1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 #include "reg_helper.h" 27 #include "dcn20_optc.h" 28 #include "dc.h" 29 30 #define REG(reg)\ 31 optc1->tg_regs->reg 32 33 #define CTX \ 34 optc1->base.ctx 35 36 #undef FN 37 #define FN(reg_name, field_name) \ 38 optc1->tg_shift->field_name, optc1->tg_mask->field_name 39 40 /** 41 * Enable CRTC 42 * Enable CRTC - call ASIC Control Object to enable Timing generator. 43 */ 44 bool optc2_enable_crtc(struct timing_generator *optc) 45 { 46 /* TODO FPGA wait for answer 47 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE 48 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK 49 */ 50 struct optc *optc1 = DCN10TG_FROM_TG(optc); 51 52 /* opp instance for OTG. For DCN1.0, ODM is remoed. 53 * OPP and OPTC should 1:1 mapping 54 */ 55 REG_UPDATE(OPTC_DATA_SOURCE_SELECT, 56 OPTC_SEG0_SRC_SEL, optc->inst); 57 58 /* VTG enable first is for HW workaround */ 59 REG_UPDATE(CONTROL, 60 VTG0_ENABLE, 1); 61 62 REG_SEQ_START(); 63 64 /* Enable CRTC */ 65 REG_UPDATE_2(OTG_CONTROL, 66 OTG_DISABLE_POINT_CNTL, 3, 67 OTG_MASTER_EN, 1); 68 69 REG_SEQ_SUBMIT(); 70 REG_SEQ_WAIT_DONE(); 71 72 return true; 73 } 74 75 /** 76 *For the below, I'm not sure how your GSL parameters are stored in your env, 77 * so I will assume a gsl_params struct for now 78 */ 79 void optc2_set_gsl(struct timing_generator *optc, 80 const struct gsl_params *params) 81 { 82 struct optc *optc1 = DCN10TG_FROM_TG(optc); 83 84 /** 85 * There are (MAX_OPTC+1)/2 gsl groups available for use. 86 * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1, 87 * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves. 88 */ 89 REG_UPDATE_5(OTG_GSL_CONTROL, 90 OTG_GSL0_EN, params->gsl0_en, 91 OTG_GSL1_EN, params->gsl1_en, 92 OTG_GSL2_EN, params->gsl2_en, 93 OTG_GSL_MASTER_EN, params->gsl_master_en, 94 OTG_GSL_MASTER_MODE, params->gsl_master_mode); 95 } 96 97 98 void optc2_set_gsl_source_select( 99 struct timing_generator *optc, 100 int group_idx, 101 uint32_t gsl_ready_signal) 102 { 103 struct optc *optc1 = DCN10TG_FROM_TG(optc); 104 105 switch (group_idx) { 106 case 1: 107 REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal); 108 break; 109 case 2: 110 REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal); 111 break; 112 case 3: 113 REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal); 114 break; 115 default: 116 break; 117 } 118 } 119 120 /* Set DSC-related configuration. 121 * dsc_mode: 0 disables DSC, other values enable DSC in specified format 122 * sc_bytes_per_pixel: Bytes per pixel in u3.28 format 123 * dsc_slice_width: Slice width in pixels 124 */ 125 void optc2_set_dsc_config(struct timing_generator *optc, 126 enum optc_dsc_mode dsc_mode, 127 uint32_t dsc_bytes_per_pixel, 128 uint32_t dsc_slice_width) 129 { 130 struct optc *optc1 = DCN10TG_FROM_TG(optc); 131 132 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, 133 OPTC_DSC_MODE, dsc_mode); 134 135 REG_SET(OPTC_BYTES_PER_PIXEL, 0, 136 OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel); 137 138 REG_UPDATE(OPTC_WIDTH_CONTROL, 139 OPTC_DSC_SLICE_WIDTH, dsc_slice_width); 140 } 141 142 /* Get DSC-related configuration. 143 * dsc_mode: 0 disables DSC, other values enable DSC in specified format 144 */ 145 void optc2_get_dsc_status(struct timing_generator *optc, 146 uint32_t *dsc_mode) 147 { 148 struct optc *optc1 = DCN10TG_FROM_TG(optc); 149 150 REG_GET(OPTC_DATA_FORMAT_CONTROL, 151 OPTC_DSC_MODE, dsc_mode); 152 } 153 154 155 /*TEMP: Need to figure out inheritance model here.