xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn20/dcn20_hwseq.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include <linux/delay.h>
26 
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "dm_helpers.h"
30 #include "core_types.h"
31 #include "resource.h"
32 #include "dcn20_resource.h"
33 #include "dcn20_hwseq.h"
34 #include "dce/dce_hwseq.h"
35 #include "dcn20_dsc.h"
36 #include "dcn20_optc.h"
37 #include "abm.h"
38 #include "clk_mgr.h"
39 #include "dmcu.h"
40 #include "hubp.h"
41 #include "timing_generator.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "mpc.h"
45 #include "mcif_wb.h"
46 #include "dchubbub.h"
47 #include "reg_helper.h"
48 #include "dcn10/dcn10_cm_common.h"
49 #include "vm_helper.h"
50 #include "dccg.h"
51 #include "dc_dmub_srv.h"
52 #include "dce/dmub_hw_lock_mgr.h"
53 #include "hw_sequencer.h"
54 #include "dpcd_defs.h"
55 #include "inc/link_enc_cfg.h"
56 #include "link_hwss.h"
57 #include "link.h"
58 
59 #define DC_LOGGER_INIT(logger)
60 
61 #define CTX \
62 	hws->ctx
63 #define REG(reg)\
64 	hws->regs->reg
65 
66 #undef FN
67 #define FN(reg_name, field_name) \
68 	hws->shifts->field_name, hws->masks->field_name
69 
70 static int find_free_gsl_group(const struct dc *dc)
71 {
72 	if (dc->res_pool->gsl_groups.gsl_0 == 0)
73 		return 1;
74 	if (dc->res_pool->gsl_groups.gsl_1 == 0)
75 		return 2;
76 	if (dc->res_pool->gsl_groups.gsl_2 == 0)
77 		return 3;
78 
79 	return 0;
80 }
81 
82 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
83  * This is only used to lock pipes in pipe splitting case with immediate flip
84  * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
85  * so we get tearing with freesync since we cannot flip multiple pipes
86  * atomically.
87  * We use GSL for this:
88  * - immediate flip: find first available GSL group if not already assigned
89  *                   program gsl with that group, set current OTG as master
90  *                   and always us 0x4 = AND of flip_ready from all pipes
91  * - vsync flip: disable GSL if used
92  *
93  * Groups in stream_res are stored as +1 from HW registers, i.e.
94  * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
95  * Using a magic value like -1 would require tracking all inits/resets
96  */
97 static void dcn20_setup_gsl_group_as_lock(
98 		const struct dc *dc,
99 		struct pipe_ctx *pipe_ctx,
100 		bool enable)
101 {
102 	struct gsl_params gsl;
103 	int group_idx;
104 
105 	memset(&gsl, 0, sizeof(struct gsl_params));
106 
107 	if (enable) {
108 		/* return if group already assigned since GSL was set up
109 		 * for vsync flip, we would unassign so it can't be "left over"
110 		 */
111 		if (pipe_ctx->stream_res.gsl_group > 0)
112 			return;
113 
114 		group_idx = find_free_gsl_group(dc);
115 		ASSERT(group_idx != 0);
116 		pipe_ctx->stream_res.gsl_group = group_idx;
117 
118 		/* set gsl group reg field and mark resource used */
119 		switch (group_idx) {
120 		case 1:
121 			gsl.gsl0_en = 1;
122 			dc->res_pool->gsl_groups.gsl_0 = 1;
123 			break;
124 		case 2:
125 			gsl.gsl1_en = 1;
126 			dc->res_pool->gsl_groups.gsl_1 = 1;
127 			break;
128 		case 3:
129 			gsl.gsl2_en = 1;
130 			dc->res_pool->gsl_groups.gsl_2 = 1;
131 			break;
132 		default:
133 			BREAK_TO_DEBUGGER();
134 			return; // invalid case
135 		}
136 		gsl.gsl_master_en = 1;
137 	} else {
138 		group_idx = pipe_ctx->stream_res.gsl_group;
139 		if (group_idx == 0)
140 			return; // if not in use, just return
141 
142 		pipe_ctx->stream_res.gsl_group = 0;
143 
144 		/* unset gsl group reg field and mark resource free */
145 		switch (group_idx) {
146 		case 1:
147 			gsl.gsl0_en = 0;
148 			dc->res_pool->gsl_groups.gsl_0 = 0;
149 			break;
150 		case 2:
151 			gsl.gsl1_en = 0;
152 			dc->res_pool->gsl_groups.gsl_1 = 0;
153 			break;
154 		case 3:
155 			gsl.gsl2_en = 0;
156 			dc->res_pool->gsl_groups.gsl_2 = 0;
157 			break;
158 		default:
159 			BREAK_TO_DEBUGGER();
160 			return;
161 		}
162 		gsl.gsl_master_en = 0;
163 	}
164 
165 	/* at this point we want to program whether it's to enable or disable */
166 	if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
167 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
168 		pipe_ctx->stream_res.tg->funcs->set_gsl(
169 			pipe_ctx->stream_res.tg,
170 			&gsl);
171 
172 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
173 			pipe_ctx->stream_res.tg, group_idx,	enable ? 4 : 0);
174 	} else
175 		BREAK_TO_DEBUGGER();
176 }
177 
178 void dcn20_set_flip_control_gsl(
179 		struct pipe_ctx *pipe_ctx,
180 		bool flip_immediate)
181 {
182 	if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
183 		pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
184 				pipe_ctx->plane_res.hubp, flip_immediate);
185 
186 }
187 
188 void dcn20_enable_power_gating_plane(
189 	struct dce_hwseq *hws,
190 	bool enable)
191 {
192 	bool force_on = true; /* disable power gating */
193 
194 	if (enable)
195 		force_on = false;
196 
197 	/* DCHUBP0/1/2/3/4/5 */
198 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
199 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
200 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
201 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
202 	if (REG(DOMAIN8_PG_CONFIG))
203 		REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
204 	if (REG(DOMAIN10_PG_CONFIG))
205 		REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
206 
207 	/* DPP0/1/2/3/4/5 */
208 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
209 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
210 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
211 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
212 	if (REG(DOMAIN9_PG_CONFIG))
213 		REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
214 	if (REG(DOMAIN11_PG_CONFIG))
215 		REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
216 
217 	/* DCS0/1/2/3/4/5 */
218 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
219 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
220 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
221 	if (REG(DOMAIN19_PG_CONFIG))
222 		REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
223 	if (REG(DOMAIN20_PG_CONFIG))
224 		REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
225 	if (REG(DOMAIN21_PG_CONFIG))
226 		REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
227 }
228 
229 void dcn20_dccg_init(struct dce_hwseq *hws)
230 {
231 	/*
232 	 * set MICROSECOND_TIME_BASE_DIV
233 	 * 100Mhz refclk -> 0x120264
234 	 * 27Mhz refclk -> 0x12021b
235 	 * 48Mhz refclk -> 0x120230
236 	 *
237 	 */
238 	REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
239 
240 	/*
241 	 * set MILLISECOND_TIME_BASE_DIV
242 	 * 100Mhz refclk -> 0x1186a0
243 	 * 27Mhz refclk -> 0x106978
244 	 * 48Mhz refclk -> 0x10bb80
245 	 *
246 	 */
247 	REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
248 
249 	/* This value is dependent on the hardware pipeline delay so set once per SOC */
250 	REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0xe01003c);
251 }
252 
253 void dcn20_disable_vga(
254 	struct dce_hwseq *hws)
255 {
256 	REG_WRITE(D1VGA_CONTROL, 0);
257 	REG_WRITE(D2VGA_CONTROL, 0);
258 	REG_WRITE(D3VGA_CONTROL, 0);
259 	REG_WRITE(D4VGA_CONTROL, 0);
260 	REG_WRITE(D5VGA_CONTROL, 0);
261 	REG_WRITE(D6VGA_CONTROL, 0);
262 }
263 
264 void dcn20_program_triple_buffer(
265 	const struct dc *dc,
266 	struct pipe_ctx *pipe_ctx,
267 	bool enable_triple_buffer)
268 {
269 	if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
270 		pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
271 			pipe_ctx->plane_res.hubp,
272 			enable_triple_buffer);
273 	}
274 }
275 
276 /* Blank pixel data during initialization */
277 void dcn20_init_blank(
278 		struct dc *dc,
279 		struct timing_generator *tg)
280 {
281 	struct dce_hwseq *hws = dc->hwseq;
282 	enum dc_color_space color_space;
283 	struct tg_color black_color = {0};
284 	struct output_pixel_processor *opp = NULL;
285 	struct output_pixel_processor *bottom_opp = NULL;
286 	uint32_t num_opps, opp_id_src0, opp_id_src1;
287 	uint32_t otg_active_width, otg_active_height;
288 
289 	/* program opp dpg blank color */
290 	color_space = COLOR_SPACE_SRGB;
291 	color_space_to_black_color(dc, color_space, &black_color);
292 
293 	/* get the OTG active size */
294 	tg->funcs->get_otg_active_size(tg,
295 			&otg_active_width,
296 			&otg_active_height);
297 
298 	/* get the OPTC source */
299 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
300 
301 	if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
302 		ASSERT(false);
303 		return;
304 	}
305 	opp = dc->res_pool->opps[opp_id_src0];
306 
307 	if (num_opps == 2) {
308 		otg_active_width = otg_active_width / 2;
309 
310 		if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
311 			ASSERT(false);
312 			return;
313 		}
314 		bottom_opp = dc->res_pool->opps[opp_id_src1];
315 	}
316 
317 	opp->funcs->opp_set_disp_pattern_generator(
318 			opp,
319 			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
320 			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
321 			COLOR_DEPTH_UNDEFINED,
322 			&black_color,
323 			otg_active_width,
324 			otg_active_height,
325 			0);
326 
327 	if (num_opps == 2) {
328 		bottom_opp->funcs->opp_set_disp_pattern_generator(
329 				bottom_opp,
330 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
331 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
332 				COLOR_DEPTH_UNDEFINED,
333 				&black_color,
334 				otg_active_width,
335 				otg_active_height,
336 				0);
337 	}
338 
339 	hws->funcs.wait_for_blank_complete(opp);
340 }
341 
342 void dcn20_dsc_pg_control(
343 		struct dce_hwseq *hws,
344 		unsigned int dsc_inst,
345 		bool power_on)
346 {
347 	uint32_t power_gate = power_on ? 0 : 1;
348 	uint32_t pwr_status = power_on ? 0 : 2;
349 	uint32_t org_ip_request_cntl = 0;
350 
351 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
352 		return;
353 
354 	if (REG(DOMAIN16_PG_CONFIG) == 0)
355 		return;
356 
357 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
358 	if (org_ip_request_cntl == 0)
359 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
360 
361 	switch (dsc_inst) {
362 	case 0: /* DSC0 */
363 		REG_UPDATE(DOMAIN16_PG_CONFIG,
364 				DOMAIN16_POWER_GATE, power_gate);
365 
366 		REG_WAIT(DOMAIN16_PG_STATUS,
367 				DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
368 				1, 1000);
369 		break;
370 	case 1: /* DSC1 */
371 		REG_UPDATE(DOMAIN17_PG_CONFIG,
372 				DOMAIN17_POWER_GATE, power_gate);
373 
374 		REG_WAIT(DOMAIN17_PG_STATUS,
375 				DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
376 				1, 1000);
377 		break;
378 	case 2: /* DSC2 */
379 		REG_UPDATE(DOMAIN18_PG_CONFIG,
380 				DOMAIN18_POWER_GATE, power_gate);
381 
382 		REG_WAIT(DOMAIN18_PG_STATUS,
383 				DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
384 				1, 1000);
385 		break;
386 	case 3: /* DSC3 */
387 		REG_UPDATE(DOMAIN19_PG_CONFIG,
388 				DOMAIN19_POWER_GATE, power_gate);
389 
390 		REG_WAIT(DOMAIN19_PG_STATUS,
391 				DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
392 				1, 1000);
393 		break;
394 	case 4: /* DSC4 */
395 		REG_UPDATE(DOMAIN20_PG_CONFIG,
396 				DOMAIN20_POWER_GATE, power_gate);
397 
398 		REG_WAIT(DOMAIN20_PG_STATUS,
399 				DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
400 				1, 1000);
401 		break;
402 	case 5: /* DSC5 */
403 		REG_UPDATE(DOMAIN21_PG_CONFIG,
404 				DOMAIN21_POWER_GATE, power_gate);
405 
406 		REG_WAIT(DOMAIN21_PG_STATUS,
407 				DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
408 				1, 1000);
409 		break;
410 	default:
411 		BREAK_TO_DEBUGGER();
412 		break;
413 	}
414 
415 	if (org_ip_request_cntl == 0)
416 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
417 }
418 
419 void dcn20_dpp_pg_control(
420 		struct dce_hwseq *hws,
421 		unsigned int dpp_inst,
422 		bool power_on)
423 {
424 	uint32_t power_gate = power_on ? 0 : 1;
425 	uint32_t pwr_status = power_on ? 0 : 2;
426 
427 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
428 		return;
429 	if (REG(DOMAIN1_PG_CONFIG) == 0)
430 		return;
431 
432 	switch (dpp_inst) {
433 	case 0: /* DPP0 */
434 		REG_UPDATE(DOMAIN1_PG_CONFIG,
435 				DOMAIN1_POWER_GATE, power_gate);
436 
437 		REG_WAIT(DOMAIN1_PG_STATUS,
438 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
439 				1, 1000);
440 		break;
441 	case 1: /* DPP1 */
442 		REG_UPDATE(DOMAIN3_PG_CONFIG,
443 				DOMAIN3_POWER_GATE, power_gate);
444 
445 		REG_WAIT(DOMAIN3_PG_STATUS,
446 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
447 				1, 1000);
448 		break;
449 	case 2: /* DPP2 */
450 		REG_UPDATE(DOMAIN5_PG_CONFIG,
451 				DOMAIN5_POWER_GATE, power_gate);
452 
453 		REG_WAIT(DOMAIN5_PG_STATUS,
454 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
455 				1, 1000);
456 		break;
457 	case 3: /* DPP3 */
458 		REG_UPDATE(DOMAIN7_PG_CONFIG,
459 				DOMAIN7_POWER_GATE, power_gate);
460 
461 		REG_WAIT(DOMAIN7_PG_STATUS,
462 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
463 				1, 1000);
464 		break;
465 	case 4: /* DPP4 */
466 		REG_UPDATE(DOMAIN9_PG_CONFIG,
467 				DOMAIN9_POWER_GATE, power_gate);
468 
469 		REG_WAIT(DOMAIN9_PG_STATUS,
470 				DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
471 				1, 1000);
472 		break;
473 	case 5: /* DPP5 */
474 		/*
475 		 * Do not power gate DPP5, should be left at HW default, power on permanently.
