1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * Copyright 2019 Raptor Engineering, LLC 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include <linux/slab.h> 28 29 #include "dm_services.h" 30 #include "dc.h" 31 32 #include "dcn20_init.h" 33 34 #include "resource.h" 35 #include "include/irq_service_interface.h" 36 #include "dcn20/dcn20_resource.h" 37 38 #include "dml/dcn20/dcn20_fpu.h" 39 40 #include "dcn10/dcn10_hubp.h" 41 #include "dcn10/dcn10_ipp.h" 42 #include "dcn20_hubbub.h" 43 #include "dcn20_mpc.h" 44 #include "dcn20_hubp.h" 45 #include "irq/dcn20/irq_service_dcn20.h" 46 #include "dcn20_dpp.h" 47 #include "dcn20_optc.h" 48 #include "dcn20_hwseq.h" 49 #include "dce110/dce110_hw_sequencer.h" 50 #include "dcn10/dcn10_resource.h" 51 #include "dcn20_opp.h" 52 53 #include "dcn20_dsc.h" 54 55 #include "dcn20_link_encoder.h" 56 #include "dcn20_stream_encoder.h" 57 #include "dce/dce_clock_source.h" 58 #include "dce/dce_audio.h" 59 #include "dce/dce_hwseq.h" 60 #include "virtual/virtual_stream_encoder.h" 61 #include "dce110/dce110_resource.h" 62 #include "dml/display_mode_vba.h" 63 #include "dcn20_dccg.h" 64 #include "dcn20_vmid.h" 65 #include "dc_link_ddc.h" 66 #include "dce/dce_panel_cntl.h" 67 68 #include "navi10_ip_offset.h" 69 70 #include "dcn/dcn_2_0_0_offset.h" 71 #include "dcn/dcn_2_0_0_sh_mask.h" 72 #include "dpcs/dpcs_2_0_0_offset.h" 73 #include "dpcs/dpcs_2_0_0_sh_mask.h" 74 75 #include "nbio/nbio_2_3_offset.h" 76 77 #include "dcn20/dcn20_dwb.h" 78 #include "dcn20/dcn20_mmhubbub.h" 79 80 #include "mmhub/mmhub_2_0_0_offset.h" 81 #include "mmhub/mmhub_2_0_0_sh_mask.h" 82 83 #include "reg_helper.h" 84 #include "dce/dce_abm.h" 85 #include "dce/dce_dmcu.h" 86 #include "dce/dce_aux.h" 87 #include "dce/dce_i2c.h" 88 #include "vm_helper.h" 89 #include "link_enc_cfg.h" 90 91 #include "amdgpu_socbb.h" 92 93 #define DC_LOGGER_INIT(logger) 94 95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL 96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f 97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f 99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f 101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f 103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f 105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f 107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f 109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 110 #endif 111 112 113 enum dcn20_clk_src_array_id { 114 DCN20_CLK_SRC_PLL0, 115 DCN20_CLK_SRC_PLL1, 116 DCN20_CLK_SRC_PLL2, 117 DCN20_CLK_SRC_PLL3, 118 DCN20_CLK_SRC_PLL4, 119 DCN20_CLK_SRC_PLL5, 120 DCN20_CLK_SRC_TOTAL 121 }; 122 123 /* begin ********************* 124 * macros to expend register list macro defined in HW object header file */ 125 126 /* DCN */ 127 /* TODO awful hack. fixup dcn20_dwb.h */ 128 #undef BASE_INNER 129 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 130 131 #define BASE(seg) BASE_INNER(seg) 132 133 #define SR(reg_name)\ 134 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 135 mm ## reg_name 136 137 #define SRI(reg_name, block, id)\ 138 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 139 mm ## block ## id ## _ ## reg_name 140 141 #define SRIR(var_name, reg_name, block, id)\ 142 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 143 mm ## block ## id ## _ ## reg_name 144 145 #define SRII(reg_name, block, id)\ 146 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 147 mm ## block ## id ## _ ## reg_name 148 149 #define DCCG_SRII(reg_name, block, id)\ 150 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 151 mm ## block ## id ## _ ## reg_name 152 153 #define VUPDATE_SRII(reg_name, block, id)\ 154 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 155 mm ## reg_name ## _ ## block ## id 156 157 /* NBIO */ 158 #define NBIO_BASE_INNER(seg) \ 159 NBIO_BASE__INST0_SEG ## seg 160 161 #define NBIO_BASE(seg) \ 162 NBIO_BASE_INNER(seg) 163 164 #define NBIO_SR(reg_name)\ 165 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 166 mm ## reg_name 167 168 /* MMHUB */ 169 #define MMHUB_BASE_INNER(seg) \ 170 MMHUB_BASE__INST0_SEG ## seg 171 172 #define MMHUB_BASE(seg) \ 173 MMHUB_BASE_INNER(seg) 174 175 #define MMHUB_SR(reg_name)\ 176 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 177 mmMM ## reg_name 178 179 static const struct bios_registers bios_regs = { 180 NBIO_SR(BIOS_SCRATCH_3), 181 NBIO_SR(BIOS_SCRATCH_6) 182 }; 183 184 #define clk_src_regs(index, pllid)\ 185 [index] = {\ 186 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 187 } 188 189 static const struct dce110_clk_src_regs clk_src_regs[] = { 190 clk_src_regs(0, A), 191 clk_src_regs(1, B), 192 clk_src_regs(2, C), 193 clk_src_regs(3, D), 194 clk_src_regs(4, E), 195 clk_src_regs(5, F) 196 }; 197 198 static const struct dce110_clk_src_shift cs_shift = { 199 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 200 }; 201 202 static const struct dce110_clk_src_mask cs_mask = { 203 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 204 }; 205 206 static const struct dce_dmcu_registers dmcu_regs = { 207 DMCU_DCN10_REG_LIST() 208 }; 209 210 static const struct dce_dmcu_shift dmcu_shift = { 211 DMCU_MASK_SH_LIST_DCN10(__SHIFT) 212 }; 213 214 static const struct dce_dmcu_mask dmcu_mask = { 215 DMCU_MASK_SH_LIST_DCN10(_MASK) 216 }; 217 218 static const struct dce_abm_registers abm_regs = { 219 ABM_DCN20_REG_LIST() 220 }; 221 222 static const struct dce_abm_shift abm_shift = { 223 ABM_MASK_SH_LIST_DCN20(__SHIFT) 224 }; 225 226 static const struct dce_abm_mask abm_mask = { 227 ABM_MASK_SH_LIST_DCN20(_MASK) 228 }; 229 230 #define audio_regs(id)\ 231 [id] = {\ 232 AUD_COMMON_REG_LIST(id)\ 233 } 234 235 static const struct dce_audio_registers audio_regs[] = { 236 audio_regs(0), 237 audio_regs(1), 238 audio_regs(2), 239 audio_regs(3), 240 audio_regs(4), 241 audio_regs(5), 242 audio_regs(6), 243 }; 244 245 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 246 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 247 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 248 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 249 250 static const struct dce_audio_shift audio_shift = { 251 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 252 }; 253 254 static const struct dce_audio_mask audio_mask = { 255 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 256 }; 257 258 #define stream_enc_regs(id)\ 259 [id] = {\ 260 SE_DCN2_REG_LIST(id)\ 261 } 262 263 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 264 stream_enc_regs(0), 265 stream_enc_regs(1), 266 stream_enc_regs(2), 267 stream_enc_regs(3), 268 stream_enc_regs(4), 269 stream_enc_regs(5), 270 }; 271 272 static const struct dcn10_stream_encoder_shift se_shift = { 273 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) 274 }; 275 276 static const struct dcn10_stream_encoder_mask se_mask = { 277 SE_COMMON_MASK_SH_LIST_DCN20(_MASK) 278 }; 279 280 281 #define aux_regs(id)\ 282 [id] = {\ 283 DCN2_AUX_REG_LIST(id)\ 284 } 285 286 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 287 aux_regs(0), 288 aux_regs(1), 289 aux_regs(2), 290 aux_regs(3), 291 aux_regs(4), 292 aux_regs(5) 293 }; 294 295 #define hpd_regs(id)\ 296 [id] = {\ 297 HPD_REG_LIST(id)\ 298 } 299 300 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 301 hpd_regs(0), 302 hpd_regs(1), 303 hpd_regs(2), 304 hpd_regs(3), 305 hpd_regs(4), 306 hpd_regs(5) 307 }; 308 309 #define link_regs(id, phyid)\ 310 [id] = {\ 311 LE_DCN10_REG_LIST(id), \ 312 UNIPHY_DCN2_REG_LIST(phyid), \ 313 DPCS_DCN2_REG_LIST(id), \ 314 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 315 } 316 317 static const struct dcn10_link_enc_registers link_enc_regs[] = { 318 link_regs(0, A), 319 link_regs(1, B), 320 link_regs(2, C), 321 link_regs(3, D), 322 link_regs(4, E), 323 link_regs(5, F) 324 }; 325 326 static const struct dcn10_link_enc_shift le_shift = { 327 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ 328 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 329 }; 330 331 static const struct dcn10_link_enc_mask le_mask = { 332 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ 333 DPCS_DCN2_MASK_SH_LIST(_MASK) 334 }; 335 336 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 337 { DCN_PANEL_CNTL_REG_LIST() } 338 }; 339 340 static const struct dce_panel_cntl_shift panel_cntl_shift = { 341 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 342 }; 343 344 static const struct dce_panel_cntl_mask panel_cntl_mask = { 345 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 346 }; 347 348 #define ipp_regs(id)\ 349 [id] = {\ 350 IPP_REG_LIST_DCN20(id),\ 351 } 352 353 static const struct dcn10_ipp_registers ipp_regs[] = { 354 ipp_regs(0), 355 ipp_regs(1), 356 ipp_regs(2), 357 ipp_regs(3), 358 ipp_regs(4), 359 ipp_regs(5), 360 }; 361 362 static const struct dcn10_ipp_shift ipp_shift = { 363 IPP_MASK_SH_LIST_DCN20(__SHIFT) 364 }; 365 366 static const struct dcn10_ipp_mask ipp_mask = { 367 IPP_MASK_SH_LIST_DCN20(_MASK), 368 }; 369 370 #define opp_regs(id)\ 371 [id] = {\ 372 OPP_REG_LIST_DCN20(id),\ 373 } 374 375 static const struct dcn20_opp_registers opp_regs[] = { 376 opp_regs(0), 377 opp_regs(1), 378 opp_regs(2), 379 opp_regs(3), 380 opp_regs(4), 381 opp_regs(5), 382 }; 383 384 static const struct dcn20_opp_shift opp_shift = { 385 OPP_MASK_SH_LIST_DCN20(__SHIFT) 386 }; 387 388 static const struct dcn20_opp_mask opp_mask = { 389 OPP_MASK_SH_LIST_DCN20(_MASK) 390 }; 391 392 #define aux_engine_regs(id)\ 393 [id] = {\ 394 AUX_COMMON_REG_LIST0(id), \ 395 .AUXN_IMPCAL = 0, \ 396 .AUXP_IMPCAL = 0, \ 397 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 398 } 399 400 static const struct dce110_aux_registers aux_engine_regs[] = { 401 aux_engine_regs(0), 402 aux_engine_regs(1), 403 aux_engine_regs(2), 404 aux_engine_regs(3), 405 aux_engine_regs(4), 406 aux_engine_regs(5) 407 }; 408 409 #define tf_regs(id)\ 410 [id] = {\ 411 TF_REG_LIST_DCN20(id),\ 412 TF_REG_LIST_DCN20_COMMON_APPEND(id),\ 413 } 414 415 static const struct dcn2_dpp_registers