1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 #include "dcn20_mpc.h" 27 28 #include "reg_helper.h" 29 #include "dc.h" 30 #include "mem_input.h" 31 #include "dcn10/dcn10_cm_common.h" 32 33 #define REG(reg)\ 34 mpc20->mpc_regs->reg 35 36 #define IND_REG(index) \ 37 (index) 38 39 #define CTX \ 40 mpc20->base.ctx 41 42 #undef FN 43 #define FN(reg_name, field_name) \ 44 mpc20->mpc_shift->field_name, mpc20->mpc_mask->field_name 45 46 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) 47 48 void mpc2_update_blending( 49 struct mpc *mpc, 50 struct mpcc_blnd_cfg *blnd_cfg, 51 int mpcc_id) 52 { 53 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 54 55 struct mpcc *mpcc = mpc1_get_mpcc(mpc, mpcc_id); 56 57 REG_UPDATE_7(MPCC_CONTROL[mpcc_id], 58 MPCC_ALPHA_BLND_MODE, blnd_cfg->alpha_mode, 59 MPCC_ALPHA_MULTIPLIED_MODE, blnd_cfg->pre_multiplied_alpha, 60 MPCC_BLND_ACTIVE_OVERLAP_ONLY, blnd_cfg->overlap_only, 61 MPCC_GLOBAL_ALPHA, blnd_cfg->global_alpha, 62 MPCC_GLOBAL_GAIN, blnd_cfg->global_gain, 63 MPCC_BG_BPC, blnd_cfg->background_color_bpc, 64 MPCC_BOT_GAIN_MODE, blnd_cfg->bottom_gain_mode); 65 66 REG_SET(MPCC_TOP_GAIN[mpcc_id], 0, MPCC_TOP_GAIN, blnd_cfg->top_gain); 67 REG_SET(MPCC_BOT_GAIN_INSIDE[mpcc_id], 0, MPCC_BOT_GAIN_INSIDE, blnd_cfg->bottom_inside_gain); 68 REG_SET(MPCC_BOT_GAIN_OUTSIDE[mpcc_id], 0, MPCC_BOT_GAIN_OUTSIDE, blnd_cfg->bottom_outside_gain); 69 70 mpc1_set_bg_color(mpc, &blnd_cfg->black_color, mpcc_id); 71 mpcc->blnd_cfg = *blnd_cfg; 72 } 73 74 void mpc2_set_denorm( 75 struct mpc *mpc, 76 int opp_id, 77 enum dc_color_depth output_depth) 78 { 79 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 80 int denorm_mode = 0; 81 82 switch (output_depth) { 83 case COLOR_DEPTH_666: 84 denorm_mode = 1; 85 break; 86 case COLOR_DEPTH_888: 87 denorm_mode = 2; 88 break; 89 case COLOR_DEPTH_999: 90 denorm_mode = 3; 91 break; 92 case COLOR_DEPTH_101010: 93 denorm_mode = 4; 94 break; 95 case COLOR_DEPTH_111111: 96 denorm_mode = 5; 97 break; 98 case COLOR_DEPTH_121212: 99 denorm_mode = 6; 100 break; 101 case COLOR_DEPTH_141414: 102 case COLOR_DEPTH_161616: 103 default: 104 /* not valid used case! */ 105 break; 106 } 107 108 REG_UPDATE(DENORM_CONTROL[opp_id], 109 MPC_OUT_DENORM_MODE, denorm_mode); 110 } 111 112 void mpc2_set_denorm_clamp( 113 struct mpc *mpc, 114 int opp_id, 115 struct mpc_denorm_clamp denorm_clamp) 116 { 117 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 118 119 REG_UPDATE_2(DENORM_CONTROL[opp_id], 120 MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr, 121 MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr); 122 REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id], 123 MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y, 124 MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y); 125 REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id], 126 MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb, 127 MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb); 128 } 129 130 131 132 void mpc2_set_output_csc( 133 struct mpc *mpc, 134 int opp_id, 135 const uint16_t *regval, 136 enum mpc_output_csc_mode ocsc_mode) 137 { 138 uint32_t cur_mode; 139 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 140 struct color_matrices_reg ocsc_regs; 141 142 if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) { 143 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 144 return; 145 } 146 147 if (regval == NULL) { 148 BREAK_TO_DEBUGGER(); 149 return; 150 } 151 152 /* determine which CSC coefficients (A or B) we are using 153 * currently. select the alternate set to double buffer 154 * the CSC update so CSC is updated on frame boundary 155 */ 156 IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA, 157 MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX, 158 MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode); 159 160 if (cur_mode != MPC_OUTPUT_CSC_COEF_A) 161 ocsc_mode = MPC_OUTPUT_CSC_COEF_A; 162 else 163 ocsc_mode = MPC_OUTPUT_CSC_COEF_B; 164 165 ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A; 166 ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A; 167 ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A; 168 ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A; 169 170 if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { 171 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); 172 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); 173 } else { 174 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); 175 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); 176 } 177 178 