476 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
477 		 * reset.
478 		 * REG_UPDATE(DOMAIN11_PG_CONFIG,
479 		 *		DOMAIN11_POWER_GATE, power_gate);
480 		 *
481 		 * REG_WAIT(DOMAIN11_PG_STATUS,
482 		 *		DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
483 		 * 		1, 1000);
484 		 */
485 		break;
486 	default:
487 		BREAK_TO_DEBUGGER();
488 		break;
489 	}
490 }
491 
492 
493 void dcn20_hubp_pg_control(
494 		struct dce_hwseq *hws,
495 		unsigned int hubp_inst,
496 		bool power_on)
497 {
498 	uint32_t power_gate = power_on ? 0 : 1;
499 	uint32_t pwr_status = power_on ? 0 : 2;
500 
501 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
502 		return;
503 	if (REG(DOMAIN0_PG_CONFIG) == 0)
504 		return;
505 
506 	switch (hubp_inst) {
507 	case 0: /* DCHUBP0 */
508 		REG_UPDATE(DOMAIN0_PG_CONFIG,
509 				DOMAIN0_POWER_GATE, power_gate);
510 
511 		REG_WAIT(DOMAIN0_PG_STATUS,
512 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
513 				1, 1000);
514 		break;
515 	case 1: /* DCHUBP1 */
516 		REG_UPDATE(DOMAIN2_PG_CONFIG,
517 				DOMAIN2_POWER_GATE, power_gate);
518 
519 		REG_WAIT(DOMAIN2_PG_STATUS,
520 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
521 				1, 1000);
522 		break;
523 	case 2: /* DCHUBP2 */
524 		REG_UPDATE(DOMAIN4_PG_CONFIG,
525 				DOMAIN4_POWER_GATE, power_gate);
526 
527 		REG_WAIT(DOMAIN4_PG_STATUS,
528 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
529 				1, 1000);
530 		break;
531 	case 3: /* DCHUBP3 */
532 		REG_UPDATE(DOMAIN6_PG_CONFIG,
533 				DOMAIN6_POWER_GATE, power_gate);
534 
535 		REG_WAIT(DOMAIN6_PG_STATUS,
536 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
537 				1, 1000);
538 		break;
539 	case 4: /* DCHUBP4 */
540 		REG_UPDATE(DOMAIN8_PG_CONFIG,
541 				DOMAIN8_POWER_GATE, power_gate);
542 
543 		REG_WAIT(DOMAIN8_PG_STATUS,
544 				DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
545 				1, 1000);
546 		break;
547 	case 5: /* DCHUBP5 */
548 		/*
549 		 * Do not power gate DCHUB5, should be left at HW default, power on permanently.
550 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
551 		 * reset.
552 		 * REG_UPDATE(DOMAIN10_PG_CONFIG,
553 		 *		DOMAIN10_POWER_GATE, power_gate);
554 		 *
555 		 * REG_WAIT(DOMAIN10_PG_STATUS,
556 		 *		DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
557 		 *		1, 1000);
558 		 */
559 		break;
560 	default:
561 		BREAK_TO_DEBUGGER();
562 		break;
563 	}
564 }
565 
566 
567 /* disable HW used by plane.
568  * note:  cannot disable until disconnect is complete
569  */
570 void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
571 {
572 	struct dce_hwseq *hws = dc->hwseq;
573 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
574 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
575 
576 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
577 
578 	/* In flip immediate with pipe splitting case GSL is used for
579 	 * synchronization so we must disable it when the plane is disabled.
580 	 */
581 	if (pipe_ctx->stream_res.gsl_group != 0)
582 		dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
583 
584 	if (hubp->funcs->hubp_update_mall_sel)
585 		hubp->funcs->hubp_update_mall_sel(hubp, 0, false);
586 
587 	dc->hwss.set_flip_control_gsl(pipe_ctx, false);
588 
589 	hubp->funcs->hubp_clk_cntl(hubp, false);
590 
591 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
592 
593 	hubp->power_gated = true;
594 
595 	hws->funcs.plane_atomic_power_down(dc,
596 			pipe_ctx->plane_res.dpp,
597 			pipe_ctx->plane_res.hubp);
598 
599 	pipe_ctx->stream = NULL;
600 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
601 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
602 	pipe_ctx->top_pipe = NULL;
603 	pipe_ctx->bottom_pipe = NULL;
604 	pipe_ctx->plane_state = NULL;
605 }
606 
607 
608 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
609 {
610 	bool is_phantom = pipe_ctx->plane_state && pipe_ctx->plane_state->is_phantom;
611 	struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL;
612 
613 	DC_LOGGER_INIT(dc->ctx->logger);
614 
615 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
616 		return;
617 
618 	dcn20_plane_atomic_disable(dc, pipe_ctx);
619 
620 	/* Turn back off the phantom OTG after the phantom plane is fully disabled
621 	 */
622 	if (is_phantom)
623 		if (tg && tg->funcs->disable_phantom_crtc)
624 			tg->funcs->disable_phantom_crtc(tg);
625 
626 	DC_LOG_DC("Power down front end %d\n",
627 					pipe_ctx->pipe_idx);
628 }
629 
630 void dcn20_disable_pixel_data(struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank)
631 {
632 	dcn20_blank_pixel_data(dc, pipe_ctx, blank);
633 }
634 
635 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
636 		int opp_cnt)
637 {
638 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
639 	int flow_ctrl_cnt;
640 
641 	if (opp_cnt >= 2)
642 		hblank_halved = true;
643 
644 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
645 			stream->timing.h_border_left -
646 			stream->timing.h_border_right;
647 
648 	if (hblank_halved)
649 		flow_ctrl_cnt /= 2;
650 
651 	/* ODM combine 4:1 case */
652 	if (opp_cnt == 4)
653 		flow_ctrl_cnt /= 2;
654 
655 	return flow_ctrl_cnt;
656 }
657 
658 enum dc_status dcn20_enable_stream_timing(
659 		struct pipe_ctx *pipe_ctx,
660 		struct dc_state *context,
661 		struct dc *dc)
662 {
663 	struct dce_hwseq *hws = dc->hwseq;
664 	struct dc_stream_state *stream = pipe_ctx->stream;
665 	struct drr_params params = {0};
666 	unsigned int event_triggers = 0;
667 	struct pipe_ctx *odm_pipe;
668 	int opp_cnt = 1;
669 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
670 	bool interlace = stream->timing.flags.INTERLACE;
671 	int i;
672 	struct mpc_dwb_flow_control flow_control;
673 	struct mpc *mpc = dc->res_pool->mpc;
674 	bool rate_control_2x_pclk = (interlace || optc2_is_two_pixels_per_containter(&stream->timing));
675 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
676 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
677 
678 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
679 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
680 
681 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
682 			dc->res_pool->dccg,
683 			pipe_ctx->stream_res.tg->inst,
684 			k1_div, k2_div);
685 	}
686 	/* by upper caller loop, pipe0 is parent pipe and be called first.
687 	 * back end is set up by for pipe0. Other children pipe share back end
688 	 * with pipe 0. No program is needed.
689 	 */
690 	if (pipe_ctx->top_pipe != NULL)
691 		return DC_OK;
692 
693 	/* TODO check if timing_changed, disable stream if timing changed */
694 
695 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
696 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
697 		opp_cnt++;
698 	}
699 
700 	if (opp_cnt > 1)
701 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
702 				pipe_ctx->stream_res.tg,
703 				opp_inst, opp_cnt,
704 				&pipe_ctx->stream->timing);
705 
706 	/* HW program guide assume display already disable
707 	 * by unplug sequence. OTG assume stop.
708 	 */
709 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
710 
711 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
712 			pipe_ctx->clock_source,
713 			&pipe_ctx->stream_res.pix_clk_params,
714 			link_dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
715 			&pipe_ctx->pll_settings)) {
716 		BREAK_TO_DEBUGGER();
717 		return DC_ERROR_UNEXPECTED;
718 	}
719 
720 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
721 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
722 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
723 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
724 		else
725 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
726 	}
727 
728 	if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
729 		dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
730 
731 	pipe_ctx->stream_res.tg->funcs->program_timing(
732 			pipe_ctx->stream_res.tg,
733 			&stream->timing,
734 			pipe_ctx->pipe_dlg_param.vready_offset,
735 			pipe_ctx->pipe_dlg_param.vstartup_start,
736 			pipe_ctx->pipe_dlg_param.vupdate_offset,
737 			pipe_ctx->pipe_dlg_param.vupdate_width,
738 			pipe_ctx->stream->signal,
739 			true);
740 
741 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
742 	flow_control.flow_ctrl_mode = 0;
743 	flow_control.flow_ctrl_cnt0 = 0x80;
744 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(stream, opp_cnt);
745 	if (mpc->funcs->set_out_rate_control) {
746 		for (i = 0; i < opp_cnt; ++i) {
747 			mpc->funcs->set_out_rate_control(
748 					mpc, opp_inst[i],
749 					true,
750 					rate_control_2x_pclk,
751 					&flow_control);
752 		}
753 	}
754 
755 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
756 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
757 				odm_pipe->stream_res.opp,
758 				true);
759 
760 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
761 			pipe_ctx->stream_res.opp,
762 			true);
763 
764 	hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
765 
766 	/* VTG is  within DCHUB command block. DCFCLK is always on */
767 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
768 		BREAK_TO_DEBUGGER();
769 		return DC_ERROR_UNEXPECTED;
770 	}
771 
772 	hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
773 
774 	params.vertical_total_min = stream->adjust.v_total_min;
775 	params.vertical_total_max = stream->adjust.v_total_max;
776 	params.vertical_total_mid = stream->adjust.v_total_mid;
777 	params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
778 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
779 		pipe_ctx->stream_res.tg->funcs->set_drr(
780 			pipe_ctx->stream_res.tg, &params);
781 
782 	// DRR should set trigger event to monitor surface update event
783 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
784 		event_triggers = 0x80;
785 	/* Event triggers and num frames initialized for DRR, but can be
786 	 * later updated for PSR use. Note DRR trigger events are generated
787 	 * regardless of whether num frames met.