*/ 156 bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) 157 { 158 return optc1_is_two_pixels_per_containter(timing); 159 } 160 161 void optc2_set_odm_bypass(struct timing_generator *optc, 162 const struct dc_crtc_timing *dc_crtc_timing) 163 { 164 struct optc *optc1 = DCN10TG_FROM_TG(optc); 165 uint32_t h_div_2 = 0; 166 167 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, 168 OPTC_NUM_OF_INPUT_SEGMENT, 0, 169 OPTC_SEG0_SRC_SEL, optc->inst, 170 OPTC_SEG1_SRC_SEL, 0xf); 171 REG_WRITE(OTG_H_TIMING_CNTL, 0); 172 173 h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing); 174 REG_UPDATE(OTG_H_TIMING_CNTL, 175 OTG_H_TIMING_DIV_BY2, h_div_2); 176 REG_SET(OPTC_MEMORY_CONFIG, 0, 177 OPTC_MEM_SEL, 0); 178 optc1->opp_count = 1; 179 } 180 181 void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt, 182 struct dc_crtc_timing *timing) 183 { 184 struct optc *optc1 = DCN10TG_FROM_TG(optc); 185 int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right) 186 / opp_cnt; 187 uint32_t memory_mask; 188 189 ASSERT(opp_cnt == 2); 190 191 /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic 192 * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1); 193 * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start 194 * REG_SET_2(OTG_GLOBAL_CONTROL1, 0, 195 * MASTER_UPDATE_LOCK_DB_X, 160, 196 * MASTER_UPDATE_LOCK_DB_Y, 240); 197 */ 198 199 /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192, 200 * however, for ODM combine we can simplify by always using 4. 201 * To make sure there's no overlap, each instance "reserves" 2 memories and 202 * they are uniquely combined here. 203 */ 204 memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2); 205 206 if (REG(OPTC_MEMORY_CONFIG)) 207 REG_SET(OPTC_MEMORY_CONFIG, 0, 208 OPTC_MEM_SEL, memory_mask); 209 210 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, 211 OPTC_NUM_OF_INPUT_SEGMENT, 1, 212 OPTC_SEG0_SRC_SEL, opp_id[0], 213 OPTC_SEG1_SRC_SEL, opp_id[1]); 214 215 REG_UPDATE(OPTC_WIDTH_CONTROL, 216 OPTC_SEGMENT_WIDTH, mpcc_hactive); 217 218 REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1); 219 optc1->opp_count = opp_cnt; 220 } 221 222 void optc2_get_optc_source(struct timing_generator *optc, 223 uint32_t *num_of_src_opp, 224 uint32_t *src_opp_id_0, 225 uint32_t *src_opp_id_1) 226 { 227 uint32_t num_of_input_segments; 228 struct optc *optc1 = DCN10TG_FROM_TG(optc); 229 230 REG_GET_3(OPTC_DATA_SOURCE_SELECT, 231 OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments, 232 OPTC_SEG0_SRC_SEL, src_opp_id_0, 233 OPTC_SEG1_SRC_SEL, src_opp_id_1); 234 235 if (num_of_input_segments == 1) 236 *num_of_src_opp = 2; 237 else 238 *num_of_src_opp = 1; 239 240 /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */ 241 if (*src_opp_id_1 == 0xf) 242 *num_of_src_opp = 1; 243 } 244 245 static void optc2_set_dwb_source(struct timing_generator *optc, 246 uint32_t dwb_pipe_inst) 247 { 248 struct optc *optc1 = DCN10TG_FROM_TG(optc); 249 250 if (dwb_pipe_inst == 0) 251 REG_UPDATE(DWB_SOURCE_SELECT, 252 OPTC_DWB0_SOURCE_SELECT, optc->inst); 253 else if (dwb_pipe_inst == 1) 254 REG_UPDATE(DWB_SOURCE_SELECT, 255 OPTC_DWB1_SOURCE_SELECT, optc->inst); 256 } 257 258 static void optc2_align_vblanks( 259 struct timing_generator *optc_master, 260 struct timing_generator *optc_slave, 261 uint32_t master_pixel_clock_100Hz, 262 uint32_t slave_pixel_clock_100Hz, 263 uint8_t