xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn20/dcn20_mpc.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dcn20_mpc.h"
27 
28 #include "reg_helper.h"
29 #include "dc.h"
30 #include "mem_input.h"
31 #include "dcn10/dcn10_cm_common.h"
32 
33 #define REG(reg)\
34 	mpc20->mpc_regs->reg
35 
36 #define IND_REG(index) \
37 	(index)
38 
39 #define CTX \
40 	mpc20->base.ctx
41 
42 #undef FN
43 #define FN(reg_name, field_name) \
44 	mpc20->mpc_shift->field_name, mpc20->mpc_mask->field_name
45 
46 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
47 
48 void mpc2_update_blending(
49 	struct mpc *mpc,
50 	struct mpcc_blnd_cfg *blnd_cfg,
51 	int mpcc_id)
52 {
53 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
54 
55 	struct mpcc *mpcc = mpc1_get_mpcc(mpc, mpcc_id);
56 
57 	REG_UPDATE_7(MPCC_CONTROL[mpcc_id],
58 			MPCC_ALPHA_BLND_MODE,		blnd_cfg->alpha_mode,
59 			MPCC_ALPHA_MULTIPLIED_MODE,	blnd_cfg->pre_multiplied_alpha,
60 			MPCC_BLND_ACTIVE_OVERLAP_ONLY,	blnd_cfg->overlap_only,
61 			MPCC_GLOBAL_ALPHA,		blnd_cfg->global_alpha,
62 			MPCC_GLOBAL_GAIN,		blnd_cfg->global_gain,
63 			MPCC_BG_BPC,			blnd_cfg->background_color_bpc,
64 			MPCC_BOT_GAIN_MODE,		blnd_cfg->bottom_gain_mode);
65 
66 	REG_SET(MPCC_TOP_GAIN[mpcc_id], 0, MPCC_TOP_GAIN, blnd_cfg->top_gain);
67 	REG_SET(MPCC_BOT_GAIN_INSIDE[mpcc_id], 0, MPCC_BOT_GAIN_INSIDE, blnd_cfg->bottom_inside_gain);
68 	REG_SET(MPCC_BOT_GAIN_OUTSIDE[mpcc_id], 0, MPCC_BOT_GAIN_OUTSIDE, blnd_cfg->bottom_outside_gain);
69 
70 	mpcc->blnd_cfg = *blnd_cfg;
71 }
72 
73 void mpc2_set_denorm(
74 		struct mpc *mpc,
75 		int opp_id,
76 		enum dc_color_depth output_depth)
77 {
78 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
79 	int denorm_mode = 0;
80 
81 	switch (output_depth) {
82 	case COLOR_DEPTH_666:
83 		denorm_mode = 1;
84 		break;
85 	case COLOR_DEPTH_888:
86 		denorm_mode = 2;
87 		break;
88 	case COLOR_DEPTH_999:
89 		denorm_mode = 3;
90 		break;
91 	case COLOR_DEPTH_101010:
92 		denorm_mode = 4;
93 		break;
94 	case COLOR_DEPTH_111111:
95 		denorm_mode = 5;
96 		break;
97 	case COLOR_DEPTH_121212:
98 		denorm_mode = 6;
99 		break;
100 	case COLOR_DEPTH_141414:
101 	case COLOR_DEPTH_161616:
102 	default:
103 		/* not valid used case! */
104 		break;
105 	}
106 
107 	REG_UPDATE(DENORM_CONTROL[opp_id],
108 			MPC_OUT_DENORM_MODE, denorm_mode);
109 }
110 
111 void mpc2_set_denorm_clamp(
112 		struct mpc *mpc,
113 		int opp_id,
114 		struct mpc_denorm_clamp denorm_clamp)
115 {
116 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
117 
118 	REG_UPDATE_2(DENORM_CONTROL[opp_id],
119 			MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr,
120 			MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr);
121 	REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id],
122 			MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y,
123 			MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y);
124 	REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id],
125 			MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb,
126 			MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb);
127 }
128 
129 
130 
131 void mpc2_set_output_csc(
132 		struct mpc *mpc,
133 		int opp_id,
134 		const uint16_t *regval,
135 		enum mpc_output_csc_mode ocsc_mode)
136 {
137 	uint32_t cur_mode;
138 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
139 	struct color_matrices_reg ocsc_regs;
140 
141 	if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) {
142 		REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
143 		return;
144 	}
145 
146 	if (regval == NULL) {
147 		BREAK_TO_DEBUGGER();
148 		return;
149 	}
150 
151 	/* determine which CSC coefficients (A or B) we are using
152 	 * currently.  select the alternate set to double buffer
153 	 * the CSC update so CSC is updated on frame boundary
154 	 */
155 	IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA,
156 						MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX,
157 						MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode);
158 
159 	if (cur_mode != MPC_OUTPUT_CSC_COEF_A)
160 		ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
161 	else
162 		ocsc_mode = MPC_OUTPUT_CSC_COEF_B;
163 
164 	ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A;
165 	ocsc_regs.masks.csc_c11  = mpc20->mpc_mask->MPC_OCSC_C11_A;
166 	ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A;
167 	ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A;
168 
169 	if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
170 		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
171 		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
172 	} else {
173 		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
174 		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
175 	}
176 