tf_regs[] = { 416 tf_regs(0), 417 tf_regs(1), 418 tf_regs(2), 419 tf_regs(3), 420 tf_regs(4), 421 tf_regs(5), 422 }; 423 424 static const struct dcn2_dpp_shift tf_shift = { 425 TF_REG_LIST_SH_MASK_DCN20(__SHIFT), 426 TF_DEBUG_REG_LIST_SH_DCN20 427 }; 428 429 static const struct dcn2_dpp_mask tf_mask = { 430 TF_REG_LIST_SH_MASK_DCN20(_MASK), 431 TF_DEBUG_REG_LIST_MASK_DCN20 432 }; 433 434 #define dwbc_regs_dcn2(id)\ 435 [id] = {\ 436 DWBC_COMMON_REG_LIST_DCN2_0(id),\ 437 } 438 439 static const struct dcn20_dwbc_registers dwbc20_regs[] = { 440 dwbc_regs_dcn2(0), 441 }; 442 443 static const struct dcn20_dwbc_shift dwbc20_shift = { 444 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 445 }; 446 447 static const struct dcn20_dwbc_mask dwbc20_mask = { 448 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 449 }; 450 451 #define mcif_wb_regs_dcn2(id)\ 452 [id] = {\ 453 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ 454 } 455 456 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { 457 mcif_wb_regs_dcn2(0), 458 }; 459 460 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { 461 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 462 }; 463 464 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { 465 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 466 }; 467 468 static const struct dcn20_mpc_registers mpc_regs = { 469 MPC_REG_LIST_DCN2_0(0), 470 MPC_REG_LIST_DCN2_0(1), 471 MPC_REG_LIST_DCN2_0(2), 472 MPC_REG_LIST_DCN2_0(3), 473 MPC_REG_LIST_DCN2_0(4), 474 MPC_REG_LIST_DCN2_0(5), 475 MPC_OUT_MUX_REG_LIST_DCN2_0(0), 476 MPC_OUT_MUX_REG_LIST_DCN2_0(1), 477 MPC_OUT_MUX_REG_LIST_DCN2_0(2), 478 MPC_OUT_MUX_REG_LIST_DCN2_0(3), 479 MPC_OUT_MUX_REG_LIST_DCN2_0(4), 480 MPC_OUT_MUX_REG_LIST_DCN2_0(5), 481 MPC_DBG_REG_LIST_DCN2_0() 482 }; 483 484 static const struct dcn20_mpc_shift mpc_shift = { 485 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), 486 MPC_DEBUG_REG_LIST_SH_DCN20 487 }; 488 489 static const struct dcn20_mpc_mask mpc_mask = { 490 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), 491 MPC_DEBUG_REG_LIST_MASK_DCN20 492 }; 493 494 #define tg_regs(id)\ 495 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} 496 497 498 static const struct dcn_optc_registers tg_regs[] = { 499 tg_regs(0), 500 tg_regs(1), 501 tg_regs(2), 502 tg_regs(3), 503 tg_regs(4), 504 tg_regs(5) 505 }; 506 507 static const struct dcn_optc_shift tg_shift = { 508 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 509 }; 510 511 static const struct dcn_optc_mask tg_mask = { 512 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 513 }; 514 515 #define hubp_regs(id)\ 516 [id] = {\ 517 HUBP_REG_LIST_DCN20(id)\ 518 } 519 520 static const struct dcn_hubp2_registers hubp_regs[] = { 521 hubp_regs(0), 522 hubp_regs(1), 523 hubp_regs(2), 524 hubp_regs(3), 525 hubp_regs(4), 526 hubp_regs(5) 527 }; 528 529 static const struct dcn_hubp2_shift hubp_shift = { 530 HUBP_MASK_SH_LIST_DCN20(__SHIFT) 531 }; 532 533 static const struct dcn_hubp2_mask hubp_mask = { 534 HUBP_MASK_SH_LIST_DCN20(_MASK) 535 }; 536 537 static const struct dcn_hubbub_registers hubbub_reg = { 538 HUBBUB_REG_LIST_DCN20(0) 539 }; 540 541 static const struct dcn_hubbub_shift hubbub_shift = { 542 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) 543 }; 544 545 static const struct dcn_hubbub_mask hubbub_mask = { 546 HUBBUB_MASK_SH_LIST_DCN20(_MASK) 547 }; 548 549 #define vmid_regs(id)\ 550 [id] = {\ 551 DCN20_VMID_REG_LIST(id)\ 552 } 553 554 static const struct dcn_vmid_registers vmid_regs[] = { 555 vmid_regs(0), 556 vmid_regs(1), 557 vmid_regs(2), 558 vmid_regs(3), 559 vmid_regs(4), 560 vmid_regs(5), 561 vmid_regs(6), 562 vmid_regs(7), 563 vmid_regs(8), 564 vmid_regs(9), 565 vmid_regs(10), 566 vmid_regs(11), 567 vmid_regs(12), 568 vmid_regs(13), 569 vmid_regs(14), 570 vmid_regs(15) 571 }; 572 573 static const struct dcn20_vmid_shift vmid_shifts = { 574 DCN20_VMID_MASK_SH_LIST(__SHIFT) 575 }; 576 577 static const struct dcn20_vmid_mask vmid_masks = { 578 DCN20_VMID_MASK_SH_LIST(_MASK) 579 }; 580 581 static const struct dce110_aux_registers_shift aux_shift = { 582 DCN_AUX_MASK_SH_LIST(__SHIFT) 583 }; 584 585 static const struct dce110_aux_registers_mask aux_mask = { 586 DCN_AUX_MASK_SH_LIST(_MASK) 587 }; 588 589 static int map_transmitter_id_to_phy_instance( 590 enum transmitter transmitter) 591 { 592 switch (transmitter) { 593 case TRANSMITTER_UNIPHY_A: 594 return 0; 595 break; 596 case TRANSMITTER_UNIPHY_B: 597 return 1; 598 break; 599 case TRANSMITTER_UNIPHY_C: 600 return 2; 601 break; 602 case TRANSMITTER_UNIPHY_D: 603 return 3; 604 break; 605 case TRANSMITTER_UNIPHY_E: 606 return 4; 607 break; 608 case TRANSMITTER_UNIPHY_F: 609 return 5; 610 break; 611 default: 612 ASSERT(0); 613 return 0; 614 } 615 } 616 617 #define dsc_regsDCN20(id)\ 618 [id] = {\ 619 DSC_REG_LIST_DCN20(id)\ 620 } 621 622 static const struct dcn20_dsc_registers dsc_regs[] = { 623 dsc_regsDCN20(0), 624 dsc_regsDCN20(1), 625 dsc_regsDCN20(2), 626 dsc_regsDCN20(3), 627 dsc_regsDCN20(4), 628 dsc_regsDCN20(5) 629 }; 630 631 static const struct dcn20_dsc_shift dsc_shift = { 632 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 633 }; 634 635 static const struct dcn20_dsc_mask dsc_mask = { 636 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 637 }; 638 639 static const struct dccg_registers dccg_regs = { 640 DCCG_REG_LIST_DCN2() 641 }; 642 643 static const struct dccg_shift dccg_shift = { 644 DCCG_MASK_SH_LIST_DCN2(__SHIFT) 645 }; 646 647 static const struct dccg_mask dccg_mask = { 648 DCCG_MASK_SH_LIST_DCN2(_MASK) 649 }; 650 651 static const struct resource_caps res_cap_nv10 = { 652 .num_timing_generator = 6, 653 .num_opp = 6, 654 .num_video_plane = 6, 655 .num_audio = 7, 656 .num_stream_encoder = 6, 657 .num_pll = 6, 658 .num_dwb = 1, 659 .num_ddc = 6, 660 .num_vmid = 16, 661 .num_dsc = 6, 662 }; 663 664 static const struct dc_plane_cap plane_cap = { 665 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 666 .blends_with_above = true, 667 .blends_with_below = true, 668 .per_pixel_alpha = true, 669 670 .pixel_format_support = { 671 .argb8888 = true, 672 .nv12 = true, 673 .fp16 = true, 674 .p010 = true 675 }, 676 677 .max_upscale_factor = { 678 .argb8888 = 16000, 679 .nv12 = 16000, 680 .fp16 = 1 681 }, 682 683 .max_downscale_factor = { 684 .argb8888 = 250, 685 .nv12 = 250, 686 .fp16 = 1 687 }, 688 16, 689 16 690 }; 691 static const struct resource_caps res_cap_nv14 = { 692 .num_timing_generator = 5, 693 .num_opp = 5, 694 .num_video_plane = 5, 695 .num_audio = 6, 696 .num_stream_encoder = 5, 697 .num_pll = 5, 698 .num_dwb = 1, 699 .num_ddc = 5, 700 .num_vmid = 16, 701 .num_dsc = 5, 702 }; 703 704 static const struct dc_debug_options debug_defaults_drv = { 705 .disable_dmcu = false, 706 .force_abm_enable = false, 707 .timing_trace = false, 708 .clock_trace = true, 709 .disable_pplib_clock_request = true, 710 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP, 711 .force_single_disp_pipe_split = false, 712 .disable_dcc = DCC_ENABLE, 713 .vsr_support = true, 714 .performance_trace = false, 715 .max_downscale_src_width = 5120,/*upto 5K*/ 716 .disable_pplib_wm_range = false, 717 .scl_reset_length10 = true, 718 .sanity_checks = false, 719 .underflow_assert_delay_us = 0xFFFFFFFF, 720 }; 721 722 static const struct dc_debug_options debug_defaults_diags = { 723 .disable_dmcu = false, 724 .force_abm_enable = false, 725 .timing_trace = true, 726 .clock_trace = true, 727 .disable_dpp_power_gate = true, 728 .disable_hubp_power_gate = true, 729 .disable_clock_gate = true, 730 .disable_pplib_clock_request = true, 731 .disable_pplib_wm_range = true, 732 .disable_stutter = true, 733 .scl_reset_length10 = true, 734 .underflow_assert_delay_us = 0xFFFFFFFF, 735 .enable_tri_buf = true, 736 }; 737 738 void dcn20_dpp_destroy(struct dpp **dpp) 739 { 740 kfree(TO_DCN20_DPP(*dpp)); 741 *dpp = NULL; 742 } 743 744 struct dpp *dcn20_dpp_create( 745 struct dc_context *ctx, 746 uint32_t inst) 747 { 748 struct dcn20_dpp *dpp = 749 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC); 750 751 if (!dpp) 752 return NULL; 753 754 if (dpp2_construct(dpp, ctx, inst, 755 &tf_regs[inst], &tf_shift, &tf_mask)) 756 return &dpp->base; 757 758 BREAK_TO_DEBUGGER(); 759 kfree(dpp); 760 return NULL; 761 } 762 763 struct input_pixel_processor *dcn20_ipp_create( 764 struct dc_context *ctx, uint32_t inst) 765 { 766 struct dcn10_ipp *ipp = 767 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC); 768 769 if (!ipp) { 770 BREAK_TO_DEBUGGER(); 771 return NULL; 772 } 773 774 dcn20_ipp_construct(ipp, ctx, inst, 775 &ipp_regs[inst], &ipp_shift, &ipp_mask); 776 return &ipp->base; 777 } 778 779 780 struct output_pixel_processor *dcn20_opp_create( 781 struct dc_context *ctx, uint32_t inst) 782 { 783 struct dcn20_opp *opp = 784 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC); 785 786 if (!opp) { 787 BREAK_TO_DEBUGGER(); 788 return NULL; 789 } 790 791 dcn20_opp_construct(opp, ctx, inst, 792 &opp_regs[inst], &opp_shift, &opp_mask); 793 return &opp->base; 794 } 795 796 struct dce_aux *dcn20_aux_engine_create( 797 struct dc_context *ctx, 798 uint32_t inst) 799 { 800 struct aux_engine_dce110 *aux_engine = 801 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC); 802 803 if (!aux_engine) 804 return NULL; 805 806 dce110_aux_engine_construct(aux_engine, ctx, inst, 807 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 808 &aux_engine_regs[inst], 809 &aux_mask, 810 &aux_shift, 811 ctx->dc->caps.extended_aux_timeout_support); 812 813 return &aux_engine->base; 814 } 815 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } 816 817 static const struct dce_i2c_registers i2c_hw_regs[] = { 818 i2c_inst_regs(1), 819 i2c_inst_regs(2), 820 i2c_inst_regs(3), 821 i2c_inst_regs(4), 822 i2c_inst_regs(5), 823 i2c_inst_regs(6), 824 }; 825 826 static const struct dce_i2c_shift i2c_shifts = { 827 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) 828 }; 829 830 static const struct dce_i2c_mask i2c_masks = { 831 