cm_helper_program_color_matrices( 179 mpc20->base.ctx, 180 regval, 181 &ocsc_regs); 182 183 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 184 } 185 186 void mpc2_set_ocsc_default( 187 struct mpc *mpc, 188 int opp_id, 189 enum dc_color_space color_space, 190 enum mpc_output_csc_mode ocsc_mode) 191 { 192 uint32_t cur_mode; 193 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 194 uint32_t arr_size; 195 struct color_matrices_reg ocsc_regs; 196 const uint16_t *regval = NULL; 197 198 if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) { 199 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 200 return; 201 } 202 203 regval = find_color_matrix(color_space, &arr_size); 204 205 if (regval == NULL) { 206 BREAK_TO_DEBUGGER(); 207 return; 208 } 209 210 /* determine which CSC coefficients (A or B) we are using 211 * currently. select the alternate set to double buffer 212 * the CSC update so CSC is updated on frame boundary 213 */ 214 IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA, 215 MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX, 216 MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode); 217 218 if (cur_mode != MPC_OUTPUT_CSC_COEF_A) 219 ocsc_mode = MPC_OUTPUT_CSC_COEF_A; 220 else 221 ocsc_mode = MPC_OUTPUT_CSC_COEF_B; 222 223 ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A; 224 ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A; 225 ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A; 226 ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A; 227 228 229 if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { 230 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); 231 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); 232 } else { 233 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); 234 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); 235 } 236 237 cm_helper_program_color_matrices( 238 mpc20->base.ctx, 239 regval, 240 &ocsc_regs); 241 242 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 243 } 244 245 static void mpc2_ogam_get_reg_field( 246 struct mpc *mpc, 247 struct xfer_func_reg *reg) 248 { 249 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 250 251 reg->shifts.exp_region0_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; 252 reg->masks.exp_region0_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; 253 reg->shifts.exp_region0_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; 254 reg->masks.exp_region0_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; 255 reg->shifts.exp_region1_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; 256 reg->masks.exp_region1_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; 257 reg->shifts.exp_region1_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; 258 reg->masks.exp_region1_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; 259 reg->shifts.field_region_end = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B; 260 reg->masks.field_region_end = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B; 261 reg->shifts.field_region_end_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; 262 reg->masks.field_region_end_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; 263 reg->shifts.field_region_end_base = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; 264 reg->masks.field_region_end_base = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; 265 reg->shifts.field_region_linear_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; 266 reg->masks.field_region_linear_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; 267 reg->shifts.exp_region_start = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B; 268 reg->masks.exp_region_start = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B; 269 reg->shifts.exp_resion_start_segment = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; 270 reg->masks.exp_resion_start_segment = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; 271 } 272 273 void mpc20_power_on_ogam_lut( 274 struct mpc *mpc, int mpcc_id, 275 bool power_on) 276 { 277 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 278 279 REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0, 280 MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0); 281 282 } 283 284 static void mpc20_configure_ogam_lut( 285 struct mpc *mpc, int mpcc_id, 286 bool is_ram_a) 287 { 288 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 289 290 REG_UPDATE_2(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], 291 MPCC_OGAM_LUT_WRITE_EN_MASK, 7, 292 MPCC_OGAM_LUT_RAM_SEL, is_ram_a == true ? 