; 1497 /* Calculate new vp and recout for left pipe */ 1498 /* Need at least 16 pixels width per side */ 1499 if (sd->recout.x + 16 >= sd->h_active) 1500 return false; 1501 new_width = sd->h_active - sd->recout.x; 1502 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1503 sd->ratios.horz, sd->recout.width - new_width)); 1504 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1505 sd->ratios.horz_c, sd->recout.width - new_width)); 1506 sd->recout.width = new_width; 1507 1508 /* Calculate new vp and recout for right pipe */ 1509 sd = &next_odm_pipe->plane_res.scl_data; 1510 /* HACTIVE halved for odm combine */ 1511 sd->h_active /= 2; 1512 /* Need at least 16 pixels width per side */ 1513 if (new_width <= 16) 1514 return false; 1515 new_width = sd->recout.width + sd->recout.x - sd->h_active; 1516 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1517 sd->ratios.horz, sd->recout.width - new_width)); 1518 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1519 sd->ratios.horz_c, sd->recout.width - new_width)); 1520 sd->recout.width = new_width; 1521 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( 1522 sd->ratios.horz, sd->h_active - sd->recout.x)); 1523 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( 1524 sd->ratios.horz_c, sd->h_active - sd->recout.x)); 1525 sd->recout.x = 0; 1526 } 1527 if (!next_odm_pipe->top_pipe) 1528 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; 1529 else 1530 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp; 1531 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) { 1532 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx); 1533 ASSERT(next_odm_pipe->stream_res.dsc); 1534 if (next_odm_pipe->stream_res.dsc == NULL) 1535 return false; 1536 } 1537 1538 return true; 1539 } 1540 1541 void dcn20_split_stream_for_mpc( 1542 struct resource_context *res_ctx, 1543 const struct resource_pool *pool, 1544 struct pipe_ctx *primary_pipe, 1545 struct pipe_ctx *secondary_pipe) 1546 { 1547 int pipe_idx = secondary_pipe->pipe_idx; 1548 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; 1549 1550 *secondary_pipe = *primary_pipe; 1551 secondary_pipe->bottom_pipe = sec_bot_pipe; 1552 1553 secondary_pipe->pipe_idx = pipe_idx; 1554 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; 1555 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; 1556 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; 1557 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; 1558 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; 1559 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; 1560 secondary_pipe->stream_res.dsc = NULL; 1561 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { 1562 ASSERT(!secondary_pipe->bottom_pipe); 1563 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; 1564 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; 1565 } 1566 primary_pipe->bottom_pipe = secondary_pipe; 1567 secondary_pipe->top_pipe = primary_pipe; 1568 1569 ASSERT(primary_pipe->plane_state); 1570 } 1571 1572 unsigned int dcn20_calc_max_scaled_time( 1573 unsigned int time_per_pixel, 1574 enum mmhubbub_wbif_mode mode, 1575 unsigned int urgent_watermark) 1576 { 1577 unsigned int time_per_byte = 0; 1578 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ 1579 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ 1580 unsigned int small_free_entry, max_free_entry; 1581 unsigned int buf_lh_capability; 1582 unsigned int max_scaled_time; 1583 1584 if (mode == PACKED_444) /* packed mode */ 1585 time_per_byte = time_per_pixel/4; 1586 else if (mode == PLANAR_420_8BPC) 1587 time_per_byte = time_per_pixel; 1588 else if (mode == PLANAR_420_10BPC) /* p010 */ 1589 time_per_byte = time_per_pixel * 819/1024; 1590 1591 if (time_per_byte == 0) 1592 time_per_byte = 1; 1593 1594 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; 1595 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; 1596 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ 1597 max_scaled_time = buf_lh_capability - urgent_watermark; 1598 return max_scaled_time; 1599 } 1600 1601 void dcn20_set_mcif_arb_params( 1602 struct dc *dc, 1603 struct dc_state *context, 1604 display_e2e_pipe_params_st *pipes, 1605 int pipe_cnt) 1606 { 1607 enum mmhubbub_wbif_mode wbif_mode; 1608 struct mcif_arb_params *wb_arb_params; 1609 int i, j, dwb_pipe; 1610 1611 /* Writeback MCIF_WB arbitration parameters */ 1612 dwb_pipe = 0; 1613 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1614 1615 if (!context->res_ctx.pipe_ctx[i].stream) 1616 continue; 1617 1618 for (j = 0; j < MAX_DWB_PIPES; j++) { 1619 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) 1620 continue; 1621 1622 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1623 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1624 1625 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { 1626 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) 1627 wbif_mode = PLANAR_420_8BPC; 1628 else 1629 wbif_mode = PLANAR_420_10BPC; 1630 } else 1631 wbif_mode = PACKED_444; 1632 1633 DC_FP_START(); 1634 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i); 1635 DC_FP_END(); 1636 1637 wb_arb_params->slice_lines = 32; 1638 wb_arb_params->arbitration_slice = 2; 1639 