177 	cm_helper_program_color_matrices(
178 			mpc20->base.ctx,
179 			regval,
180 			&ocsc_regs);
181 
182 	REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
183 }
184 
185 void mpc2_set_ocsc_default(
186 		struct mpc *mpc,
187 		int opp_id,
188 		enum dc_color_space color_space,
189 		enum mpc_output_csc_mode ocsc_mode)
190 {
191 	uint32_t cur_mode;
192 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
193 	uint32_t arr_size;
194 	struct color_matrices_reg ocsc_regs;
195 	const uint16_t *regval = NULL;
196 
197 	if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) {
198 		REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
199 		return;
200 	}
201 
202 	regval = find_color_matrix(color_space, &arr_size);
203 
204 	if (regval == NULL) {
205 		BREAK_TO_DEBUGGER();
206 		return;
207 	}
208 
209 	/* determine which CSC coefficients (A or B) we are using
210 	 * currently.  select the alternate set to double buffer
211 	 * the CSC update so CSC is updated on frame boundary
212 	 */
213 	IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA,
214 						MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX,
215 						MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode);
216 
217 	if (cur_mode != MPC_OUTPUT_CSC_COEF_A)
218 		ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
219 	else
220 		ocsc_mode = MPC_OUTPUT_CSC_COEF_B;
221 
222 	ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A;
223 	ocsc_regs.masks.csc_c11  = mpc20->mpc_mask->MPC_OCSC_C11_A;
224 	ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A;
225 	ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A;
226 
227 
228 	if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
229 		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
230 		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
231 	} else {
232 		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
233 		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
234 	}
235 
236 	cm_helper_program_color_matrices(
237 			mpc20->base.ctx,
238 			regval,
239 			&ocsc_regs);
240 
241 	REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
242 }
243 
244 static void mpc2_ogam_get_reg_field(
245 		struct mpc *mpc,
246 		struct xfer_func_reg *reg)
247 {
248 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
249 
250 	reg->shifts.exp_region0_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
251 	reg->masks.exp_region0_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
252 	reg->shifts.exp_region0_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
253 	reg->masks.exp_region0_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
254 	reg->shifts.exp_region1_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
255 	reg->masks.exp_region1_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
256 	reg->shifts.exp_region1_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
257 	reg->masks.exp_region1_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
258 	reg->shifts.field_region_end = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B;
259 	reg->masks.field_region_end = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B;
260 	reg->shifts.field_region_end_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
261 	reg->masks.field_region_end_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
262 	reg->shifts.field_region_end_base = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
263 	reg->masks.field_region_end_base = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
264 	reg->shifts.field_region_linear_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
265 	reg->masks.field_region_linear_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
266 	reg->shifts.exp_region_start = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B;
267 	reg->masks.exp_region_start = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B;
268 	reg->shifts.exp_resion_start_segment = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
269 	reg->masks.exp_resion_start_segment = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
270 }
271 
272 void mpc20_power_on_ogam_lut(
273 		struct mpc *mpc, int mpcc_id,
274 		bool power_on)
275 {
276 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
277 
278 	REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0,
279 			MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0);
280 
281 }
282 
283 static void mpc20_configure_ogam_lut(
284 		struct mpc *mpc, int mpcc_id,
285 		bool is_ram_a)
286 {
287 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
288 
289 	REG_UPDATE_2(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id],
290 			MPCC_OGAM_LUT_WRITE_EN_MASK, 7,
291 			MPCC_OGAM_LUT_RAM_SEL, is_ram_a == true ? 0:1);
292 
293 	REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