788 	 */
789 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
790 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
791 				pipe_ctx->stream_res.tg, event_triggers, 2);
792 
793 	/* TODO program crtc source select for non-virtual signal*/
794 	/* TODO program FMT */
795 	/* TODO setup link_enc */
796 	/* TODO set stream attributes */
797 	/* TODO program audio */
798 	/* TODO enable stream if timing changed */
799 	/* TODO unblank stream if DP */
800 
801 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
802 		if (pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable)
803 			pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg);
804 	}
805 	return DC_OK;
806 }
807 
808 void dcn20_program_output_csc(struct dc *dc,
809 		struct pipe_ctx *pipe_ctx,
810 		enum dc_color_space colorspace,
811 		uint16_t *matrix,
812 		int opp_id)
813 {
814 	struct mpc *mpc = dc->res_pool->mpc;
815 	enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
816 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
817 
818 	if (mpc->funcs->power_on_mpc_mem_pwr)
819 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
820 
821 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
822 		if (mpc->funcs->set_output_csc != NULL)
823 			mpc->funcs->set_output_csc(mpc,
824 					opp_id,
825 					matrix,
826 					ocsc_mode);
827 	} else {
828 		if (mpc->funcs->set_ocsc_default != NULL)
829 			mpc->funcs->set_ocsc_default(mpc,
830 					opp_id,
831 					colorspace,
832 					ocsc_mode);
833 	}
834 }
835 
836 bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
837 				const struct dc_stream_state *stream)
838 {
839 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
840 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
841 	struct pwl_params *params = NULL;
842 	/*
843 	 * program OGAM only for the top pipe
844 	 * if there is a pipe split then fix diagnostic is required:
845 	 * how to pass OGAM parameter for stream.
846 	 * if programming for all pipes is required then remove condition
847 	 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
848 	 */
849 	if (mpc->funcs->power_on_mpc_mem_pwr)
850 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
851 	if (pipe_ctx->top_pipe == NULL
852 			&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
853 		if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
854 			params = &stream->out_transfer_func->pwl;
855 		else if (pipe_ctx->stream->out_transfer_func->type ==
856 			TF_TYPE_DISTRIBUTED_POINTS &&
857 			cm_helper_translate_curve_to_hw_format(
858 			stream->out_transfer_func,
859 			&mpc->blender_params, false))
860 			params = &mpc->blender_params;
861 		/*
862 		 * there is no ROM
863 		 */
864 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
865 			BREAK_TO_DEBUGGER();
866 	}
867 	/*
868 	 * if above if is not executed then 'params' equal to 0 and set in bypass
869 	 */
870 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
871 
872 	return true;
873 }
874 
875 bool dcn20_set_blend_lut(
876 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
877 {
878 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
879 	bool result = true;
880 	struct pwl_params *blend_lut = NULL;
881 
882 	if (plane_state->blend_tf) {
883 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
884 			blend_lut = &plane_state->blend_tf->pwl;
885 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
886 			cm_helper_translate_curve_to_hw_format(
887 					plane_state->blend_tf,
888 					&dpp_base->regamma_params, false);
889 			blend_lut = &dpp_base->regamma_params;
890 		}
891 	}
892 	result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
893 
894 	return result;
895 }
896 
897 bool dcn20_set_shaper_3dlut(
898 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
899 {
900 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
901 	bool result = true;
902 	struct pwl_params *shaper_lut = NULL;
903 
904 	if (plane_state->in_shaper_func) {
905 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
906 			shaper_lut = &plane_state->in_shaper_func->pwl;
907 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
908 			cm_helper_translate_curve_to_hw_format(
909 					plane_state->in_shaper_func,
910 					&dpp_base->shaper_params, true);
911 			shaper_lut = &dpp_base->shaper_params;
912 		}
913 	}
914 
915 	result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
916 	if (plane_state->lut3d_func &&
917 		plane_state->lut3d_func->state.bits.initialized == 1)
918 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
919 								&plane_state->lut3d_func->lut_3d);
920 	else
921 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
922 
923 	return result;
924 }
925 
926 bool dcn20_set_input_transfer_func(struct dc *dc,
927 				struct pipe_ctx *pipe_ctx,
928 				const struct dc_plane_state *plane_state)
929 {
930 	struct dce_hwseq *hws = dc->hwseq;
931 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
932 	const struct dc_transfer_func *tf = NULL;
933 	bool result = true;
934 	bool use_degamma_ram = false;
935 
936 	if (dpp_base == NULL || plane_state == NULL)
937 		return false;
938 
939 	hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
940 	hws->funcs.set_blend_lut(pipe_ctx, plane_state);
941 
942 	if (plane_state->in_transfer_func)
943 		tf = plane_state->in_transfer_func;
944 
945 
946 	if (tf == NULL) {
947 		dpp_base->funcs->dpp_set_degamma(dpp_base,
948 				IPP_DEGAMMA_MODE_BYPASS);
949 		return true;
950 	}
951 
952 	if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
953 		use_degamma_ram = true;
954 
955 	if (use_degamma_ram == true) {
956 		if (tf->type == TF_TYPE_HWPWL)
957 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
958 					&tf->pwl);
959 		else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
960 			cm_helper_translate_curve_to_degamma_hw_format(tf,
961 					&dpp_base->degamma_params);
962 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
963 				&dpp_base->degamma_params);
964 		}
965 		return true;
966 	}
967 	/* handle here the optimized cases when de-gamma ROM could be used.
968 	 *
969 	 */
970 	if (tf->type == TF_TYPE_PREDEFINED) {
971 		switch (tf->tf) {
972 		case TRANSFER_FUNCTION_SRGB:
973 			dpp_base->funcs->dpp_set_degamma(dpp_base,
974 					IPP_DEGAMMA_MODE_HW_sRGB);
975 			break;
976 		case TRANSFER_FUNCTION_BT709:
977 			dpp_base->funcs->dpp_set_degamma(dpp_base,
978 					IPP_DEGAMMA_MODE_HW_xvYCC);
979 			break;
980 		case TRANSFER_FUNCTION_LINEAR:
981 			dpp_base->funcs->dpp_set_degamma(dpp_base,
982 					IPP_DEGAMMA_MODE_BYPASS);
983 			break;
984 		case TRANSFER_FUNCTION_PQ:
985 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
986 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
987 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
988 			result = true;
989 			break;
990 		default:
991 			result = false;
992 			break;
993 		}
994 	} else if (tf->type == TF_TYPE_BYPASS)
995 		dpp_base->funcs->dpp_set_degamma(dpp_base,
996 				IPP_DEGAMMA_MODE_BYPASS);
997 	else {
998 		/*
999 		 * if we are here, we did not handle correctly.
1000 		 * fix is required for this use case
1001 		 */
1002 		BREAK_TO_DEBUGGER();
1003 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1004 				IPP_DEGAMMA_MODE_BYPASS);
1005 	}
1006 
1007 	return result;
1008 }
1009 
1010 void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1011 {
1012 	struct pipe_ctx *odm_pipe;
1013 	int opp_cnt = 1;
1014 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
1015 
1016 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1017 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
1018 		opp_cnt++;
1019 	}
1020 
1021 	if (opp_cnt > 1)
1022 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1023 				pipe_ctx->stream_res.tg,
1024 				opp_inst, opp_cnt,
1025 				&pipe_ctx->stream->timing);
1026 	else
1027 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1028 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1029 }
1030 
1031 void dcn20_blank_pixel_data(
1032 		struct dc *dc,
1033 		struct pipe_ctx *pipe_ctx,
1034 		bool blank)
1035 {
1036 	struct tg_color black_color = {0};
1037 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
1038 	struct dc_stream_state *stream = pipe_ctx->stream;
1039 	enum dc_color_space color_space = stream->output_color_space;
1040 	enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
1041 	enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1042 	struct pipe_ctx *odm_pipe;
1043 	int odm_cnt = 1;
1044 
1045 	int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
1046 	int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
1047 
1048 	if (stream->link->test_pattern_enabled)
1049 		return;
1050 
1051 	/* get opp dpg blank color */
1052 	color_space_to_black_color(dc, color_space, &black_color);
1053 
1054 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1055 		odm_cnt++;
1056 
1057 	width = width / odm_cnt;
1058 
1059 	if (blank) {
1060 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
1061 
1062 		if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
1063 			test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1064 			test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1065 		}
1066 	} else {
1067 		test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1068 	}
1069 
1070 	dc->hwss.set_disp_pattern_generator(dc,
1071 			pipe_ctx,
1072 			test_pattern,
1073 			test_pattern_color_space,
1074 			stream->timing.display_color_depth,
1075 			&black_color,
1076 			width,
1077 			height,
1078 			0);
1079 
1080 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1081 		dc->hwss.set_disp_pattern_generator(dc,
1082 				odm_pipe,
1083 				dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ?
1084 						CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern,
1085 				test_pattern_color_space,
1086 				stream->timing.display_color_depth,
1087 				&black_color,
1088 				width,
1089 				height,
1090 				0);
1091 	}
1092 
1093 	if (!blank && dc->debug.enable_single_display_2to1_odm_policy) {
1094 		/* when exiting dynamic ODM need to reinit DPG state for unused pipes */
1095 		struct pipe_ctx *old_odm_pipe = dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx].next_odm_pipe;
1096 
1097 		odm_pipe = pipe_ctx->next_odm_pipe;
1098 
1099 		while (old_odm_pipe) {
1100 			if (!odm_pipe || old_odm_pipe->pipe_idx != odm_pipe->pipe_idx)
1101 				dc->hwss.set_disp_pattern_generator(dc,
1102 						old_odm_pipe,
1103 						CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
1104 						CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1105 						COLOR_DEPTH_888,
1106 						NULL,
1107 						0,
1108 						0,
1109 						0);
1110 			old_odm_pipe = old_odm_pipe->next_odm_pipe;
1111 			if (odm_pipe)
1112 				odm_pipe = odm_pipe->next_odm_pipe;
1113 		}
1114 	}
1115 
1116 	if (!blank)
1117 		if (stream_res->abm) {
1118 			dc->hwss.set_pipe(pipe_ctx);
1119 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
1120 		}
1121 }
1122 
1123 
1124 static void dcn20_power_on_plane(
1125 	struct dce_hwseq *hws,
1126 	struct pipe_ctx *pipe_ctx)
1127 {
1128 	DC_LOGGER_INIT(hws->ctx->logger);
1129 	if (REG(DC_IP_REQUEST_CNTL)) {
1130 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1131 				IP_REQUEST_EN, 1);
1132 
1133 		if (hws->funcs.dpp_pg_control)
1134 			hws->funcs.dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1135 
1136 		if (hws->funcs.hubp_pg_control)
1137 			hws->funcs.hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
1138 
1139 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1140 				IP_REQUEST_EN, 0);
1141 		DC_LOG_DEBUG(
1142 				"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
1143 	}
1144 }
1145 
1146 static void dcn20_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx,
1147 			       struct dc_state *context)
1148 {
1149 	//if (dc->debug.sanity_checks) {
1150 	//	dcn10_verify_allow_pstate_change_high(dc);
1151 	//}
1152 	dcn20_power_on_plane(dc->hwseq, pipe_ctx);
1153 
1154 	/* enable DCFCLK current DCHUB */
1155 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
1156 
1157 	/* initialize HUBP on power up */
1158 	pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
1159 
1160 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
1161 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1162 			pipe_ctx->stream_res.opp,
1163 			true);
1164 
1165 /* TODO: enable/disable in dm as per update type.