master_clock_divider, 264 uint8_t slave_clock_divider) 265 { 266 /* accessing slave OTG registers */ 267 struct optc *optc1 = DCN10TG_FROM_TG(optc_slave); 268 269 uint32_t master_v_active = 0; 270 uint32_t master_h_total = 0; 271 uint32_t slave_h_total = 0; 272 uint64_t L, XY; 273 uint32_t X, Y, p = 10000; 274 uint32_t master_update_lock; 275 276 /* disable slave OTG */ 277 REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0); 278 /* wait until disabled */ 279 REG_WAIT(OTG_CONTROL, 280 OTG_CURRENT_MASTER_EN_STATE, 281 0, 10, 5000); 282 283 REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total); 284 285 /* assign slave OTG to be controlled by master update lock */ 286 REG_SET(OTG_GLOBAL_CONTROL0, 0, 287 OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst); 288 289 /* accessing master OTG registers */ 290 optc1 = DCN10TG_FROM_TG(optc_master); 291 292 /* saving update lock state, not sure if it's needed */ 293 REG_GET(OTG_MASTER_UPDATE_LOCK, 294 OTG_MASTER_UPDATE_LOCK, &master_update_lock); 295 /* unlocking master OTG */ 296 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 297 OTG_MASTER_UPDATE_LOCK, 0); 298 299 REG_GET(OTG_V_BLANK_START_END, 300 OTG_V_BLANK_START, &master_v_active); 301 REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total); 302 303 /* calculate when to enable slave OTG */ 304 L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz; 305 L = div_u64(L, master_h_total); 306 L = div_u64(L, slave_pixel_clock_100Hz); 307 XY = div_u64(L, p); 308 Y = master_v_active - XY - 1; 309 X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider); 310 311 /* 312 * set master OTG to unlock when V/H 313 * counters reach calculated values 314 */ 315 REG_UPDATE(OTG_GLOBAL_CONTROL1, 316 MASTER_UPDATE_LOCK_DB_EN, 1); 317 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 318 MASTER_UPDATE_LOCK_DB_X, 319 X, 320 MASTER_UPDATE_LOCK_DB_Y, 321 Y); 322 323 /* lock master OTG */ 324 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 325 OTG_MASTER_UPDATE_LOCK, 1); 326 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 327 UPDATE_LOCK_STATUS, 1, 1, 10); 328 329 /* accessing slave OTG registers */ 330 optc1 = DCN10TG_FROM_TG(optc_slave); 331 332 /* 333 * enable slave OTG, the OTG is locked with 334 * master's update lock, so it will not run 335 */ 336 REG_UPDATE(OTG_CONTROL, 337 OTG_MASTER_EN, 1); 338 339 /* accessing master OTG registers */ 340 optc1 = DCN10TG_FROM_TG(optc_master); 341 342 /* 343 * unlock master OTG. When master H/V counters reach 344 * DB_XY point, slave OTG will start 345 */ 346 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 347 OTG_MASTER_UPDATE_LOCK, 0); 348 349 /* accessing slave OTG registers */ 350 optc1 = DCN10TG_FROM_TG(optc_slave); 351 352 /* wait for slave OTG to start running*/ 353 REG_WAIT(OTG_CONTROL, 354 OTG_CURRENT_MASTER_EN_STATE, 355 1, 10, 5000); 356 357 /* accessing master OTG registers */ 358 optc1 = DCN10TG_FROM_TG(optc_master); 359 360 /* disable the XY point*/ 361 REG_UPDATE(OTG_GLOBAL_CONTROL1, 362 MASTER_UPDATE_LOCK_DB_EN, 0); 363 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 364 MASTER_UPDATE_LOCK_DB_X, 365 0, 366 MASTER_UPDATE_LOCK_DB_Y, 367 0); 368 369 /*restore master update lock*/ 370 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 371 OTG_MASTER_UPDATE_LOCK, master_update_lock); 372 373 /* accessing slave OTG registers */ 374 optc1 = DCN10TG_FROM_TG(optc_slave); 375 /* restore slave to be controlled