1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include <linux/delay.h>
26 
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "dm_helpers.h"
30 #include "core_types.h"
31 #include "resource.h"
32 #include "dcn20_resource.h"
33 #include "dcn20_hwseq.h"
34 #include "dce/dce_hwseq.h"
35 #include "dcn20_dsc.h"
36 #include "dcn20_optc.h"
37 #include "abm.h"
38 #include "clk_mgr.h"
39 #include "dmcu.h"
40 #include "hubp.h"
41 #include "timing_generator.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "mpc.h"
45 #include "mcif_wb.h"
46 #include "dchubbub.h"
47 #include "reg_helper.h"
48 #include "dcn10/dcn10_cm_common.h"
49 #include "vm_helper.h"
50 #include "dccg.h"
51 #include "dc_dmub_srv.h"
52 #include "dce/dmub_hw_lock_mgr.h"
53 #include "hw_sequencer.h"
54 #include "dpcd_defs.h"
55 #include "inc/link_enc_cfg.h"
56 #include "link_hwss.h"
57 #include "link.h"
58 
59 #define DC_LOGGER_INIT(logger)
60 
61 #define CTX \
62 	hws->ctx
63 #define REG(reg)\
64 	hws->regs->reg
65 
66 #undef FN
67 #define FN(reg_name, field_name) \
68 	hws->shifts->field_name, hws->masks->field_name
69 
70 static int find_free_gsl_group(const struct dc *dc)
71 {
72 	if (dc->res_pool->gsl_groups.gsl_0 == 0)
73 		return 1;
74 	if (dc->res_pool->gsl_groups.gsl_1 == 0)
75 		return 2;
76 	if (dc->res_pool->gsl_groups.gsl_2 == 0)
77 		return 3;
78 
79 	return 0;
80 }
81 
82 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
83  * This is only used to lock pipes in pipe splitting case with immediate flip
84  * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
85  * so we get tearing with freesync since we cannot flip multiple pipes
86  * atomically.
87  * We use GSL for this:
88  * - immediate flip: find first available GSL group if not already assigned
89  *                   program gsl with that group, set current OTG as master
90  *                   and always us 0x4 = AND of flip_ready from all pipes
91  * - vsync flip: disable GSL if used
92  *
93  * Groups in stream_res are stored as +1 from HW registers, i.e.
94  * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
95  * Using a magic value like -1 would require tracking all inits/resets
96  */
97 static void dcn20_setup_gsl_group_as_lock(
98 		const struct dc *dc,
99 		struct pipe_ctx *pipe_ctx,
100 		bool enable)
101 {
102 	struct gsl_params gsl;
103 	int group_idx;
104 
105 	memset(&gsl, 0, sizeof(struct gsl_params));
106 
107 	if (enable) {
108 		/* return if group already assigned since GSL was set up
109 		 * for vsync flip, we would unassign so it can't be "left over"
110 		 */
111 		if (pipe_ctx->stream_res.gsl_group > 0)
112 			return;
113 
114 		group_idx = find_free_gsl_group(dc);
115 		ASSERT(group_idx != 0);
116 		pipe_ctx->stream_res.gsl_group = group_idx;
117 
118 		/* set gsl group reg field and mark resource used */
119 		switch (group_idx) {
120 		case 1:
121 			gsl.gsl0_en = 1;
122 			dc->res_pool->gsl_groups.gsl_0 = 1;
123 			break;
124 		case 2:
125 			gsl.gsl1_en = 1;
126 			dc->res_pool->gsl_groups.gsl_1 = 1;
127 			break;
128 		case 3:
129 			gsl.gsl2_en = 1;
130 			dc->res_pool->gsl_groups.gsl_2 = 1;
131 			break;
132 		default:
133 			BREAK_TO_DEBUGGER();
134 			return; // invalid case
135 		}
136 		gsl.gsl_master_en = 1;
137 	} else {
138 		group_idx = pipe_ctx->stream_res.gsl_group;
139 		if (group_idx == 0)
140 			return; // if not in use, just return
141 
142 		pipe_ctx->stream_res.gsl_group = 0;
143 
144 		/* unset gsl group reg field and mark resource free */
145 		switch (group_idx) {
146 		case 1:
147 			gsl.gsl0_en = 0;
148 			dc->res_pool->gsl_groups.gsl_0 = 0;
149 			break;
150 		case 2:
151 			gsl.gsl1_en = 0;
152 			dc->res_pool->gsl_groups.gsl_1 = 0;
153 			break;
154 		case 3:
155 			gsl.gsl2_en = 0;
156 			dc->res_pool->gsl_groups.gsl_2 = 0;
157 			break;
158 		default:
159 			BREAK_TO_DEBUGGER();
160 			return;
161 		}
162 		gsl.gsl_master_en = 0;
163 	}
164 
165 	/* at this point we want to program whether it's to enable or disable */
166 	if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
167 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
168 		pipe_ctx->stream_res.tg->funcs->set_gsl(
169 			pipe_ctx->stream_res.tg,
170 			&gsl);
171 
172 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
173 			pipe_ctx->stream_res.tg, group_idx,	enable ? 4 : 0);
174 	} else
175 		BREAK_TO_DEBUGGER();
176 }
177 
178 void dcn20_set_flip_control_gsl(
179 		struct pipe_ctx *pipe_ctx,
180 		bool flip_immediate)
181 {
182 	if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
183 		pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
184 				pipe_ctx->plane_res.hubp, flip_immediate);
185 
186 }
187 
188 void dcn20_enable_power_gating_plane(
189 	struct dce_hwseq *hws,
190 	bool enable)
191 {
192 	bool force_on = true; /* disable power gating */
193 	uint32_t org_ip_request_cntl = 0;
194 
195 	if (enable)
196 		force_on = false;
197 
198 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
199 	if (org_ip_request_cntl == 0)
200 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
201 
202 	/* DCHUBP0/1/2/3/4/5 */
203 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
204 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
205 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
206 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
207 	if (REG(DOMAIN8_PG_CONFIG))
208 		REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
209 	if (REG(DOMAIN10_PG_CONFIG))
210 		REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
211 
212 	/* DPP0/1/2/3/4/5 */
213 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
214 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
215 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
216 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
217 	if (REG(DOMAIN9_PG_CONFIG))
218 		REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
219 	if (REG(DOMAIN11_PG_CONFIG))
220 		REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
221 
222 	/* DCS0/1/2/3/4/5 */
223 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
224 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
225 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
226 	if (REG(DOMAIN19_PG_CONFIG))
227 		REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
228 	if (REG(DOMAIN20_PG_CONFIG))
229 		REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
230 	if (REG(DOMAIN21_PG_CONFIG))
231 		REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
232 
233 	if (org_ip_request_cntl == 0)
234 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
235 
236 }
237 
238 void dcn20_dccg_init(struct dce_hwseq *hws)
239 {
240 	/*
241 	 * set MICROSECOND_TIME_BASE_DIV
242 	 * 100Mhz refclk -> 0x120264
243 	 * 27Mhz refclk -> 0x12021b
244 	 * 48Mhz refclk -> 0x120230
245 	 *
246 	 */
247 	REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
248 
249 	/*
250 	 * set MILLISECOND_TIME_BASE_DIV