1166 	if (plane_state) {
1167 		DC_LOG_DC(dc->ctx->logger,
1168 				"Pipe:%d 0x%x: addr hi:0x%x, "
1169 				"addr low:0x%x, "
1170 				"src: %d, %d, %d,"
1171 				" %d; dst: %d, %d, %d, %d;\n",
1172 				pipe_ctx->pipe_idx,
1173 				plane_state,
1174 				plane_state->address.grph.addr.high_part,
1175 				plane_state->address.grph.addr.low_part,
1176 				plane_state->src_rect.x,
1177 				plane_state->src_rect.y,
1178 				plane_state->src_rect.width,
1179 				plane_state->src_rect.height,
1180 				plane_state->dst_rect.x,
1181 				plane_state->dst_rect.y,
1182 				plane_state->dst_rect.width,
1183 				plane_state->dst_rect.height);
1184 
1185 		DC_LOG_DC(dc->ctx->logger,
1186 				"Pipe %d: width, height, x, y         format:%d\n"
1187 				"viewport:%d, %d, %d, %d\n"
1188 				"recout:  %d, %d, %d, %d\n",
1189 				pipe_ctx->pipe_idx,
1190 				plane_state->format,
1191 				pipe_ctx->plane_res.scl_data.viewport.width,
1192 				pipe_ctx->plane_res.scl_data.viewport.height,
1193 				pipe_ctx->plane_res.scl_data.viewport.x,
1194 				pipe_ctx->plane_res.scl_data.viewport.y,
1195 				pipe_ctx->plane_res.scl_data.recout.width,
1196 				pipe_ctx->plane_res.scl_data.recout.height,
1197 				pipe_ctx->plane_res.scl_data.recout.x,
1198 				pipe_ctx->plane_res.scl_data.recout.y);
1199 		print_rq_dlg_ttu(dc, pipe_ctx);
1200 	}
1201 */
1202 	if (dc->vm_pa_config.valid) {
1203 		struct vm_system_aperture_param apt;
1204 
1205 		apt.sys_default.quad_part = 0;
1206 
1207 		apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
1208 		apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
1209 
1210 		// Program system aperture settings
1211 		pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
1212 	}
1213 
1214 	if (!pipe_ctx->top_pipe
1215 		&& pipe_ctx->plane_state
1216 		&& pipe_ctx->plane_state->flip_int_enabled
1217 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
1218 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
1219 
1220 //	if (dc->debug.sanity_checks) {
1221 //		dcn10_verify_allow_pstate_change_high(dc);
1222 //	}
1223 }
1224 
1225 void dcn20_pipe_control_lock(
1226 	struct dc *dc,
1227 	struct pipe_ctx *pipe,
1228 	bool lock)
1229 {
1230 	struct pipe_ctx *temp_pipe;
1231 	bool flip_immediate = false;
1232 
1233 	/* use TG master update lock to lock everything on the TG
1234 	 * therefore only top pipe need to lock
1235 	 */
1236 	if (!pipe || pipe->top_pipe)
1237 		return;
1238 
1239 	if (pipe->plane_state != NULL)
1240 		flip_immediate = pipe->plane_state->flip_immediate;
1241 
1242 	if  (pipe->stream_res.gsl_group > 0) {
1243 	    temp_pipe = pipe->bottom_pipe;
1244 	    while (!flip_immediate && temp_pipe) {
1245 		    if (temp_pipe->plane_state != NULL)
1246 			    flip_immediate = temp_pipe->plane_state->flip_immediate;
1247 		    temp_pipe = temp_pipe->bottom_pipe;
1248 	    }
1249 	}
1250 
1251 	if (flip_immediate && lock) {
1252 		const int TIMEOUT_FOR_FLIP_PENDING = 100000;
1253 		int i;
1254 
1255 		temp_pipe = pipe;
1256 		while (temp_pipe) {
1257 			if (temp_pipe->plane_state && temp_pipe->plane_state->flip_immediate) {
1258 				for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) {
1259 					if (!temp_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(temp_pipe->plane_res.hubp))
1260 						break;
1261 					udelay(1);
1262 				}
1263 
1264 				/* no reason it should take this long for immediate flips */
1265 				ASSERT(i != TIMEOUT_FOR_FLIP_PENDING);
1266 			}
1267 			temp_pipe = temp_pipe->bottom_pipe;
1268 		}
1269 	}
1270 
1271 	/* In flip immediate and pipe splitting case, we need to use GSL
1272 	 * for synchronization. Only do setup on locking and on flip type change.
1273 	 */
1274 	if (lock && (pipe->bottom_pipe != NULL || !flip_immediate))
1275 		if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
1276 		    (!flip_immediate && pipe->stream_res.gsl_group > 0))
1277 			dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
1278 
1279 	if (pipe->plane_state != NULL)
1280 		flip_immediate = pipe->plane_state->flip_immediate;
1281 
1282 	temp_pipe = pipe->bottom_pipe;
1283 	while (flip_immediate && temp_pipe) {
1284 	    if (temp_pipe->plane_state != NULL)
1285 		flip_immediate = temp_pipe->plane_state->flip_immediate;
1286 	    temp_pipe = temp_pipe->bottom_pipe;
1287 	}
1288 
1289 	if (!lock && pipe->stream_res.gsl_group > 0 && pipe->plane_state &&
1290 		!flip_immediate)
1291 	    dcn20_setup_gsl_group_as_lock(dc, pipe, false);
1292 
1293 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1294 		union dmub_hw_lock_flags hw_locks = { 0 };
1295 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1296 
1297 		hw_locks.bits.lock_pipe = 1;
1298 		inst_flags.otg_inst =  pipe->stream_res.tg->inst;
1299 
1300 		if (pipe->plane_state != NULL)
1301 			hw_locks.bits.triple_buffer_lock = pipe->plane_state->triplebuffer_flips;
1302 
1303 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1304 					lock,
1305 					&hw_locks,
1306 					&inst_flags);
1307 	} else if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
1308 		if (lock)
1309 			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
1310 		else
1311 			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
1312 	} else {
1313 		if (lock)
1314 			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1315 		else
1316 			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1317 	}
1318 }
1319 
1320 static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe)
1321 {
1322 	new_pipe->update_flags.raw = 0;
1323 
1324 	/* If non-phantom pipe is being transitioned to a phantom pipe,
1325 	 * set disable and return immediately. This is because the pipe
1326 	 * that was previously in use must be fully disabled before we
1327 	 * can "enable" it as a phantom pipe (since the OTG will certainly
1328 	 * be different). The post_unlock sequence will set the correct
1329 	 * update flags to enable the phantom pipe.
1330 	 */
1331 	if (old_pipe->plane_state && !old_pipe->plane_state->is_phantom &&
1332 			new_pipe->plane_state && new_pipe->plane_state->is_phantom) {
1333 		new_pipe->update_flags.bits.disable = 1;
1334 		return;
1335 	}
1336 
1337 	/* Exit on unchanged, unused pipe */
1338 	if (!old_pipe->plane_state && !new_pipe->plane_state)
1339 		return;
1340 	/* Detect pipe enable/disable */
1341 	if (!old_pipe->plane_state && new_pipe->plane_state) {
1342 		new_pipe->update_flags.bits.enable = 1;
1343 		new_pipe->update_flags.bits.mpcc = 1;
1344 		new_pipe->update_flags.bits.dppclk = 1;
1345 		new_pipe->update_flags.bits.hubp_interdependent = 1;
1346 		new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1347 		new_pipe->update_flags.bits.gamut_remap = 1;
1348 		new_pipe->update_flags.bits.scaler = 1;
1349 		new_pipe->update_flags.bits.viewport = 1;
1350 		new_pipe->update_flags.bits.det_size = 1;
1351 		if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1352 			new_pipe->update_flags.bits.odm = 1;
1353 			new_pipe->update_flags.bits.global_sync = 1;
1354 		}
1355 		return;
1356 	}
1357 
1358 	/* For SubVP we need to unconditionally enable because any phantom pipes are
1359 	 * always removed then newly added for every full updates whenever SubVP is in use.
1360 	 * The remove-add sequence of the phantom pipe always results in the pipe
1361 	 * being blanked in enable_stream_timing (DPG).
1362 	 */
1363 	if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1364 		new_pipe->update_flags.bits.enable = 1;
1365 
1366 	/* Phantom pipes are effectively disabled, if the pipe was previously phantom
1367 	 * we have to enable
1368 	 */
1369 	if (old_pipe->plane_state && old_pipe->plane_state->is_phantom &&
1370 			new_pipe->plane_state && !new_pipe->plane_state->is_phantom)
1371 		new_pipe->update_flags.bits.enable = 1;
1372 
1373 	if (old_pipe->plane_state && !new_pipe->plane_state) {
1374 		new_pipe->update_flags.bits.disable = 1;
1375 		return;
1376 	}
1377 
1378 	/* Detect plane change */
1379 	if (old_pipe->plane_state != new_pipe->plane_state) {
1380 		new_pipe->update_flags.bits.plane_changed = true;
1381 	}
1382 
1383 	/* Detect top pipe only changes */
1384 	if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1385 		/* Detect odm changes */
1386 		if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe
1387 			&& old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx)
1388 				|| (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe)
1389 				|| (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe)
1390 				|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1391 			new_pipe->update_flags.bits.odm = 1;
1392 
1393 		/* Detect global sync changes */
1394 		if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset
1395 				|| old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start
1396 				|| old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset
1397 				|| old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width)
1398 			new_pipe->update_flags.bits.global_sync = 1;
1399 	}
1400 
1401 	if (old_pipe->det_buffer_size_kb != new_pipe->det_buffer_size_kb)
1402 		new_pipe->update_flags.bits.det_size = 1;
1403 
1404 	/*
1405 	 * Detect opp / tg change, only set on change, not on enable
1406 	 * Assume mpcc inst = pipe index, if not this code needs to be updated
1407 	 * since mpcc is what is affected by these. In fact all of our sequence
1408 	 * makes this assumption at the moment with how hubp reset is matched to
1409 	 * same index mpcc reset.