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1640 wbif_mode, 1641 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1642 1643 dwb_pipe++; 1644 1645 if (dwb_pipe >= MAX_DWB_PIPES) 1646 return; 1647 } 1648 if (dwb_pipe >= MAX_DWB_PIPES) 1649 return; 1650 } 1651 } 1652 1653 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) 1654 { 1655 int i; 1656 1657 /* Validate DSC config, dsc count validation is already done */ 1658 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1659 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1660 struct dc_stream_state *stream = pipe_ctx->stream; 1661 struct dsc_config dsc_cfg; 1662 struct pipe_ctx *odm_pipe; 1663 int opp_cnt = 1; 1664 1665 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1666 opp_cnt++; 1667 1668 /* Only need to validate top pipe */ 1669 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) 1670 continue; 1671 1672 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left 1673 + stream->timing.h_border_right) / opp_cnt; 1674 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top 1675 + stream->timing.v_border_bottom; 1676 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; 1677 dsc_cfg.color_depth = stream->timing.display_color_depth; 1678 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; 1679 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; 1680 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; 1681 1682 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) 1683 return false; 1684 } 1685 return true; 1686 } 1687 1688 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, 1689 struct resource_context *res_ctx, 1690 const struct resource_pool *pool, 1691 const struct pipe_ctx *primary_pipe) 1692 { 1693 struct pipe_ctx *secondary_pipe = NULL; 1694 1695 if (dc && primary_pipe) { 1696 int j; 1697 int preferred_pipe_idx = 0; 1698 1699 /* first check the prev dc state: 1700 * if this primary pipe has a bottom pipe in prev. state 1701 * and if the bottom pipe is still available (which it should be), 1702 * pick that pipe as secondary 1703 * Same logic applies for ODM pipes 1704 */ 1705 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { 1706 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; 1707 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1708 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1709 secondary_pipe->pipe_idx = preferred_pipe_idx; 1710 } 1711 } 1712 if (secondary_pipe == NULL && 1713 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { 1714 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; 1715 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1716 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1717 secondary_pipe->pipe_idx = preferred_pipe_idx; 1718 } 1719 } 1720 1721 /* 1722 * if this primary pipe does not have a bottom pipe in prev. state 1723 * start backward and find a pipe that did not used to be a bottom pipe in 1724 * prev. dc state. This way we make sure we keep the same assignment as 1725 * last state and will not have to reprogram every pipe 1726 */ 1727 if (secondary_pipe == NULL) { 1728 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1729 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL 1730 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) { 1731 preferred_pipe_idx = j; 1732 1733 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1734 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1735 secondary_pipe->pipe_idx = preferred_pipe_idx; 1736 break; 1737 } 1738 } 1739 } 1740 } 1741 /* 1742 * We should never hit this assert unless assignments are shuffled around 1743 * if this happens we will prob. hit a vsync tdr 1744 */ 1745 ASSERT(secondary_pipe); 1746 /* 1747 * search backwards for the second pipe to keep pipe 1748 * assignment more consistent 1749 */ 1750 if (secondary_pipe == NULL) { 1751 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1752 preferred_pipe_idx = j; 1753 1754 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1755 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1756 secondary_pipe->pipe_idx = preferred_pipe_idx; 1757 break; 1758 } 1759 } 1760 } 1761 } 1762 1763 return secondary_pipe; 1764 } 1765 1766 void dcn20_merge_pipes_for_validate( 1767 struct dc *dc, 1768 struct dc_state *context) 1769 { 1770 int i; 1771 1772 /* merge previously split odm pipes since mode support needs to make the decision */ 1773 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1774 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1775 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; 1776 1777 if (pipe->prev_odm_pipe) 1778 continue; 1779 1780 pipe->next_odm_pipe = NULL; 1781 while (odm_pipe) { 1782 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; 1783 1784 odm_pipe->plane_state = NULL; 1785 odm_pipe->stream = NULL; 1786 odm_pipe->top_pipe = NULL; 1787 odm_pipe->bottom_pipe = NULL; 1788 odm_pipe->prev_odm_pipe = NULL; 1789 odm_pipe->next_odm_pipe = NULL; 1790 if (odm_pipe->stream_res.dsc) 1791 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); 1792 /* Clear plane_res and stream_res */ 1793 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); 1794 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); 1795 odm_pipe = next_odm_pipe; 1796 } 1797 if (pipe->plane_state) 1798 resource_build_scaling_params(pipe); 1799 } 1800 1801 /* merge previously mpc split pipes since mode support needs to make the decision */ 1802 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1803 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1804 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 1805 1806 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) 1807 continue; 1808 1809 pipe->bottom_pipe = hsplit_pipe->bottom_pipe; 1810 if (hsplit_pipe->bottom_pipe) 1811 hsplit_pipe->bottom_pipe->top_pipe = pipe; 1812 hsplit_pipe->plane_state = NULL; 1813 hsplit_pipe->stream = NULL; 1814 hsplit_pipe->top_pipe = NULL; 1815 hsplit_pipe->bottom_pipe = NULL; 1816 1817 /* Clear plane_res and stream_res */ 1818 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); 1819 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); 1820 if (pipe->plane_state) 1821 resource_build_scaling_params(pipe); 1822 } 1823 } 1824 1825 int dcn20_validate_apply_pipe_split_flags( 1826 struct dc *dc, 1827 struct dc_state *context, 1828 int vlevel, 1829 int *split, 1830 bool *merge) 1831 { 1832 int i, pipe_idx, vlevel_split; 1833 int plane_count = 0; 1834 bool force_split = false; 1835 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID; 1836 struct vba_vars_st *v = &context->bw_ctx.dml.vba; 1837 int max_mpc_comb = v->maxMpcComb; 1838 1839 if (context->stream_count > 1) { 1840 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) 1841 avoid_split = true; 1842 } else if (dc->debug.force_single_disp_pipe_split) 1843 force_split = true; 1844 1845 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1846 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1847 1848 /** 1849 * Workaround for avoiding pipe-split in cases where we'd split 1850 * planes that are too small, resulting in splits that aren't 1851 * valid for the scaler. 1852 */ 1853 if (pipe->plane_state && 1854 (pipe->plane_state->dst_rect.width <= 16 || 1855 pipe->plane_state->dst_rect.height <= 16 || 1856 pipe->plane_state->src_rect.width <= 16 || 1857 pipe->plane_state->src_rect.height <= 16)) 1858 avoid_split = true; 1859 1860 /* TODO: fix dc bugs and remove this split threshold thing */ 1861 if (pipe->stream && !pipe->prev_odm_pipe && 1862 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) 1863 ++plane_count; 1864 } 1865 if (plane_count > dc->res_pool->pipe_count / 2) 1866 avoid_split = true; 1867 1868 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */ 1869 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1870 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1871 struct dc_crtc_timing timing; 1872 1873 if (!pipe->stream) 1874 continue; 1875 else { 1876 timing = pipe->stream->timing; 1877 if (timing.h_border_left + timing.h_border_right 1878 + timing.v_border_top + timing.v_border_bottom > 0) { 1879 avoid_split = true; 1880 break; 1881 } 1882 } 1883 } 1884 1885 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */ 1886 if (avoid_split) { 1887 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1888 if (!context->res_ctx.pipe_ctx[i].stream) 1889 continue; 1890 1891 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++) 1892 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 && 1893 v->ModeSupport[vlevel][0]) 1894 break; 1895 /* Impossible to not split this pipe */ 1896 if (vlevel > context->bw_ctx.dml.soc.num_states) 1897 vlevel = vlevel_split; 1898 else 1899 max_mpc_comb = 0; 1900 pipe_idx++; 1901 } 1902 v->maxMpcComb = max_mpc_comb; 1903 } 1904 1905 /* Split loop sets which pipe should be split based on dml outputs and dc flags */ 1906 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1907 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1908 int pipe_plane = v->pipe_plane[pipe_idx]; 1909 bool split4mpc = context->stream_count == 1 && plane_count == 1 1910 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4; 1911 1912 if (!context->res_ctx.pipe_ctx[i].stream) 1913 continue; 1914 1915 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4) 1916 split[i] = 4; 1917 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2) 1918 split[i] = 2; 1919 1920 if ((pipe->stream->view_format == 1921 VIEW_3D_FORMAT_SIDE_BY_SIDE || 1922 pipe->stream->view_format == 1923 VIEW_3D_FORMAT_TOP_AND_BOTTOM) && 1924 (pipe->stream->timing.timing_3d_format == 1925 TIMING_3D_FORMAT_TOP_AND_BOTTOM || 1926 pipe->stream->timing.timing_3d_format == 1927 TIMING_3D_FORMAT_SIDE_BY_SIDE)) 1928 split[i] = 2; 1929 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { 1930 split[i] = 2; 1931 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1; 1932 } 1933 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) { 1934 split[i] = 4; 1935 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1; 1936 } 1937 /*420 format workaround*/ 1938 if (pipe->stream->timing.h_addressable > 7680 && 1939 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { 1940 split[i] = 4; 1941 } 1942 v->ODMCombineEnabled[pipe_plane] = 1943 v->ODMCombineEnablePerState[vlevel][pipe_plane]; 1944 1945 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) { 1946 if (get_num_mpc_splits(pipe) == 1) { 1947 /*If need split for mpc