251 	 * 100Mhz refclk -> 0x1186a0
252 	 * 27Mhz refclk -> 0x106978
253 	 * 48Mhz refclk -> 0x10bb80
254 	 *
255 	 */
256 	REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
257 
258 	/* This value is dependent on the hardware pipeline delay so set once per SOC */
259 	REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0xe01003c);
260 }
261 
262 void dcn20_disable_vga(
263 	struct dce_hwseq *hws)
264 {
265 	REG_WRITE(D1VGA_CONTROL, 0);
266 	REG_WRITE(D2VGA_CONTROL, 0);
267 	REG_WRITE(D3VGA_CONTROL, 0);
268 	REG_WRITE(D4VGA_CONTROL, 0);
269 	REG_WRITE(D5VGA_CONTROL, 0);
270 	REG_WRITE(D6VGA_CONTROL, 0);
271 }
272 
273 void dcn20_program_triple_buffer(
274 	const struct dc *dc,
275 	struct pipe_ctx *pipe_ctx,
276 	bool enable_triple_buffer)
277 {
278 	if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
279 		pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
280 			pipe_ctx->plane_res.hubp,
281 			enable_triple_buffer);
282 	}
283 }
284 
285 /* Blank pixel data during initialization */
286 void dcn20_init_blank(
287 		struct dc *dc,
288 		struct timing_generator *tg)
289 {
290 	struct dce_hwseq *hws = dc->hwseq;
291 	enum dc_color_space color_space;
292 	struct tg_color black_color = {0};
293 	struct output_pixel_processor *opp = NULL;
294 	struct output_pixel_processor *bottom_opp = NULL;
295 	uint32_t num_opps, opp_id_src0, opp_id_src1;
296 	uint32_t otg_active_width, otg_active_height;
297 
298 	/* program opp dpg blank color */
299 	color_space = COLOR_SPACE_SRGB;
300 	color_space_to_black_color(dc, color_space, &black_color);
301 
302 	/* get the OTG active size */
303 	tg->funcs->get_otg_active_size(tg,
304 			&otg_active_width,
305 			&otg_active_height);
306 
307 	/* get the OPTC source */
308 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
309 
310 	if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
311 		ASSERT(false);
312 		return;
313 	}
314 	opp = dc->res_pool->opps[opp_id_src0];
315 
316 	/* don't override the blank pattern if already enabled with the correct one. */
317 	if (opp->funcs->dpg_is_blanked && opp->funcs->dpg_is_blanked(opp))
318 		return;
319 
320 	if (num_opps == 2) {
321 		otg_active_width = otg_active_width / 2;
322 
323 		if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
324 			ASSERT(false);
325 			return;
326 		}
327 		bottom_opp = dc->res_pool->opps[opp_id_src1];
328 	}
329 
330 	opp->funcs->opp_set_disp_pattern_generator(
331 			opp,
332 			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
333 			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
334 			COLOR_DEPTH_UNDEFINED,
335 			&black_color,
336 			otg_active_width,
337 			otg_active_height,
338 			0);
339 
340 	if (num_opps == 2) {
341 		bottom_opp->funcs->opp_set_disp_pattern_generator(
342 				bottom_opp,
343 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
344 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
345 				COLOR_DEPTH_UNDEFINED,
346 				&black_color,
347 				otg_active_width,
348 				otg_active_height,
349 				0);
350 	}
351 
352 	hws->funcs.wait_for_blank_complete(opp);
353 }
354 
355 void dcn20_dsc_pg_control(
356 		struct dce_hwseq *hws,
357 		unsigned int dsc_inst,
358 		bool power_on)
359 {
360 	uint32_t power_gate = power_on ? 0 : 1;
361 	uint32_t pwr_status = power_on ? 0 : 2;
362 	uint32_t org_ip_request_cntl = 0;
363 
364 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
365 		return;
366 
367 	if (REG(DOMAIN16_PG_CONFIG) == 0)
368 		return;
369 
370 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
371 	if (org_ip_request_cntl == 0)
372 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
373 
374 	switch (dsc_inst) {
375 	case 0: /* DSC0 */
376 		REG_UPDATE(DOMAIN16_PG_CONFIG,
377 				DOMAIN16_POWER_GATE, power_gate);
378 
379 		REG_WAIT(DOMAIN16_PG_STATUS,
380 				DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
381 				1, 1000);
382 		break;
383 	case 1: /* DSC1 */
384 		REG_UPDATE(DOMAIN17_PG_CONFIG,
385 				DOMAIN17_POWER_GATE, power_gate);
386 
387 		REG_WAIT(DOMAIN17_PG_STATUS,
388 				DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
389 				1, 1000);
390 		break;
391 	case 2: /* DSC2 */
392 		REG_UPDATE(DOMAIN18_PG_CONFIG,
393 				DOMAIN18_POWER_GATE, power_gate);
394 
395 		REG_WAIT(DOMAIN18_PG_STATUS,
396 				DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
397 				1, 1000);
398 		break;
399 	case 3: /* DSC3 */
400 		REG_UPDATE(DOMAIN19_PG_CONFIG,
401 				DOMAIN19_POWER_GATE, power_gate);
402 
403 		REG_WAIT(DOMAIN19_PG_STATUS,
404 				DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
405 				1, 1000);
406 		break;
407 	case 4: /* DSC4 */
408 		REG_UPDATE(DOMAIN20_PG_CONFIG,
409 				DOMAIN20_POWER_GATE, power_gate);
410 
411 		REG_WAIT(DOMAIN20_PG_STATUS,
412 				DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
413 				1, 1000);
414 		break;
415 	case 5: /* DSC5 */
416 		REG_UPDATE(DOMAIN21_PG_CONFIG,
417 				DOMAIN21_POWER_GATE, power_gate);
418 
419 		REG_WAIT(DOMAIN21_PG_STATUS,
420 				DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
421 				1, 1000);
422 		break;
423 	default:
424 		BREAK_TO_DEBUGGER();
425 		break;
426 	}
427 
428 	if (org_ip_request_cntl == 0)
429 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
430 }
431 
432 void dcn20_dpp_pg_control(
433 		struct dce_hwseq *hws,
434 		unsigned int dpp_inst,
435 		bool power_on)
436 {
437 	uint32_t power_gate = power_on ? 0 : 1;
438 	uint32_t pwr_status = power_on ? 0 : 2;
439 
440 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
441 		return;
442 	if (REG(DOMAIN1_PG_CONFIG) == 0)
443 		return;
444 
445 	switch (dpp_inst) {
446 	case 0: /* DPP0 */
447 		REG_UPDATE(DOMAIN1_PG_CONFIG,
448 				DOMAIN1_POWER_GATE, power_gate);
449 
450 		REG_WAIT(DOMAIN1_PG_STATUS,
451 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
452 				1, 1000);
453 		break;
454 	case 1: /* DPP1 */
455 		REG_UPDATE(DOMAIN3_PG_CONFIG,
456 				DOMAIN3_POWER_GATE, power_gate);
457 
458 		REG_WAIT(DOMAIN3_PG_STATUS,
459 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
460 				1, 1000);
461 		break;
462 	case 2: /* DPP2 */
463 		REG_UPDATE(DOMAIN5_PG_CONFIG,
464 				DOMAIN5_POWER_GATE, power_gate);
465 
466 		REG_WAIT(DOMAIN5_PG_STATUS,
467 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
468 				1, 1000);
469 		break;
470 	case 3: /* DPP3 */
471 		REG_UPDATE(DOMAIN7_PG_CONFIG,
472 				DOMAIN7_POWER_GATE, power_gate);
473 
474 		REG_WAIT(DOMAIN7_PG_STATUS,
475 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
476 				1, 1000);
477 		break;
478 	case 4: /* DPP4 */
479 		REG_UPDATE(DOMAIN9_PG_CONFIG,
480 				DOMAIN9_POWER_GATE, power_gate);
481 
482 		REG_WAIT(DOMAIN9_PG_STATUS,
483 				DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
484 				1, 1000);
485 		break;
486 	case 5: /* DPP5 */
487 		/*
488 		 * Do not power gate DPP5, should be left at HW default, power on permanently.