by it's own */ 376 REG_SET(OTG_GLOBAL_CONTROL0, 0, 377 OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst); 378 379 } 380 381 void optc2_triplebuffer_lock(struct timing_generator *optc) 382 { 383 struct optc *optc1 = DCN10TG_FROM_TG(optc); 384 385 REG_SET(OTG_GLOBAL_CONTROL0, 0, 386 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); 387 388 REG_SET(OTG_VUPDATE_KEEPOUT, 0, 389 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); 390 391 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 392 OTG_MASTER_UPDATE_LOCK, 1); 393 394 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) 395 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 396 UPDATE_LOCK_STATUS, 1, 397 1, 10); 398 } 399 400 void optc2_triplebuffer_unlock(struct timing_generator *optc) 401 { 402 struct optc *optc1 = DCN10TG_FROM_TG(optc); 403 404 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 405 OTG_MASTER_UPDATE_LOCK, 0); 406 407 REG_SET(OTG_VUPDATE_KEEPOUT, 0, 408 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0); 409 410 } 411 412 void optc2_lock_doublebuffer_enable(struct timing_generator *optc) 413 { 414 struct optc *optc1 = DCN10TG_FROM_TG(optc); 415 uint32_t v_blank_start = 0; 416 uint32_t h_blank_start = 0; 417 418 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1); 419 420 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1, 421 DIG_UPDATE_LOCATION, 20); 422 423 REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start); 424 425 REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start); 426 427 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 428 MASTER_UPDATE_LOCK_DB_X, 429 (h_blank_start - 200 - 1) / optc1->opp_count, 430 MASTER_UPDATE_LOCK_DB_Y, 431 v_blank_start - 1); 432 433 REG_SET_3(OTG_VUPDATE_KEEPOUT, 0, 434 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, 0, 435 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, 100, 436 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); 437 } 438 439 void optc2_lock_doublebuffer_disable(struct timing_generator *optc) 440 { 441 struct optc *optc1 = DCN10TG_FROM_TG(optc); 442 443 REG_UPDATE_2(OTG_GLOBAL_CONTROL1, 444 MASTER_UPDATE_LOCK_DB_X, 445 0, 446 MASTER_UPDATE_LOCK_DB_Y, 447 0); 448 449 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0, 450 DIG_UPDATE_LOCATION, 0); 451 452 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0); 453 } 454 455 void optc2_setup_manual_trigger(struct timing_generator *optc) 456 { 457 struct optc *optc1 = DCN10TG_FROM_TG(optc); 458 459 REG_SET_8(OTG_TRIGA_CNTL, 0, 460 OTG_TRIGA_SOURCE_SELECT, 21, 461 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, 462 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, 463 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, 464 OTG_TRIGA_POLARITY_SELECT, 0, 465 OTG_TRIGA_FREQUENCY_SELECT, 0, 466 OTG_TRIGA_DELAY, 0, 467 OTG_TRIGA_CLEAR, 1); 468 } 469 470 void optc2_program_manual_trigger(struct timing_generator *optc) 471 { 472 struct optc *optc1 = DCN10TG_FROM_TG(optc); 473 474 REG_SET(OTG_TRIGA_MANUAL_TRIG, 0, 475 OTG_TRIGA_MANUAL_TRIG, 1); 476 } 477 478 bool optc2_configure_crc(struct timing_generator *optc, 479 const struct crc_params *params) 480 { 481 struct optc *optc1 = DCN10TG_FROM_TG(optc); 482 483 REG_SET_2(OTG_CRC_CNTL2, 0, 484 OTG_CRC_DSC_MODE, params->dsc_mode, 485 OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode); 486 487 return optc1_configure_crc(optc, params); 488 } 489 490 491 