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) 832 }; 833 834 struct dce_i2c_hw *dcn20_i2c_hw_create( 835 struct dc_context *ctx, 836 uint32_t inst) 837 { 838 struct dce_i2c_hw *dce_i2c_hw = 839 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC); 840 841 if (!dce_i2c_hw) 842 return NULL; 843 844 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 845 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 846 847 return dce_i2c_hw; 848 } 849 struct mpc *dcn20_mpc_create(struct dc_context *ctx) 850 { 851 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), 852 GFP_ATOMIC); 853 854 if (!mpc20) 855 return NULL; 856 857 dcn20_mpc_construct(mpc20, ctx, 858 &mpc_regs, 859 &mpc_shift, 860 &mpc_mask, 861 6); 862 863 return &mpc20->base; 864 } 865 866 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) 867 { 868 int i; 869 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), 870 GFP_ATOMIC); 871 872 if (!hubbub) 873 return NULL; 874 875 hubbub2_construct(hubbub, ctx, 876 &hubbub_reg, 877 &hubbub_shift, 878 &hubbub_mask); 879 880 for (i = 0; i < res_cap_nv10.num_vmid; i++) { 881 struct dcn20_vmid *vmid = &hubbub->vmid[i]; 882 883 vmid->ctx = ctx; 884 885 vmid->regs = &vmid_regs[i]; 886 vmid->shifts = &vmid_shifts; 887 vmid->masks = &vmid_masks; 888 } 889 890 return &hubbub->base; 891 } 892 893 struct timing_generator *dcn20_timing_generator_create( 894 struct dc_context *ctx, 895 uint32_t instance) 896 { 897 struct optc *tgn10 = 898 kzalloc(sizeof(struct optc), GFP_ATOMIC); 899 900 if (!tgn10) 901 return NULL; 902 903 tgn10->base.inst = instance; 904 tgn10->base.ctx = ctx; 905 906 tgn10->tg_regs = &tg_regs[instance]; 907 tgn10->tg_shift = &tg_shift; 908 tgn10->tg_mask = &tg_mask; 909 910 dcn20_timing_generator_init(tgn10); 911 912 return &tgn10->base; 913 } 914 915 static const struct encoder_feature_support link_enc_feature = { 916 .max_hdmi_deep_color = COLOR_DEPTH_121212, 917 .max_hdmi_pixel_clock = 600000, 918 .hdmi_ycbcr420_supported = true, 919 .dp_ycbcr420_supported = true, 920 .fec_supported = true, 921 .flags.bits.IS_HBR2_CAPABLE = true, 922 .flags.bits.IS_HBR3_CAPABLE = true, 923 .flags.bits.IS_TPS3_CAPABLE = true, 924 .flags.bits.IS_TPS4_CAPABLE = true 925 }; 926 927 struct link_encoder *dcn20_link_encoder_create( 928 const struct encoder_init_data *enc_init_data) 929 { 930 struct dcn20_link_encoder *enc20 = 931 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 932 int link_regs_id; 933 934 if (!enc20) 935 return NULL; 936 937 link_regs_id = 938 map_transmitter_id_to_phy_instance(enc_init_data->transmitter); 939 940 dcn20_link_encoder_construct(enc20, 941 enc_init_data, 942 &link_enc_feature, 943 &link_enc_regs[link_regs_id], 944 &link_enc_aux_regs[enc_init_data->channel - 1], 945 &link_enc_hpd_regs[enc_init_data->hpd_source], 946 &le_shift, 947 &le_mask); 948 949 return &enc20->enc10.base; 950 } 951 952 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data) 953 { 954 struct dce_panel_cntl *panel_cntl = 955 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 956 957 if (!panel_cntl) 958 return NULL; 959 960 dce_panel_cntl_construct(panel_cntl, 961 init_data, 962 &panel_cntl_regs[init_data->inst], 963 &panel_cntl_shift, 964 &panel_cntl_mask); 965 966 return &panel_cntl->base; 967 } 968 969 static struct clock_source *dcn20_clock_source_create( 970 struct dc_context *ctx, 971 struct dc_bios *bios, 972 enum clock_source_id id, 973 const struct dce110_clk_src_regs *regs, 974 bool dp_clk_src) 975 { 976 struct dce110_clk_src *clk_src = 977 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC); 978 979 if (!clk_src) 980 return NULL; 981 982 if (dcn20_clk_src_construct(clk_src, ctx, bios, id, 983 regs, &cs_shift, &cs_mask)) { 984 clk_src->base.dp_clk_src = dp_clk_src; 985 return &clk_src->base; 986 } 987 988 kfree(clk_src); 989 BREAK_TO_DEBUGGER(); 990 return NULL; 991 } 992 993 static void read_dce_straps( 994 struct dc_context *ctx, 995 struct resource_straps *straps) 996 { 997 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 998 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 999 } 1000 1001 static struct audio *dcn20_create_audio( 1002 struct dc_context *ctx, unsigned int inst) 1003 { 1004 return dce_audio_create(ctx, inst, 1005 &audio_regs[inst], &audio_shift, &audio_mask); 1006 } 1007 1008 struct stream_encoder *dcn20_stream_encoder_create( 1009 enum engine_id eng_id, 1010 struct dc_context *ctx) 1011 { 1012 struct dcn10_stream_encoder *enc1 = 1013 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1014 1015 if (!enc1) 1016 return NULL; 1017 1018 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 1019 if (eng_id >= ENGINE_ID_DIGD) 1020 eng_id++; 1021 } 1022 1023 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, 1024 &stream_enc_regs[eng_id], 1025 &se_shift, &se_mask); 1026 1027 return &enc1->base; 1028 } 1029 1030 static const struct dce_hwseq_registers hwseq_reg = { 1031 HWSEQ_DCN2_REG_LIST() 1032 }; 1033 1034 static const struct dce_hwseq_shift hwseq_shift = { 1035 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) 1036 }; 1037 1038 static const struct dce_hwseq_mask hwseq_mask = { 1039 HWSEQ_DCN2_MASK_SH_LIST(_MASK) 1040 }; 1041 1042 struct dce_hwseq *dcn20_hwseq_create( 1043 struct dc_context *ctx) 1044 { 1045 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1046 1047 if (hws) { 1048 hws->ctx = ctx; 1049 hws->regs = &hwseq_reg; 1050 hws->shifts = &hwseq_shift; 1051 hws->masks = &hwseq_mask; 1052 } 1053 return hws; 1054 } 1055 1056 static const struct resource_create_funcs res_create_funcs = { 1057 .read_dce_straps = read_dce_straps, 1058 .create_audio = dcn20_create_audio, 1059 .create_stream_encoder = dcn20_stream_encoder_create, 1060 .create_hwseq = dcn20_hwseq_create, 1061 }; 1062 1063 static const struct resource_create_funcs res_create_maximus_funcs = { 1064 .read_dce_straps = NULL, 1065 .create_audio = NULL, 1066 .create_stream_encoder = NULL, 1067 .create_hwseq = dcn20_hwseq_create, 1068 }; 1069 1070 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu); 1071 1072 void dcn20_clock_source_destroy(struct clock_source **clk_src) 1073 { 1074 kfree(TO_DCE110_CLK_SRC(*clk_src)); 1075 *clk_src = NULL; 1076 } 1077 1078 1079 struct display_stream_compressor *dcn20_dsc_create( 1080 struct dc_context *ctx, uint32_t inst) 1081 { 1082 struct dcn20_dsc *dsc = 1083 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC); 1084 1085 if (!dsc) { 1086 BREAK_TO_DEBUGGER(); 1087 return NULL; 1088 } 1089 1090 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1091 return &dsc->base; 1092 } 1093 1094 void dcn20_dsc_destroy(struct display_stream_compressor **dsc) 1095 { 1096 kfree(container_of(*dsc, struct dcn20_dsc, base)); 1097 *dsc = NULL; 1098 } 1099 1100 1101 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool) 1102 { 1103 unsigned int i; 1104 1105 for (i = 0; i < pool->base.stream_enc_count; i++) { 1106 if (pool->base.stream_enc[i] != NULL) { 1107 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1108 pool->base.stream_enc[i] = NULL; 1109 } 1110 } 1111 1112 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1113 if (pool->base.dscs[i] != NULL) 1114 dcn20_dsc_destroy(&pool->base.dscs[i]); 1115 } 1116 1117 if (pool->base.mpc != NULL) { 1118 kfree(TO_DCN20_MPC(pool->base.mpc)); 1119 pool->base.mpc = NULL; 1120 } 1121 if (pool->base.hubbub != NULL) { 1122 kfree(pool->base.hubbub); 1123 pool->base.hubbub = NULL; 1124 } 1125 for (i = 0; i < pool->base.pipe_count; i++) { 1126 if (pool->base.dpps[i] != NULL) 1127 dcn20_dpp_destroy(&pool->base.dpps[i]); 1128 1129 if (pool->base.ipps[i] != NULL) 1130 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1131 1132 if (pool->base.hubps[i] != NULL) { 1133 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1134 pool->base.hubps[i] = NULL; 1135 } 1136 1137 if (pool->base.irqs != NULL) { 1138 dal_irq_service_destroy(&pool->base.irqs); 1139 } 1140 } 1141 1142 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1143 if (pool->base.engines[i] != NULL) 1144 dce110_engine_destroy(&pool->base.engines[i]); 1145 if (pool->base.hw_i2cs[i] != NULL) { 1146 kfree(pool->base.hw_i2cs[i]); 1147 pool->base.hw_i2cs[i] = NULL; 1148 } 1149 if (pool->base.sw_i2cs[i] != NULL) { 1150 kfree(pool->base.sw_i2cs[i]); 1151 pool->base.sw_i2cs[i] = NULL; 1152 } 1153 } 1154 1155 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1156 if (pool->base.opps[i] != NULL) 1157 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1158 } 1159 1160 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1161 if (pool->base.timing_generators[i] != NULL) { 1162 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1163 pool->base.timing_generators[i] = NULL; 1164 } 1165 } 1166 1167 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1168 if (pool->base.dwbc[i] != NULL) { 1169 kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); 1170 pool->base.dwbc[i] = NULL; 1171 } 1172 if (pool->base.mcif_wb[i] != NULL) { 1173 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); 1174 pool->base.mcif_wb[i] = NULL; 1175 } 1176 } 1177 1178 for (i = 0; i < pool->base.audio_count; i++) { 1179 if (pool->base.audios[i]) 1180 dce_aud_destroy(&pool->base.audios[i]); 1181 } 1182 1183 for (i = 0; i < pool->base.clk_src_count; i++) { 1184 if (pool->base.clock_sources[i] != NULL) { 1185 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1186 pool->base.clock_sources[i] = NULL; 1187 } 1188 } 1189 1190 if (pool->base.dp_clock_source != NULL) { 1191 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1192 pool->base.dp_clock_source = NULL; 1193 } 1194 1195 1196 if (pool->base.abm != NULL) 1197 dce_abm_destroy(&pool->base.abm); 1198 1199 if (pool->base.dmcu != NULL) 1200 dce_dmcu_destroy(&pool->base.dmcu); 1201 1202 if (pool->base.dccg != NULL) 1203 dcn_dccg_destroy(&pool->base.dccg); 1204 1205 if (pool->base.pp_smu != NULL) 1206 dcn20_pp_smu_destroy(&pool->base.pp_smu); 1207 1208 if (pool->base.oem_device != NULL) 1209 dal_ddc_service_destroy(&pool->base.oem_device); 1210 } 1211 1212 