but 2 way split already*/ 1948 if (split[i] == 4) 1949 split[i] = 2; /* 2 -> 4 MPC */ 1950 else if (split[i] == 2) 1951 split[i] = 0; /* 2 -> 2 MPC */ 1952 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) 1953 merge[i] = true; /* 2 -> 1 MPC */ 1954 } else if (get_num_mpc_splits(pipe) == 3) { 1955 /*If need split for mpc but 4 way split already*/ 1956 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe) 1957 || !pipe->bottom_pipe)) { 1958 merge[i] = true; /* 4 -> 2 MPC */ 1959 } else if (split[i] == 0 && pipe->top_pipe && 1960 pipe->top_pipe->plane_state == pipe->plane_state) 1961 merge[i] = true; /* 4 -> 1 MPC */ 1962 split[i] = 0; 1963 } else if (get_num_odm_splits(pipe)) { 1964 /* ODM -> MPC transition */ 1965 if (pipe->prev_odm_pipe) { 1966 split[i] = 0; 1967 merge[i] = true; 1968 } 1969 } 1970 } else { 1971 if (get_num_odm_splits(pipe) == 1) { 1972 /*If need split for odm but 2 way split already*/ 1973 if (split[i] == 4) 1974 split[i] = 2; /* 2 -> 4 ODM */ 1975 else if (split[i] == 2) 1976 split[i] = 0; /* 2 -> 2 ODM */ 1977 else if (pipe->prev_odm_pipe) { 1978 ASSERT(0); /* NOT expected yet */ 1979 merge[i] = true; /* exit ODM */ 1980 } 1981 } else if (get_num_odm_splits(pipe) == 3) { 1982 /*If need split for odm but 4 way split already*/ 1983 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe) 1984 || !pipe->next_odm_pipe)) { 1985 merge[i] = true; /* 4 -> 2 ODM */ 1986 } else if (split[i] == 0 && pipe->prev_odm_pipe) { 1987 ASSERT(0); /* NOT expected yet */ 1988 merge[i] = true; /* exit ODM */ 1989 } 1990 split[i] = 0; 1991 } else if (get_num_mpc_splits(pipe)) { 1992 /* MPC -> ODM transition */ 1993 ASSERT(0); /* NOT expected yet */ 1994 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1995 split[i] = 0; 1996 merge[i] = true; 1997 } 1998 } 1999 } 2000 2001 /* Adjust dppclk when split is forced, do not bother with dispclk */ 2002 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) { 2003 DC_FP_START(); 2004 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false); 2005 DC_FP_END(); 2006 } 2007 pipe_idx++; 2008 } 2009 2010 return vlevel; 2011 } 2012 2013 bool dcn20_fast_validate_bw( 2014 struct dc *dc, 2015 struct dc_state *context, 2016 display_e2e_pipe_params_st *pipes, 2017 int *pipe_cnt_out, 2018 int *pipe_split_from, 2019 int *vlevel_out, 2020 bool fast_validate) 2021 { 2022 bool out = false; 2023 int split[MAX_PIPES] = { 0 }; 2024 int pipe_cnt, i, pipe_idx, vlevel; 2025 2026 ASSERT(pipes); 2027 if (!pipes) 2028 return false; 2029 2030 dcn20_merge_pipes_for_validate(dc, context); 2031 2032 DC_FP_START(); 2033 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2034 DC_FP_END(); 2035 2036 *pipe_cnt_out = pipe_cnt; 2037 2038 if (!pipe_cnt) { 2039 out = true; 2040 goto validate_out; 2041 } 2042 2043 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2044 2045 if (vlevel > context->bw_ctx.dml.soc.num_states) 2046 goto validate_fail; 2047 2048 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); 2049 2050 /*initialize pipe_just_split_from to invalid idx*/ 2051 for (i = 0; i < MAX_PIPES; i++) 2052 pipe_split_from[i] = -1; 2053 2054 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2055 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2056 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 2057 2058 if (!pipe->stream || pipe_split_from[i] >= 0) 2059 continue; 2060 2061 pipe_idx++; 2062 2063 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2064 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2065 ASSERT(hsplit_pipe); 2066 if (!dcn20_split_stream_for_odm( 2067 dc, &context->res_ctx, 2068 pipe, hsplit_pipe)) 2069 goto validate_fail; 2070 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2071 dcn20_build_mapped_resource(dc, context, pipe->stream); 2072 } 2073 2074 if (!pipe->plane_state) 2075 continue; 2076 /* Skip 2nd half of already split pipe */ 2077 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) 2078 continue; 2079 2080 /* We do not support mpo + odm at the moment */ 2081 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state 2082 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) 2083 goto validate_fail; 2084 2085 if (split[i] == 2) { 2086 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { 2087 /* pipe not split previously needs split */ 2088 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2089 ASSERT(hsplit_pipe); 2090 if (!hsplit_pipe) { 2091 DC_FP_START(); 2092 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true); 2093 DC_FP_END(); 2094 continue; 2095 } 2096 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2097 if (!dcn20_split_stream_for_odm( 2098 dc, &context->res_ctx, 2099 pipe, hsplit_pipe)) 2100 goto validate_fail; 2101 dcn20_build_mapped_resource(dc, context, pipe->stream); 2102 } else { 2103 dcn20_split_stream_for_mpc( 2104 &context->res_ctx, dc->res_pool, 2105 pipe, hsplit_pipe); 2106 resource_build_scaling_params(pipe); 2107 resource_build_scaling_params(hsplit_pipe); 2108 } 2109 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2110 } 2111 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { 2112 /* merge should already have been done */ 2113 ASSERT(0); 2114 } 2115 } 2116 /* Actual dsc count per