1410 	 */
1411 	if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1412 		new_pipe->update_flags.bits.opp_changed = 1;
1413 	if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
1414 		new_pipe->update_flags.bits.tg_changed = 1;
1415 
1416 	/*
1417 	 * Detect mpcc blending changes, only dpp inst and opp matter here,
1418 	 * mpccs getting removed/inserted update connected ones during their own
1419 	 * programming
1420 	 */
1421 	if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
1422 			|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1423 		new_pipe->update_flags.bits.mpcc = 1;
1424 
1425 	/* Detect dppclk change */
1426 	if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
1427 		new_pipe->update_flags.bits.dppclk = 1;
1428 
1429 	/* Check for scl update */
1430 	if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
1431 			new_pipe->update_flags.bits.scaler = 1;
1432 	/* Check for vp update */
1433 	if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
1434 			|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
1435 				&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
1436 		new_pipe->update_flags.bits.viewport = 1;
1437 
1438 	/* Detect dlg/ttu/rq updates */
1439 	{
1440 		struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs;
1441 		struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs;
1442 		struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs;
1443 		struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs;
1444 
1445 		/* Detect pipe interdependent updates */
1446 		if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch ||
1447 				old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch ||
1448 				old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c ||
1449 				old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank ||
1450 				old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank ||
1451 				old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip ||
1452 				old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip ||
1453 				old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l ||
1454 				old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c ||
1455 				old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l ||
1456 				old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l ||
1457 				old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c ||
1458 				old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l ||
1459 				old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c ||
1460 				old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 ||
1461 				old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 ||
1462 				old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank ||
1463 				old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) {
1464 			old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch;
1465 			old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch;
1466 			old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c;
1467 			old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank;
1468 			old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank;
1469 			old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip;
1470 			old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip;
1471 			old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l;
1472 			old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c;
1473 			old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l;
1474 			old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l;
1475 			old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c;
1476 			old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l;
1477 			old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c;
1478 			old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0;
1479 			old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1;
1480 			old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank;
1481 			old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip;
1482 			new_pipe->update_flags.bits.hubp_interdependent = 1;
1483 		}
1484 		/* Detect any other updates to ttu/rq/dlg */
1485 		if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) ||
1486 				memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) ||
1487 				memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs)))
1488 			new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1489 	}
1490 }
1491 
1492 static void dcn20_update_dchubp_dpp(
1493 	struct dc *dc,
1494 	struct pipe_ctx *pipe_ctx,
1495 	struct dc_state *context)
1496 {
1497 	struct dce_hwseq *hws = dc->hwseq;
1498 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1499 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1500 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1501 	struct dccg *dccg = dc->res_pool->dccg;
1502 	bool viewport_changed = false;
1503 
1504 	if (pipe_ctx->update_flags.bits.dppclk)
1505 		dpp->funcs->dpp_dppclk_control(dpp, false, true);
1506 
1507 	if (pipe_ctx->update_flags.bits.enable)
1508 		dccg->funcs->update_dpp_dto(dccg, dpp->inst, pipe_ctx->plane_res.bw.dppclk_khz);
1509 
1510 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
1511 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
1512 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
1513 	 */
1514 	if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) {
1515 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
1516 
1517 		hubp->funcs->hubp_setup(
1518 			hubp,
1519 			&pipe_ctx->dlg_regs,
1520 			&pipe_ctx->ttu_regs,
1521 			&pipe_ctx->rq_regs,
1522 			&pipe_ctx->pipe_dlg_param);
1523 
1524 		if (hubp->funcs->set_unbounded_requesting)
1525 			hubp->funcs->set_unbounded_requesting(hubp, pipe_ctx->unbounded_req);
1526 	}
1527 	if (pipe_ctx->update_flags.bits.hubp_interdependent)
1528 		hubp->funcs->hubp_setup_interdependent(
1529 			hubp,
1530 			&pipe_ctx->dlg_regs,
1531 			&pipe_ctx->ttu_regs);
1532 
1533 	if (pipe_ctx->update_flags.bits.enable ||
1534 			pipe_ctx->update_flags.bits.plane_changed ||
1535 			plane_state->update_flags.bits.bpp_change ||
1536 			plane_state->update_flags.bits.input_csc_change ||
1537 			plane_state->update_flags.bits.color_space_change ||
1538 			plane_state->update_flags.bits.coeff_reduction_change) {
1539 		struct dc_bias_and_scale bns_params = {0};
1540 
1541 		// program the input csc
1542 		dpp->funcs->dpp_setup(dpp,
1543 				plane_state->format,
1544 				EXPANSION_MODE_ZERO,
1545 				plane_state->input_csc_color_matrix,
1546 				plane_state->color_space,
1547 				NULL);
1548 
1549 		if (dpp->funcs->dpp_program_bias_and_scale) {
1550 			//TODO :for CNVC set scale and bias registers if necessary
1551 			build_prescale_params(&bns_params, plane_state);
1552 			dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
1553 		}
1554 	}
1555 
1556 	if (pipe_ctx->update_flags.bits.mpcc
1557 			|| pipe_ctx->update_flags.bits.plane_changed
1558 			|| plane_state->update_flags.bits.global_alpha_change
1559 			|| plane_state->update_flags.bits.per_pixel_alpha_change) {
1560 		// MPCC inst is equal to pipe index in practice
1561 		int mpcc_inst = hubp->inst;
1562 		int opp_inst;
1563 		int opp_count = dc->res_pool->pipe_count;
1564 
1565 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
1566 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
1567 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
1568 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
1569 				break;
1570 			}
1571 		}
1572 		hws->funcs.update_mpcc(dc, pipe_ctx);
1573 	}
1574 
1575 	if (pipe_ctx->update_flags.bits.scaler ||
1576 			plane_state->update_flags.bits.scaling_change ||
1577 			plane_state->update_flags.bits.position_change ||
1578 			plane_state->update_flags.bits.per_pixel_alpha_change ||
1579 			pipe_ctx->stream->update_flags.bits.scaling) {
1580 		pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha;
1581 		ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_36BPP);
1582 		/* scaler configuration */
1583 		pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
1584 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
1585 	}
1586 
1587 	if (pipe_ctx->update_flags.bits.viewport ||
1588 			(context == dc->current_state && plane_state->update_flags.bits.position_change) ||
1589 			(context == dc->current_state && plane_state->update_flags.bits.scaling_change) ||
1590 			(context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) {
1591 
1592 		hubp->funcs->mem_program_viewport(
1593 			hubp,
1594 			&pipe_ctx->plane_res.scl_data.viewport,
1595 			&pipe_ctx->plane_res.scl_data.viewport_c);
1596 		viewport_changed = true;
1597 	}
1598 
1599 	/* Any updates are handled in dc interface, just need to apply existing for plane enable */
1600 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed ||
1601 			pipe_ctx->update_flags.bits.scaler || viewport_changed == true) &&
1602 			pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
1603 		dc->hwss.set_cursor_position(pipe_ctx);
1604 		dc->hwss.set_cursor_attribute(pipe_ctx);
1605 
1606 		if (dc->hwss.set_cursor_sdr_white_level)
1607 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
1608 	}
1609 
1610 	/* Any updates are handled in dc interface, just need
1611 	 * to apply existing for plane enable / opp change */
1612 	if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed
1613 			|| pipe_ctx->update_flags.bits.plane_changed
1614 			|| pipe_ctx->stream->update_flags.bits.gamut_remap
1615 			|| pipe_ctx->stream->update_flags.bits.out_csc) {
1616 		/* dpp/cm gamut remap*/
1617 		dc->hwss.program_gamut_remap(pipe_ctx);
1618 
1619 		/*call the dcn2 method which uses mpc csc*/
1620 		dc->hwss.program_output_csc(dc,
1621 				pipe_ctx,
1622 				pipe_ctx->stream->output_color_space,
1623 				pipe_ctx->stream->csc_color_matrix.matrix,
1624 				hubp->opp_id);
1625 	}
1626 
1627 	if (pipe_ctx->update_flags.bits.enable ||
1628 			pipe_ctx->update_flags.bits.plane_changed ||
1629 			pipe_ctx->update_flags.bits.opp_changed ||
1630 			plane_state->update_flags.bits.pixel_format_change ||
1631 			plane_state->update_flags.bits.horizontal_mirror_change ||
1632 			plane_state->update_flags.bits.rotation_change ||
1633 			plane_state->update_flags.bits.swizzle_change ||
1634 			plane_state->update_flags.bits.dcc_change ||
1635 			plane_state->update_flags.bits.bpp_change ||
1636 			plane_state->update_flags.bits.scaling_change ||
1637 			plane_state->update_flags.bits.plane_size_change) {
1638 		struct plane_size size = plane_state->plane_size;
1639 
1640 		size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
1641 		hubp->funcs->hubp_program_surface_config(
1642 			hubp,
1643 			plane_state->format,
1644 			&plane_state->tiling_info,
1645 			&size,
1646 			plane_state->rotation,
1647 			&plane_state->dcc,
1648 			plane_state->horizontal_mirror,
1649 			0);
1650 		hubp->power_gated = false;
1651 	}
1652 
1653 	if (pipe_ctx->update_flags.bits.enable ||
1654 		pipe_ctx->update_flags.bits.plane_changed ||
1655 		plane_state->update_flags.bits.addr_update)
1656 		hws->funcs.update_plane_addr(dc, pipe_ctx);
1657 
1658 	if (pipe_ctx->update_flags.bits.enable)
1659 		hubp->funcs->set_blank(hubp, false);
1660 	/* If the stream paired with this plane is phantom, the plane is also phantom */
1661 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM
1662 			&& hubp->funcs->phantom_hubp_post_enable)
1663 		hubp->funcs->phantom_hubp_post_enable(hubp);
1664 }
1665 
1666 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
1667 {
1668 	struct pipe_ctx *other_pipe;
1669 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
1670 
1671 	/* Always use the largest vready_offset of all connected pipes */
1672 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
1673 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1674 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1675 	}
1676 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
1677 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1678 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1679 	}
1680 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
1681 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1682 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1683 	}
1684 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
1685 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1686 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1687 	}
1688 
1689 	return vready_offset;
1690 }
1691 
1692 static void dcn20_program_pipe(
1693 		struct dc *dc,
1694 		struct pipe_ctx *pipe_ctx,
1695 		struct dc_state *context)
1696 {
1697 	struct dce_hwseq *hws = dc->hwseq;
1698 	/* Only need to unblank on top pipe */
1699 
1700 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level)
1701 			&& !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe)
1702 		hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible);
1703 
1704 	/* Only update TG on top pipe */
1705 	if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe
1706 			&& !pipe_ctx->prev_odm_pipe) {
1707 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
1708 				pipe_ctx->stream_res.tg,
1709 				calculate_vready_offset_for_group(pipe_ctx),
1710 				pipe_ctx->pipe_dlg_param.vstartup_start,
1711 				pipe_ctx->pipe_dlg_param.vupdate_offset,
1712 				pipe_ctx->pipe_dlg_param.vupdate_width);
1713 
1714 		if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1715 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK);
1716 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
1717 		}
1718 
1719 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
1720 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
1721 
1722 		if (hws->funcs.setup_vupdate_interrupt)
1723 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1724 	}
1725 
1726 	if (pipe_ctx->update_flags.bits.odm)
1727 		hws->funcs.update_odm(dc, context, pipe_ctx);
1728 
1729 	if (pipe_ctx->update_flags.bits.enable) {
1730 		dcn20_enable_plane(dc, pipe_ctx, context);
1731 		if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes)
1732 			dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub);
1733 	}
1734 
1735 	if (dc->res_pool->hubbub->funcs->program_det_size && pipe_ctx->update_flags.bits.det_size)
1736 		dc->res_pool->hubbub->funcs->program_det_size(
1737 			dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->det_buffer_size_kb);
1738 
1739 	if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw)
1740 		dcn20_update_dchubp_dpp(dc, pipe_ctx, context);
1741 
1742 	if (pipe_ctx->update_flags.bits.enable
1743 			|| pipe_ctx->plane_state->update_flags.bits.hdr_mult)
1744 		hws->funcs.set_hdr_multiplier(pipe_ctx);
1745 
1746 	if (pipe_ctx->update_flags.bits.enable ||
1747 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
1748 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
1749 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
1750 
1751 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
1752 	 * only do gamma programming for powering on, internal memcmp to avoid
1753 	 * updating on slave planes
1754 	 */
1755 	if (pipe_ctx->update_flags.bits.enable ||
1756 			pipe_ctx->update_flags.bits.plane_changed ||
1757 			pipe_ctx->stream->update_flags.bits.out_tf ||
1758 			pipe_ctx->plane_state->update_flags.bits.output_tf_change)
1759 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
1760 
1761 	/* If the pipe has been enabled or has a different opp, we
1762 	 * should reprogram the fmt. This deals with cases where
1763 	 * interation between mpc and odm combine on different streams
1764 	 * causes a different pipe to be chosen to odm combine with.
1765 	 */
1766 	if (pipe_ctx->update_flags.bits.enable
1767 	    || pipe_ctx->update_flags.bits.opp_changed) {
1768 
1769 		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1770 			pipe_ctx->stream_res.opp,
1771 			COLOR_SPACE_YCBCR601,
1772 			pipe_ctx->stream->timing.display_color_depth,
1773 			pipe_ctx->stream->signal);
1774 
1775 		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1776 			pipe_ctx->stream_res.opp,
1777 			&pipe_ctx->stream->bit_depth_params,
1778 			&pipe_ctx->stream->clamping);
1779 	}
1780 
1781 	/* Set ABM pipe after other pipe configurations done */
1782 	if (pipe_ctx->plane_state->visible) {
1783 		if (pipe_ctx->stream_res.abm) {
1784 			dc->hwss.set_pipe(pipe_ctx);
1785 			pipe_ctx->stream_res.abm->funcs->set_abm_level(pipe_ctx->stream_res.abm,
1786 				pipe_ctx->stream->abm_level);
1787 		}
1788 	}
1789 }
1790 
1791 void dcn20_program_front_end_for_ctx(
1792 		struct dc *dc,
1793 		struct dc_state *context)
1794 {
1795 	int i;
1796 	struct dce_hwseq *hws = dc->hwseq;
1797 	DC_LOGGER_INIT(dc->ctx->logger);
1798 
1799 	/* Carry over GSL groups in case the context is changing. */
1800 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1801 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1802 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1803 
1804 		if (pipe_ctx->stream == old_pipe_ctx->stream)
1805 			pipe_ctx->stream_res.gsl_group = old_pipe_ctx->stream_res.gsl_group;
1806 	}
1807 
1808 	if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
1809 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1810 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1811 
1812 			if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) {
1813 				ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
1814 				/*turn off triple buffer for full update*/
1815 				dc->hwss.program_triplebuffer(
1816 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
1817 			}
1818 		}
1819 	}
1820 
1821 	/* Set pipe update flags and lock pipes */
1822 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1823 		dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i],
1824 				&context->res_ctx.pipe_ctx[i]);
1825 
1826 	/* When disabling phantom pipes, turn on phantom OTG first (so we can get double
1827 	 * buffer updates properly)
1828 	 */
1829 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1830 		struct dc_stream_state *stream = dc->current_state->res_ctx.pipe_ctx[i].stream;
1831 
1832 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && stream &&
1833 			dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1834 			struct timing_generator *tg = dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg;
1835 
1836 			if (tg->funcs->enable_crtc)
1837 				tg->funcs->enable_crtc(tg);
1838 		}
1839 	}
1840 	/* OTG blank before disabling all front ends */
1841 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1842 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1843 				&& !context->res_ctx.pipe_ctx[i].top_pipe
1844 				&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
1845 				&& context->res_ctx.pipe_ctx[i].stream)
1846 			hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);
1847 
1848 
1849 	/* Disconnect mpcc */
1850 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1851 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1852 				|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
1853 			struct hubbub *hubbub = dc->res_pool->hubbub;
1854 
1855 			/* Phantom pipe DET should be 0, but if a pipe in use is being transitioned to phantom
1856 			 * then we want to do the programming here (effectively it's being disabled). If we do
1857 			 * the programming later the DET won't be updated until the OTG for the phantom pipe is
1858 			 * turned on (i.e. in an MCLK switch) which can come in too late and cause issues with
1859 			 * DET allocation.
