1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 #include "reg_helper.h" 27 #include "dcn20_optc.h" 28 #include "dc.h" 29 30 #define REG(reg)\ 31 optc1->tg_regs->reg 32 33 #define CTX \ 34 optc1->base.ctx 35 36 #undef FN 37 #define FN(reg_name, field_name) \ 38 optc1->tg_shift->field_name, optc1->tg_mask->field_name 39 40 /** 41 * Enable CRTC 42 * Enable CRTC - call ASIC Control Object to enable Timing generator. 43 */ 44 bool optc2_enable_crtc(struct timing_generator *optc) 45 { 46 /* TODO FPGA wait for answer 47 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE 48 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK 49 */ 50 struct optc *optc1 = DCN10TG_FROM_TG(optc); 51 52 /* opp instance for OTG. For DCN1.0, ODM is remoed. 53 * OPP and OPTC should 1:1 mapping 54 */ 55 REG_UPDATE(OPTC_DATA_SOURCE_SELECT, 56 OPTC_SEG0_SRC_SEL, optc->inst); 57 58 /* VTG enable first is for HW workaround */ 59 REG_UPDATE(CONTROL, 60 VTG0_ENABLE, 1); 61 62 REG_SEQ_START(); 63 64 /* Enable CRTC */ 65 REG_UPDATE_2(OTG_CONTROL, 66 OTG_DISABLE_POINT_CNTL, 3, 67 OTG_MASTER_EN, 1); 68 69 REG_SEQ_SUBMIT(); 70 REG_SEQ_WAIT_DONE(); 71 72 return true; 73 } 74 75 /** 76 * DRR double buffering control to select buffer point 77 * for V_TOTAL, H_TOTAL, VTOTAL_MIN, VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers 78 * Options: anytime, start of frame, dp start of frame (range timing) 79 */ 80 void optc2_set_timing_db_mode(struct timing_generator *optc, bool enable) 81 { 82 struct optc *optc1 = DCN10TG_FROM_TG(optc); 83 84 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; 85 86 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 87 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, blank_data_double_buffer_enable); 88 } 89 90 /** 91 *For the below, I'm not sure how your GSL parameters are stored in your env, 92 * so I will assume a gsl_params struct for now 93 */ 94 void optc2_set_gsl(struct timing_generator *optc, 95 const struct gsl_params *params) 96 { 97 struct optc *optc1 = DCN10TG_FROM_TG(optc); 98 99 /** 100 * There are (MAX_OPTC+1)/2 gsl groups available for use. 101 * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1, 102 * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves. 103 */ 104 REG_UPDATE_5(OTG_GSL_CONTROL, 105 OTG_GSL0_EN, params->gsl0_en, 106 OTG_GSL1_EN, params->gsl1_en, 107 OTG_GSL2_EN, params->gsl2_en, 108 OTG_GSL_MASTER_EN, params->gsl_master_en, 109 OTG_GSL_MASTER_MODE, params->gsl_master_mode); 110 } 111 112 113 /* Use the gsl allow flip as the master update lock */ 114 void optc2_use_gsl_as_master_update_lock(struct timing_generator *optc, 115 const struct gsl_params *params) 116 { 117 struct optc *optc1 = DCN10TG_FROM_TG(optc); 118 119 REG_UPDATE(OTG_GSL_CONTROL, 120 OTG_MASTER_UPDATE_LOCK_GSL_EN, params->master_update_lock_gsl_en); 121 } 122 123 /* You can control the GSL timing by limiting GSL to a window (X,Y) */ 124 void optc2_set_gsl_window(struct timing_generator *optc, 125 const struct gsl_params *params) 126 { 127 struct optc *optc1 = DCN10TG_FROM_TG(optc); 128 129 REG_SET_2(OTG_GSL_WINDOW_X, 0, 130 OTG_GSL_WINDOW_START_X, params->gsl_window_start_x, 131 OTG_GSL_WINDOW_END_X, params->gsl_window_end_x); 132 REG_SET_2(OTG_GSL_WINDOW_Y, 0, 133 OTG_GSL_WINDOW_START_Y, params->gsl_window_start_y, 134 OTG_GSL_WINDOW_END_Y, params->gsl_window_end_y); 135 } 136 137 /** 138 * Vupdate keepout can be set to a window to block the update lock for that pipe from changing. 139 * Start offset begins with vstartup and goes for x number of clocks, 140 * end offset starts from end of vupdate to x number of clocks. 