0:1); 293 294 REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0); 295 } 296 297 static enum dc_lut_mode mpc20_get_ogam_current(struct mpc *mpc, int mpcc_id) 298 { 299 enum dc_lut_mode mode; 300 uint32_t state_mode; 301 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 302 303 REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], 304 MPCC_OGAM_CONFIG_STATUS, &state_mode); 305 306 switch (state_mode) { 307 case 0: 308 mode = LUT_BYPASS; 309 break; 310 case 1: 311 mode = LUT_RAM_A; 312 break; 313 case 2: 314 mode = LUT_RAM_B; 315 break; 316 default: 317 mode = LUT_BYPASS; 318 break; 319 } 320 return mode; 321 } 322 323 static void mpc2_program_lutb(struct mpc *mpc, int mpcc_id, 324 const struct pwl_params *params) 325 { 326 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 327 struct xfer_func_reg gam_regs; 328 329 mpc2_ogam_get_reg_field(mpc, &gam_regs); 330 331 gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]); 332 gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]); 333 gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]); 334 gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_B[mpcc_id]); 335 gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_G[mpcc_id]); 336 gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_R[mpcc_id]); 337 gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]); 338 gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]); 339 gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]); 340 gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]); 341 gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]); 342 gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]); 343 gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]); 344 gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]); 345 346 cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs); 347 348 } 349 350 static void mpc2_program_luta(struct mpc *mpc, int mpcc_id, 351 const struct pwl_params *params) 352 { 353 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 354 struct xfer_func_reg gam_regs; 355 356 mpc2_ogam_get_reg_field(mpc, &gam_regs); 357 358 gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]); 359 gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]); 360 gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]); 361 gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_B[mpcc_id]); 362 gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_G[mpcc_id]); 363 gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_R[mpcc_id]); 364 gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]); 365 gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]); 366 gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]); 367 gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]); 368 gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]); 369 gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]); 370 gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]); 371 gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]); 372 373 cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs); 374 375 } 376 377 static void mpc20_program_ogam_pwl( 378 struct mpc *mpc, int mpcc_id, 379 const struct pwl_result_data *rgb, 380 uint32_t num) 381 { 382 uint32_t i; 383 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 384 385 PERF_TRACE(); 386 REG_SEQ_START(); 387 388 for (i = 0 ; i < num; i++) { 389 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg); 390 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg); 391 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg); 392 393 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, 394 MPCC_OGAM_LUT_DATA, rgb[i].delta_red_reg); 395 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, 396 MPCC_OGAM_LUT_DATA, rgb[i].delta_green_reg); 397 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, 398 MPCC_OGAM_LUT_DATA, rgb[i].delta_blue_reg); 399 400 } 401 402 } 403 404 void apply_DEDCN20_305_wa( 405 struct mpc *mpc, 406 int mpcc_id, enum dc_lut_mode current_mode, 407 enum dc_lut_mode next_mode) 408 { 409 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 410 411 if (mpc->ctx->dc->debug.cm_in_bypass) { 412 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); 413 return; 414 } 415 416 if (mpc->ctx->dc->work_arounds.dedcn20_305_wa == false) { 417 /*hw fixed in new review*/ 418 return; 419 } 420 if (current_mode == LUT_BYPASS) 421 /*this will only work if OTG is locked. 422 *if we were to support OTG unlock case, 423 *the workaround will be more complex 424 */ 425 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 426 next_mode == LUT_RAM_A ? 