struct hubp *dcn20_hubp_create( 1213 struct dc_context *ctx, 1214 uint32_t inst) 1215 { 1216 struct dcn20_hubp *hubp2 = 1217 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC); 1218 1219 if (!hubp2) 1220 return NULL; 1221 1222 if (hubp2_construct(hubp2, ctx, inst, 1223 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1224 return &hubp2->base; 1225 1226 BREAK_TO_DEBUGGER(); 1227 kfree(hubp2); 1228 return NULL; 1229 } 1230 1231 static void get_pixel_clock_parameters( 1232 struct pipe_ctx *pipe_ctx, 1233 struct pixel_clk_params *pixel_clk_params) 1234 { 1235 const struct dc_stream_state *stream = pipe_ctx->stream; 1236 struct pipe_ctx *odm_pipe; 1237 int opp_cnt = 1; 1238 struct dc_link *link = stream->link; 1239 struct link_encoder *link_enc = NULL; 1240 1241 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1242 opp_cnt++; 1243 1244 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; 1245 1246 link_enc = link_enc_cfg_get_link_enc(link); 1247 ASSERT(link_enc); 1248 1249 if (link_enc) 1250 pixel_clk_params->encoder_object_id = link_enc->id; 1251 pixel_clk_params->signal_type = pipe_ctx->stream->signal; 1252 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; 1253 /* TODO: un-hardcode*/ 1254 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */ 1255 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * 1256 LINK_RATE_REF_FREQ_IN_KHZ; 1257 pixel_clk_params->flags.ENABLE_SS = 0; 1258 pixel_clk_params->color_depth = 1259 stream->timing.display_color_depth; 1260 pixel_clk_params->flags.DISPLAY_BLANKED = 1; 1261 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; 1262 1263 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 1264 pixel_clk_params->color_depth = COLOR_DEPTH_888; 1265 1266 if (opp_cnt == 4) 1267 pixel_clk_params->requested_pix_clk_100hz /= 4; 1268 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) 1269 pixel_clk_params->requested_pix_clk_100hz /= 2; 1270 1271 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) 1272 pixel_clk_params->requested_pix_clk_100hz *= 2; 1273 1274 } 1275 1276 static void build_clamping_params(struct dc_stream_state *stream) 1277 { 1278 stream->clamping.clamping_level = CLAMPING_FULL_RANGE; 1279 stream->clamping.c_depth = stream->timing.display_color_depth; 1280 stream->clamping.pixel_encoding = stream->timing.pixel_encoding; 1281 } 1282 1283 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) 1284 { 1285 1286 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); 1287 1288 pipe_ctx->clock_source->funcs->get_pix_clk_dividers( 1289 pipe_ctx->clock_source, 1290 &pipe_ctx->stream_res.pix_clk_params, 1291 &pipe_ctx->pll_settings); 1292 1293 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; 1294 1295 resource_build_bit_depth_reduction_params(pipe_ctx->stream, 1296 &pipe_ctx->stream->bit_depth_params); 1297 build_clamping_params(pipe_ctx->stream); 1298 1299 return DC_OK; 1300 } 1301 1302 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) 1303 { 1304 enum dc_status status = DC_OK; 1305 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); 1306 1307 if (!pipe_ctx) 1308 return DC_ERROR_UNEXPECTED; 1309 1310 1311 status = build_pipe_hw_param(pipe_ctx); 1312 1313 return status; 1314 } 1315 1316 1317 void dcn20_acquire_dsc(const struct dc *dc, 1318 struct resource_context *res_ctx, 1319 struct display_stream_compressor **dsc, 1320 int pipe_idx) 1321 { 1322 int i; 1323 const struct resource_pool *pool = dc->res_pool; 1324 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc; 1325 1326 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */ 1327 *dsc = NULL; 1328 1329 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */ 1330 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) { 1331 *dsc = pool->dscs[pipe_idx]; 1332 res_ctx->is_dsc_acquired[pipe_idx] = true; 1333 return; 1334 } 1335 1336 /* Return old DSC to avoid the need for re-programming */ 1337 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) { 1338 *dsc = dsc_old; 1339 res_ctx->is_dsc_acquired[dsc_old->inst] = true; 1340 return ; 1341 } 1342 1343 /* Find first free DSC */ 1344 for (i = 0; i < pool->res_cap->num_dsc; i++) 1345 if (!res_ctx->is_dsc_acquired[i]) { 1346 *dsc = pool->dscs[i]; 1347 res_ctx->is_dsc_acquired[i] = true; 1348 break; 1349 } 1350 } 1351 1352 void dcn20_release_dsc(struct resource_context *res_ctx, 1353 const struct resource_pool *pool, 1354 struct display_stream_compressor **dsc) 1355 { 1356 int i; 1357 1358 for (i = 0; i < pool->res_cap->num_dsc; i++) 1359 if (pool->dscs[i] == *dsc) { 1360 res_ctx->is_dsc_acquired[i] = false; 1361 *dsc = NULL; 1362 break; 1363 } 1364 } 1365 1366 1367 1368 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc, 1369 struct dc_state *dc_ctx, 1370 struct dc_stream_state *dc_stream) 1371 { 1372 enum dc_status result = DC_OK; 1373 int i; 1374 1375 /* Get a DSC if required and available */ 1376 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1377 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; 1378 1379 if (pipe_ctx->stream != dc_stream) 1380 continue; 1381 1382 if (pipe_ctx->stream_res.dsc) 1383 continue; 1384 1385 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i); 1386 1387 /* The number of DSCs can be less than the number of pipes */ 1388 if (!pipe_ctx->stream_res.dsc) { 1389 result = DC_NO_DSC_RESOURCE; 1390 } 1391 1392 break; 1393 } 1394 1395 return result; 1396 } 1397 1398 1399 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, 1400 struct dc_state *new_ctx, 1401 struct dc_stream_state *dc_stream) 1402 { 1403 struct pipe_ctx *pipe_ctx = NULL; 1404 int i; 1405 1406 for (i = 0; i < MAX_PIPES; i++) { 1407 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { 1408 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1409 1410 if (pipe_ctx->stream_res.dsc) 1411 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); 1412 } 1413 } 1414 1415 if (!pipe_ctx) 1416 return DC_ERROR_UNEXPECTED; 1417 else 1418 return DC_OK; 1419 } 1420 1421 1422 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1423 { 1424 enum dc_status result = DC_ERROR_UNEXPECTED; 1425 1426 result = resource_map_pool_resources(dc, new_ctx, dc_stream); 1427 1428 if (result == DC_OK) 1429 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); 1430 1431 /* Get a DSC if required and available */ 1432 if (result == DC_OK && dc_stream->timing.flags.DSC) 1433 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream); 1434 1435 if (result == DC_OK) 1436 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); 1437 1438 return result; 1439 } 1440 1441 1442 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1443 { 1444 enum dc_status result = DC_OK; 1445 1446 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); 1447 1448 return result; 1449 } 1450 1451 bool dcn20_split_stream_for_odm( 1452 const struct dc *dc, 1453 struct resource_context *res_ctx, 1454 struct pipe_ctx *prev_odm_pipe, 1455 struct pipe_ctx *next_odm_pipe) 1456 { 1457 int pipe_idx = next_odm_pipe->pipe_idx; 1458 const struct resource_pool *pool = dc->res_pool; 1459 1460 *next_odm_pipe = *prev_odm_pipe; 1461 1462 next_odm_pipe->pipe_idx = pipe_idx; 1463 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; 1464 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; 1465 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; 1466 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; 1467 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; 1468 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; 1469 next_odm_pipe->stream_res.dsc = NULL; 1470 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { 1471 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; 1472 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; 1473 } 1474 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) { 1475 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe; 1476 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe; 1477 } 1478 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) { 1479 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe; 1480 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe; 1481 } 1482 prev_odm_pipe->next_odm_pipe = next_odm_pipe; 1483 next_odm_pipe->prev_odm_pipe = prev_odm_pipe; 1484 1485 if (prev_odm_pipe->plane_state) { 1486 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; 1487 int new_width; 1488 1489 /* HACTIVE halved for odm combine */ 1490 sd->h_active /= 2; 1491 /* Calculate new vp and recout for left pipe */ 1492 /* Need at least 16 pixels width per side */ 1493 if (sd->recout.x + 16 >= sd->h_active) 1494 return false; 1495 new_width = sd->h_active - sd->recout.x; 1496 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1497 sd->ratios.horz, sd->recout.width - new_width)); 1498 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1499 sd->ratios.horz_c, sd->recout.width - new_width)); 1500 sd->recout.width = new_width; 1501 1502 /* Calculate new vp and recout for right pipe */ 1503 sd = &next_odm_pipe->plane_res.scl_data; 1504 /* HACTIVE halved for odm combine */ 1505 sd->h_active /= 2; 1506 /* Need at least 16 pixels width per side */ 1507 if (new_width <= 16) 1508 return false; 1509 new_width = sd->recout.width + sd->recout.x - sd->h_active; 1510 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1511 sd->ratios.horz, sd->recout.width - new_width)); 1512 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( 1513 sd->ratios.horz_c, sd->recout.width - new_width)); 1514 sd->recout.width = new_width; 1515 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( 1516 sd->ratios.horz, sd->h_active - sd->recout.x)); 1517 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( 1518 sd->ratios.horz_c, sd->h_active - sd->recout.x)); 1519 sd->recout.x = 0; 1520 } 1521 if (!next_odm_pipe->top_pipe) 1522 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; 1523 else 1524 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp; 1525 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) { 1526 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx); 