489 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
490 		 * reset.
491 		 * REG_UPDATE(DOMAIN11_PG_CONFIG,
492 		 *		DOMAIN11_POWER_GATE, power_gate);
493 		 *
494 		 * REG_WAIT(DOMAIN11_PG_STATUS,
495 		 *		DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
496 		 * 		1, 1000);
497 		 */
498 		break;
499 	default:
500 		BREAK_TO_DEBUGGER();
501 		break;
502 	}
503 }
504 
505 
506 void dcn20_hubp_pg_control(
507 		struct dce_hwseq *hws,
508 		unsigned int hubp_inst,
509 		bool power_on)
510 {
511 	uint32_t power_gate = power_on ? 0 : 1;
512 	uint32_t pwr_status = power_on ? 0 : 2;
513 
514 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
515 		return;
516 	if (REG(DOMAIN0_PG_CONFIG) == 0)
517 		return;
518 
519 	switch (hubp_inst) {
520 	case 0: /* DCHUBP0 */
521 		REG_UPDATE(DOMAIN0_PG_CONFIG,
522 				DOMAIN0_POWER_GATE, power_gate);
523 
524 		REG_WAIT(DOMAIN0_PG_STATUS,
525 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
526 				1, 1000);
527 		break;
528 	case 1: /* DCHUBP1 */
529 		REG_UPDATE(DOMAIN2_PG_CONFIG,
530 				DOMAIN2_POWER_GATE, power_gate);
531 
532 		REG_WAIT(DOMAIN2_PG_STATUS,
533 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
534 				1, 1000);
535 		break;
536 	case 2: /* DCHUBP2 */
537 		REG_UPDATE(DOMAIN4_PG_CONFIG,
538 				DOMAIN4_POWER_GATE, power_gate);
539 
540 		REG_WAIT(DOMAIN4_PG_STATUS,
541 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
542 				1, 1000);
543 		break;
544 	case 3: /* DCHUBP3 */
545 		REG_UPDATE(DOMAIN6_PG_CONFIG,
546 				DOMAIN6_POWER_GATE, power_gate);
547 
548 		REG_WAIT(DOMAIN6_PG_STATUS,
549 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
550 				1, 1000);
551 		break;
552 	case 4: /* DCHUBP4 */
553 		REG_UPDATE(DOMAIN8_PG_CONFIG,
554 				DOMAIN8_POWER_GATE, power_gate);
555 
556 		REG_WAIT(DOMAIN8_PG_STATUS,
557 				DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
558 				1, 1000);
559 		break;
560 	case 5: /* DCHUBP5 */
561 		/*
562 		 * Do not power gate DCHUB5, should be left at HW default, power on permanently.
563 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
564 		 * reset.
565 		 * REG_UPDATE(DOMAIN10_PG_CONFIG,
566 		 *		DOMAIN10_POWER_GATE, power_gate);
567 		 *
568 		 * REG_WAIT(DOMAIN10_PG_STATUS,
569 		 *		DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
570 		 *		1, 1000);
571 		 */
572 		break;
573 	default:
574 		BREAK_TO_DEBUGGER();
575 		break;
576 	}
577 }
578 
579 
580 /* disable HW used by plane.
581  * note:  cannot disable until disconnect is complete
582  */
583 void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
584 {
585 	struct dce_hwseq *hws = dc->hwseq;
586 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
587 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
588 
589 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
590 
591 	/* In flip immediate with pipe splitting case GSL is used for
592 	 * synchronization so we must disable it when the plane is disabled.
593 	 */
594 	if (pipe_ctx->stream_res.gsl_group != 0)
595 		dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
596 
597 	if (hubp->funcs->hubp_update_mall_sel)
598 		hubp->funcs->hubp_update_mall_sel(hubp, 0, false);
599 
600 	dc->hwss.set_flip_control_gsl(pipe_ctx, false);
601 
602 	hubp->funcs->hubp_clk_cntl(hubp, false);
603 
604 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
605 
606 	hubp->power_gated = true;
607 
608 	hws->funcs.plane_atomic_power_down(dc,
609 			pipe_ctx->plane_res.dpp,
610 			pipe_ctx->plane_res.hubp);
611 
612 	pipe_ctx->stream = NULL;
613 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
614 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
615 	pipe_ctx->top_pipe = NULL;
616 	pipe_ctx->bottom_pipe = NULL;
617 	pipe_ctx->plane_state = NULL;
618 }
619 
620 
621 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
622 {
623 	bool is_phantom = pipe_ctx->plane_state && pipe_ctx->plane_state->is_phantom;
624 	struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL;
625 
626 	DC_LOGGER_INIT(dc->ctx->logger);
627 
628 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
629 		return;
630 
631 	dcn20_plane_atomic_disable(dc, pipe_ctx);
632 
633 	/* Turn back off the phantom OTG after the phantom plane is fully disabled
634 	 */
635 	if (is_phantom)
636 		if (tg && tg->funcs->disable_phantom_crtc)
637 			tg->funcs->disable_phantom_crtc(tg);
638 
639 	DC_LOG_DC("Power down front end %d\n",
640 					pipe_ctx->pipe_idx);
641 }
642 
643 void dcn20_disable_pixel_data(struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank)
644 {
645 	dcn20_blank_pixel_data(dc, pipe_ctx, blank);
646 }
647 
648 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
649 		int opp_cnt)
650 {
651 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
652 	int flow_ctrl_cnt;
653 
654 	if (opp_cnt >= 2)
655 		hblank_halved = true;
656 
657 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
658 			stream->timing.h_border_left -
659 			stream->timing.h_border_right;
660 
661 	if (hblank_halved)
662 		flow_ctrl_cnt /= 2;
663 
664 	/* ODM combine 4:1 case */
665 	if (opp_cnt == 4)
666 		flow_ctrl_cnt /= 2;
667 
668 	return flow_ctrl_cnt;
669 }
670 
671 enum dc_status dcn20_enable_stream_timing(
672 		struct pipe_ctx *pipe_ctx,
673 		struct dc_state *context,
674 		struct dc *dc)
675 {
676 	struct dce_hwseq *hws = dc->hwseq;
677 	struct dc_stream_state *stream = pipe_ctx->stream;
678 	struct drr_params params = {0};
679 	unsigned int event_triggers = 0;
680 	struct pipe_ctx *odm_pipe;
681 	int opp_cnt = 1;
682 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
683 	bool interlace = stream->timing.flags.INTERLACE;
684 	int i;
685 	struct mpc_dwb_flow_control flow_control;
686 	struct mpc *mpc = dc->res_pool->mpc;
687 	bool rate_control_2x_pclk = (interlace || optc2_is_two_pixels_per_containter(&stream->timing));
688 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
689 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
690 
691 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
692 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
693 
694 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
695 			dc->res_pool->dccg,
696 			pipe_ctx->stream_res.tg->inst,
697 			k1_div, k2_div);
698 	}
699 	/* by upper caller loop, pipe0 is parent pipe and be called first.
700 	 * back end is set up by for pipe0. Other children pipe share back end
701 	 * with pipe 0. No program is needed.
702 	 */
703 	if (pipe_ctx->top_pipe != NULL)
704 		return DC_OK;
705 
706 	/* TODO check if timing_changed, disable stream if timing changed */
707 
708 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
709 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
710 		opp_cnt++;
711 	}
712 
713 	if (opp_cnt > 1)
714 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
715 				pipe_ctx->stream_res.tg,
716 				opp_inst, opp_cnt,
717 				&pipe_ctx->stream->timing);
718 
719 	/* HW program guide assume display already disable
720 	 * by unplug sequence. OTG assume stop.