stream dsc validation*/ 2117 if (!dcn20_validate_dsc(dc, context)) { 2118 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = 2119 DML_FAIL_DSC_VALIDATION_FAILURE; 2120 goto validate_fail; 2121 } 2122 2123 *vlevel_out = vlevel; 2124 2125 out = true; 2126 goto validate_out; 2127 2128 validate_fail: 2129 out = false; 2130 2131 validate_out: 2132 return out; 2133 } 2134 2135 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, 2136 bool fast_validate) 2137 { 2138 bool voltage_supported; 2139 DC_FP_START(); 2140 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate); 2141 DC_FP_END(); 2142 return voltage_supported; 2143 } 2144 2145 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer( 2146 struct dc_state *state, 2147 const struct resource_pool *pool, 2148 struct dc_stream_state *stream) 2149 { 2150 struct resource_context *res_ctx = &state->res_ctx; 2151 struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); 2152 struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); 2153 2154 if (!head_pipe) 2155 ASSERT(0); 2156 2157 if (!idle_pipe) 2158 return NULL; 2159 2160 idle_pipe->stream = head_pipe->stream; 2161 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2162 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2163 2164 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2165 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2166 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2167 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2168 2169 return idle_pipe; 2170 } 2171 2172 bool dcn20_get_dcc_compression_cap(const struct dc *dc, 2173 const struct dc_dcc_surface_param *input, 2174 struct dc_surface_dcc_cap *output) 2175 { 2176 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( 2177 dc->res_pool->hubbub, 2178 input, 2179 output); 2180 } 2181 2182 static void dcn20_destroy_resource_pool(struct resource_pool **pool) 2183 { 2184 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); 2185 2186 dcn20_resource_destruct(dcn20_pool); 2187 kfree(dcn20_pool); 2188 *pool = NULL; 2189 } 2190 2191 2192 static struct dc_cap_funcs cap_funcs = { 2193 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2194 }; 2195 2196 2197 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state) 2198 { 2199 enum surface_pixel_format surf_pix_format = plane_state->format; 2200 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); 2201 2202 enum swizzle_mode_values swizzle = DC_SW_LINEAR; 2203 2204 if (bpp == 64) 2205 swizzle = DC_SW_64KB_D; 2206 else 2207 swizzle = DC_SW_64KB_S; 2208 2209 plane_state->tiling_info.gfx9.swizzle = swizzle; 2210 return DC_OK; 2211 } 2212 2213 static const struct resource_funcs dcn20_res_pool_funcs = { 2214 .destroy = dcn20_destroy_resource_pool, 2215 .link_enc_create = dcn20_link_encoder_create, 2216 .panel_cntl_create = dcn20_panel_cntl_create, 2217 .validate_bandwidth = dcn20_validate_bandwidth, 2218 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2219 .add_stream_to_ctx = dcn20_add_stream_to_ctx, 2220 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2221 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2222 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, 2223 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2224 .set_mcif_arb_params = dcn20_set_mcif_arb_params, 2225 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context, 2226 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link 2227 }; 2228 2229 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 2230 { 2231 int i; 2232 uint32_t pipe_count = pool->res_cap->num_dwb; 2233 2234 for (i = 0; i < pipe_count; i++) { 2235 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), 2236 GFP_KERNEL); 2237 2238 if (!dwbc20) { 2239 dm_error("DC: failed to create dwbc20!\n"); 2240 return false; 2241 } 2242 dcn20_dwbc_construct(dwbc20, ctx, 2243 &dwbc20_regs[i], 2244 &dwbc20_shift, 2245 &dwbc20_mask, 2246 i); 2247 pool->dwbc[i] = &dwbc20->base; 2248 } 2249 return true; 2250 } 2251 2252 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 2253 { 2254 int i; 2255 uint32_t pipe_count = pool->res_cap->num_dwb; 2256 2257 ASSERT(pipe_count > 0); 2258 2259 for (i = 0; i < pipe_count; i++) { 2260 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), 2261 GFP_KERNEL); 2262 2263 if (!mcif_wb20) { 2264 dm_error("DC: failed to create mcif_wb20!\n"); 2265 return false; 2266 } 2267 2268 dcn20_mmhubbub_construct(mcif_wb20, ctx, 2269 &mcif_wb20_regs[i], 2270 &mcif_wb20_shift, 2271 &mcif_wb20_mask, 2272 i); 2273 2274 pool->mcif_wb[i] = &mcif_wb20->base; 2275 } 2276 return true; 2277 } 2278 2279 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) 2280 { 2281 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC); 2282 2283 if (!pp_smu) 2284 return pp_smu; 2285 2286 dm_pp_get_funcs(ctx, pp_smu); 2287 2288 if (pp_smu->ctx.ver != PP_SMU_VER_NV) 2289 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); 2290 2291 return pp_smu; 2292 } 2293 2294 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) 2295 { 2296 if (pp_smu && *pp_smu) { 2297 kfree(*pp_smu); 2298 *pp_smu = NULL; 2299 } 2300 } 2301 2302 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( 2303 uint32_t hw_internal_rev) 2304 { 2305 