141 */ 142 void optc2_set_vupdate_keepout(struct timing_generator *optc, 143 const struct vupdate_keepout_params *params) 144 { 145 struct optc *optc1 = DCN10TG_FROM_TG(optc); 146 147 REG_SET_3(OTG_VUPDATE_KEEPOUT, 0, 148 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset, 149 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset, 150 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable); 151 } 152 153 void optc2_set_gsl_source_select( 154 struct timing_generator *optc, 155 int group_idx, 156 uint32_t gsl_ready_signal) 157 { 158 struct optc *optc1 = DCN10TG_FROM_TG(optc); 159 160 switch (group_idx) { 161 case 1: 162 REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal); 163 break; 164 case 2: 165 REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal); 166 break; 167 case 3: 168 REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal); 169 break; 170 default: 171 break; 172 } 173 } 174 175 /* DSC encoder frame start controls: x = h position, line_num = # of lines from vstartup */ 176 void optc2_set_dsc_encoder_frame_start(struct timing_generator *optc, 177 int x_position, 178 int line_num) 179 { 180 struct optc *optc1 = DCN10TG_FROM_TG(optc); 181 182 REG_SET_2(OTG_DSC_START_POSITION, 0, 183 OTG_DSC_START_POSITION_X, x_position, 184 OTG_DSC_START_POSITION_LINE_NUM, line_num); 185 } 186 187 /* Set DSC-related configuration. 188 * dsc_mode: 0 disables DSC, other values enable DSC in specified format 189 * sc_bytes_per_pixel: Bytes per pixel in u3.28 format 190 * dsc_slice_width: Slice width in pixels 191 */ 192 void optc2_set_dsc_config(struct timing_generator *optc, 193 enum optc_dsc_mode dsc_mode, 194 uint32_t dsc_bytes_per_pixel, 195 uint32_t dsc_slice_width) 196 { 197 struct optc *optc1 = DCN10TG_FROM_TG(optc); 198 199 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, 200 OPTC_DSC_MODE, dsc_mode); 201 202 REG_SET(OPTC_BYTES_PER_PIXEL, 0, 203 OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel); 204 205 REG_UPDATE(OPTC_WIDTH_CONTROL, 206 OPTC_DSC_SLICE_WIDTH, dsc_slice_width); 207 } 208 209 /*TEMP: Need to figure out inheritance model here.*/ 210 bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) 211 { 212 return optc1_is_two_pixels_per_containter(timing); 213 } 214 215 void optc2_set_odm_bypass(struct timing_generator *optc, 216 const struct dc_crtc_timing *dc_crtc_timing) 217 { 218 struct optc *optc1 = DCN10TG_FROM_TG(optc); 219 uint32_t h_div_2 = 0; 220 221 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, 222 OPTC_NUM_OF_INPUT_SEGMENT, 0, 223 OPTC_SEG0_SRC_SEL, optc->inst, 224 OPTC_SEG1_SRC_SEL, 0xf); 225 REG_WRITE(OTG_H_TIMING_CNTL, 0); 226 227 h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing); 228 REG_UPDATE(OTG_H_TIMING_CNTL, 229 OTG_H_TIMING_DIV_BY2, h_div_2); 230 REG_SET(OPTC_MEMORY_CONFIG, 0, 231 OPTC_MEM_SEL, 0); 232 optc1->opp_count = 1; 233 } 234 235 void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt, 236 struct dc_crtc_timing *timing) 237 { 238 struct optc *optc1 = DCN10TG_FROM_TG(optc); 239 int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right) 240 / opp_cnt; 241 uint32_t memory_mask; 242 uint32_t data_fmt = 0; 243 244 ASSERT(opp_cnt == 2); 245 246 /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic 247 * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1); 248 * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start 249 * REG_SET_2(OTG_GLOBAL_CONTROL1, 0, 250 * MASTER_UPDATE_LOCK_DB_X, 160, 251 * MASTER_UPDATE_LOCK_DB_Y, 240); 252 */ 253 254 /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192, 255 * however, for ODM combine we can simplify by always using 4. 