294 }
295 
296 static enum dc_lut_mode mpc20_get_ogam_current(struct mpc *mpc, int mpcc_id)
297 {
298 	enum dc_lut_mode mode;
299 	uint32_t state_mode;
300 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
301 
302 	REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id],
303 			MPCC_OGAM_CONFIG_STATUS, &state_mode);
304 
305 		switch (state_mode) {
306 		case 0:
307 			mode = LUT_BYPASS;
308 			break;
309 		case 1:
310 			mode = LUT_RAM_A;
311 			break;
312 		case 2:
313 			mode = LUT_RAM_B;
314 			break;
315 		default:
316 			mode = LUT_BYPASS;
317 			break;
318 		}
319 		return mode;
320 }
321 
322 static void mpc2_program_lutb(struct mpc *mpc, int mpcc_id,
323 			const struct pwl_params *params)
324 {
325 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
326 	struct xfer_func_reg gam_regs;
327 
328 	mpc2_ogam_get_reg_field(mpc, &gam_regs);
329 
330 	gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]);
331 	gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]);
332 	gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]);
333 	gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_B[mpcc_id]);
334 	gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_G[mpcc_id]);
335 	gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_R[mpcc_id]);
336 	gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]);
337 	gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]);
338 	gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]);
339 	gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]);
340 	gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]);
341 	gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]);
342 	gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]);
343 	gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]);
344 
345 	cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs);
346 
347 }
348 
349 static void mpc2_program_luta(struct mpc *mpc, int mpcc_id,
350 		const struct pwl_params *params)
351 {
352 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
353 	struct xfer_func_reg gam_regs;
354 
355 	mpc2_ogam_get_reg_field(mpc, &gam_regs);
356 
357 	gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]);
358 	gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]);
359 	gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]);
360 	gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_B[mpcc_id]);
361 	gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_G[mpcc_id]);
362 	gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_R[mpcc_id]);
363 	gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]);
364 	gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]);
365 	gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]);
366 	gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]);
367 	gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]);
368 	gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]);
369 	gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]);
370 	gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]);
371 
372 	cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs);
373 
374 }
375 
376 static void mpc20_program_ogam_pwl(
377 		struct mpc *mpc, int mpcc_id,
378 		const struct pwl_result_data *rgb,
379 		uint32_t num)
380 {
381 	uint32_t i;
382 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
383 
384 	PERF_TRACE();
385 	REG_SEQ_START();
386 
387 	for (i = 0 ; i < num; i++) {
388 		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);
389 		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg);
390 		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg);
391 
392 		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
393 				MPCC_OGAM_LUT_DATA, rgb[i].delta_red_reg);
394 		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
395 				MPCC_OGAM_LUT_DATA, rgb[i].delta_green_reg);
396 		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
397 				MPCC_OGAM_LUT_DATA, rgb[i].delta_blue_reg);
398 
399 	}
400 
401 }
402 
403 void apply_DEDCN20_305_wa(
404 		struct mpc *mpc,
405 		int mpcc_id, enum dc_lut_mode current_mode,
406 		enum dc_lut_mode next_mode)
407 {
408 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
409 
410 	if (mpc->ctx->dc->debug.cm_in_bypass) {
411 		REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
412 		return;
413 	}
414 
415 	if (mpc->ctx->dc->work_arounds.dedcn20_305_wa == false) {
416 		/*hw fixed in new review*/
417 		return;
418 	}
419 	if (current_mode == LUT_BYPASS)
420 		/*this will only work if OTG is locked.
421 		 *if we were to support OTG unlock case,
422 		 *the workaround will be more complex
423 		 */
424 		REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE,
425 			next_mode == LUT_RAM_A ? 1:2);
426 }
427 
428 void mpc2_set_output_gamma(