721 	 */
722 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
723 
724 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
725 			pipe_ctx->clock_source,
726 			&pipe_ctx->stream_res.pix_clk_params,
727 			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
728 			&pipe_ctx->pll_settings)) {
729 		BREAK_TO_DEBUGGER();
730 		return DC_ERROR_UNEXPECTED;
731 	}
732 
733 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
734 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
735 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
736 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
737 		else
738 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
739 	}
740 
741 	if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
742 		dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
743 
744 	pipe_ctx->stream_res.tg->funcs->program_timing(
745 			pipe_ctx->stream_res.tg,
746 			&stream->timing,
747 			pipe_ctx->pipe_dlg_param.vready_offset,
748 			pipe_ctx->pipe_dlg_param.vstartup_start,
749 			pipe_ctx->pipe_dlg_param.vupdate_offset,
750 			pipe_ctx->pipe_dlg_param.vupdate_width,
751 			pipe_ctx->stream->signal,
752 			true);
753 
754 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
755 	flow_control.flow_ctrl_mode = 0;
756 	flow_control.flow_ctrl_cnt0 = 0x80;
757 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(stream, opp_cnt);
758 	if (mpc->funcs->set_out_rate_control) {
759 		for (i = 0; i < opp_cnt; ++i) {
760 			mpc->funcs->set_out_rate_control(
761 					mpc, opp_inst[i],
762 					true,
763 					rate_control_2x_pclk,
764 					&flow_control);
765 		}
766 	}
767 
768 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
769 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
770 				odm_pipe->stream_res.opp,
771 				true);
772 
773 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
774 			pipe_ctx->stream_res.opp,
775 			true);
776 
777 	hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
778 
779 	/* VTG is  within DCHUB command block. DCFCLK is always on */
780 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
781 		BREAK_TO_DEBUGGER();
782 		return DC_ERROR_UNEXPECTED;
783 	}
784 
785 	hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
786 
787 	params.vertical_total_min = stream->adjust.v_total_min;
788 	params.vertical_total_max = stream->adjust.v_total_max;
789 	params.vertical_total_mid = stream->adjust.v_total_mid;
790 	params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
791 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
792 		pipe_ctx->stream_res.tg->funcs->set_drr(
793 			pipe_ctx->stream_res.tg, &params);
794 
795 	// DRR should set trigger event to monitor surface update event
796 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
797 		event_triggers = 0x80;
798 	/* Event triggers and num frames initialized for DRR, but can be
799 	 * later updated for PSR use. Note DRR trigger events are generated
800 	 * regardless of whether num frames met.
801 	 */
802 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
803 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
804 				pipe_ctx->stream_res.tg, event_triggers, 2);
805 
806 	/* TODO program crtc source select for non-virtual signal*/
807 	/* TODO program FMT */
808 	/* TODO setup link_enc */
809 	/* TODO set stream attributes */
810 	/* TODO program audio */
811 	/* TODO enable stream if timing changed */
812 	/* TODO unblank stream if DP */
813 
814 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
815 		if (pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable)
816 			pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg);
817 	}
818 	return DC_OK;
819 }
820 
821 void dcn20_program_output_csc(struct dc *dc,
822 		struct pipe_ctx *pipe_ctx,
823 		enum dc_color_space colorspace,
824 		uint16_t *matrix,
825 		int opp_id)
826 {
827 	struct mpc *mpc = dc->res_pool->mpc;
828 	enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
829 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
830 
831 	if (mpc->funcs->power_on_mpc_mem_pwr)
832 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
833 
834 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
835 		if (mpc->funcs->set_output_csc != NULL)
836 			mpc->funcs->set_output_csc(mpc,
837 					opp_id,
838 					matrix,
839 					ocsc_mode);
840 	} else {
841 		if (mpc->funcs->set_ocsc_default != NULL)
842 			mpc->funcs->set_ocsc_default(mpc,
843 					opp_id,
844 					colorspace,
845 					ocsc_mode);
846 	}
847 }
848 
849 bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
850 				const struct dc_stream_state *stream)
851 {
852 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
853 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
854 	struct pwl_params *params = NULL;
855 	/*
856 	 * program OGAM only for the top pipe
857 	 * if there is a pipe split then fix diagnostic is required:
858 	 * how to pass OGAM parameter for stream.
859 	 * if programming for all pipes is required then remove condition
860 	 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
861 	 */
862 	if (mpc->funcs->power_on_mpc_mem_pwr)
863 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
864 	if (pipe_ctx->top_pipe == NULL
865 			&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
866 		if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
867 			params = &stream->out_transfer_func->pwl;
868 		else if (pipe_ctx->stream->out_transfer_func->type ==
869 			TF_TYPE_DISTRIBUTED_POINTS &&
870 			cm_helper_translate_curve_to_hw_format(dc->ctx,
871 			stream->out_transfer_func,
872 			&mpc->blender_params, false))
873 			params = &mpc->blender_params;
874 		/*
875 		 * there is no ROM
876 		 */
877 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
878 			BREAK_TO_DEBUGGER();
879 	}
880 	/*
881 	 * if above if is not executed then 'params' equal to 0 and set in bypass
882 	 */
883 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
884 
885 	return true;
886 }
887 
888 bool dcn20_set_blend_lut(
889 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
890 {
891 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
892 	bool result = true;
893 	struct pwl_params *blend_lut = NULL;
894 
895 	if (plane_state->blend_tf) {
896 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
897 			blend_lut = &plane_state->blend_tf->pwl;
898 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
899 			cm_helper_translate_curve_to_hw_format(plane_state->ctx,
900 					plane_state->blend_tf,
901 					&dpp_base->regamma_params, false);
902 			blend_lut = &dpp_base->regamma_params;
903 		}
904 	}
905 	result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
906 
907 	return result;
908 }
909 
910 bool dcn20_set_shaper_3dlut(
911 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
912 {
913 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
914 	bool result = true;
915 	struct pwl_params *shaper_lut = NULL;
916 
917 	if (plane_state->in_shaper_func) {
918 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
919 			shaper_lut = &plane_state->in_shaper_func->pwl;
920 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
921 			cm_helper_translate_curve_to_hw_format(plane_state->ctx,
922 					plane_state->in_shaper_func,
923 					&dpp_base->shaper_params, true);
924 			shaper_lut = &dpp_base->shaper_params;
925 		}
926 	}
927 
928 	result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
929 	if (plane_state->lut3d_func &&
930 		plane_state->lut3d_func->state.bits.initialized == 1)
931 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
932 								&plane_state->lut3d_func->lut_3d);
933 	else
934 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
935 
936 	return result;
937 }
938 
939 bool dcn20_set_input_transfer_func(struct dc *dc,
940 				struct pipe_ctx *pipe_ctx,
941 				const struct dc_plane_state *plane_state)
942 {
943 	struct dce_hwseq *hws = dc->hwseq;
944 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
945 	const struct dc_transfer_func *tf = NULL;
946 	bool result = true;
947 	bool use_degamma_ram = false;
948 
949 	if (dpp_base == NULL || plane_state == NULL)
950 		return false;
951 
952 	hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
953 	hws->funcs.set_blend_lut(pipe_ctx, plane_state);
954 
955 	if (plane_state->in_transfer_func)
956 		tf = plane_state->in_transfer_func;
957 
958 
959 	if (tf == NULL) {
960 		dpp_base->funcs->dpp_set_degamma(dpp_base,
961 				IPP_DEGAMMA_MODE_BYPASS);
962 		return true;
963 	}
964 
965 	if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
966 		use_degamma_ram = true;
967 
968 	if (use_degamma_ram == true) {
969 		if (tf->type == TF_TYPE_HWPWL)
970 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
971 					&tf->pwl);
972 		else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
973 			cm_helper_translate_curve_to_degamma_hw_format(tf,
974 					&dpp_base->degamma_params);
975 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
976 				&dpp_base->degamma_params);
977 		}
978 		return true;
979 	}
980 	/* handle here the optimized cases when de-gamma ROM could be used.