256 * To make sure there's no overlap, each instance "reserves" 2 memories and 257 * they are uniquely combined here. 258 */ 259 memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2); 260 261 if (REG(OPTC_MEMORY_CONFIG)) 262 REG_SET(OPTC_MEMORY_CONFIG, 0, 263 OPTC_MEM_SEL, memory_mask); 264 265 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) 266 data_fmt = 1; 267 else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) 268 data_fmt = 2; 269 270 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt); 271 272 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, 273 OPTC_NUM_OF_INPUT_SEGMENT, 1, 274 OPTC_SEG0_SRC_SEL, opp_id[0], 275 OPTC_SEG1_SRC_SEL, opp_id[1]); 276 277 REG_UPDATE(OPTC_WIDTH_CONTROL, 278 OPTC_SEGMENT_WIDTH, mpcc_hactive); 279 280 REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1); 281 optc1->opp_count = opp_cnt; 282 } 283 284 void optc2_get_optc_source(struct timing_generator *optc, 285 uint32_t *num_of_src_opp, 286 uint32_t *src_opp_id_0, 287 uint32_t *src_opp_id_1) 288 { 289 uint32_t num_of_input_segments; 290 struct optc *optc1 = DCN10TG_FROM_TG(optc); 291 292 REG_GET_3(OPTC_DATA_SOURCE_SELECT, 293 OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments, 294 OPTC_SEG0_SRC_SEL, src_opp_id_0, 295 OPTC_SEG1_SRC_SEL, src_opp_id_1); 296 297 if (num_of_input_segments == 1) 298 *num_of_src_opp = 2; 299 else 300 *num_of_src_opp = 1; 301 302 /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */ 303 if (*src_opp_id_1 == 0xf) 304 *num_of_src_opp = 1; 305 } 306 307 void optc2_set_dwb_source(struct timing_generator *optc, 308 uint32_t dwb_pipe_inst) 309 { 310 struct optc *optc1 = DCN10TG_FROM_TG(optc); 311 312 if (dwb_pipe_inst == 0) 313 REG_UPDATE(DWB_SOURCE_SELECT, 314 OPTC_DWB0_SOURCE_SELECT, optc->inst); 315 else if (dwb_pipe_inst == 1) 316 REG_UPDATE(DWB_SOURCE_SELECT, 317 OPTC_DWB1_SOURCE_SELECT, optc->inst); 318 } 319 320 void optc2_triplebuffer_lock(struct timing_generator *optc) 321 { 322 struct optc *optc1 = DCN10TG_FROM_TG(optc); 323 324 REG_SET(OTG_GLOBAL_CONTROL0, 0, 325 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); 326 327 REG_SET(OTG_VUPDATE_KEEPOUT, 0, 328 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); 329 330 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 331 OTG_MASTER_UPDATE_LOCK, 1); 332 333 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) 334 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 335 UPDATE_LOCK_STATUS, 1, 336 1, 10); 337 } 338 339 void optc2_triplebuffer_unlock(struct timing_generator *optc) 340 { 341 struct optc *optc1 = DCN10TG_FROM_TG(optc); 342 343 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 344 OTG_MASTER_UPDATE_LOCK, 0); 345 346 REG_SET(OTG_VUPDATE_KEEPOUT, 0, 347 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0); 348 349 } 350 351 void optc2_lock_doublebuffer_enable(struct timing_generator *optc) 352 { 353 struct optc *optc1 = DCN10TG_FROM_TG(optc); 354 uint32_t v_blank_start = 0; 355 uint32_t h_blank_start = 0; 356 357 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1); 358 359 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1, 360 DIG_UPDATE_LOCATION, 20); 361 362 REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start); 363 364 REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start); 365 366 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 367 MASTER_UPDATE_LOCK_DB_X, 368 h_blank_start - 200 - 1, 369 MASTER_UPDATE_LOCK_DB_Y, 370 v_blank_start - 1); 371 } 372 373 void optc2_lock_doublebuffer_disable(struct timing_generator *optc) 374 { 375 struct optc *optc1 = DCN10TG_FROM_TG(optc); 376 377 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 378 MASTER_UPDATE_LOCK_DB_X, 379 0, 380 MASTER_UPDATE_LOCK_DB_Y, 381 0); 382 383 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0, 384 DIG_UPDATE_LOCATION, 0); 385 386 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0); 387 } 388 389 void optc2_setup_manual_trigger(struct timing_generator *optc) 390 { 391 struct