1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 #include "reg_helper.h" 27 #include "dcn20_optc.h" 28 #include "dc.h" 29 30 #define REG(reg)\ 31 optc1->tg_regs->reg 32 33 #define CTX \ 34 optc1->base.ctx 35 36 #undef FN 37 #define FN(reg_name, field_name) \ 38 optc1->tg_shift->field_name, optc1->tg_mask->field_name 39 40 /** 41 * Enable CRTC 42 * Enable CRTC - call ASIC Control Object to enable Timing generator. 43 */ 44 bool optc2_enable_crtc(struct timing_generator *optc) 45 { 46 /* TODO FPGA wait for answer 47 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE 48 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK 49 */ 50 struct optc *optc1 = DCN10TG_FROM_TG(optc); 51 52 /* opp instance for OTG. For DCN1.0, ODM is remoed. 53 * OPP and OPTC should 1:1 mapping 54 */ 55 REG_UPDATE(OPTC_DATA_SOURCE_SELECT, 56 OPTC_SEG0_SRC_SEL, optc->inst); 57 58 /* VTG enable first is for HW workaround */ 59 REG_UPDATE(CONTROL, 60 VTG0_ENABLE, 1); 61 62 REG_SEQ_START(); 63 64 /* Enable CRTC */ 65 REG_UPDATE_2(OTG_CONTROL, 66 OTG_DISABLE_POINT_CNTL, 3, 67 OTG_MASTER_EN, 1); 68 69 REG_SEQ_SUBMIT(); 70 REG_SEQ_WAIT_DONE(); 71 72 return true; 73 } 74 75 /** 76 * DRR double buffering control to select buffer point 77 * for V_TOTAL, H_TOTAL, VTOTAL_MIN, VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers 78 * Options: anytime, start of frame, dp start of frame (range timing) 79 */ 80 void optc2_set_timing_db_mode(struct timing_generator *optc, bool enable) 81 { 82 struct optc *optc1 = DCN10TG_FROM_TG(optc); 83 84 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; 85 86 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 87 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, blank_data_double_buffer_enable); 88 } 89 90 /** 91 *For the below, I'm not sure how your GSL parameters are stored in your env, 92 * so I will assume a gsl_params struct for now 93 */ 94 void optc2_set_gsl(struct timing_generator *optc, 95 const struct gsl_params *params) 96 { 97 struct optc *optc1 = DCN10TG_FROM_TG(optc); 98 99 /** 100 * There are (MAX_OPTC+1)/2 gsl groups available for use. 101 * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1, 102 * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves. 103 */ 104 REG_UPDATE_5(OTG_GSL_CONTROL, 105 OTG_GSL0_EN, params->gsl0_en, 106 OTG_GSL1_EN, params->gsl1_en, 107 OTG_GSL2_EN, params->gsl2_en, 108 OTG_GSL_MASTER_EN, params->gsl_master_en, 109 OTG_GSL_MASTER_MODE, params->gsl_master_mode); 110 } 111 112 113 /* Use the gsl allow flip as the master update lock */ 114 void optc2_use_gsl_as_master_update_lock(struct timing_generator *optc, 115 const struct gsl_params *params) 116 { 117 struct optc *optc1 = DCN10TG_FROM_TG(optc); 118 119 REG_UPDATE(OTG_GSL_CONTROL, 120 OTG_MASTER_UPDATE_LOCK_GSL_EN, params->master_update_lock_gsl_en); 121 } 122 123 /* You can control the GSL timing by limiting GSL to a window (X,Y) */ 124 void optc2_set_gsl_window(struct timing_generator *optc, 125 const struct gsl_params *params) 126 { 127 struct optc *optc1 = DCN10TG_FROM_TG(optc); 128 129 REG_SET_2(OTG_GSL_WINDOW_X, 0, 130 OTG_GSL_WINDOW_START_X, params->gsl_window_start_x, 131 OTG_GSL_WINDOW_END_X, params->gsl_window_end_x); 132 REG_SET_2(OTG_GSL_WINDOW_Y, 0, 133 OTG_GSL_WINDOW_START_Y, params->gsl_window_start_y, 134 OTG_GSL_WINDOW_END_Y, params->gsl_window_end_y); 135 } 136 137 void optc2_set_gsl_source_select( 138 struct timing_generator *optc, 139 int group_idx, 140 uint32_t gsl_ready_signal) 141 { 142 struct optc *optc1 = DCN10TG_FROM_TG(optc); 143 144 switch (group_idx) { 145 case 1: 146 REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal); 147 break; 148 case 2: 149 REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal); 150 break; 151 case 