1527 ASSERT(next_odm_pipe->stream_res.dsc); 1528 if (next_odm_pipe->stream_res.dsc == NULL) 1529 return false; 1530 } 1531 1532 return true; 1533 } 1534 1535 void dcn20_split_stream_for_mpc( 1536 struct resource_context *res_ctx, 1537 const struct resource_pool *pool, 1538 struct pipe_ctx *primary_pipe, 1539 struct pipe_ctx *secondary_pipe) 1540 { 1541 int pipe_idx = secondary_pipe->pipe_idx; 1542 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; 1543 1544 *secondary_pipe = *primary_pipe; 1545 secondary_pipe->bottom_pipe = sec_bot_pipe; 1546 1547 secondary_pipe->pipe_idx = pipe_idx; 1548 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; 1549 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; 1550 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; 1551 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; 1552 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; 1553 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; 1554 secondary_pipe->stream_res.dsc = NULL; 1555 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { 1556 ASSERT(!secondary_pipe->bottom_pipe); 1557 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; 1558 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; 1559 } 1560 primary_pipe->bottom_pipe = secondary_pipe; 1561 secondary_pipe->top_pipe = primary_pipe; 1562 1563 ASSERT(primary_pipe->plane_state); 1564 } 1565 1566 unsigned int dcn20_calc_max_scaled_time( 1567 unsigned int time_per_pixel, 1568 enum mmhubbub_wbif_mode mode, 1569 unsigned int urgent_watermark) 1570 { 1571 unsigned int time_per_byte = 0; 1572 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ 1573 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ 1574 unsigned int small_free_entry, max_free_entry; 1575 unsigned int buf_lh_capability; 1576 unsigned int max_scaled_time; 1577 1578 if (mode == PACKED_444) /* packed mode */ 1579 time_per_byte = time_per_pixel/4; 1580 else if (mode == PLANAR_420_8BPC) 1581 time_per_byte = time_per_pixel; 1582 else if (mode == PLANAR_420_10BPC) /* p010 */ 1583 time_per_byte = time_per_pixel * 819/1024; 1584 1585 if (time_per_byte == 0) 1586 time_per_byte = 1; 1587 1588 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; 1589 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; 1590 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ 1591 max_scaled_time = buf_lh_capability - urgent_watermark; 1592 return max_scaled_time; 1593 } 1594 1595 void dcn20_set_mcif_arb_params( 1596 struct dc *dc, 1597 struct dc_state *context, 1598 display_e2e_pipe_params_st *pipes, 1599 int pipe_cnt) 1600 { 1601 enum mmhubbub_wbif_mode wbif_mode; 1602 struct mcif_arb_params *wb_arb_params; 1603 int i, j, dwb_pipe; 1604 1605 /* Writeback MCIF_WB arbitration parameters */ 1606 dwb_pipe = 0; 1607 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1608 1609 if (!context->res_ctx.pipe_ctx[i].stream) 1610 continue; 1611 1612 for (j = 0; j < MAX_DWB_PIPES; j++) { 1613 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) 1614 continue; 1615 1616 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1617 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1618 1619 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { 1620 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) 1621 wbif_mode = PLANAR_420_8BPC; 1622 else 1623 wbif_mode = PLANAR_420_10BPC; 1624 } else 1625 wbif_mode = PACKED_444; 1626 1627 DC_FP_START(); 1628 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i); 1629 DC_FP_END(); 1630 1631 wb_arb_params->slice_lines = 32; 1632 wb_arb_params->arbitration_slice = 2; 1633 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1634 wbif_mode, 1635 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1636 1637 dwb_pipe++; 1638 1639 if (dwb_pipe >= MAX_DWB_PIPES) 1640 return; 1641 } 1642 if (dwb_pipe >= MAX_DWB_PIPES) 1643 return; 1644 } 1645 } 1646 1647 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) 1648 { 1649 int i; 1650 1651 /* Validate DSC config, dsc count validation is already done */ 1652 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1653 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; 1654 struct dc_stream_state *stream = pipe_ctx->stream; 1655 struct dsc_config dsc_cfg; 1656 struct pipe_ctx *odm_pipe; 1657 int opp_cnt = 1; 1658 1659 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1660 opp_cnt++; 1661 1662 /* Only need to validate top pipe */ 1663 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) 1664 continue; 1665 1666 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left 1667 + stream->timing.h_border_right) / opp_cnt; 1668 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top 1669 + stream->timing.v_border_bottom; 1670 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; 1671 dsc_cfg.color_depth = stream->timing.display_color_depth; 1672 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; 1673 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; 1674 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; 1675 1676 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) 1677 return false; 1678 } 1679 return true; 1680 } 1681 1682 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, 1683 struct resource_context *res_ctx, 1684 const struct resource_pool *pool, 1685 const struct pipe_ctx *primary_pipe) 1686 { 1687 struct pipe_ctx *secondary_pipe = NULL; 1688 1689 if (dc && primary_pipe) { 1690 int j; 1691 int preferred_pipe_idx = 0; 1692 1693 /* first check the prev dc state: 1694 * if this primary pipe has a bottom pipe in prev. state 1695 * and if the bottom pipe is still available (which it should be), 1696 * pick that pipe as secondary 1697 * Same logic applies for ODM pipes 1698 */ 1699 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { 1700 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; 1701 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1702 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1703 secondary_pipe->pipe_idx = preferred_pipe_idx; 1704 } 1705 } 1706 if (secondary_pipe == NULL && 1707 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { 1708 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; 1709 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1710 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1711 secondary_pipe->pipe_idx = preferred_pipe_idx; 1712 } 1713 } 1714 1715 /* 1716 * if this primary pipe does not have a bottom pipe in prev. state 1717 * start backward and find a pipe that did not used to be a bottom pipe in 1718 * prev. dc state. This way we make sure we keep the same assignment as 1719 * last state and will not have to reprogram every pipe 1720 */ 1721 if (secondary_pipe == NULL) { 1722 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1723 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL 1724 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) { 1725 preferred_pipe_idx = j; 1726 1727 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1728 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1729 secondary_pipe->pipe_idx = preferred_pipe_idx; 1730 break; 1731 } 1732 } 1733 } 1734 } 1735 /* 1736 * We should never hit this assert unless assignments are shuffled around 1737 * if this happens we will prob. hit a vsync tdr 1738 */ 1739 ASSERT(secondary_pipe); 1740 /* 1741 * search backwards for the second pipe to keep pipe 1742 * assignment more consistent 1743 */ 1744 if (secondary_pipe == NULL) { 1745 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { 1746 preferred_pipe_idx = j; 1747 1748 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { 1749 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 1750 secondary_pipe->pipe_idx = preferred_pipe_idx; 1751 break; 1752 } 1753 } 1754 } 1755 } 1756 1757 return secondary_pipe; 1758 } 1759 1760 void dcn20_merge_pipes_for_validate( 1761 struct dc *dc, 1762 struct dc_state *context) 1763 { 1764 int i; 1765 1766 /* merge previously split odm pipes since mode support needs to make the decision */ 1767 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1768 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1769 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; 1770 1771 if (pipe->prev_odm_pipe) 1772 continue; 1773 1774 pipe->next_odm_pipe = NULL; 1775 while (odm_pipe) { 1776 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; 1777 1778 odm_pipe->plane_state = NULL; 1779 odm_pipe->stream = NULL; 1780 odm_pipe->top_pipe = NULL; 1781 odm_pipe->bottom_pipe = NULL; 1782 odm_pipe->prev_odm_pipe = NULL; 1783 odm_pipe->next_odm_pipe = NULL; 1784 if (odm_pipe->stream_res.dsc) 1785 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); 1786 /* Clear plane_res and stream_res */ 1787 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); 1788 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); 1789 odm_pipe = next_odm_pipe; 1790 } 1791 if (pipe->plane_state) 1792 resource_build_scaling_params(pipe); 1793 } 1794 1795 /* merge previously mpc split pipes since mode support needs to make the decision */ 1796 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1797 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1798 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 1799 1800 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) 1801 continue; 1802 1803 pipe->bottom_pipe = hsplit_pipe->bottom_pipe; 1804 if (hsplit_pipe->bottom_pipe) 1805 hsplit_pipe->bottom_pipe->top_pipe = pipe; 1806 hsplit_pipe->plane_state = NULL; 1807 hsplit_pipe->stream = NULL; 1808 hsplit_pipe->top_pipe = NULL; 1809 hsplit_pipe->bottom_pipe = NULL; 1810 1811 /* Clear plane_res and stream_res */ 1812 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); 1813 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); 1814 if (pipe->plane_state) 1815 resource_build_scaling_params(pipe); 1816 } 1817 } 1818 1819 int dcn20_validate_apply_pipe_split_flags( 1820 struct dc *dc, 1821 struct dc_state *context, 1822 int vlevel, 1823 int *split, 1824 bool *merge) 1825 { 1826 int i, pipe_idx, vlevel_split; 1827 int plane_count = 0; 1828 bool force_split = false; 1829 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID; 1830 struct vba_vars_st *v = &context->bw_ctx.dml.vba; 1831 int max_mpc_comb = v->maxMpcComb; 1832 1833 if (context->stream_count > 1) { 1834 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) 1835 avoid_split = true; 1836 } else if (dc->debug.force_single_disp_pipe_split) 1837 force_split = true; 1838 1839 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1840 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1841 1842 /** 1843 * Workaround for avoiding pipe-split in cases where we'd split 1844 * planes that are too small, resulting in splits that aren't 1845 * valid for the scaler. 