429 		struct mpc *mpc,
430 		int mpcc_id,
431 		const struct pwl_params *params)
432 {
433 	enum dc_lut_mode current_mode;
434 	enum dc_lut_mode next_mode;
435 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
436 
437 	if (mpc->ctx->dc->debug.cm_in_bypass) {
438 		REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
439 		return;
440 	}
441 
442 	if (params == NULL) {
443 		REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
444 		return;
445 	}
446 
447 	current_mode = mpc20_get_ogam_current(mpc, mpcc_id);
448 	if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
449 		next_mode = LUT_RAM_B;
450 	else
451 		next_mode = LUT_RAM_A;
452 
453 	mpc20_power_on_ogam_lut(mpc, mpcc_id, true);
454 	mpc20_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A);
455 
456 	if (next_mode == LUT_RAM_A)
457 		mpc2_program_luta(mpc, mpcc_id, params);
458 	else
459 		mpc2_program_lutb(mpc, mpcc_id, params);
460 
461 	apply_DEDCN20_305_wa(mpc, mpcc_id, current_mode, next_mode);
462 
463 	mpc20_program_ogam_pwl(
464 			mpc, mpcc_id, params->rgb_resulted, params->hw_points_num);
465 
466 	REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE,
467 		next_mode == LUT_RAM_A ? 1:2);
468 }
469 void mpc2_assert_idle_mpcc(struct mpc *mpc, int id)
470 {
471 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
472 	unsigned int mpc_disabled;
473 
474 	ASSERT(!(mpc20->mpcc_in_use_mask & 1 << id));
475 	REG_GET(MPCC_STATUS[id], MPCC_DISABLED, &mpc_disabled);
476 	if (mpc_disabled)
477 		return;
478 
479 	REG_WAIT(MPCC_STATUS[id],
480 			MPCC_IDLE, 1,
481 			1, 100000);
482 }
483 
484 void mpc2_assert_mpcc_idle_before_connect(struct mpc *mpc, int mpcc_id)
485 {
486 	struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
487 	unsigned int top_sel, mpc_busy, mpc_idle, mpc_disabled;
488 
489 	REG_GET(MPCC_TOP_SEL[mpcc_id],
490 			MPCC_TOP_SEL, &top_sel);
491 
492 	REG_GET_3(MPCC_STATUS[mpcc_id],
493 			MPCC_BUSY, &mpc_busy,
494 			MPCC_IDLE, &mpc_idle,
495 			MPCC_DISABLED, &mpc_disabled);
496 
497 	if (top_sel == 0xf) {
498 		ASSERT(!mpc_busy);
499 		ASSERT(mpc_idle);
500 		ASSERT(mpc_disabled);
501 	} else {
502 		ASSERT(!mpc_disabled);
503 		ASSERT(!mpc_idle);
504 	}
505 
506 	REG_SEQ_SUBMIT();
507 	PERF_TRACE();
508 	REG_SEQ_WAIT_DONE();
509 	PERF_TRACE();
510 }
511 
512 static void mpc2_init_mpcc(struct mpcc *mpcc, int mpcc_inst)
513 {
514 	mpcc->mpcc_id = mpcc_inst;
515 	mpcc->dpp_id = 0xf;
516 	mpcc->mpcc_bot = NULL;
517 	mpcc->blnd_cfg.overlap_only = false;
518 	mpcc->blnd_cfg.global_alpha = 0xff;
519 	mpcc->blnd_cfg.global_gain = 0xff;
520 	mpcc->blnd_cfg.background_color_bpc = 4;
521 	mpcc->blnd_cfg.bottom_gain_mode = 0;
522 	mpcc->blnd_cfg.top_gain = 0x1f000;
523 	mpcc->blnd_cfg.bottom_inside_gain = 0x1f000;
524 	mpcc->blnd_cfg.bottom_outside_gain = 0x1f000;
525 	mpcc->sm_cfg.enable = false;
526 }
527 
528 struct mpcc *mpc2_get_mpcc_for_dpp(struct mpc_tree *tree, int dpp_id)
529 {
530 	struct mpcc *tmp_mpcc = tree->opp_list;
531 
532 	while (tmp_mpcc != NULL) {
533 		if (tmp_mpcc->dpp_id == 0xf || tmp_mpcc->dpp_id == dpp_id)
534 			return tmp_mpcc;
535 		tmp_mpcc = tmp_mpcc->mpcc_bot;
536 	}
537 	return NULL;
538 }
539 
540 const struct mpc_funcs dcn20_mpc_funcs = {
541 	.read_mpcc_state = mpc1_read_mpcc_state,
542 	.insert_plane = mpc1_insert_plane,
543 	.remove_mpcc = mpc1_remove_mpcc,
544 	.mpc_init = mpc1_mpc_init,
545 	.mpc_init_single_inst = mpc1_mpc_init_single_inst,
546 	.update_blending = mpc2_update_blending,
547 	.cursor_lock = mpc1_cursor_lock,
548 	.get_mpcc_for_dpp = mpc2_get_mpcc_for_dpp,
549 	.wait_for_idle = mpc2_assert_idle_mpcc,
550 	.assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect,
551 	.init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw,
552 	.set_denorm = mpc2_set_denorm,
553 	.set_denorm_clamp = mpc2_set_denorm_clamp,
554 	.set_output_csc = mpc2_set_output_csc,
555 	.set_ocsc_default = mpc2_set_ocsc_default,
556 	.set_output_gamma = mpc2_set_output_gamma,
557 	.power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut,
558 	.get_mpc_out_mux = mpc1_get_mpc_out_mux,
559 	.set_bg_color = mpc1_set_bg_color,
560 };
561 
562 void dcn20_mpc_construct(struct dcn20_mpc *mpc20,
563 	struct dc_context *ctx,
564 	const struct dcn20_mpc_registers *mpc_regs,
565 	const struct dcn20_mpc_shift *mpc_shift,
566 	const struct dcn20_mpc_mask *mpc_mask,
567 	int num_mpcc)
568 {
569 	int i;
570 
571 	mpc20->base.ctx = ctx;
572 
573 	mpc20->base.funcs = &dcn20_mpc_funcs;
574 
575 	mpc20->mpc_regs = mpc_regs;
576 	mpc20->mpc_shift = mpc_shift;
577 	mpc20->mpc_mask = mpc_mask;
578 
579 	mpc20->mpcc_in_use_mask = 0;
580 	mpc20->num_mpcc = num_mpcc;
581 
582 	for (i = 0; i < MAX_MPCC; i++)
583 		mpc2_init_mpcc(&mpc20->base.mpcc_array[i], i);
584 }
585 
586