1:2); 427 } 428 429 void mpc2_set_output_gamma( 430 struct mpc *mpc, 431 int mpcc_id, 432 const struct pwl_params *params) 433 { 434 enum dc_lut_mode current_mode; 435 enum dc_lut_mode next_mode; 436 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 437 438 if (mpc->ctx->dc->debug.cm_in_bypass) { 439 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); 440 return; 441 } 442 443 if (params == NULL) { 444 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); 445 return; 446 } 447 448 current_mode = mpc20_get_ogam_current(mpc, mpcc_id); 449 if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) 450 next_mode = LUT_RAM_B; 451 else 452 next_mode = LUT_RAM_A; 453 454 mpc20_power_on_ogam_lut(mpc, mpcc_id, true); 455 mpc20_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A ? true:false); 456 457 if (next_mode == LUT_RAM_A) 458 mpc2_program_luta(mpc, mpcc_id, params); 459 else 460 mpc2_program_lutb(mpc, mpcc_id, params); 461 462 apply_DEDCN20_305_wa(mpc, mpcc_id, current_mode, next_mode); 463 464 mpc20_program_ogam_pwl( 465 mpc, mpcc_id, params->rgb_resulted, params->hw_points_num); 466 467 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 468 next_mode == LUT_RAM_A ? 1:2); 469 } 470 void mpc2_assert_idle_mpcc(struct mpc *mpc, int id) 471 { 472 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 473 unsigned int mpc_disabled; 474 475 ASSERT(!(mpc20->mpcc_in_use_mask & 1 << id)); 476 REG_GET(MPCC_STATUS[id], MPCC_DISABLED, &mpc_disabled); 477 if (mpc_disabled) 478 return; 479 480 REG_WAIT(MPCC_STATUS[id], 481 MPCC_IDLE, 1, 482 1, 100000); 483 } 484 485 void mpc2_assert_mpcc_idle_before_connect(struct mpc *mpc, int mpcc_id) 486 { 487 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 488 unsigned int top_sel, mpc_busy, mpc_idle, mpc_disabled; 489 490 REG_GET(MPCC_TOP_SEL[mpcc_id], 491 MPCC_TOP_SEL, &top_sel); 492 493 REG_GET_3(MPCC_STATUS[mpcc_id], 494 MPCC_BUSY, &mpc_busy, 495 MPCC_IDLE, &mpc_idle, 496 MPCC_DISABLED, &mpc_disabled); 497 498 if (top_sel == 0xf) { 499 ASSERT(!mpc_busy); 500 ASSERT(mpc_idle); 501 ASSERT(mpc_disabled); 502 } else { 503 ASSERT(!mpc_disabled); 504 ASSERT(!mpc_idle); 505 } 506 507 REG_SEQ_SUBMIT(); 508 PERF_TRACE(); 509 REG_SEQ_WAIT_DONE(); 510 PERF_TRACE(); 511 } 512 513 static void mpc2_init_mpcc(struct mpcc *mpcc, int mpcc_inst) 514 { 515 mpcc->mpcc_id = mpcc_inst; 516 mpcc->dpp_id = 0xf; 517 mpcc->mpcc_bot = NULL; 518 mpcc->blnd_cfg.overlap_only = false; 519 mpcc->blnd_cfg.global_alpha = 0xff; 520 mpcc->blnd_cfg.global_gain = 0xff; 521 mpcc->blnd_cfg.background_color_bpc = 4; 522 mpcc->blnd_cfg.bottom_gain_mode = 0; 523 mpcc->blnd_cfg.top_gain = 0x1f000; 524 mpcc->blnd_cfg.bottom_inside_gain = 0x1f000; 525 mpcc->blnd_cfg.bottom_outside_gain = 0x1f000; 526 mpcc->sm_cfg.enable = false; 527 } 528 529 struct mpcc *mpc2_get_mpcc_for_dpp(struct mpc_tree *tree, int dpp_id) 530 { 531 struct mpcc *tmp_mpcc = tree->opp_list; 532 533 while (tmp_mpcc != NULL) { 534 if (tmp_mpcc->dpp_id == 0xf || tmp_mpcc->dpp_id == dpp_id) 535 return tmp_mpcc; 536 tmp_mpcc = tmp_mpcc->mpcc_bot; 537 } 538 return NULL; 539 } 540 541 const struct mpc_funcs dcn20_mpc_funcs = { 542 .read_mpcc_state = mpc1_read_mpcc_state, 543 .insert_plane = mpc1_insert_plane, 544 .remove_mpcc = mpc1_remove_mpcc, 545 .mpc_init = mpc1_mpc_init, 546 .mpc_init_single_inst = mpc1_mpc_init_single_inst, 547 .update_blending = mpc2_update_blending, 548 .cursor_lock = mpc1_cursor_lock, 549 .get_mpcc_for_dpp = mpc2_get_mpcc_for_dpp, 550 .wait_for_idle = mpc2_assert_idle_mpcc, 551 .assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect, 552 .init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw, 553 .set_denorm = mpc2_set_denorm, 554 .set_denorm_clamp = mpc2_set_denorm_clamp, 555 .set_output_csc = mpc2_set_output_csc, 556 .set_ocsc_default = mpc2_set_ocsc_default, 557 .set_output_gamma = mpc2_set_output_gamma, 558 .power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut, 559 }; 560 561 void dcn20_mpc_construct(struct dcn20_mpc *mpc20, 562 struct dc_context *ctx, 563 const struct dcn20_mpc_registers *mpc_regs, 564 const struct dcn20_mpc_shift *mpc_shift, 565 const struct dcn20_mpc_mask *mpc_mask, 566 int num_mpcc) 567 { 568 int i; 569 570 mpc20->base.ctx = ctx; 571 572 mpc20->base.funcs = &dcn20_mpc_funcs; 573 574 mpc20->mpc_regs = mpc_regs; 575 mpc20->mpc_shift = mpc_shift; 576 mpc20->mpc_mask = mpc_mask; 577 578 mpc20->mpcc_in_use_mask = 0; 579 mpc20->num_mpcc = num_mpcc; 580 581 for (i = 0; i < MAX_MPCC; i++) 582 mpc2_init_mpcc(&mpc20->base.mpcc_array[i], i); 583 } 584 585