3: 152 REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal); 153 break; 154 default: 155 break; 156 } 157 } 158 159 /* DSC encoder frame start controls: x = h position, line_num = # of lines from vstartup */ 160 void optc2_set_dsc_encoder_frame_start(struct timing_generator *optc, 161 int x_position, 162 int line_num) 163 { 164 struct optc *optc1 = DCN10TG_FROM_TG(optc); 165 166 REG_SET_2(OTG_DSC_START_POSITION, 0, 167 OTG_DSC_START_POSITION_X, x_position, 168 OTG_DSC_START_POSITION_LINE_NUM, line_num); 169 } 170 171 /* Set DSC-related configuration. 172 * dsc_mode: 0 disables DSC, other values enable DSC in specified format 173 * sc_bytes_per_pixel: Bytes per pixel in u3.28 format 174 * dsc_slice_width: Slice width in pixels 175 */ 176 void optc2_set_dsc_config(struct timing_generator *optc, 177 enum optc_dsc_mode dsc_mode, 178 uint32_t dsc_bytes_per_pixel, 179 uint32_t dsc_slice_width) 180 { 181 struct optc *optc1 = DCN10TG_FROM_TG(optc); 182 183 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, 184 OPTC_DSC_MODE, dsc_mode); 185 186 REG_SET(OPTC_BYTES_PER_PIXEL, 0, 187 OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel); 188 189 REG_UPDATE(OPTC_WIDTH_CONTROL, 190 OPTC_DSC_SLICE_WIDTH, dsc_slice_width); 191 } 192 193 /*TEMP: Need to figure out inheritance model here.*/ 194 bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) 195 { 196 return optc1_is_two_pixels_per_containter(timing); 197 } 198 199 void optc2_set_odm_bypass(struct timing_generator *optc, 200 const struct dc_crtc_timing *dc_crtc_timing) 201 { 202 struct optc *optc1 = DCN10TG_FROM_TG(optc); 203 uint32_t h_div_2 = 0; 204 205 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, 206 OPTC_NUM_OF_INPUT_SEGMENT, 0, 207 OPTC_SEG0_SRC_SEL, optc->inst, 208 OPTC_SEG1_SRC_SEL, 0xf); 209 REG_WRITE(OTG_H_TIMING_CNTL, 0); 210 211 h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing); 212 REG_UPDATE(OTG_H_TIMING_CNTL, 213 OTG_H_TIMING_DIV_BY2, h_div_2); 214 REG_SET(OPTC_MEMORY_CONFIG, 0, 215 OPTC_MEM_SEL, 0); 216 optc1->opp_count = 1; 217 } 218 219 void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt, 220 struct dc_crtc_timing *timing) 221 { 222 struct optc *optc1 = DCN10TG_FROM_TG(optc); 223 int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right) 224 / opp_cnt; 225 uint32_t memory_mask; 226 227 ASSERT(opp_cnt == 2); 228 229 /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic 230 * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1); 231 * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start 232 * REG_SET_2(OTG_GLOBAL_CONTROL1, 0, 233 * MASTER_UPDATE_LOCK_DB_X, 160, 234 * MASTER_UPDATE_LOCK_DB_Y, 240); 235 */ 236 237 /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192, 238 * however, for ODM combine we can simplify by always using 4. 239 * To make sure there's no overlap, each instance "reserves" 2 memories and 240 * they are uniquely combined here. 241 */ 242 memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2); 243 244 if (REG(OPTC_MEMORY_CONFIG)) 245 REG_SET(OPTC_MEMORY_CONFIG, 0, 246 OPTC_MEM_SEL, memory_mask); 247 248 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, 249 OPTC_NUM_OF_INPUT_SEGMENT, 1, 250 OPTC_SEG0_SRC_SEL, opp_id[0], 251 OPTC_SEG1_SRC_SEL, opp_id[1]); 252 253 REG_UPDATE(OPTC_WIDTH_CONTROL, 254 OPTC_SEGMENT_WIDTH, mpcc_hactive); 255 256 REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1); 257 optc1->opp_count = opp_cnt; 258 } 259 260 void optc2_get_optc_source(struct timing_generator *optc, 261 uint32_t *num_of_src_opp, 262 uint32_t *src_opp_id_0, 263 uint32_t *src_opp_id_1) 264 { 265 uint32_t num_of_input_segments; 266 struct optc *optc1 = DCN10TG_FROM_TG(optc); 267 268 REG_GET_3(OPTC_DATA_SOURCE_SELECT, 269 OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments, 270 OPTC_SEG0_SRC_SEL, src_opp_id_0, 271 OPTC_SEG1_SRC_SEL, src_opp_id_1); 272 273 if (num_of_input_segments == 1) 274 *num_of_src_opp = 2; 275 else 276 *num_of_src_opp = 1; 277 278 /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */ 279 if (*src_opp_id_1 == 0xf) 280 *num_of_src_opp = 1; 281 } 282 283 void optc2_set_dwb_source(struct timing_generator *optc, 284 uint32_t dwb_pipe_inst) 285 { 286 struct optc *optc1 = DCN10TG_FROM_TG(optc); 287 288 if (dwb_pipe_inst == 0) 289 REG_UPDATE(DWB_SOURCE_SELECT, 290 OPTC_DWB0_SOURCE_SELECT, optc->inst); 291 else if (dwb_pipe_inst == 1) 292 REG_UPDATE(DWB_SOURCE_SELECT, 293 OPTC_DWB1_SOURCE_SELECT, optc->inst); 294 } 295 296 void optc2_align_vblanks( 297 struct timing_generator *optc_master, 298 struct timing_generator *optc_slave, 299 uint32_t master_pixel_clock_100Hz, 300 uint32_t slave_pixel_clock_100Hz, 301 uint8_t master_clock_divider, 302 uint8_t slave_clock_divider) 303 { 304 /* accessing slave OTG registers */ 305 struct optc *optc1 = DCN10TG_FROM_TG(optc_slave); 306 307 uint32_t master_v_active = 0; 308 uint32_t master_h_total = 0; 309 uint32_t slave_h_total = 0; 310 uint64_t L, XY; 311 uint32_t X, Y, p = 10000; 312 uint32_t master_update_lock; 313 314 /* disable slave OTG */ 315 REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0); 316 /* wait until disabled */ 317 REG_WAIT(OTG_CONTROL, 318 OTG_CURRENT_MASTER_EN_STATE, 319 0, 10, 5000); 320 321 REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total); 322 323 /* assign slave OTG to be controlled by master update lock */ 324 REG_SET(OTG_GLOBAL_CONTROL0, 0, 325 OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst); 326 327 /* accessing master OTG registers */ 328 optc1 = DCN10TG_FROM_TG(optc_master); 329 330 /* saving update lock state, not sure if it's needed */ 331 REG_GET(OTG_MASTER_UPDATE_LOCK, 332 OTG_MASTER_UPDATE_LOCK, &master_update_lock); 333 /* unlocking master OTG */ 334 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 335 OTG_MASTER_UPDATE_LOCK, 0); 336 337 REG_GET(OTG_V_BLANK_START_END, 338 OTG_V_BLANK_START, &master_v_active); 339 REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total); 340 341 /* calculate when to enable slave OTG */ 342 L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz; 343 L = div_u64(L, master_h_total); 344 L = div_u64(L, slave_pixel_clock_100Hz); 345 XY = div_u64(L, p); 346 Y = master_v_active - XY - 1; 347 X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider); 348 349 /* 350 * set master OTG to unlock when V/H 351 * counters reach calculated values 352 */ 353 REG_UPDATE(OTG_GLOBAL_CONTROL1, 354 MASTER_UPDATE_LOCK_DB_EN, 1); 355 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 356 MASTER_UPDATE_LOCK_DB_X, 357 X, 358 MASTER_UPDATE_LOCK_DB_Y, 359 Y); 360 361 /* lock master OTG */ 362 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 363 OTG_MASTER_UPDATE_LOCK, 1); 364 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 365 UPDATE_LOCK_STATUS, 1, 1, 10); 366 367 /* accessing slave OTG registers */ 368 optc1 = DCN10TG_FROM_TG(optc_slave); 369 370 /* 371 * enable slave OTG, the OTG is locked with 372 * master's update lock, so it will not run 373 */ 374 REG_UPDATE(OTG_CONTROL, 375 OTG_MASTER_EN, 1); 376 377 /* accessing master OTG registers */ 378 optc1 = DCN10TG_FROM_TG(optc_master); 379 380 /* 381 * unlock master OTG. When master H/V counters reach 382 * DB_XY point, slave OTG will start 383 */ 384 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 385 OTG_MASTER_UPDATE_LOCK, 0); 386 387 /* accessing slave OTG registers */ 388 optc1 = DCN10TG_FROM_TG(optc_slave); 389 390 /* wait for slave OTG to start running*/ 391 REG_WAIT(OTG_CONTROL, 392 