1860 			 */
1861 			if (hubbub->funcs->program_det_size && (context->res_ctx.pipe_ctx[i].update_flags.bits.disable ||
1862 					(context->res_ctx.pipe_ctx[i].plane_state && context->res_ctx.pipe_ctx[i].plane_state->is_phantom)))
1863 				hubbub->funcs->program_det_size(hubbub, dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0);
1864 			hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1865 			DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
1866 		}
1867 
1868 	/*
1869 	 * Program all updated pipes, order matters for mpcc setup. Start with
1870 	 * top pipe and program all pipes that follow in order
1871 	 */
1872 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1873 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1874 
1875 		if (pipe->plane_state && !pipe->top_pipe) {
1876 			while (pipe) {
1877 				if (hws->funcs.program_pipe)
1878 					hws->funcs.program_pipe(dc, pipe, context);
1879 				else {
1880 					/* Don't program phantom pipes in the regular front end programming sequence.
1881 					 * There is an MPO transition case where a pipe being used by a video plane is
1882 					 * transitioned directly to be a phantom pipe when closing the MPO video. However
1883 					 * the phantom pipe will program a new HUBP_VTG_SEL (update takes place right away),
1884 					 * but the MPO still exists until the double buffered update of the main pipe so we
1885 					 * will get a frame of underflow if the phantom pipe is programmed here.
1886 					 */
1887 					if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM)
1888 						dcn20_program_pipe(dc, pipe, context);
1889 				}
1890 
1891 				pipe = pipe->bottom_pipe;
1892 			}
1893 		}
1894 		/* Program secondary blending tree and writeback pipes */
1895 		pipe = &context->res_ctx.pipe_ctx[i];
1896 		if (!pipe->top_pipe && !pipe->prev_odm_pipe
1897 				&& pipe->stream && pipe->stream->num_wb_info > 0
1898 				&& (pipe->update_flags.raw || (pipe->plane_state && pipe->plane_state->update_flags.raw)
1899 					|| pipe->stream->update_flags.raw)
1900 				&& hws->funcs.program_all_writeback_pipes_in_tree)
1901 			hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);
1902 
1903 		/* Avoid underflow by check of pipe line read when adding 2nd plane. */
1904 		if (hws->wa.wait_hubpret_read_start_during_mpo_transition &&
1905 			!pipe->top_pipe &&
1906 			pipe->stream &&
1907 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start &&
1908 			dc->current_state->stream_status[0].plane_count == 1 &&
1909 			context->stream_status[0].plane_count > 1) {
1910 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start(pipe->plane_res.hubp);
1911 		}
1912 
1913 		/* when dynamic ODM is active, pipes must be reconfigured when all planes are
1914 		 * disabled, as some transitions will leave software and hardware state
1915 		 * mismatched.
1916 		 */
1917 		if (dc->debug.enable_single_display_2to1_odm_policy &&
1918 			pipe->stream &&
1919 			pipe->update_flags.bits.disable &&
1920 			!pipe->prev_odm_pipe &&
1921 			hws->funcs.update_odm)
1922 			hws->funcs.update_odm(dc, context, pipe);
1923 	}
1924 }
1925 
1926 void dcn20_post_unlock_program_front_end(
1927 		struct dc *dc,
1928 		struct dc_state *context)
1929 {
1930 	int i;
1931 	const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100;
1932 	struct dce_hwseq *hwseq = dc->hwseq;
1933 
1934 	DC_LOGGER_INIT(dc->ctx->logger);
1935 
1936 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1937 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
1938 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1939 
1940 	/*
1941 	 * If we are enabling a pipe, we need to wait for pending clear as this is a critical
1942 	 * part of the enable operation otherwise, DM may request an immediate flip which
1943 	 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
1944 	 * is unsupported on DCN.
1945 	 */
1946 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1947 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1948 		// Don't check flip pending on phantom pipes
1949 		if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable &&
1950 				pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1951 			struct hubp *hubp = pipe->plane_res.hubp;
1952 			int j = 0;
1953 
1954 			for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_MS*1000
1955 					&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
1956 				udelay(1);
1957 		}
1958 	}
1959 
1960 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1961 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1962 
1963 		if (pipe->plane_state && !pipe->top_pipe) {
1964 			/* Program phantom pipe here to prevent a frame of underflow in the MPO transition
1965 			 * case (if a pipe being used for a video plane transitions to a phantom pipe, it
1966 			 * can underflow due to HUBP_VTG_SEL programming if done in the regular front end
1967 			 * programming sequence).
1968 			 */
1969 			while (pipe) {
1970 				if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1971 					/* When turning on the phantom pipe we want to run through the
1972 					 * entire enable sequence, so apply all the "enable" flags.
1973 					 */
1974 					if (dc->hwss.apply_update_flags_for_phantom)
1975 						dc->hwss.apply_update_flags_for_phantom(pipe);
1976 					if (dc->hwss.update_phantom_vp_position)
1977 						dc->hwss.update_phantom_vp_position(dc, context, pipe);
1978 					dcn20_program_pipe(dc, pipe, context);
1979 				}
1980 				pipe = pipe->bottom_pipe;
1981 			}
1982 		}
1983 	}
1984 
1985 	/* Only program the MALL registers after all the main and phantom pipes
1986 	 * are done programming.
1987 	 */
1988 	if (hwseq->funcs.program_mall_pipe_config)
1989 		hwseq->funcs.program_mall_pipe_config(dc, context);
1990 
1991 	/* WA to apply WM setting*/
1992 	if (hwseq->wa.DEGVIDCN21)
1993 		dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);
1994 
1995 
1996 	/* WA for stutter underflow during MPO transitions when adding 2nd plane */
1997 	if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {
1998 
1999 		if (dc->current_state->stream_status[0].plane_count == 1 &&
2000 				context->stream_status[0].plane_count > 1) {
2001 
2002 			struct timing_generator *tg = dc->res_pool->timing_generators[0];
2003 
2004 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);
2005 
2006 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
2007 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg);
2008 		}
2009 	}
2010 }
2011 
2012 void dcn20_prepare_bandwidth(
2013 		struct dc *dc,
2014 		struct dc_state *context)
2015 {
2016 	struct hubbub *hubbub = dc->res_pool->hubbub;
2017 	unsigned int compbuf_size_kb = 0;
2018 	unsigned int cache_wm_a = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns;
2019 	unsigned int i;
2020 
2021 	dc->clk_mgr->funcs->update_clocks(
2022 			dc->clk_mgr,
2023 			context,
2024 			false);
2025 
2026 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2027 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2028 
2029 		// At optimize don't restore the original watermark value
2030 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2031 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2032 			break;
2033 		}
2034 	}
2035 
2036 	/* program dchubbub watermarks:
2037 	 * For assigning wm_optimized_required, use |= operator since we don't want
2038 	 * to clear the value if the optimize has not happened yet
2039 	 */
2040 	dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub,
2041 					&context->bw_ctx.bw.dcn.watermarks,
2042 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2043 					false);
2044 
2045 	// Restore the real watermark so we can commit the value to DMCUB
2046 	// DMCUB uses the "original" watermark value in SubVP MCLK switch
2047 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = cache_wm_a;
2048 
2049 	/* decrease compbuf size */
2050 	if (hubbub->funcs->program_compbuf_size) {
2051 		if (context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes) {
2052 			compbuf_size_kb = context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes;
2053 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.dml.ip.min_comp_buffer_size_kbytes);
2054 		} else {
2055 			compbuf_size_kb = context->bw_ctx.bw.dcn.compbuf_size_kb;
2056 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.bw.dcn.compbuf_size_kb);
2057 		}
2058 
2059 		hubbub->funcs->program_compbuf_size(hubbub, compbuf_size_kb, false);
2060 	}
2061 }
2062 
2063 void dcn20_optimize_bandwidth(
2064 		struct dc *dc,
2065 		struct dc_state *context)
2066 {
2067 	struct hubbub *hubbub = dc->res_pool->hubbub;
2068 	int i;
2069 
2070 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2071 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2072 
2073 		// At optimize don't need  to restore the original watermark value
2074 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2075 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2076 			break;
2077 		}
2078 	}
2079 
2080 	/* program dchubbub watermarks */
2081 	hubbub->funcs->program_watermarks(hubbub,
2082 					&context->bw_ctx.bw.dcn.watermarks,
2083 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2084 					true);
2085 
2086 	if (dc->clk_mgr->dc_mode_softmax_enabled)
2087 		if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
2088 				context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
2089 			dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk);
2090 
2091 	/* increase compbuf size */
2092 	if (hubbub->funcs->program_compbuf_size)
2093 		hubbub->funcs->program_compbuf_size(hubbub, context->bw_ctx.bw.dcn.compbuf_size_kb, true);
2094 
2095 	dc->clk_mgr->funcs->update_clocks(
2096 			dc->clk_mgr,
2097 			context,
2098 			true);
2099 	if (dc_extended_blank_supported(dc) && context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) {
2100 		for (i = 0; i < dc->res_pool->pipe_count; ++i) {
2101 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2102 
2103 			if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank
2104 				&& pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max
2105 				&& pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total)
2106 					pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp,
2107 						pipe_ctx->dlg_regs.optimized_min_dst_y_next_start);
2108 		}
2109 	}
2110 }
2111 
2112 bool dcn20_update_bandwidth(
2113 		struct dc *dc,
2114 		struct dc_state *context)
2115 {
2116 	int i;
2117 	struct dce_hwseq *hws = dc->hwseq;
2118 
2119 	/* recalculate DML parameters */
2120 	if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
2121 		return false;
2122 
2123 	/* apply updated bandwidth parameters */
2124 	dc->hwss.prepare_bandwidth(dc, context);
2125 
2126 	/* update hubp configs for all pipes */
2127 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2128 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2129 
2130 		if (pipe_ctx->plane_state == NULL)
2131 			continue;
2132 
2133 		if (pipe_ctx->top_pipe == NULL) {
2134 			bool blank = !is_pipe_tree_visible(pipe_ctx);
2135 
2136 			pipe_ctx->stream_res.tg->funcs->program_global_sync(
2137 					pipe_ctx->stream_res.tg,
2138 					calculate_vready_offset_for_group(pipe_ctx),
2139 					pipe_ctx->pipe_dlg_param.vstartup_start,
2140 					pipe_ctx->pipe_dlg_param.vupdate_offset,
2141 					pipe_ctx->pipe_dlg_param.vupdate_width);
2142 
2143 			pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2144 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false);
2145 
2146 			if (pipe_ctx->prev_odm_pipe == NULL)
2147 				hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2148 
2149 			if (hws->funcs.setup_vupdate_interrupt)
2150 				hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2151 		}
2152 
2153 		pipe_ctx->plane_res.hubp->funcs->hubp_setup(
2154 				pipe_ctx->plane_res.hubp,
2155 					&pipe_ctx->dlg_regs,
2156 					&pipe_ctx->ttu_regs,
2157 					&pipe_ctx->rq_regs,
2158 					&pipe_ctx->pipe_dlg_param);
2159 	}
2160 
2161 	return true;
2162 }
2163 
2164 void dcn20_enable_writeback(
2165 		struct dc *dc,
2166 		struct dc_writeback_info *wb_info,
2167 		struct dc_state *context)
2168 {
2169 	struct dwbc *dwb;
2170 	struct mcif_wb *mcif_wb;
2171 	struct timing_generator *optc;
2172 
2173 	ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
2174 	ASSERT(wb_info->wb_enabled);
2175 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
2176 	mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
2177 
2178 	/* set the OPTC source mux */
2179 	optc = dc->res_pool->timing_generators[dwb->otg_inst];
2180 	optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
2181 	/* set MCIF_WB buffer and arbitration configuration */
2182 	mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
2183 	mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
2184 	/* Enable MCIF_WB */
2185 	mcif_wb->funcs->enable_mcif(mcif_wb);
2186 	/* Enable DWB */
2187 	dwb->funcs->enable(dwb, &wb_info->dwb_params);
2188 	/* TODO: add sequence to enable/disable warmup */
2189 }
2190 
2191 void dcn20_disable_writeback(
2192 		struct dc *dc,
2193 		unsigned int dwb_pipe_inst)
2194 {
2195 	struct dwbc *dwb;
2196 	struct mcif_wb *mcif_wb;
2197 
2198 	ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
2199 	dwb = dc->res_pool->dwbc[dwb_pipe_inst];
2200 	mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
2201 
2202 	dwb->funcs->disable(dwb);
2203 	mcif_wb->funcs->disable_mcif(mcif_wb);
2204 }
2205 
2206 bool dcn20_wait_for_blank_complete(
2207 		struct output_pixel_processor *opp)
2208 {
2209 	int counter;
2210 
2211 	for (counter = 0; counter < 1000; counter++) {
2212 		if (opp->funcs->dpg_is_blanked(opp))
2213 			break;
2214 
2215 		udelay(100);
2216 	}
2217 
2218 	if (counter == 1000) {
2219 		dm_error("DC: failed to blank crtc!\n");
2220 		return false;
2221 	}
2222 
2223 	return true;
2224 }
2225 
2226 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
2227 {
2228 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2229 
2230 	if (!hubp)
2231 		return false;
2232 	return hubp->funcs->dmdata_status_done(hubp);