optc *optc1 = DCN10TG_FROM_TG(optc); 392 393 REG_SET_8(OTG_TRIGA_CNTL, 0, 394 OTG_TRIGA_SOURCE_SELECT, 21, 395 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, 396 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, 397 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, 398 OTG_TRIGA_POLARITY_SELECT, 0, 399 OTG_TRIGA_FREQUENCY_SELECT, 0, 400 OTG_TRIGA_DELAY, 0, 401 OTG_TRIGA_CLEAR, 1); 402 } 403 404 void optc2_program_manual_trigger(struct timing_generator *optc) 405 { 406 struct optc *optc1 = DCN10TG_FROM_TG(optc); 407 408 REG_SET(OTG_TRIGA_MANUAL_TRIG, 0, 409 OTG_TRIGA_MANUAL_TRIG, 1); 410 } 411 412 static struct timing_generator_funcs dcn20_tg_funcs = { 413 .validate_timing = optc1_validate_timing, 414 .program_timing = optc1_program_timing, 415 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, 416 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, 417 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, 418 .program_global_sync = optc1_program_global_sync, 419 .enable_crtc = optc2_enable_crtc, 420 .disable_crtc = optc1_disable_crtc, 421 /* used by enable_timing_synchronization. Not need for FPGA */ 422 .is_counter_moving = optc1_is_counter_moving, 423 .get_position = optc1_get_position, 424 .get_frame_count = optc1_get_vblank_counter, 425 .get_scanoutpos = optc1_get_crtc_scanoutpos, 426 .get_otg_active_size = optc1_get_otg_active_size, 427 .set_early_control = optc1_set_early_control, 428 /* used by enable_timing_synchronization. Not need for FPGA */ 429 .wait_for_state = optc1_wait_for_state, 430 .set_blank = optc1_set_blank, 431 .is_blanked = optc1_is_blanked, 432 .set_blank_color = optc1_program_blank_color, 433 .enable_reset_trigger = optc1_enable_reset_trigger, 434 .enable_crtc_reset = optc1_enable_crtc_reset, 435 .did_triggered_reset_occur = optc1_did_triggered_reset_occur, 436 .triplebuffer_lock = optc2_triplebuffer_lock, 437 .triplebuffer_unlock = optc2_triplebuffer_unlock, 438 .disable_reset_trigger = optc1_disable_reset_trigger, 439 .lock = optc1_lock, 440 .unlock = optc1_unlock, 441 .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable, 442 .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable, 443 .enable_optc_clock = optc1_enable_optc_clock, 444 .set_drr = optc1_set_drr, 445 .set_static_screen_control = optc1_set_static_screen_control, 446 .program_stereo = optc1_program_stereo, 447 .is_stereo_left_eye = optc1_is_stereo_left_eye, 448 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, 449 .tg_init = optc1_tg_init, 450 .is_tg_enabled = optc1_is_tg_enabled, 451 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, 452 .clear_optc_underflow = optc1_clear_optc_underflow, 453 .setup_global_swap_lock = NULL, 454 .get_crc = optc1_get_crc, 455 .configure_crc = optc1_configure_crc, 456 .set_dsc_config = optc2_set_dsc_config, 457 .set_dwb_source = optc2_set_dwb_source, 458 .set_odm_bypass = optc2_set_odm_bypass, 459 .set_odm_combine = optc2_set_odm_combine, 460 .get_optc_source = optc2_get_optc_source, 461 .set_gsl = optc2_set_gsl, 462 .set_gsl_source_select = optc2_set_gsl_source_select, 463 .set_vtg_params = optc1_set_vtg_params, 464 .program_manual_trigger = optc2_program_manual_trigger, 465 .setup_manual_trigger = optc2_setup_manual_trigger, 466 .get_hw_timing = optc1_get_hw_timing, 467 }; 468 469 void dcn20_timing_generator_init(struct optc *optc1) 470 { 471 optc1->base.funcs = &dcn20_tg_funcs; 472 473 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; 474 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; 475 476 optc1->min_h_blank = 32; 477 optc1->min_v_blank = 3; 478 optc1->min_v_blank_interlace = 5; 479 optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue. 480 optc1->min_v_sync_width = 1; 481 } 482 483