981 	 *
982 	 */
983 	if (tf->type == TF_TYPE_PREDEFINED) {
984 		switch (tf->tf) {
985 		case TRANSFER_FUNCTION_SRGB:
986 			dpp_base->funcs->dpp_set_degamma(dpp_base,
987 					IPP_DEGAMMA_MODE_HW_sRGB);
988 			break;
989 		case TRANSFER_FUNCTION_BT709:
990 			dpp_base->funcs->dpp_set_degamma(dpp_base,
991 					IPP_DEGAMMA_MODE_HW_xvYCC);
992 			break;
993 		case TRANSFER_FUNCTION_LINEAR:
994 			dpp_base->funcs->dpp_set_degamma(dpp_base,
995 					IPP_DEGAMMA_MODE_BYPASS);
996 			break;
997 		case TRANSFER_FUNCTION_PQ:
998 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
999 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
1000 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
1001 			result = true;
1002 			break;
1003 		default:
1004 			result = false;
1005 			break;
1006 		}
1007 	} else if (tf->type == TF_TYPE_BYPASS)
1008 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1009 				IPP_DEGAMMA_MODE_BYPASS);
1010 	else {
1011 		/*
1012 		 * if we are here, we did not handle correctly.
1013 		 * fix is required for this use case
1014 		 */
1015 		BREAK_TO_DEBUGGER();
1016 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1017 				IPP_DEGAMMA_MODE_BYPASS);
1018 	}
1019 
1020 	return result;
1021 }
1022 
1023 void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1024 {
1025 	struct pipe_ctx *odm_pipe;
1026 	int opp_cnt = 1;
1027 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
1028 
1029 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1030 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
1031 		opp_cnt++;
1032 	}
1033 
1034 	if (opp_cnt > 1)
1035 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1036 				pipe_ctx->stream_res.tg,
1037 				opp_inst, opp_cnt,
1038 				&pipe_ctx->stream->timing);
1039 	else
1040 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1041 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1042 }
1043 
1044 void dcn20_blank_pixel_data(
1045 		struct dc *dc,
1046 		struct pipe_ctx *pipe_ctx,
1047 		bool blank)
1048 {
1049 	struct tg_color black_color = {0};
1050 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
1051 	struct dc_stream_state *stream = pipe_ctx->stream;
1052 	enum dc_color_space color_space = stream->output_color_space;
1053 	enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
1054 	enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1055 	struct pipe_ctx *odm_pipe;
1056 	int odm_cnt = 1;
1057 	int h_active = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
1058 	int v_active = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
1059 	int odm_slice_width, last_odm_slice_width, offset = 0;
1060 
1061 	if (stream->link->test_pattern_enabled)
1062 		return;
1063 
1064 	/* get opp dpg blank color */
1065 	color_space_to_black_color(dc, color_space, &black_color);
1066 
1067 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1068 		odm_cnt++;
1069 	odm_slice_width = h_active / odm_cnt;
1070 	last_odm_slice_width = h_active - odm_slice_width * (odm_cnt - 1);
1071 
1072 	if (blank) {
1073 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
1074 
1075 		if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
1076 			test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1077 			test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1078 		}
1079 	} else {
1080 		test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1081 	}
1082 
1083 	odm_pipe = pipe_ctx;
1084 
1085 	while (odm_pipe->next_odm_pipe) {
1086 		dc->hwss.set_disp_pattern_generator(dc,
1087 				odm_pipe,
1088 				test_pattern,
1089 				test_pattern_color_space,
1090 				stream->timing.display_color_depth,
1091 				&black_color,
1092 				odm_slice_width,
1093 				v_active,
1094 				offset);
1095 		offset += odm_slice_width;
1096 		odm_pipe = odm_pipe->next_odm_pipe;
1097 	}
1098 
1099 	dc->hwss.set_disp_pattern_generator(dc,
1100 			odm_pipe,
1101 			test_pattern,
1102 			test_pattern_color_space,
1103 			stream->timing.display_color_depth,
1104 			&black_color,
1105 			last_odm_slice_width,
1106 			v_active,
1107 			offset);
1108 
1109 	if (!blank && dc->debug.enable_single_display_2to1_odm_policy) {
1110 		/* when exiting dynamic ODM need to reinit DPG state for unused pipes */
1111 		struct pipe_ctx *old_odm_pipe = dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx].next_odm_pipe;
1112 
1113 		odm_pipe = pipe_ctx->next_odm_pipe;
1114 
1115 		while (old_odm_pipe) {
1116 			if (!odm_pipe || old_odm_pipe->pipe_idx != odm_pipe->pipe_idx)
1117 				dc->hwss.set_disp_pattern_generator(dc,
1118 						old_odm_pipe,
1119 						CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
1120 						CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1121 						COLOR_DEPTH_888,
1122 						NULL,
1123 						0,
1124 						0,
1125 						0);
1126 			old_odm_pipe = old_odm_pipe->next_odm_pipe;
1127 			if (odm_pipe)
1128 				odm_pipe = odm_pipe->next_odm_pipe;
1129 		}
1130 	}
1131 
1132 	if (!blank)
1133 		if (stream_res->abm) {
1134 			dc->hwss.set_pipe(pipe_ctx);
1135 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
1136 		}
1137 }
1138 
1139 
1140 static void dcn20_power_on_plane_resources(
1141 	struct dce_hwseq *hws,
1142 	struct pipe_ctx *pipe_ctx)
1143 {
1144 	DC_LOGGER_INIT(hws->ctx->logger);
1145 
1146 	if (hws->funcs.dpp_root_clock_control)
1147 		hws->funcs.dpp_root_clock_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1148 
1149 	if (REG(DC_IP_REQUEST_CNTL)) {
1150 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1151 				IP_REQUEST_EN, 1);
1152 
1153 		if (hws->funcs.dpp_pg_control)
1154 			hws->funcs.dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1155 
1156 		if (hws->funcs.hubp_pg_control)
1157 			hws->funcs.hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
1158 
1159 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1160 				IP_REQUEST_EN, 0);
1161 		DC_LOG_DEBUG(
1162 				"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
1163 	}
1164 }
1165 
1166 static void dcn20_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx,
1167 			       struct dc_state *context)
1168 {
1169 	//if (dc->debug.sanity_checks) {
1170 	//	dcn10_verify_allow_pstate_change_high(dc);
1171 	//}
1172 	dcn20_power_on_plane_resources(dc->hwseq, pipe_ctx);
1173 
1174 	/* enable DCFCLK current DCHUB */
1175 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
1176 
1177 	/* initialize HUBP on power up */
1178 	pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
1179 
1180 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
1181 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1182 			pipe_ctx->stream_res.opp,
1183 			true);
1184 
1185 /* TODO: enable/disable in dm as per update type.