OTG_CURRENT_MASTER_EN_STATE, 393 1, 10, 5000); 394 395 /* accessing master OTG registers */ 396 optc1 = DCN10TG_FROM_TG(optc_master); 397 398 /* disable the XY point*/ 399 REG_UPDATE(OTG_GLOBAL_CONTROL1, 400 MASTER_UPDATE_LOCK_DB_EN, 0); 401 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 402 MASTER_UPDATE_LOCK_DB_X, 403 0, 404 MASTER_UPDATE_LOCK_DB_Y, 405 0); 406 407 /*restore master update lock*/ 408 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 409 OTG_MASTER_UPDATE_LOCK, master_update_lock); 410 411 /* accessing slave OTG registers */ 412 optc1 = DCN10TG_FROM_TG(optc_slave); 413 /* restore slave to be controlled by it's own */ 414 REG_SET(OTG_GLOBAL_CONTROL0, 0, 415 OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst); 416 417 } 418 419 void optc2_triplebuffer_lock(struct timing_generator *optc) 420 { 421 struct optc *optc1 = DCN10TG_FROM_TG(optc); 422 423 REG_SET(OTG_GLOBAL_CONTROL0, 0, 424 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); 425 426 REG_SET(OTG_VUPDATE_KEEPOUT, 0, 427 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); 428 429 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 430 OTG_MASTER_UPDATE_LOCK, 1); 431 432 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) 433 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 434 UPDATE_LOCK_STATUS, 1, 435 1, 10); 436 } 437 438 void optc2_triplebuffer_unlock(struct timing_generator *optc) 439 { 440 struct optc *optc1 = DCN10TG_FROM_TG(optc); 441 442 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 443 OTG_MASTER_UPDATE_LOCK, 0); 444 445 REG_SET(OTG_VUPDATE_KEEPOUT, 0, 446 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0); 447 448 } 449 450 void optc2_lock_doublebuffer_enable(struct timing_generator *optc) 451 { 452 struct optc *optc1 = DCN10TG_FROM_TG(optc); 453 uint32_t v_blank_start = 0; 454 uint32_t h_blank_start = 0; 455 456 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1); 457 458 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1, 459 DIG_UPDATE_LOCATION, 20); 460 461 REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start); 462 463 REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start); 464 465 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 466 MASTER_UPDATE_LOCK_DB_X, 467 (h_blank_start - 200 - 1) / optc1->opp_count, 468 MASTER_UPDATE_LOCK_DB_Y, 469 v_blank_start - 1); 470 471 REG_SET_3(OTG_VUPDATE_KEEPOUT, 0, 472 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, 0, 473 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, 100, 474 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); 475 } 476 477 void optc2_lock_doublebuffer_disable(struct timing_generator *optc) 478 { 479 struct optc *optc1 = DCN10TG_FROM_TG(optc); 480 481 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 482 MASTER_UPDATE_LOCK_DB_X, 483 0, 484 MASTER_UPDATE_LOCK_DB_Y, 485 0); 486 487 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0, 488 DIG_UPDATE_LOCATION, 0); 489 490 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0); 491 } 492 493 void optc2_setup_manual_trigger(struct timing_generator *optc) 494 { 495 struct optc *optc1 = DCN10TG_FROM_TG(optc); 496 497 REG_SET_8(OTG_TRIGA_CNTL, 0, 498 OTG_TRIGA_SOURCE_SELECT, 21, 499 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, 500 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, 501 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, 502 OTG_TRIGA_POLARITY_SELECT, 0, 503 OTG_TRIGA_FREQUENCY_SELECT, 0, 504 OTG_TRIGA_DELAY, 0, 505 OTG_TRIGA_CLEAR, 1); 506 } 507 508 void optc2_program_manual_trigger(struct timing_generator *optc) 509 { 510 struct optc *optc1 = DCN10TG_FROM_TG(optc); 511 512 REG_SET(OTG_TRIGA_MANUAL_TRIG, 0, 513 OTG_TRIGA_MANUAL_TRIG, 1); 514 } 515 516 bool optc2_configure_crc(struct