1846 */ 1847 if (pipe->plane_state && 1848 (pipe->plane_state->dst_rect.width <= 16 || 1849 pipe->plane_state->dst_rect.height <= 16 || 1850 pipe->plane_state->src_rect.width <= 16 || 1851 pipe->plane_state->src_rect.height <= 16)) 1852 avoid_split = true; 1853 1854 /* TODO: fix dc bugs and remove this split threshold thing */ 1855 if (pipe->stream && !pipe->prev_odm_pipe && 1856 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) 1857 ++plane_count; 1858 } 1859 if (plane_count > dc->res_pool->pipe_count / 2) 1860 avoid_split = true; 1861 1862 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */ 1863 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1864 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1865 struct dc_crtc_timing timing; 1866 1867 if (!pipe->stream) 1868 continue; 1869 else { 1870 timing = pipe->stream->timing; 1871 if (timing.h_border_left + timing.h_border_right 1872 + timing.v_border_top + timing.v_border_bottom > 0) { 1873 avoid_split = true; 1874 break; 1875 } 1876 } 1877 } 1878 1879 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */ 1880 if (avoid_split) { 1881 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1882 if (!context->res_ctx.pipe_ctx[i].stream) 1883 continue; 1884 1885 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++) 1886 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 && 1887 v->ModeSupport[vlevel][0]) 1888 break; 1889 /* Impossible to not split this pipe */ 1890 if (vlevel > context->bw_ctx.dml.soc.num_states) 1891 vlevel = vlevel_split; 1892 else 1893 max_mpc_comb = 0; 1894 pipe_idx++; 1895 } 1896 v->maxMpcComb = max_mpc_comb; 1897 } 1898 1899 /* Split loop sets which pipe should be split based on dml outputs and dc flags */ 1900 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1901 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1902 int pipe_plane = v->pipe_plane[pipe_idx]; 1903 bool split4mpc = context->stream_count == 1 && plane_count == 1 1904 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4; 1905 1906 if (!context->res_ctx.pipe_ctx[i].stream) 1907 continue; 1908 1909 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4) 1910 split[i] = 4; 1911 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2) 1912 split[i] = 2; 1913 1914 if ((pipe->stream->view_format == 1915 VIEW_3D_FORMAT_SIDE_BY_SIDE || 1916 pipe->stream->view_format == 1917 VIEW_3D_FORMAT_TOP_AND_BOTTOM) && 1918 (pipe->stream->timing.timing_3d_format == 1919 TIMING_3D_FORMAT_TOP_AND_BOTTOM || 1920 pipe->stream->timing.timing_3d_format == 1921 TIMING_3D_FORMAT_SIDE_BY_SIDE)) 1922 split[i] = 2; 1923 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { 1924 split[i] = 2; 1925 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1; 1926 } 1927 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) { 1928 split[i] = 4; 1929 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1; 1930 } 1931 /*420 format workaround*/ 1932 if (pipe->stream->timing.h_addressable > 7680 && 1933 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { 1934 split[i] = 4; 1935 } 1936 v->ODMCombineEnabled[pipe_plane] = 1937 v->ODMCombineEnablePerState[vlevel][pipe_plane]; 1938 1939 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) { 1940 if (get_num_mpc_splits(pipe) == 1) { 1941 /*If need split for mpc but 2 way split already*/ 1942 if (split[i] == 4) 1943 split[i] = 2; /* 2 -> 4 MPC */ 1944 else if (split[i] == 2) 1945 split[i] = 0; /* 2 -> 2 MPC */ 1946 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) 1947 merge[i] = true; /* 2 -> 1 MPC */ 1948 } else if (get_num_mpc_splits(pipe) == 3) { 1949 /*If need split for mpc but 4 way split already*/ 1950 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe) 1951 || !pipe->bottom_pipe)) { 1952 merge[i] = true; /* 4 -> 2 MPC */ 1953 } else if (split[i] == 0 && pipe->top_pipe && 1954 pipe->top_pipe->plane_state == pipe->plane_state) 1955 merge[i] = true; /* 4 -> 1 MPC */ 1956 split[i] = 0; 1957 } else if (get_num_odm_splits(pipe)) { 1958 /* ODM -> MPC transition */ 1959 if (pipe->prev_odm_pipe) { 1960 split[i] = 0; 1961 merge[i] = true; 1962 } 1963 } 1964 } else { 1965 if (get_num_odm_splits(pipe) == 1) { 1966 /*If need split for odm but 2 way split already*/ 1967 if (split[i] == 4) 1968 split[i] = 2; /* 2 -> 4 ODM */ 1969 else if (split[i] == 2) 1970 split[i] = 0; /* 2 -> 2 ODM */ 1971 else if (pipe->prev_odm_pipe) { 1972 ASSERT(0); /* NOT expected yet */ 1973 merge[i] = true; /* exit ODM */ 1974 } 1975 } else if (get_num_odm_splits(pipe) == 3) { 1976 /*If need split for odm but 4 way split already*/ 1977 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe) 1978 || !pipe->next_odm_pipe)) { 1979 merge[i] = true; /* 4 -> 2 ODM */ 1980 } else if (split[i] == 0 && pipe->prev_odm_pipe) { 1981 ASSERT(0); /* NOT expected yet */ 1982 merge[i] = true; /* exit ODM */ 1983 } 1984 split[i] = 0; 1985 } else if (get_num_mpc_splits(pipe)) { 1986 /* MPC -> ODM transition */ 1987 ASSERT(0); /* NOT expected yet */ 1988 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1989 split[i] = 0; 1990 merge[i] = true; 1991 } 1992 } 1993 } 1994 1995 /* Adjust dppclk when split is forced, do not bother with dispclk */ 1996 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) { 1997 DC_FP_START(); 1998 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false); 1999 DC_FP_END(); 2000 } 2001 pipe_idx++; 2002 } 2003 2004 return vlevel; 2005 } 2006 2007 bool dcn20_fast_validate_bw( 2008 struct dc *dc, 2009 struct dc_state *context, 2010 display_e2e_pipe_params_st *pipes, 2011 int *pipe_cnt_out, 2012 int *pipe_split_from, 2013 int *vlevel_out, 2014 bool fast_validate) 2015 { 2016 bool out = false; 2017 int split[MAX_PIPES] = { 0 }; 2018 int pipe_cnt, i, pipe_idx, vlevel; 2019 2020 ASSERT(pipes); 2021 if (!pipes) 2022 return false; 2023 2024 dcn20_merge_pipes_for_validate(dc, context); 2025 2026 DC_FP_START(); 2027 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2028 DC_FP_END(); 2029 2030 *pipe_cnt_out = pipe_cnt; 2031 2032 if (!pipe_cnt) { 2033 out = true; 2034 goto validate_out; 2035 } 2036 2037 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2038 2039 if (vlevel > context->bw_ctx.dml.soc.num_states) 2040 goto validate_fail; 2041 2042 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); 2043 2044 /*initialize pipe_just_split_from to invalid idx*/ 2045 for (i = 0; i < MAX_PIPES; i++) 2046 pipe_split_from[i] = -1; 2047 2048 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2049 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2050 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; 2051 2052 if (!pipe->stream || pipe_split_from[i] >= 0) 2053 continue; 2054 2055 pipe_idx++; 2056 2057 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2058 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2059 ASSERT(hsplit_pipe); 2060 if (!dcn20_split_stream_for_odm( 2061 dc, &context->res_ctx, 2062 pipe, hsplit_pipe)) 2063 goto validate_fail; 2064 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2065 dcn20_build_mapped_resource(dc, context, pipe->stream); 2066 } 2067 2068 if (!pipe->plane_state) 2069 continue; 2070 /* Skip 2nd half of already split pipe */ 2071 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) 2072 continue; 2073 2074 /* We do not support mpo + odm at the moment */ 2075 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state 2076 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) 2077 goto validate_fail; 2078 2079 if (split[i] == 2) { 2080 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { 2081 /* pipe not split previously needs split */ 2082 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); 2083 ASSERT(hsplit_pipe); 2084 if (!hsplit_pipe) { 2085 DC_FP_START(); 2086 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true); 2087 DC_FP_END(); 2088 continue; 2089 } 2090 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { 2091 if (!dcn20_split_stream_for_odm( 2092 dc, &context->res_ctx, 2093 pipe, hsplit_pipe)) 2094 goto validate_fail; 2095 dcn20_build_mapped_resource(dc, context, pipe->stream); 2096 } else { 2097 dcn20_split_stream_for_mpc( 2098 &context->res_ctx, dc->res_pool, 2099 pipe, hsplit_pipe); 2100 resource_build_scaling_params(pipe); 2101 resource_build_scaling_params(hsplit_pipe); 2102 } 2103 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; 2104 } 2105 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { 2106 /* merge should already have been done */ 2107 ASSERT(0); 2108 } 2109 } 2110 /* Actual dsc count per stream dsc validation*/ 2111 if (!dcn20_validate_dsc(dc, context)) { 2112 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = 2113 DML_FAIL_DSC_VALIDATION_FAILURE; 2114 goto validate_fail; 2115 } 2116 2117 *vlevel_out = vlevel; 2118 2119 out = true; 2120 goto validate_out; 2121 2122 validate_fail: 2123 out = false; 2124 2125 validate_out: 2126 return out; 2127 } 2128 2129 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, 2130 bool fast_validate) 2131 { 2132 bool voltage_supported; 2133 DC_FP_START(); 2134 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate); 2135 DC_FP_END(); 2136 return voltage_supported; 2137 } 2138 2139 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer( 2140 struct dc_state *state, 2141 const struct resource_pool *pool, 2142 struct dc_stream_state *stream) 2143 { 2144 struct resource_context *res_ctx = &state->res_ctx; 2145 struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); 2146 struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); 2147 2148 if (!head_pipe) 2149 ASSERT(0); 2150 2151 if (!idle_pipe) 2152 return NULL; 2153 2154 idle_pipe->stream = head_pipe->stream; 2155 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2156 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2157 2158 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2159 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2160 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2161 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2162 2163 return idle_pipe; 2164 } 2165 2166 bool dcn20_get_dcc_compression_cap(const struct dc *dc, 2167 const struct dc_dcc_surface_param *input, 2168 struct dc_surface_dcc_cap *output) 2169 { 2170 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( 2171 dc->res_pool->hubbub, 2172 input, 2173 output); 2174 } 2175 2176 static void dcn20_destroy_resource_pool(struct resource_pool **pool) 2177 { 2178 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); 2179 2180 dcn20_resource_destruct(dcn20_pool); 2181 kfree(dcn20_pool); 2182 *pool = NULL; 2183 } 2184 2185 2186 static struct dc_cap_funcs cap_funcs = { 2187 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2188 }; 2189 2190 2191 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state) 2192 { 2193 enum surface_pixel_format surf_pix_format = plane_state->format; 2194 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); 2195 2196 enum swizzle_mode_values swizzle = DC_SW_LINEAR; 2197 2198 if (bpp == 64) 2199 swizzle = DC_SW_64KB_D; 2200 else 2201 swizzle = DC_SW_64KB_S; 2202 2203 plane_state->tiling_info.gfx9.swizzle = swizzle; 2204 return DC_OK; 2205 } 2206 2207 static const struct resource_funcs dcn20_res_pool_funcs = { 2208 .destroy = dcn20_destroy_resource_pool, 2209 .link_enc_create = dcn20_link_encoder_create, 2210 .panel_cntl_create = dcn20_panel_cntl_create, 2211 .validate_bandwidth = dcn20_validate_bandwidth, 2212 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2213 .add_stream_to_ctx = dcn20_add_stream_to_ctx, 2214 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2215 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2216 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, 2217 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2218 .set_mcif_arb_params = dcn20_set_mcif_arb_params, 2219 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context, 2220 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link 2221 }; 2222 2223 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 2224 { 2225 int i; 2226 uint32_t pipe_count = pool->res_cap->num_dwb; 2227 2228 for (i = 0; i < pipe_count; i++) { 2229 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), 2230 GFP_KERNEL); 2231 2232 if (!dwbc20) { 2233 dm_error("DC: failed to create dwbc20!\n"); 2234 return false; 2235 } 2236 dcn20_dwbc_construct(dwbc20, ctx, 2237 &dwbc20_regs[i], 2238 &dwbc20_shift, 2239 &dwbc20_mask, 2240 i); 2241 pool->dwbc[i] = &dwbc20->base; 2242 } 2243 return true; 2244 } 2245 2246 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 2247 { 2248 int i; 2249 uint32_t pipe_count = pool->res_cap->num_dwb; 2250 2251 ASSERT(pipe_count > 0); 2252 2253 for (i = 0; i < pipe_count; i++) { 2254 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), 2255 GFP_KERNEL); 2256 2257 if (!mcif_wb20) { 2258 dm_error("DC: failed to create mcif_wb20!\n"); 2259 return false; 2260 } 2261 2262 dcn20_mmhubbub_construct(mcif_wb20, ctx, 2263 &mcif_wb20_regs[i], 2264 &mcif_wb20_shift, 2265 &mcif_wb20_mask, 2266 i); 2267 2268 pool->mcif_wb[i] = &mcif_wb20->base; 2269 } 2270 return true; 2271 } 2272 2273 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) 2274 { 2275 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC); 2276 2277 if (!pp_smu) 2278 return pp_smu; 2279 2280 dm_pp_get_funcs(ctx, pp_smu); 2281 2282 if (pp_smu->ctx.ver != PP_SMU_VER_NV) 2283 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); 2284 2285 return pp_smu; 2286 } 2287 2288 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) 2289 { 2290 if (pp_smu && *pp_smu) { 2291 kfree(*pp_smu); 2292 *pp_smu = NULL; 2293 } 2294 } 2295 2296 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( 2297 uint32_t hw_internal_rev) 2298 { 2299 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2300 return &dcn2_0_nv14_soc; 2301 2302 if (ASICREV_IS_NAVI12_P(hw_internal_rev)) 2303 return &dcn2_0_nv12_soc; 2304 2305 return &dcn2_0_soc; 2306 } 2307 2308 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( 2309 uint32_t hw_internal_rev) 2310 { 2311 /* NV14 */ 2312 if (ASICREV_IS_NAVI14_M(hw_internal_rev)) 2313 return &dcn2_0_nv14_ip; 2314 2315 /* NV12 and NV10 */ 2316 return &dcn2_0_ip; 2317 } 2318 2319 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) 2320 { 2321 return DML_PROJECT_NAVI10v2; 2322 } 2323 2324 static bool init_soc_bounding_box(struct dc *dc, 2325 struct dcn20_resource_pool *pool) 2326 { 2327 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2328 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); 2329 struct _vcs_dpi_ip_params_st *loaded_ip = 2330 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); 2331 2332 DC_LOGGER_INIT(dc->ctx->logger); 2333 2334 if (pool->base.pp_smu) { 2335 struct pp_smu_nv_clock_table max_clocks = {0}; 2336 unsigned int uclk_states[8] = {0}; 2337 unsigned int num_states = 0; 2338 enum pp_smu_status status; 2339 bool clock_limits_available = false; 2340 bool uclk_states_available = false; 2341 2342 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { 2343 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) 2344 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); 2345 2346 uclk_states_available = (status == PP_SMU_RESULT_OK); 2347 } 2348 2349 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { 2350 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) 2351 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); 2352 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock 2353 */ 2354 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) 2355 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; 2356 clock_limits_available = (status == PP_SMU_RESULT_OK); 2357 } 2358 2359 if (clock_limits_available && uclk_states_available && num_states) { 2360 DC_FP_START(); 2361 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); 2362 DC_FP_END(); 2363 } else if (clock_limits_available) { 2364 DC_FP_START(); 2365 dcn20_cap_soc_clocks(loaded_bb, max_clocks); 2366 DC_FP_END(); 2367 } 2368 } 2369 2370 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 2371 loaded_ip->max_num_dpp = pool->base.pipe_count; 2372 DC_FP_START(); 2373 dcn20_patch_bounding_box(dc, loaded_bb); 2374 DC_FP_END(); 2375 return true; 2376 } 2377 2378 static bool dcn20_resource_construct( 2379 uint8_t num_virtual_links, 2380 struct dc *dc, 2381 struct dcn20_resource_pool *pool) 2382 { 2383 int i; 2384 struct dc_context *ctx = dc->ctx; 2385 struct irq_service_init_data init_data; 2386 struct ddc_service_init_data ddc_init_data = {0}; 2387 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = 2388 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); 2389 struct _vcs_dpi_ip_params_st *loaded_ip = 2390 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); 2391 enum dml_project dml_project_version = 2392 get_dml_project_version(ctx->asic_id.hw_internal_rev); 2393 2394 ctx->dc_bios->regs = &bios_regs; 2395 pool->base.funcs = &dcn20_res_pool_funcs; 2396 2397 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { 2398 pool->base.res_cap = &res_cap_nv14; 2399 pool->base.pipe_count = 5; 2400 pool->base.mpcc_count = 5; 2401 } else { 2402 pool->base.res_cap = &res_cap_nv10; 2403 pool->base.pipe_count = 6; 2404 pool->base.mpcc_count = 6; 2405 } 2406 /************************************************* 2407 * Resource + asic cap harcoding * 2408 *************************************************/ 2409 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2410 2411 dc->caps.max_downscale_ratio = 200; 2412 dc->caps.i2c_speed_in_khz = 100; 2413 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2414 dc->caps.max_cursor_size = 256; 2415 dc->caps.min_horizontal_blanking_period = 80; 2416 dc->caps.dmdata_alloc_size = 2048; 2417 2418 dc->caps.max_slave_planes = 1; 2419 dc->caps.max_slave_yuv_planes = 1; 2420 dc->caps.max_slave_rgb_planes = 1; 2421 dc->caps.post_blend_color_processing = true; 2422 dc->caps.force_dp_tps4_for_cp2520 = true; 2423 dc->caps.extended_aux_timeout_support = true; 2424 2425 /* Color pipeline capabilities */ 2426 dc->caps.color.dpp.dcn_arch = 1; 2427 dc->caps.color.dpp.input_lut_shared = 0; 2428 dc->caps.color.dpp.icsc = 1; 2429 dc->caps.color.dpp.dgam_ram = 1; 2430 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2431 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2432 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; 2433 dc->caps.color.dpp.dgam_rom_caps.pq = 0; 2434 dc->caps.color.dpp.dgam_rom_caps.hlg = 0; 2435 dc->caps.color.dpp.post_csc = 0; 2436 dc->caps.color.dpp.gamma_corr = 0; 2437 dc->caps.color.dpp.dgam_rom_for_yuv = 1; 2438 2439 dc->caps.color.dpp.hw_3d_lut = 1; 2440 dc->caps.color.dpp.ogam_ram = 1; 2441 // no OGAM ROM on DCN2, only MPC ROM 2442 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2443 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2444 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2445 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2446 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2447 dc->caps.color.dpp.ocsc = 0; 2448 2449 dc->caps.color.mpc.gamut_remap = 0; 2450 dc->caps.color.mpc.num_3dluts = 0; 2451 dc->caps.color.mpc.shared_3d_lut = 0; 2452 dc->caps.color.mpc.ogam_ram = 1; 2453 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2454 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2455 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2456 