1186 	if (plane_state) {
1187 		DC_LOG_DC(dc->ctx->logger,
1188 				"Pipe:%d 0x%x: addr hi:0x%x, "
1189 				"addr low:0x%x, "
1190 				"src: %d, %d, %d,"
1191 				" %d; dst: %d, %d, %d, %d;\n",
1192 				pipe_ctx->pipe_idx,
1193 				plane_state,
1194 				plane_state->address.grph.addr.high_part,
1195 				plane_state->address.grph.addr.low_part,
1196 				plane_state->src_rect.x,
1197 				plane_state->src_rect.y,
1198 				plane_state->src_rect.width,
1199 				plane_state->src_rect.height,
1200 				plane_state->dst_rect.x,
1201 				plane_state->dst_rect.y,
1202 				plane_state->dst_rect.width,
1203 				plane_state->dst_rect.height);
1204 
1205 		DC_LOG_DC(dc->ctx->logger,
1206 				"Pipe %d: width, height, x, y         format:%d\n"
1207 				"viewport:%d, %d, %d, %d\n"
1208 				"recout:  %d, %d, %d, %d\n",
1209 				pipe_ctx->pipe_idx,
1210 				plane_state->format,
1211 				pipe_ctx->plane_res.scl_data.viewport.width,
1212 				pipe_ctx->plane_res.scl_data.viewport.height,
1213 				pipe_ctx->plane_res.scl_data.viewport.x,
1214 				pipe_ctx->plane_res.scl_data.viewport.y,
1215 				pipe_ctx->plane_res.scl_data.recout.width,
1216 				pipe_ctx->plane_res.scl_data.recout.height,
1217 				pipe_ctx->plane_res.scl_data.recout.x,
1218 				pipe_ctx->plane_res.scl_data.recout.y);
1219 		print_rq_dlg_ttu(dc, pipe_ctx);
1220 	}
1221 */
1222 	if (dc->vm_pa_config.valid) {
1223 		struct vm_system_aperture_param apt;
1224 
1225 		apt.sys_default.quad_part = 0;
1226 
1227 		apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
1228 		apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
1229 
1230 		// Program system aperture settings
1231 		pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
1232 	}
1233 
1234 	if (!pipe_ctx->top_pipe
1235 		&& pipe_ctx->plane_state
1236 		&& pipe_ctx->plane_state->flip_int_enabled
1237 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
1238 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
1239 
1240 //	if (dc->debug.sanity_checks) {
1241 //		dcn10_verify_allow_pstate_change_high(dc);
1242 //	}
1243 }
1244 
1245 void dcn20_pipe_control_lock(
1246 	struct dc *dc,
1247 	struct pipe_ctx *pipe,
1248 	bool lock)
1249 {
1250 	struct pipe_ctx *temp_pipe;
1251 	bool flip_immediate = false;
1252 
1253 	/* use TG master update lock to lock everything on the TG
1254 	 * therefore only top pipe need to lock
1255 	 */
1256 	if (!pipe || pipe->top_pipe)
1257 		return;
1258 
1259 	if (pipe->plane_state != NULL)
1260 		flip_immediate = pipe->plane_state->flip_immediate;
1261 
1262 	if  (pipe->stream_res.gsl_group > 0) {
1263 	    temp_pipe = pipe->bottom_pipe;
1264 	    while (!flip_immediate && temp_pipe) {
1265 		    if (temp_pipe->plane_state != NULL)
1266 			    flip_immediate = temp_pipe->plane_state->flip_immediate;
1267 		    temp_pipe = temp_pipe->bottom_pipe;
1268 	    }
1269 	}
1270 
1271 	if (flip_immediate && lock) {
1272 		const int TIMEOUT_FOR_FLIP_PENDING_US = 100000;
1273 		unsigned int polling_interval_us = 1;
1274 		int i;
1275 
1276 		temp_pipe = pipe;
1277 		while (temp_pipe) {
1278 			if (temp_pipe->plane_state && temp_pipe->plane_state->flip_immediate) {
1279 				for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING_US / polling_interval_us; ++i) {
1280 					if (!temp_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(temp_pipe->plane_res.hubp))
1281 						break;
1282 					udelay(polling_interval_us);
1283 				}
1284 
1285 				/* no reason it should take this long for immediate flips */
1286 				ASSERT(i != TIMEOUT_FOR_FLIP_PENDING_US);
1287 			}
1288 			temp_pipe = temp_pipe->bottom_pipe;
1289 		}
1290 	}
1291 
1292 	/* In flip immediate and pipe splitting case, we need to use GSL
1293 	 * for synchronization. Only do setup on locking and on flip type change.
1294 	 */
1295 	if (lock && (pipe->bottom_pipe != NULL || !flip_immediate))
1296 		if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
1297 		    (!flip_immediate && pipe->stream_res.gsl_group > 0))
1298 			dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
1299 
1300 	if (pipe->plane_state != NULL)
1301 		flip_immediate = pipe->plane_state->flip_immediate;
1302 
1303 	temp_pipe = pipe->bottom_pipe;
1304 	while (flip_immediate && temp_pipe) {
1305 	    if (temp_pipe->plane_state != NULL)
1306 		flip_immediate = temp_pipe->plane_state->flip_immediate;
1307 	    temp_pipe = temp_pipe->bottom_pipe;
1308 	}
1309 
1310 	if (!lock && pipe->stream_res.gsl_group > 0 && pipe->plane_state &&
1311 		!flip_immediate)
1312 	    dcn20_setup_gsl_group_as_lock(dc, pipe, false);
1313 
1314 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1315 		union dmub_hw_lock_flags hw_locks = { 0 };
1316 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1317 
1318 		hw_locks.bits.lock_pipe = 1;
1319 		inst_flags.otg_inst =  pipe->stream_res.tg->inst;
1320 
1321 		if (pipe->plane_state != NULL)
1322 			hw_locks.bits.triple_buffer_lock = pipe->plane_state->triplebuffer_flips;
1323 
1324 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1325 					lock,
1326 					&hw_locks,
1327 					&inst_flags);
1328 	} else if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
1329 		if (lock)
1330 			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
1331 		else
1332 			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
1333 	} else {
1334 		if (lock)
1335 			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1336 		else
1337 			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1338 	}
1339 }
1340 
1341 static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe)
1342 {
1343 	new_pipe->update_flags.raw = 0;
1344 
1345 	/* If non-phantom pipe is being transitioned to a phantom pipe,
1346 	 * set disable and return immediately. This is because the pipe
1347 	 * that was previously in use must be fully disabled before we
1348 	 * can "enable" it as a phantom pipe (since the OTG will certainly
1349 	 * be different). The post_unlock sequence will set the correct
1350 	 * update flags to enable the phantom pipe.
1351 	 */
1352 	if (old_pipe->plane_state && !old_pipe->plane_state->is_phantom &&
1353 			new_pipe->plane_state && new_pipe->plane_state->is_phantom) {
1354 		new_pipe->update_flags.bits.disable = 1;
1355 		return;
1356 	}
1357 
1358 	/* Exit on unchanged, unused pipe */
1359 	if (!old_pipe->plane_state && !new_pipe->plane_state)
1360 		return;
1361 	/* Detect pipe enable/disable */
1362 	if (!old_pipe->plane_state && new_pipe->plane_state) {
1363 		new_pipe->update_flags.bits.enable = 1;
1364 		new_pipe->update_flags.bits.mpcc = 1;
1365 		new_pipe->update_flags.bits.dppclk = 1;
1366 		new_pipe->update_flags.bits.hubp_interdependent = 1;
1367 		new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1368 		new_pipe->update_flags.bits.unbounded_req = 1;
1369 		new_pipe->update_flags.bits.gamut_remap = 1;
1370 		new_pipe->update_flags.bits.scaler = 1;
1371 		new_pipe->update_flags.bits.viewport = 1;
1372 		new_pipe->update_flags.bits.det_size = 1;
1373 		if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1374 			new_pipe->update_flags.bits.odm = 1;
1375 			new_pipe->update_flags.bits.global_sync = 1;
1376 		}
1377 		return;
1378 	}
1379 
1380 	/* For SubVP we need to unconditionally enable because any phantom pipes are
1381 	 * always removed then newly added for every full updates whenever SubVP is in use.