2233 }
2234 
2235 void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2236 {
2237 	struct dce_hwseq *hws = dc->hwseq;
2238 
2239 	if (pipe_ctx->stream_res.dsc) {
2240 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2241 
2242 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
2243 		while (odm_pipe) {
2244 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
2245 			odm_pipe = odm_pipe->next_odm_pipe;
2246 		}
2247 	}
2248 }
2249 
2250 void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2251 {
2252 	struct dce_hwseq *hws = dc->hwseq;
2253 
2254 	if (pipe_ctx->stream_res.dsc) {
2255 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2256 
2257 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
2258 		while (odm_pipe) {
2259 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
2260 			odm_pipe = odm_pipe->next_odm_pipe;
2261 		}
2262 	}
2263 }
2264 
2265 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
2266 {
2267 	struct dc_dmdata_attributes attr = { 0 };
2268 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2269 
2270 	attr.dmdata_mode = DMDATA_HW_MODE;
2271 	attr.dmdata_size =
2272 		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
2273 	attr.address.quad_part =
2274 			pipe_ctx->stream->dmdata_address.quad_part;
2275 	attr.dmdata_dl_delta = 0;
2276 	attr.dmdata_qos_mode = 0;
2277 	attr.dmdata_qos_level = 0;
2278 	attr.dmdata_repeat = 1; /* always repeat */
2279 	attr.dmdata_updated = 1;
2280 	attr.dmdata_sw_data = NULL;
2281 
2282 	hubp->funcs->dmdata_set_attributes(hubp, &attr);
2283 }
2284 
2285 void dcn20_init_vm_ctx(
2286 		struct dce_hwseq *hws,
2287 		struct dc *dc,
2288 		struct dc_virtual_addr_space_config *va_config,
2289 		int vmid)
2290 {
2291 	struct dcn_hubbub_virt_addr_config config;
2292 
2293 	if (vmid == 0) {
2294 		ASSERT(0); /* VMID cannot be 0 for vm context */
2295 		return;
2296 	}
2297 
2298 	config.page_table_start_addr = va_config->page_table_start_addr;
2299 	config.page_table_end_addr = va_config->page_table_end_addr;
2300 	config.page_table_block_size = va_config->page_table_block_size_in_bytes;
2301 	config.page_table_depth = va_config->page_table_depth;
2302 	config.page_table_base_addr = va_config->page_table_base_addr;
2303 
2304 	dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
2305 }
2306 
2307 int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
2308 {
2309 	struct dcn_hubbub_phys_addr_config config;
2310 
2311 	config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
2312 	config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
2313 	config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
2314 	config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
2315 	config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
2316 	config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
2317 	config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
2318 	config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
2319 	config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
2320 	config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
2321 
2322 	return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
2323 }
2324 
2325 static bool patch_address_for_sbs_tb_stereo(
2326 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
2327 {
2328 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2329 	bool sec_split = pipe_ctx->top_pipe &&
2330 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
2331 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2332 			(pipe_ctx->stream->timing.timing_3d_format ==
2333 			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
2334 			pipe_ctx->stream->timing.timing_3d_format ==
2335 			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
2336 		*addr = plane_state->address.grph_stereo.left_addr;
2337 		plane_state->address.grph_stereo.left_addr =
2338 				plane_state->address.grph_stereo.right_addr;
2339 		return true;
2340 	}
2341 
2342 	if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
2343 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
2344 		plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
2345 		plane_state->address.grph_stereo.right_addr =
2346 				plane_state->address.grph_stereo.left_addr;
2347 		plane_state->address.grph_stereo.right_meta_addr =
2348 				plane_state->address.grph_stereo.left_meta_addr;
2349 	}
2350 	return false;
2351 }
2352 
2353 void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
2354 {
2355 	bool addr_patched = false;
2356 	PHYSICAL_ADDRESS_LOC addr;
2357 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2358 
2359 	if (plane_state == NULL)
2360 		return;
2361 
2362 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
2363 
2364 	// Call Helper to track VMID use
2365 	vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
2366 
2367 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
2368 			pipe_ctx->plane_res.hubp,
2369 			&plane_state->address,
2370 			plane_state->flip_immediate);
2371 
2372 	plane_state->status.requested_address = plane_state->address;
2373 
2374 	if (plane_state->flip_immediate)
2375 		plane_state->status.current_address = plane_state->address;
2376 
2377 	if (addr_patched)
2378 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
2379 }
2380 
2381 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
2382 		struct dc_link_settings *link_settings)
2383 {
2384 	struct encoder_unblank_param params = {0};
2385 	struct dc_stream_state *stream = pipe_ctx->stream;
2386 	struct dc_link *link = stream->link;
2387 	struct dce_hwseq *hws = link->dc->hwseq;
2388 	struct pipe_ctx *odm_pipe;
2389 
2390 	params.opp_cnt = 1;
2391 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
2392 		params.opp_cnt++;
2393 	}
2394 	/* only 3 items below are used by unblank */
2395 	params.timing = pipe_ctx->stream->timing;
2396 
2397 	params.link_settings.link_rate = link_settings->link_rate;
2398 
2399 	if (link_is_dp_128b_132b_signal(pipe_ctx)) {
2400 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
2401 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
2402 				pipe_ctx->stream_res.hpo_dp_stream_enc,
2403 				pipe_ctx->stream_res.tg->inst);
2404 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
2405 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
2406 			params.timing.pix_clk_100hz /= 2;
2407 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
2408 				pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
2409 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
2410 	}
2411 
2412 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
2413 		hws->funcs.edp_backlight_control(link, true);
2414 	}
2415 }
2416 
2417 void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
2418 {
2419 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2420 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
2421 
2422 	if (start_line < 0)
2423 		start_line = 0;
2424 
2425 	if (tg->funcs->setup_vertical_interrupt2)
2426 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
2427 }
2428 
2429 static void dcn20_reset_back_end_for_pipe(
2430 		struct dc *dc,
2431 		struct pipe_ctx *pipe_ctx,
2432 		struct dc_state *context)
2433 {
2434 	int i;
2435 	struct dc_link *link = pipe_ctx->stream->link;
2436 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2437 
2438 	DC_LOGGER_INIT(dc->ctx->logger);
2439 	if (pipe_ctx->stream_res.stream_enc == NULL) {
2440 		pipe_ctx->stream = NULL;
2441 		return;
2442 	}
2443 
2444 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2445 		/* DPMS may already disable or */
2446 		/* dpms_off status is incorrect due to fastboot
2447 		 * feature. When system resume from S4 with second
2448 		 * screen only, the dpms_off would be true but
2449 		 * VBIOS lit up eDP, so check link status too.
2450 		 */
2451 		if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
2452 			link_set_dpms_off(pipe_ctx);
2453 		else if (pipe_ctx->stream_res.audio)
2454 			dc->hwss.disable_audio_stream(pipe_ctx);
2455 
2456 		/* free acquired resources */
2457 		if (pipe_ctx->stream_res.audio) {
2458 			/*disable az_endpoint*/
2459 			pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2460 
2461 			/*free audio*/
2462 			if (dc->caps.dynamic_audio == true) {
2463 				/*we have to dynamic arbitrate the audio endpoints*/
2464 				/*we free the resource, need reset is_audio_acquired*/
2465 				update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2466 						pipe_ctx->stream_res.audio, false);
2467 				pipe_ctx->stream_res.audio = NULL;
2468 			}
2469 		}
2470 	}
2471 	else if (pipe_ctx->stream_res.dsc) {
2472 		link_set_dsc_enable(pipe_ctx, false);
2473 	}
2474 
2475 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
2476 	 * back end share by all pipes and will be disable only when disable
2477 	 * parent pipe.
2478 	 */
2479 	if (pipe_ctx->top_pipe == NULL) {
2480 
2481 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2482 
2483 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
2484 
2485 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
2486 		if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
2487 			pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
2488 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
2489 
2490 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
2491 			pipe_ctx->stream_res.tg->funcs->set_drr(
2492 					pipe_ctx->stream_res.tg, NULL);
2493 		/* TODO - convert symclk_ref_cnts for otg to a bit map to solve
2494 		 * the case where the same symclk is shared across multiple otg
2495 		 * instances
2496 		 */
2497 		link->phy_state.symclk_ref_cnts.otg = 0;
2498 		if (link->phy_state.symclk_state == SYMCLK_ON_TX_OFF) {
2499 			link_hwss->disable_link_output(link,
2500 					&pipe_ctx->link_res, pipe_ctx->stream->signal);
2501 			link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
2502 		}
2503 	}
2504 
2505 	for (i = 0; i < dc->res_pool->pipe_count; i++)
2506 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
2507 			break;
2508 
2509 	if (i == dc->res_pool->pipe_count)
2510 		return;
2511 
2512 	pipe_ctx->stream = NULL;
2513 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
2514 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
2515 }
2516 
2517 void dcn20_reset_hw_ctx_wrap(
2518 		struct dc *dc,
2519 		struct dc_state *context)
2520 {
2521 	int i;
2522 	struct dce_hwseq *hws = dc->hwseq;
2523 
2524 	/* Reset Back End*/
2525 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
2526 		struct pipe_ctx *pipe_ctx_old =
2527 			&dc->current_state->res_ctx.pipe_ctx[i];
2528 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2529 
2530 		if (!pipe_ctx_old->stream)
2531 			continue;
2532 
2533 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
2534 			continue;
2535 
2536 		if (!pipe_ctx->stream ||
2537 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2538 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2539 
2540 			dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
2541 			if (hws->funcs.enable_stream_gating)
2542 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
2543 			if (old_clk)
2544 				old_clk->funcs->cs_power_down(old_clk);
2545 		}
2546 	}
2547 }
2548 
2549 void dcn20_update_visual_confirm_color(struct dc *dc, struct pipe_ctx *pipe_ctx, struct tg_color *color, int mpcc_id)
2550 {
2551 	struct mpc *mpc = dc->res_pool->mpc;
2552 
2553 	// input to MPCC is always RGB, by default leave black_color at 0
2554 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
2555 		get_hdr_visual_confirm_color(pipe_ctx, color);
2556 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
2557 		get_surface_visual_confirm_color(pipe_ctx, color);
2558 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
2559 		get_mpctree_visual_confirm_color(pipe_ctx, color);
2560 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
2561 		get_surface_tile_visual_confirm_color(pipe_ctx, color);
2562 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
2563 		get_subvp_visual_confirm_color(dc, pipe_ctx, color);
2564 
2565 	if (mpc->funcs->set_bg_color) {
2566 		memcpy(&pipe_ctx->plane_state->visual_confirm_color, color, sizeof(struct tg_color));
2567 		mpc->funcs->set_bg_color(mpc, color, mpcc_id);
2568 	}
2569 }
2570 
2571 void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2572 {
2573 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2574 	struct mpcc_blnd_cfg blnd_cfg = {0};
2575 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
2576 	int mpcc_id;
2577 	struct mpcc *new_mpcc;
2578 	struct mpc *mpc = dc->res_pool->mpc;
2579 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2580 
2581 	blnd_cfg.overlap_only = false;
2582 	blnd_cfg.global_gain = 0xff;
2583 
2584 	if (per_pixel_alpha) {
2585 		blnd_cfg.pre_multiplied_alpha = pipe_ctx->plane_state->pre_multiplied_alpha;
2586 		if (pipe_ctx->plane_state->global_alpha) {
2587 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2588 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2589 		} else {
2590 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2591 		}
2592 	} else {
2593 		blnd_cfg.pre_multiplied_alpha = false;
2594 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2595 	}
2596 
2597 	if (pipe_ctx->plane_state->global_alpha)
2598 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2599 	else
2600 		blnd_cfg.global_alpha = 0xff;
2601 
2602 	blnd_cfg.background_color_bpc = 4;
2603 	blnd_cfg.bottom_gain_mode = 0;
2604 	blnd_cfg.top_gain = 0x1f000;
2605 	blnd_cfg.bottom_inside_gain = 0x1f000;
2606 	blnd_cfg.bottom_outside_gain = 0x1f000;
2607 
2608 	if (pipe_ctx->plane_state->format
2609 			== SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA)
2610 		blnd_cfg.pre_multiplied_alpha = false;
2611 
2612 	/*
2613 	 * TODO: remove hack
2614 	 * Note: currently there is a bug in init_hw such that
2615 	 * on resume from hibernate, BIOS sets up MPCC0, and
2616 	 * we do mpcc_remove but the mpcc cannot go to idle
2617 	 * after remove. This cause us to pick mpcc1 here,
2618 	 * which causes a pstate hang for yet unknown reason.