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2306 return &dcn2_0_nv14_soc; 2307 2308 if (ASICREV_IS_NAVI12_P(hw_internal_rev)) 2309 return &dcn2_0_nv12_soc; 2310 2311 return &dcn2_0_soc; 2312 } 2313 2314 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( 2315 uint32_t hw_internal_rev) 2316 { 2317 /* NV14 */ 2318 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2319 return &dcn2_0_nv14_ip; 2320 2321 /* NV12 and NV10 */ 2322 return &dcn2_0_ip; 2323 } 2324 2325 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) 2326 { 2327 return DML_PROJECT_NAVI10v2; 2328 } 2329 2330 static bool init_soc_bounding_box(struct dc *dc, 2331 struct dcn20_resource_pool *pool) 2332 { 2333 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2334 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); 2335 struct _vcs_dpi_ip_params_st *loaded_ip = 2336 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); 2337 2338 DC_LOGGER_INIT(dc->ctx->logger); 2339 2340 if (pool->base.pp_smu) { 2341 struct pp_smu_nv_clock_table max_clocks = {0}; 2342 unsigned int uclk_states[8] = {0}; 2343 unsigned int num_states = 0; 2344 enum pp_smu_status status; 2345 bool clock_limits_available = false; 2346 bool uclk_states_available = false; 2347 2348 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { 2349 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) 2350 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); 2351 2352 uclk_states_available = (status == PP_SMU_RESULT_OK); 2353 } 2354 2355 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { 2356 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) 2357 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); 2358 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock 2359 */ 2360 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) 2361 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; 2362 clock_limits_available = (status == PP_SMU_RESULT_OK); 2363 } 2364 2365 if (clock_limits_available && uclk_states_available && num_states) { 2366 DC_FP_START(); 2367 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); 2368 DC_FP_END(); 2369 } else if (clock_limits_available) { 2370 DC_FP_START(); 2371 dcn20_cap_soc_clocks(loaded_bb, max_clocks); 2372 DC_FP_END(); 2373 } 2374 } 2375 2376 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 2377 loaded_ip->max_num_dpp = pool->base.pipe_count; 2378 DC_FP_START(); 2379 dcn20_patch_bounding_box(dc, loaded_bb); 2380 DC_FP_END(); 2381 return true; 2382 } 2383 2384 static bool dcn20_resource_construct( 2385 uint8_t num_virtual_links, 2386 struct dc *dc, 2387 struct dcn20_resource_pool *pool) 2388 { 2389 int i; 2390 struct dc_context *ctx = dc->ctx; 2391 struct irq_service_init_data init_data; 2392 struct ddc_service_init_data ddc_init_data = {0}; 2393 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2394 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); 2395 struct _vcs_dpi_ip_params_st *loaded_ip = 2396 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); 2397 enum dml_project dml_project_version = 2398 get_dml_project_version(ctx->asic_id.hw_internal_rev); 2399 2400 ctx->dc_bios->regs = &bios_regs; 2401 pool->base.funcs = &dcn20_res_pool_funcs; 2402 2403 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 2404 pool->base.res_cap = &res_cap_nv14; 2405 pool->base.pipe_count = 5; 2406 pool->base.mpcc_count = 5; 2407 } else { 2408 pool->base.res_cap = &res_cap_nv10; 2409 pool->base.pipe_count = 6; 2410 pool->base.mpcc_count = 6; 2411 } 2412 /************************************************* 2413 * Resource + asic cap harcoding * 2414 *************************************************/ 2415 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2416 2417 dc->caps.max_downscale_ratio = 200; 2418 dc->caps.i2c_speed_in_khz = 100; 2419 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2420 dc->caps.max_cursor_size = 256; 2421 dc->caps.min_horizontal_blanking_period = 80; 2422 dc->caps.dmdata_alloc_size = 2048; 2423 2424 dc->caps.max_slave_planes = 1; 2425 dc->caps.max_slave_yuv_planes = 1; 2426 dc->caps.max_slave_rgb_planes = 1; 2427 dc->caps.post_blend_color_processing = true; 2428 dc->caps.force_dp_tps4_for_cp2520 = true; 2429 dc->caps.extended_aux_timeout_support = true; 2430 2431 /* Color pipeline capabilities */ 2432 dc->caps.color.dpp.dcn_arch = 1; 2433 dc->caps.color.dpp.input_lut_shared = 0; 2434 dc->caps.color.dpp.icsc = 1; 2435 dc->caps.color.dpp.dgam_ram = 1; 2436 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2437 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2438 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; 2439 dc->caps.color.dpp.dgam_rom_caps.pq = 0; 2440 dc->caps.color.dpp.dgam_rom_caps.hlg = 0; 2441 dc->caps.color.dpp.post_csc = 0; 2442 dc->caps.color.dpp.gamma_corr = 0; 2443 dc->caps.color.dpp.dgam_rom_for_yuv = 1; 2444 2445 dc->caps.color.dpp.hw_3d_lut = 1; 2446 dc->caps.color.dpp.ogam_ram = 1; 2447 // no OGAM ROM on DCN2, only MPC ROM 2448 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2449 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2450 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2451 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2452 