timing_generator *optc, 517 const struct crc_params *params) 518 { 519 struct optc *optc1 = DCN10TG_FROM_TG(optc); 520 521 REG_SET_2(OTG_CRC_CNTL2, 0, 522 OTG_CRC_DSC_MODE, params->dsc_mode, 523 OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode); 524 525 return optc1_configure_crc(optc, params); 526 } 527 528 529 void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate) 530 { 531 struct optc *optc1 = DCN10TG_FROM_TG(optc); 532 533 REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate); 534 } 535 536 static struct timing_generator_funcs dcn20_tg_funcs = { 537 .validate_timing = optc1_validate_timing, 538 .program_timing = optc1_program_timing, 539 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, 540 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, 541 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, 542 .program_global_sync = optc1_program_global_sync, 543 .enable_crtc = optc2_enable_crtc, 544 .disable_crtc = optc1_disable_crtc, 545 /* used by enable_timing_synchronization. Not need for FPGA */ 546 .is_counter_moving = optc1_is_counter_moving, 547 .get_position = optc1_get_position, 548 .get_frame_count = optc1_get_vblank_counter, 549 .get_scanoutpos = optc1_get_crtc_scanoutpos, 550 .get_otg_active_size = optc1_get_otg_active_size, 551 .set_early_control = optc1_set_early_control, 552 /* used by enable_timing_synchronization. Not need for FPGA */ 553 .wait_for_state = optc1_wait_for_state, 554 .set_blank = optc1_set_blank, 555 .is_blanked = optc1_is_blanked, 556 .set_blank_color = optc1_program_blank_color, 557 .enable_reset_trigger = optc1_enable_reset_trigger, 558 .enable_crtc_reset = optc1_enable_crtc_reset, 559 .did_triggered_reset_occur = optc1_did_triggered_reset_occur, 560 .triplebuffer_lock = optc2_triplebuffer_lock, 561 .triplebuffer_unlock = optc2_triplebuffer_unlock, 562 .disable_reset_trigger = optc1_disable_reset_trigger, 563 .lock = optc1_lock, 564 .unlock = optc1_unlock, 565 .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable, 566 .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable, 567 .enable_optc_clock = optc1_enable_optc_clock, 568 .set_drr = optc1_set_drr, 569 .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal, 570 .set_static_screen_control = optc1_set_static_screen_control, 571 .program_stereo = optc1_program_stereo, 572 .is_stereo_left_eye = optc1_is_stereo_left_eye, 573 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, 574 .tg_init = optc1_tg_init, 575 .is_tg_enabled = optc1_is_tg_enabled, 576 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, 577 .clear_optc_underflow = optc1_clear_optc_underflow, 578 .setup_global_swap_lock = NULL, 579 .get_crc = optc1_get_crc, 580 .configure_crc = optc2_configure_crc, 581 .set_dsc_config = optc2_set_dsc_config, 582 .set_dwb_source = optc2_set_dwb_source, 583 .set_odm_bypass = optc2_set_odm_bypass, 584 .set_odm_combine = optc2_set_odm_combine, 585 .get_optc_source = optc2_get_optc_source, 586 .set_gsl = optc2_set_gsl, 587 .set_gsl_source_select = optc2_set_gsl_source_select, 588 .set_vtg_params = optc1_set_vtg_params, 589 .program_manual_trigger = optc2_program_manual_trigger, 590 .setup_manual_trigger = optc2_setup_manual_trigger, 591 .get_hw_timing = optc1_get_hw_timing, 592 .align_vblanks = optc2_align_vblanks, 593 }; 594 595 void dcn20_timing_generator_init(struct optc *optc1) 596 { 597 optc1->base.funcs = &dcn20_tg_funcs; 598 599 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; 600 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; 601 602 optc1->min_h_blank = 32; 603 optc1->min_v_blank = 3; 604 optc1->min_v_blank_interlace = 5; 605 optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue. 606 optc1->min_v_sync_width = 1; 607 } 608