2619 	 */
2620 	mpcc_id = hubp->inst;
2621 
2622 	/* If there is no full update, don't need to touch MPC tree*/
2623 	if (!pipe_ctx->plane_state->update_flags.bits.full_update &&
2624 		!pipe_ctx->update_flags.bits.mpcc) {
2625 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2626 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
2627 		return;
2628 	}
2629 
2630 	/* check if this MPCC is already being used */
2631 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2632 	/* remove MPCC if being used */
2633 	if (new_mpcc != NULL)
2634 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2635 	else
2636 		if (dc->debug.sanity_checks)
2637 			mpc->funcs->assert_mpcc_idle_before_connect(
2638 					dc->res_pool->mpc, mpcc_id);
2639 
2640 	/* Call MPC to insert new plane */
2641 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2642 			mpc_tree_params,
2643 			&blnd_cfg,
2644 			NULL,
2645 			NULL,
2646 			hubp->inst,
2647 			mpcc_id);
2648 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
2649 
2650 	ASSERT(new_mpcc != NULL);
2651 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2652 	hubp->mpcc_id = mpcc_id;
2653 }
2654 
2655 static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link)
2656 {
2657 	switch (link->link_enc->transmitter) {
2658 	case TRANSMITTER_UNIPHY_A:
2659 		return PHYD32CLKA;
2660 	case TRANSMITTER_UNIPHY_B:
2661 		return PHYD32CLKB;
2662 	case TRANSMITTER_UNIPHY_C:
2663 		return PHYD32CLKC;
2664 	case TRANSMITTER_UNIPHY_D:
2665 		return PHYD32CLKD;
2666 	case TRANSMITTER_UNIPHY_E:
2667 		return PHYD32CLKE;
2668 	default:
2669 		return PHYD32CLKA;
2670 	}
2671 }
2672 
2673 static int get_odm_segment_count(struct pipe_ctx *pipe_ctx)
2674 {
2675 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2676 	int count = 1;
2677 
2678 	while (odm_pipe != NULL) {
2679 		count++;
2680 		odm_pipe = odm_pipe->next_odm_pipe;
2681 	}
2682 
2683 	return count;
2684 }
2685 
2686 void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
2687 {
2688 	enum dc_lane_count lane_count =
2689 		pipe_ctx->stream->link->cur_link_settings.lane_count;
2690 
2691 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
2692 	struct dc_link *link = pipe_ctx->stream->link;
2693 
2694 	uint32_t active_total_with_borders;
2695 	uint32_t early_control = 0;
2696 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2697 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2698 	struct dc *dc = pipe_ctx->stream->ctx->dc;
2699 	struct dtbclk_dto_params dto_params = {0};
2700 	struct dccg *dccg = dc->res_pool->dccg;
2701 	enum phyd32clk_clock_source phyd32clk;
2702 	int dp_hpo_inst;
2703 	struct dce_hwseq *hws = dc->hwseq;
2704 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
2705 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
2706 
2707 	if (link_is_dp_128b_132b_signal(pipe_ctx)) {
2708 		if (dc->hwseq->funcs.setup_hpo_hw_control)
2709 			dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, true);
2710 	}
2711 
2712 	if (link_is_dp_128b_132b_signal(pipe_ctx)) {
2713 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
2714 		dccg->funcs->set_dpstreamclk(dccg, DTBCLK0, tg->inst, dp_hpo_inst);
2715 
2716 		phyd32clk = get_phyd32clk_src(link);
2717 		dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk);
2718 
2719 		dto_params.otg_inst = tg->inst;
2720 		dto_params.pixclk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10;
2721 		dto_params.num_odm_segments = get_odm_segment_count(pipe_ctx);
2722 		dto_params.timing = &pipe_ctx->stream->timing;
2723 		dto_params.ref_dtbclk_khz = dc->clk_mgr->funcs->get_dtb_ref_clk_frequency(dc->clk_mgr);
2724 		dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
2725 	}
2726 
2727 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
2728 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
2729 
2730 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
2731 			dc->res_pool->dccg,
2732 			pipe_ctx->stream_res.tg->inst,
2733 			k1_div, k2_div);
2734 	}
2735 
2736 	link_hwss->setup_stream_encoder(pipe_ctx);
2737 
2738 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
2739 		if (dc->hwss.program_dmdata_engine)
2740 			dc->hwss.program_dmdata_engine(pipe_ctx);
2741 	}
2742 
2743 	dc->hwss.update_info_frame(pipe_ctx);
2744 
2745 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
2746 		link_dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
2747 
2748 	/* enable early control to avoid corruption on DP monitor*/
2749 	active_total_with_borders =
2750 			timing->h_addressable
2751 				+ timing->h_border_left
2752 				+ timing->h_border_right;
2753 
2754 	if (lane_count != 0)
2755 		early_control = active_total_with_borders % lane_count;
2756 
2757 	if (early_control == 0)
2758 		early_control = lane_count;
2759 
2760 	tg->funcs->set_early_control(tg, early_control);
2761 
2762 	if (dc->hwseq->funcs.set_pixels_per_cycle)
2763 		dc->hwseq->funcs.set_pixels_per_cycle(pipe_ctx);
2764 }
2765 
2766 void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
2767 {
2768 	struct dc_stream_state    *stream     = pipe_ctx->stream;
2769 	struct hubp               *hubp       = pipe_ctx->plane_res.hubp;
2770 	bool                       enable     = false;
2771 	struct stream_encoder     *stream_enc = pipe_ctx->stream_res.stream_enc;
2772 	enum dynamic_metadata_mode mode       = dc_is_dp_signal(stream->signal)
2773 							? dmdata_dp
2774 							: dmdata_hdmi;
2775 
2776 	/* if using dynamic meta, don't set up generic infopackets */
2777 	if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
2778 		pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
2779 		enable = true;
2780 	}
2781 
2782 	if (!hubp)
2783 		return;
2784 
2785 	if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
2786 		return;
2787 
2788 	stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
2789 						hubp->inst, mode);
2790 }
2791 
2792 void dcn20_fpga_init_hw(struct dc *dc)
2793 {
2794 	int i, j;
2795 	struct dce_hwseq *hws = dc->hwseq;
2796 	struct resource_pool *res_pool = dc->res_pool;
2797 	struct dc_state  *context = dc->current_state;
2798 
2799 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
2800 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
2801 
2802 	// Initialize the dccg
2803 	if (res_pool->dccg->funcs->dccg_init)
2804 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
2805 
2806 	//Enable ability to power gate / don't force power on permanently
2807 	hws->funcs.enable_power_gating_plane(hws, true);
2808 
2809 	// Specific to FPGA dccg and registers
2810 	REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
2811 	REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
2812 
2813 	hws->funcs.dccg_init(hws);
2814 
2815 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
2816 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
2817 	if (REG(REFCLK_CNTL))
2818 		REG_WRITE(REFCLK_CNTL, 0);
2819 	//
2820 
2821 
2822 	/* Blank pixel data with OPP DPG */
2823 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2824 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2825 
2826 		if (tg->funcs->is_tg_enabled(tg))
2827 			dcn20_init_blank(dc, tg);
2828 	}
2829 
2830 	for (i = 0; i < res_pool->timing_generator_count; i++) {
2831 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2832 
2833 		if (tg->funcs->is_tg_enabled(tg))
2834 			tg->funcs->lock(tg);
2835 	}
2836 
2837 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2838 		struct dpp *dpp = res_pool->dpps[i];
2839 
2840 		dpp->funcs->dpp_reset(dpp);
2841 	}
2842 
2843 	/* Reset all MPCC muxes */
2844 	res_pool->mpc->funcs->mpc_init(res_pool->mpc);
2845 
2846 	/* initialize OPP mpc_tree parameter */
2847 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
2848 		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
2849 		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2850 		for (j = 0; j < MAX_PIPES; j++)
2851 			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
2852 	}
2853 
2854 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2855 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2856 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2857 		struct hubp *hubp = dc->res_pool->hubps[i];
2858 		struct dpp *dpp = dc->res_pool->dpps[i];
2859 
2860 		pipe_ctx->stream_res.tg = tg;
2861 		pipe_ctx->pipe_idx = i;
2862 
2863 		pipe_ctx->plane_res.hubp = hubp;
2864 		pipe_ctx->plane_res.dpp = dpp;
2865 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
2866 		hubp->mpcc_id = dpp->inst;
2867 		hubp->opp_id = OPP_ID_INVALID;
2868 		hubp->power_gated = false;
2869 		pipe_ctx->stream_res.opp = NULL;
2870 
2871 		hubp->funcs->hubp_init(hubp);
2872 
2873 		//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
2874 		//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2875 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
2876 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
2877 		/*to do*/
2878 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
2879 	}
2880 
2881 	/* initialize DWB pointer to MCIF_WB */
2882 	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
2883 		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
2884 
2885 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2886 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2887 
2888 		if (tg->funcs->is_tg_enabled(tg))
2889 			tg->funcs->unlock(tg);
2890 	}
2891 
2892 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2893 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2894 
2895 		dc->hwss.disable_plane(dc, pipe_ctx);
2896 
2897 		pipe_ctx->stream_res.tg = NULL;
2898 		pipe_ctx->plane_res.hubp = NULL;
2899 	}
2900 
2901 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2902 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2903 
2904 		tg->funcs->tg_init(tg);
2905 	}
2906 
2907 	if (dc->res_pool->hubbub->funcs->init_crb)
2908 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
2909 }
2910 #ifndef TRIM_FSFT
2911 bool dcn20_optimize_timing_for_fsft(struct dc *dc,
2912 		struct dc_crtc_timing *timing,
2913 		unsigned int max_input_rate_in_khz)
2914 {
2915 	unsigned int old_v_front_porch;
2916 	unsigned int old_v_total;
2917 	unsigned int max_input_rate_in_100hz;
2918 	unsigned long long new_v_total;
2919 
2920 	max_input_rate_in_100hz = max_input_rate_in_khz * 10;
2921 	if (max_input_rate_in_100hz < timing->pix_clk_100hz)
2922 		return false;
2923 
2924 	old_v_total = timing->v_total;
2925 	old_v_front_porch = timing->v_front_porch;
2926 
2927 	timing->fast_transport_output_rate_100hz = timing->pix_clk_100hz;
2928 	timing->pix_clk_100hz = max_input_rate_in_100hz;
2929 
2930 	new_v_total = div_u64((unsigned long long)old_v_total * max_input_rate_in_100hz, timing->pix_clk_100hz);
2931 
2932 	timing->v_total = new_v_total;
2933 	timing->v_front_porch = old_v_front_porch + (timing->v_total - old_v_total);
2934 	return true;
2935 }
2936 #endif
2937 
2938 void dcn20_set_disp_pattern_generator(const struct dc *dc,
2939 		struct pipe_ctx *pipe_ctx,
2940 		enum controller_dp_test_pattern test_pattern,
2941 		enum controller_dp_color_space color_space,
2942 		enum dc_color_depth color_depth,
2943 		const struct tg_color *solid_color,
2944 		int width, int height, int offset)
2945 {
2946 	pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern,
2947 			color_space, color_depth, solid_color, width, height, offset);
2948 }
2949