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2453 dc->caps.color.dpp.ocsc = 0; 2454 2455 dc->caps.color.mpc.gamut_remap = 0; 2456 dc->caps.color.mpc.num_3dluts = 0; 2457 dc->caps.color.mpc.shared_3d_lut = 0; 2458 dc->caps.color.mpc.ogam_ram = 1; 2459 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2460 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2461 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2462 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2463 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2464 dc->caps.color.mpc.ocsc = 1; 2465 2466 dc->caps.dp_hdmi21_pcon_support = true; 2467 2468 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) { 2469 dc->debug = debug_defaults_drv; 2470 } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2471 pool->base.pipe_count = 4; 2472 pool->base.mpcc_count = pool->base.pipe_count; 2473 dc->debug = debug_defaults_diags; 2474 } else { 2475 dc->debug = debug_defaults_diags; 2476 } 2477 //dcn2.0x 2478 dc->work_arounds.dedcn20_305_wa = true; 2479 2480 // Init the vm_helper 2481 if (dc->vm_helper) 2482 vm_helper_init(dc->vm_helper, 16); 2483 2484 /************************************************* 2485 * Create resources * 2486 *************************************************/ 2487 2488 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = 2489 dcn20_clock_source_create(ctx, ctx->dc_bios, 2490 CLOCK_SOURCE_COMBO_PHY_PLL0, 2491 &clk_src_regs[0], false); 2492 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = 2493 dcn20_clock_source_create(ctx, ctx->dc_bios, 2494 CLOCK_SOURCE_COMBO_PHY_PLL1, 2495 &clk_src_regs[1], false); 2496 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = 2497 dcn20_clock_source_create(ctx, ctx->dc_bios, 2498 CLOCK_SOURCE_COMBO_PHY_PLL2, 2499 &clk_src_regs[2], false); 2500 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = 2501 dcn20_clock_source_create(ctx, ctx->dc_bios, 2502 CLOCK_SOURCE_COMBO_PHY_PLL3, 2503 &clk_src_regs[3], false); 2504 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = 2505 dcn20_clock_source_create(ctx, ctx->dc_bios, 2506 CLOCK_SOURCE_COMBO_PHY_PLL4, 2507 &clk_src_regs[4], false); 2508 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = 2509 dcn20_clock_source_create(ctx, ctx->dc_bios, 2510 CLOCK_SOURCE_COMBO_PHY_PLL5, 2511 &clk_src_regs[5], false); 2512 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; 2513 /* todo: not reuse phy_pll registers */ 2514 pool->base.dp_clock_source = 2515 dcn20_clock_source_create(ctx, ctx->dc_bios, 2516 CLOCK_SOURCE_ID_DP_DTO, 2517 &clk_src_regs[0], true); 2518 2519 for (i = 0; i < pool->base.clk_src_count; i++) { 2520 if (pool->base.clock_sources[i] == NULL) { 2521 dm_error("DC: failed to create clock sources!\n"); 2522 BREAK_TO_DEBUGGER(); 2523 goto create_fail; 2524 } 2525 } 2526 2527 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2528 if (pool->base.dccg == NULL) { 2529 dm_error("DC: failed to create dccg!\n"); 2530 BREAK_TO_DEBUGGER(); 2531 goto create_fail; 2532 } 2533 2534 pool->base.dmcu = dcn20_dmcu_create(ctx, 2535 &dmcu_regs, 2536 &dmcu_shift, 2537 &dmcu_mask); 2538 if (pool->base.dmcu == NULL) { 2539 dm_error("DC: failed to create dmcu!\n"); 2540 BREAK_TO_DEBUGGER(); 2541 goto create_fail; 2542 } 2543 2544 pool->base.abm = dce_abm_create(ctx, 2545 &abm_regs, 2546 &abm_shift, 2547 &abm_mask); 2548 if (pool->base.abm == NULL) { 2549 dm_error("DC: failed to create abm!\n"); 2550 BREAK_TO_DEBUGGER(); 2551 goto create_fail; 2552 } 2553 2554 pool->base.pp_smu = dcn20_pp_smu_create(ctx); 2555 2556 2557 if (!init_soc_bounding_box(dc, pool)) { 2558 dm_error("DC: failed to initialize soc bounding box!\n"); 2559 BREAK_TO_DEBUGGER(); 2560 goto create_fail; 2561 } 2562 2563 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); 2564 2565 if (!dc->debug.disable_pplib_wm_range) { 2566 struct pp_smu_wm_range_sets ranges = {0}; 2567 int i = 0; 2568 2569 ranges.num_reader_wm_sets = 0; 2570 2571 if (loaded_bb->num_states == 1) { 2572 ranges.reader_wm_sets[0].wm_inst = i; 2573 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2574 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2575 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2576 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2577 2578 ranges.num_reader_wm_sets = 1; 2579 } else if (loaded_bb->num_states > 1) { 2580 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { 2581 ranges.reader_wm_sets[i].wm_inst = i; 2582 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2583 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2584 DC_FP_START(); 2585 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb); 2586 DC_FP_END(); 2587 2588 ranges.num_reader_wm_sets = i + 1; 2589 } 2590 2591 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2592 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2593 } 2594 2595 ranges.num_writer_wm_sets = 1; 2596 2597 ranges.writer_wm_sets[0].wm_inst = 0; 2598 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2599 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2600 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2601 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2602 2603 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ 2604 if (pool->base.pp_smu->nv_funcs.set_wm_ranges) 2605 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); 2606 } 2607 2608 init_data.ctx = dc->ctx; 2609 pool->base.irqs = dal_irq_service_dcn20_create(&init_data); 2610 if (!pool->base.irqs) 2611 goto create_fail; 2612 2613 /* mem input -> ipp -> dpp -> opp -> TG */ 2614 for (i = 0; i < pool->base.pipe_count; i++) { 2615 pool->base.hubps[i] = dcn20_hubp_create(ctx, i); 2616 if (pool->base.hubps[i] == NULL) { 2617 BREAK_TO_DEBUGGER(); 2618 dm_error( 2619 "DC: failed to create memory input!