void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate) 492 { 493 struct optc *optc1 = DCN10TG_FROM_TG(optc); 494 495 REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate); 496 } 497 498 static struct timing_generator_funcs dcn20_tg_funcs = { 499 .validate_timing = optc1_validate_timing, 500 .program_timing = optc1_program_timing, 501 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, 502 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, 503 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, 504 .program_global_sync = optc1_program_global_sync, 505 .enable_crtc = optc2_enable_crtc, 506 .disable_crtc = optc1_disable_crtc, 507 /* used by enable_timing_synchronization. Not need for FPGA */ 508 .is_counter_moving = optc1_is_counter_moving, 509 .get_position = optc1_get_position, 510 .get_frame_count = optc1_get_vblank_counter, 511 .get_scanoutpos = optc1_get_crtc_scanoutpos, 512 .get_otg_active_size = optc1_get_otg_active_size, 513 .set_early_control = optc1_set_early_control, 514 /* used by enable_timing_synchronization. Not need for FPGA */ 515 .wait_for_state = optc1_wait_for_state, 516 .set_blank = optc1_set_blank, 517 .is_blanked = optc1_is_blanked, 518 .set_blank_color = optc1_program_blank_color, 519 .enable_reset_trigger = optc1_enable_reset_trigger, 520 .enable_crtc_reset = optc1_enable_crtc_reset, 521 .did_triggered_reset_occur = optc1_did_triggered_reset_occur, 522 .triplebuffer_lock = optc2_triplebuffer_lock, 523 .triplebuffer_unlock = optc2_triplebuffer_unlock, 524 .disable_reset_trigger = optc1_disable_reset_trigger, 525 .lock = optc1_lock, 526 .unlock = optc1_unlock, 527 .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable, 528 .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable, 529 .enable_optc_clock = optc1_enable_optc_clock, 530 .set_drr = optc1_set_drr, 531 .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal, 532 .set_static_screen_control = optc1_set_static_screen_control, 533 .program_stereo = optc1_program_stereo, 534 .is_stereo_left_eye = optc1_is_stereo_left_eye, 535 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, 536 .tg_init = optc1_tg_init, 537 .is_tg_enabled = optc1_is_tg_enabled, 538 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, 539 .clear_optc_underflow = optc1_clear_optc_underflow, 540 .setup_global_swap_lock = NULL, 541 .get_crc = optc1_get_crc, 542 .configure_crc = optc2_configure_crc, 543 .set_dsc_config = optc2_set_dsc_config, 544 .get_dsc_status = optc2_get_dsc_status, 545 .set_dwb_source = optc2_set_dwb_source, 546 .set_odm_bypass = optc2_set_odm_bypass, 547 .set_odm_combine = optc2_set_odm_combine, 548 .get_optc_source = optc2_get_optc_source, 549 .set_gsl = optc2_set_gsl, 550 .set_gsl_source_select = optc2_set_gsl_source_select, 551 .set_vtg_params = optc1_set_vtg_params, 552 .program_manual_trigger = optc2_program_manual_trigger, 553 .setup_manual_trigger = optc2_setup_manual_trigger, 554 .get_hw_timing = optc1_get_hw_timing, 555 .align_vblanks = optc2_align_vblanks, 556 }; 557 558 void dcn20_timing_generator_init(struct optc *optc1) 559 { 560 optc1->base.funcs = &dcn20_tg_funcs; 561 562 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; 563 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; 564 565 optc1->min_h_blank = 32; 566 optc1->min_v_blank = 3; 567 optc1->min_v_blank_interlace = 5; 568 optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue. 569 optc1->min_v_sync_width = 1; 570 } 571