1382 	 * The remove-add sequence of the phantom pipe always results in the pipe
1383 	 * being blanked in enable_stream_timing (DPG).
1384 	 */
1385 	if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1386 		new_pipe->update_flags.bits.enable = 1;
1387 
1388 	/* Phantom pipes are effectively disabled, if the pipe was previously phantom
1389 	 * we have to enable
1390 	 */
1391 	if (old_pipe->plane_state && old_pipe->plane_state->is_phantom &&
1392 			new_pipe->plane_state && !new_pipe->plane_state->is_phantom)
1393 		new_pipe->update_flags.bits.enable = 1;
1394 
1395 	if (old_pipe->plane_state && !new_pipe->plane_state) {
1396 		new_pipe->update_flags.bits.disable = 1;
1397 		return;
1398 	}
1399 
1400 	/* Detect plane change */
1401 	if (old_pipe->plane_state != new_pipe->plane_state) {
1402 		new_pipe->update_flags.bits.plane_changed = true;
1403 	}
1404 
1405 	/* Detect top pipe only changes */
1406 	if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1407 		/* Detect odm changes */
1408 		if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe
1409 			&& old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx)
1410 				|| (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe)
1411 				|| (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe)
1412 				|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1413 			new_pipe->update_flags.bits.odm = 1;
1414 
1415 		/* Detect global sync changes */
1416 		if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset
1417 				|| old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start
1418 				|| old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset
1419 				|| old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width)
1420 			new_pipe->update_flags.bits.global_sync = 1;
1421 	}
1422 
1423 	if (old_pipe->det_buffer_size_kb != new_pipe->det_buffer_size_kb)
1424 		new_pipe->update_flags.bits.det_size = 1;
1425 
1426 	/*
1427 	 * Detect opp / tg change, only set on change, not on enable
1428 	 * Assume mpcc inst = pipe index, if not this code needs to be updated
1429 	 * since mpcc is what is affected by these. In fact all of our sequence
1430 	 * makes this assumption at the moment with how hubp reset is matched to
1431 	 * same index mpcc reset.
1432 	 */
1433 	if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1434 		new_pipe->update_flags.bits.opp_changed = 1;
1435 	if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
1436 		new_pipe->update_flags.bits.tg_changed = 1;
1437 
1438 	/*
1439 	 * Detect mpcc blending changes, only dpp inst and opp matter here,
1440 	 * mpccs getting removed/inserted update connected ones during their own
1441 	 * programming
1442 	 */
1443 	if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
1444 			|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1445 		new_pipe->update_flags.bits.mpcc = 1;
1446 
1447 	/* Detect dppclk change */
1448 	if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
1449 		new_pipe->update_flags.bits.dppclk = 1;
1450 
1451 	/* Check for scl update */
1452 	if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
1453 			new_pipe->update_flags.bits.scaler = 1;
1454 	/* Check for vp update */
1455 	if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
1456 			|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
1457 				&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
1458 		new_pipe->update_flags.bits.viewport = 1;
1459 
1460 	/* Detect dlg/ttu/rq updates */
1461 	{
1462 		struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs;
1463 		struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs;
1464 		struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs;
1465 		struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs;
1466 
1467 		/* Detect pipe interdependent updates */
1468 		if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch ||
1469 				old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch ||
1470 				old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c ||
1471 				old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank ||
1472 				old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank ||
1473 				old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip ||
1474 				old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip ||
1475 				old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l ||
1476 				old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c ||
1477 				old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l ||
1478 				old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l ||
1479 				old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c ||
1480 				old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l ||
1481 				old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c ||
1482 				old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 ||
1483 				old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 ||
1484 				old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank ||
1485 				old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) {
1486 			old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch;
1487 			old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch;
1488 			old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c;
1489 			old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank;
1490 			old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank;
1491 			old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip;
1492 			old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip;
1493 			old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l;
1494 			old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c;
1495 			old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l;
1496 			old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l;
1497 			old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c;
1498 			old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l;
1499 			old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c;
1500 			old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0;
1501 			old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1;
1502 			old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank;
1503 			old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip;
1504 			new_pipe->update_flags.bits.hubp_interdependent = 1;
1505 		}
1506 		/* Detect any other updates to ttu/rq/dlg */
1507 		if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) ||
1508 				memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) ||
1509 				memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs)))
1510 			new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1511 	}
1512 
1513 	if (old_pipe->unbounded_req != new_pipe->unbounded_req)
1514 		new_pipe->update_flags.bits.unbounded_req = 1;
1515 }
1516 
1517 static void dcn20_update_dchubp_dpp(
1518 	struct dc *dc,
1519 	struct pipe_ctx *pipe_ctx,
1520 	struct dc_state *context)
1521 {
1522 	struct dce_hwseq *hws = dc->hwseq;
1523 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1524 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1525 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1526 	struct dccg *dccg = dc->res_pool->dccg;
1527 	bool viewport_changed = false;
1528 
1529 	if (pipe_ctx->update_flags.bits.dppclk)
1530 		dpp->funcs->dpp_dppclk_control(dpp, false, true);
1531 
1532 	if (pipe_ctx->update_flags.bits.enable)
1533 		dccg->funcs->update_dpp_dto(dccg, dpp->inst, pipe_ctx->plane_res.bw.dppclk_khz);
1534 
1535 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
1536 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
1537 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
1538 	 */
1539 	if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) {
1540 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
1541 
1542 		hubp->funcs->hubp_setup(
1543 			hubp,
1544 			&pipe_ctx->dlg_regs,
1545 			&pipe_ctx->ttu_regs,
1546 			&pipe_ctx->rq_regs,
1547 			&pipe_ctx->pipe_dlg_param);
1548 	}
1549 
1550 	if (pipe_ctx->update_flags.bits.unbounded_req && hubp->funcs->set_unbounded_requesting)
1551 		hubp->funcs->set_unbounded_requesting(hubp, pipe_ctx->unbounded_req);
1552 
1553 	if (pipe_ctx->update_flags.bits.hubp_interdependent)
1554 		hubp->funcs->hubp_setup_interdependent(
1555 			hubp,
1556 			&pipe_ctx->dlg_regs,
1557 			&pipe_ctx->ttu_regs);
1558 
1559 	if (pipe_ctx->update_flags.bits.enable ||
1560 			pipe_ctx->update_flags.bits.plane_changed ||
1561 			plane_state->update_flags.bits.bpp_change ||