\n"); 2620 goto create_fail; 2621 } 2622 2623 pool->base.ipps[i] = dcn20_ipp_create(ctx, i); 2624 if (pool->base.ipps[i] == NULL) { 2625 BREAK_TO_DEBUGGER(); 2626 dm_error( 2627 "DC: failed to create input pixel processor!\n"); 2628 goto create_fail; 2629 } 2630 2631 pool->base.dpps[i] = dcn20_dpp_create(ctx, i); 2632 if (pool->base.dpps[i] == NULL) { 2633 BREAK_TO_DEBUGGER(); 2634 dm_error( 2635 "DC: failed to create dpps!\n"); 2636 goto create_fail; 2637 } 2638 } 2639 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2640 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); 2641 if (pool->base.engines[i] == NULL) { 2642 BREAK_TO_DEBUGGER(); 2643 dm_error( 2644 "DC:failed to create aux engine!!\n"); 2645 goto create_fail; 2646 } 2647 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); 2648 if (pool->base.hw_i2cs[i] == NULL) { 2649 BREAK_TO_DEBUGGER(); 2650 dm_error( 2651 "DC:failed to create hw i2c!!\n"); 2652 goto create_fail; 2653 } 2654 pool->base.sw_i2cs[i] = NULL; 2655 } 2656 2657 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2658 pool->base.opps[i] = dcn20_opp_create(ctx, i); 2659 if (pool->base.opps[i] == NULL) { 2660 BREAK_TO_DEBUGGER(); 2661 dm_error( 2662 "DC: failed to create output pixel processor!\n"); 2663 goto create_fail; 2664 } 2665 } 2666 2667 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2668 pool->base.timing_generators[i] = dcn20_timing_generator_create( 2669 ctx, i); 2670 if (pool->base.timing_generators[i] == NULL) { 2671 BREAK_TO_DEBUGGER(); 2672 dm_error("DC: failed to create tg!\n"); 2673 goto create_fail; 2674 } 2675 } 2676 2677 pool->base.timing_generator_count = i; 2678 2679 pool->base.mpc = dcn20_mpc_create(ctx); 2680 if (pool->base.mpc == NULL) { 2681 BREAK_TO_DEBUGGER(); 2682 dm_error("DC: failed to create mpc!\n"); 2683 goto create_fail; 2684 } 2685 2686 pool->base.hubbub = dcn20_hubbub_create(ctx); 2687 if (pool->base.hubbub == NULL) { 2688 BREAK_TO_DEBUGGER(); 2689 dm_error("DC: failed to create hubbub!\n"); 2690 goto create_fail; 2691 } 2692 2693 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2694 pool->base.dscs[i] = dcn20_dsc_create(ctx, i); 2695 if (pool->base.dscs[i] == NULL) { 2696 BREAK_TO_DEBUGGER(); 2697 dm_error("DC: failed to create display stream compressor %d!\n", i); 2698 goto create_fail; 2699 } 2700 } 2701 2702 if (!dcn20_dwbc_create(ctx, &pool->base)) { 2703 BREAK_TO_DEBUGGER(); 2704 dm_error("DC: failed to create dwbc!\n"); 2705 goto create_fail; 2706 } 2707 if (!dcn20_mmhubbub_create(ctx, &pool->base)) { 2708 BREAK_TO_DEBUGGER(); 2709 dm_error("DC: failed to create mcif_wb!\n"); 2710 goto create_fail; 2711 } 2712 2713 if (!resource_construct(num_virtual_links, dc, &pool->base, 2714 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2715 &res_create_funcs : &res_create_maximus_funcs))) 2716 goto create_fail; 2717 2718 dcn20_hw_sequencer_construct(dc); 2719 2720 // IF NV12, set PG function pointer to NULL. It's not that 2721 // PG isn't supported for NV12, it's that we don't want to 2722 // program the registers because that will cause more power 2723 // to be consumed. We could have created dcn20_init_hw to get 2724 // the same effect by checking ASIC rev, but there was a 2725 // request at some point to not check ASIC rev on hw sequencer. 2726 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) { 2727 dc->hwseq->funcs.enable_power_gating_plane = NULL; 2728 dc->debug.disable_dpp_power_gate = true; 2729 dc->debug.disable_hubp_power_gate = true; 2730 } 2731 2732 2733 dc->caps.max_planes = pool->base.pipe_count; 2734 2735 for (i = 0; i < dc->caps.max_planes; ++i) 2736 dc->caps.planes[i] = plane_cap; 2737 2738 dc->cap_funcs = cap_funcs; 2739 2740 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2741 ddc_init_data.ctx = dc->ctx; 2742 ddc_init_data.link = NULL; 2743 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2744 ddc_init_data.id.enum_id = 0; 2745 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2746 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2747 } else { 2748 pool->base.oem_device = NULL; 2749 } 2750 2751 return true; 2752 2753 create_fail: 2754 2755 dcn20_resource_destruct(pool); 2756 2757 return false; 2758 } 2759 2760 struct resource_pool *dcn20_create_resource_pool( 2761 const struct dc_init_data *init_data, 2762 struct dc *dc) 2763 { 2764 struct dcn20_resource_pool *pool = 2765 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC); 2766 2767 if (!pool) 2768 return NULL; 2769 2770 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool)) 2771 return &pool->base; 2772 2773 BREAK_TO_DEBUGGER(); 2774 kfree(pool); 2775 return NULL; 2776 } 2777