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2457 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2458 dc->caps.color.mpc.ocsc = 1; 2459 2460 dc->caps.hdmi_frl_pcon_support = true; 2461 2462 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) { 2463 dc->debug = debug_defaults_drv; 2464 } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2465 pool->base.pipe_count = 4; 2466 pool->base.mpcc_count = pool->base.pipe_count; 2467 dc->debug = debug_defaults_diags; 2468 } else { 2469 dc->debug = debug_defaults_diags; 2470 } 2471 //dcn2.0x 2472 dc->work_arounds.dedcn20_305_wa = true; 2473 2474 // Init the vm_helper 2475 if (dc->vm_helper) 2476 vm_helper_init(dc->vm_helper, 16); 2477 2478 /************************************************* 2479 * Create resources * 2480 *************************************************/ 2481 2482 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = 2483 dcn20_clock_source_create(ctx, ctx->dc_bios, 2484 CLOCK_SOURCE_COMBO_PHY_PLL0, 2485 &clk_src_regs[0], false); 2486 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = 2487 dcn20_clock_source_create(ctx, ctx->dc_bios, 2488 CLOCK_SOURCE_COMBO_PHY_PLL1, 2489 &clk_src_regs[1], false); 2490 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = 2491 dcn20_clock_source_create(ctx, ctx->dc_bios, 2492 CLOCK_SOURCE_COMBO_PHY_PLL2, 2493 &clk_src_regs[2], false); 2494 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = 2495 dcn20_clock_source_create(ctx, ctx->dc_bios, 2496 CLOCK_SOURCE_COMBO_PHY_PLL3, 2497 &clk_src_regs[3], false); 2498 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = 2499 dcn20_clock_source_create(ctx, ctx->dc_bios, 2500 CLOCK_SOURCE_COMBO_PHY_PLL4, 2501 &clk_src_regs[4], false); 2502 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = 2503 dcn20_clock_source_create(ctx, ctx->dc_bios, 2504 CLOCK_SOURCE_COMBO_PHY_PLL5, 2505 &clk_src_regs[5], false); 2506 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; 2507 /* todo: not reuse phy_pll registers */ 2508 pool->base.dp_clock_source = 2509 dcn20_clock_source_create(ctx, ctx->dc_bios, 2510 CLOCK_SOURCE_ID_DP_DTO, 2511 &clk_src_regs[0], true); 2512 2513 for (i = 0; i < pool->base.clk_src_count; i++) { 2514 if (pool->base.clock_sources[i] == NULL) { 2515 dm_error("DC: failed to create clock sources!\n"); 2516 BREAK_TO_DEBUGGER(); 2517 goto create_fail; 2518 } 2519 } 2520 2521 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2522 if (pool->base.dccg == NULL) { 2523 dm_error("DC: failed to create dccg!\n"); 2524 BREAK_TO_DEBUGGER(); 2525 goto create_fail; 2526 } 2527 2528 pool->base.dmcu = dcn20_dmcu_create(ctx, 2529 &dmcu_regs, 2530 &dmcu_shift, 2531 &dmcu_mask); 2532 if (pool->base.dmcu == NULL) { 2533 dm_error("DC: failed to create dmcu!\n"); 2534 BREAK_TO_DEBUGGER(); 2535 goto create_fail; 2536 } 2537 2538 pool->base.abm = dce_abm_create(ctx, 2539 &abm_regs, 2540 &abm_shift, 2541 &abm_mask); 2542 if (pool->base.abm == NULL) { 2543 dm_error("DC: failed to create abm!\n"); 2544 BREAK_TO_DEBUGGER(); 2545 goto create_fail; 2546 } 2547 2548 pool->base.pp_smu = dcn20_pp_smu_create(ctx); 2549 2550 2551 if (!init_soc_bounding_box(dc, pool)) { 2552 dm_error("DC: failed to initialize soc bounding box!\n"); 2553 BREAK_TO_DEBUGGER(); 2554 goto create_fail; 2555 } 2556 2557 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); 2558 2559 if (!dc->debug.disable_pplib_wm_range) { 2560 struct pp_smu_wm_range_sets ranges = {0}; 2561 int i = 0; 2562 2563 ranges.num_reader_wm_sets = 0; 2564 2565 if (loaded_bb->num_states == 1) { 2566 ranges.reader_wm_sets[0].wm_inst = i; 2567 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2568 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2569 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2570 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2571 2572 ranges.num_reader_wm_sets = 1; 2573 } else if (loaded_bb->num_states > 1) { 2574 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { 2575 ranges.reader_wm_sets[i].wm_inst = i; 2576 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2577 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2578 DC_FP_START(); 2579 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb); 2580 DC_FP_END(); 2581 2582 ranges.num_reader_wm_sets = i + 1; 2583 } 2584 2585 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2586 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2587 } 2588 2589 ranges.num_writer_wm_sets = 1; 2590 2591 ranges.writer_wm_sets[0].wm_inst = 0; 2592 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2593 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2594 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; 2595 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; 2596 2597 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ 2598 if (pool->base.pp_smu->nv_funcs.set_wm_ranges) 2599 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); 2600 } 2601 2602 init_data.ctx = dc->ctx; 2603 pool->base.irqs = dal_irq_service_dcn20_create(&init_data); 2604 if (!pool->base.irqs) 2605 goto create_fail; 2606 2607 /* mem input -> ipp -> dpp -> opp -> TG */ 2608 for (i = 0; i < pool->base.pipe_count; i++) { 2609 pool->base.hubps[i] = dcn20_hubp_create(ctx, i); 2610 if (pool->base.hubps[i] == NULL) { 2611 BREAK_TO_DEBUGGER(); 2612 dm_error( 2613 "DC: failed to create memory input!\n"); 2614 goto create_fail; 2615 } 2616 2617 pool->base.ipps[i] = dcn20_ipp_create(ctx, i); 2618 if (pool->base.ipps[i] == NULL) { 2619 BREAK_TO_DEBUGGER(); 2620 dm_error( 2621 "DC: failed to create input pixel processor!\n"); 2622 goto create_fail; 2623 } 2624 2625 pool->base.dpps[i] = dcn20_dpp_create(ctx, i); 2626 if (pool->base.dpps[i] == NULL) { 2627 BREAK_TO_DEBUGGER(); 2628 dm_error( 2629 "DC: failed to create dpps!\n"); 2630 goto create_fail; 2631 } 2632 } 2633 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2634 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); 2635 if (pool->base.engines[i] == NULL) { 2636 BREAK_TO_DEBUGGER(); 2637 dm_error( 2638 "DC:failed to create aux engine!!\n"); 2639 goto create_fail; 2640 } 2641 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); 2642 if (pool->base.hw_i2cs[i] == NULL) { 2643 BREAK_TO_DEBUGGER(); 2644 dm_error( 2645 "DC:failed to create hw i2c!!\n"); 2646 goto create_fail; 2647 } 2648 pool->base.sw_i2cs[i] = NULL; 2649 } 2650 2651 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2652 pool->base.opps[i] = dcn20_opp_create(ctx, i); 2653 if (pool->base.opps[i] == NULL) { 2654 BREAK_TO_DEBUGGER(); 2655 dm_error( 2656 "DC: failed to create output pixel processor!\n"); 2657 goto create_fail; 2658 } 2659 } 2660 2661 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2662 pool->base.timing_generators[i] = dcn20_timing_generator_create( 2663 ctx, i); 2664 if (pool->base.timing_generators[i] == NULL) { 2665 BREAK_TO_DEBUGGER(); 2666 dm_error("DC: failed to create tg!\n"); 2667 goto create_fail; 2668 } 2669 } 2670 2671 pool->base.timing_generator_count = i; 2672 2673 pool->base.mpc = dcn20_mpc_create(ctx); 2674 if (pool->base.mpc == NULL) { 2675 BREAK_TO_DEBUGGER(); 2676 dm_error("DC: failed to create mpc!\n"); 2677 goto create_fail; 2678 } 2679 2680 pool->base.hubbub = dcn20_hubbub_create(ctx); 2681 if (pool->base.hubbub == NULL) { 2682 BREAK_TO_DEBUGGER(); 2683 dm_error("DC: failed to create hubbub!\n"); 2684 goto create_fail; 2685 } 2686 2687 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2688 pool->base.dscs[i] = dcn20_dsc_create(ctx, i); 2689 if (pool->base.dscs[i] == NULL) { 2690 BREAK_TO_DEBUGGER(); 2691 dm_error("DC: failed to create display stream compressor %d!\n", i); 2692 goto create_fail; 2693 } 2694 } 2695 2696 if (!dcn20_dwbc_create(ctx, &pool->base)) { 2697 BREAK_TO_DEBUGGER(); 2698 dm_error("DC: failed to create dwbc!\n"); 2699 goto create_fail; 2700 } 2701 if (!dcn20_mmhubbub_create(ctx, &pool->base)) { 2702 BREAK_TO_DEBUGGER(); 2703 dm_error("DC: failed to create mcif_wb!\n"); 2704 goto create_fail; 2705 } 2706 2707 if (!resource_construct(num_virtual_links, dc, &pool->base, 2708 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2709 &res_create_funcs : &res_create_maximus_funcs))) 2710 goto create_fail; 2711 2712 dcn20_hw_sequencer_construct(dc); 2713 2714 // IF NV12, set PG function pointer to NULL. It's not that 2715 // PG isn't supported for NV12, it's that we don't want to 2716 // program the registers because that will cause more power 2717 // to be consumed. We could have created dcn20_init_hw to get 2718 // the same effect by checking ASIC rev, but there was a 2719 // request at some point to not check ASIC rev on hw sequencer. 2720 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) { 2721 dc->hwseq->funcs.enable_power_gating_plane = NULL; 2722 dc->debug.disable_dpp_power_gate = true; 2723 dc->debug.disable_hubp_power_gate = true; 2724 } 2725 2726 2727 dc->caps.max_planes = pool->base.pipe_count; 2728 2729 for (i = 0; i < dc->caps.max_planes; ++i) 2730 dc->caps.planes[i] = plane_cap; 2731 2732 dc->cap_funcs = cap_funcs; 2733 2734 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2735 ddc_init_data.ctx = dc->ctx; 2736 ddc_init_data.link = NULL; 2737 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2738 ddc_init_data.id.enum_id = 0; 2739 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2740 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2741 } else { 2742 pool->base.oem_device = NULL; 2743 } 2744 2745 return true; 2746 2747 create_fail: 2748 2749 dcn20_resource_destruct(pool); 2750 2751 return false; 2752 } 2753 2754 struct resource_pool *dcn20_create_resource_pool( 2755 const struct dc_init_data *init_data, 2756 struct dc *dc) 2757 { 2758 struct dcn20_resource_pool *pool = 2759 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC); 2760 2761 if (!pool) 2762 return NULL; 2763 2764 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool)) 2765 return &pool->base; 2766 2767 BREAK_TO_DEBUGGER(); 2768 kfree(pool); 2769 return NULL; 2770 } 2771