1562 			plane_state->update_flags.bits.input_csc_change ||
1563 			plane_state->update_flags.bits.color_space_change ||
1564 			plane_state->update_flags.bits.coeff_reduction_change) {
1565 		struct dc_bias_and_scale bns_params = {0};
1566 
1567 		// program the input csc
1568 		dpp->funcs->dpp_setup(dpp,
1569 				plane_state->format,
1570 				EXPANSION_MODE_ZERO,
1571 				plane_state->input_csc_color_matrix,
1572 				plane_state->color_space,
1573 				NULL);
1574 
1575 		if (dpp->funcs->dpp_program_bias_and_scale) {
1576 			//TODO :for CNVC set scale and bias registers if necessary
1577 			build_prescale_params(&bns_params, plane_state);
1578 			dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
1579 		}
1580 	}
1581 
1582 	if (pipe_ctx->update_flags.bits.mpcc
1583 			|| pipe_ctx->update_flags.bits.plane_changed
1584 			|| plane_state->update_flags.bits.global_alpha_change
1585 			|| plane_state->update_flags.bits.per_pixel_alpha_change) {
1586 		// MPCC inst is equal to pipe index in practice
1587 		int mpcc_inst = hubp->inst;
1588 		int opp_inst;
1589 		int opp_count = dc->res_pool->pipe_count;
1590 
1591 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
1592 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
1593 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
1594 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
1595 				break;
1596 			}
1597 		}
1598 		hws->funcs.update_mpcc(dc, pipe_ctx);
1599 	}
1600 
1601 	if (pipe_ctx->update_flags.bits.scaler ||
1602 			plane_state->update_flags.bits.scaling_change ||
1603 			plane_state->update_flags.bits.position_change ||
1604 			plane_state->update_flags.bits.per_pixel_alpha_change ||
1605 			pipe_ctx->stream->update_flags.bits.scaling) {
1606 		pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha;
1607 		ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_36BPP);
1608 		/* scaler configuration */
1609 		pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
1610 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
1611 	}
1612 
1613 	if (pipe_ctx->update_flags.bits.viewport ||
1614 			(context == dc->current_state && plane_state->update_flags.bits.position_change) ||
1615 			(context == dc->current_state && plane_state->update_flags.bits.scaling_change) ||
1616 			(context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) {
1617 
1618 		hubp->funcs->mem_program_viewport(
1619 			hubp,
1620 			&pipe_ctx->plane_res.scl_data.viewport,
1621 			&pipe_ctx->plane_res.scl_data.viewport_c);
1622 		viewport_changed = true;
1623 	}
1624 
1625 	/* Any updates are handled in dc interface, just need to apply existing for plane enable */
1626 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed ||
1627 			pipe_ctx->update_flags.bits.scaler || viewport_changed == true) &&
1628 			pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
1629 		dc->hwss.set_cursor_position(pipe_ctx);
1630 		dc->hwss.set_cursor_attribute(pipe_ctx);
1631 
1632 		if (dc->hwss.set_cursor_sdr_white_level)
1633 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
1634 	}
1635 
1636 	/* Any updates are handled in dc interface, just need
1637 	 * to apply existing for plane enable / opp change */
1638 	if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed
1639 			|| pipe_ctx->update_flags.bits.plane_changed
1640 			|| pipe_ctx->stream->update_flags.bits.gamut_remap
1641 			|| plane_state->update_flags.bits.gamut_remap_change
1642 			|| pipe_ctx->stream->update_flags.bits.out_csc) {
1643 		/* dpp/cm gamut remap*/
1644 		dc->hwss.program_gamut_remap(pipe_ctx);
1645 
1646 		/*call the dcn2 method which uses mpc csc*/
1647 		dc->hwss.program_output_csc(dc,
1648 				pipe_ctx,
1649 				pipe_ctx->stream->output_color_space,
1650 				pipe_ctx->stream->csc_color_matrix.matrix,
1651 				hubp->opp_id);
1652 	}
1653 
1654 	if (pipe_ctx->update_flags.bits.enable ||
1655 			pipe_ctx->update_flags.bits.plane_changed ||
1656 			pipe_ctx->update_flags.bits.opp_changed ||
1657 			plane_state->update_flags.bits.pixel_format_change ||
1658 			plane_state->update_flags.bits.horizontal_mirror_change ||
1659 			plane_state->update_flags.bits.rotation_change ||
1660 			plane_state->update_flags.bits.swizzle_change ||
1661 			plane_state->update_flags.bits.dcc_change ||
1662 			plane_state->update_flags.bits.bpp_change ||
1663 			plane_state->update_flags.bits.scaling_change ||
1664 			plane_state->update_flags.bits.plane_size_change) {
1665 		struct plane_size size = plane_state->plane_size;
1666 
1667 		size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
1668 		hubp->funcs->hubp_program_surface_config(
1669 			hubp,
1670 			plane_state->format,
1671 			&plane_state->tiling_info,
1672 			&size,
1673 			plane_state->rotation,
1674 			&plane_state->dcc,
1675 			plane_state->horizontal_mirror,
1676 			0);
1677 		hubp->power_gated = false;
1678 	}
1679 
1680 	if (pipe_ctx->update_flags.bits.enable ||
1681 		pipe_ctx->update_flags.bits.plane_changed ||
1682 		plane_state->update_flags.bits.addr_update)
1683 		hws->funcs.update_plane_addr(dc, pipe_ctx);
1684 
1685 	if (pipe_ctx->update_flags.bits.enable)
1686 		hubp->funcs->set_blank(hubp, false);
1687 	/* If the stream paired with this plane is phantom, the plane is also phantom */
1688 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM
1689 			&& hubp->funcs->phantom_hubp_post_enable)
1690 		hubp->funcs->phantom_hubp_post_enable(hubp);
1691 }
1692 
1693 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
1694 {
1695 	struct pipe_ctx *other_pipe;
1696 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
1697 
1698 	/* Always use the largest vready_offset of all connected pipes */
1699 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
1700 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1701 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1702 	}
1703 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
1704 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1705 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1706 	}
1707 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
1708 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1709 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1710 	}
1711 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
1712 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1713 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1714 	}
1715 
1716 	return vready_offset;
1717 }
1718 
1719 static void dcn20_program_pipe(
1720 		struct dc *dc,
1721 		struct pipe_ctx *pipe_ctx,
1722 		struct dc_state *context)
1723 {
1724 	struct dce_hwseq *hws = dc->hwseq;
1725 	/* Only need to unblank on top pipe */
1726 
1727 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level)
1728 			&& !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe)
1729 		hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible);
1730 
1731 	/* Only update TG on top pipe */
1732 	if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe
1733 			&& !pipe_ctx->prev_odm_pipe) {
1734 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
1735 				pipe_ctx->stream_res.tg,
1736 				calculate_vready_offset_for_group(pipe_ctx),
1737 				pipe_ctx->pipe_dlg_param.vstartup_start,
1738 				pipe_ctx->pipe_dlg_param.vupdate_offset,
1739 				pipe_ctx->pipe_dlg_param.vupdate_width);
1740 
1741 		if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM)
1742 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
1743 
1744 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
1745 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
1746 
1747 		if (hws->funcs.setup_vupdate_interrupt)
1748 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1749 	}
1750 
1751 	if (pipe_ctx->update_flags.bits.odm)
1752 		hws->funcs.update_odm(dc, context, pipe_ctx);
1753 
1754 	if (pipe_ctx->update_flags.bits.enable) {
1755 		dcn20_enable_plane(dc, pipe_ctx, context);
1756 		if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes)
1757 			dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub);
1758 	}
1759 
1760 	if (dc->res_pool->hubbub->funcs->program_det_size && pipe_ctx->update_flags.bits.det_size)
1761 		dc->res_pool->hubbub->funcs->program_det_size(
1762 			dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->det_buffer_size_kb);
1763 
1764 	if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw)
1765 		dcn20_update_dchubp_dpp(dc, pipe_ctx, context);
1766 
1767 	if (pipe_ctx->update_flags.bits.enable
1768 			|| pipe_ctx->plane_state->update_flags.bits.hdr_mult)
1769 		hws->funcs.set_hdr_multiplier(pipe_ctx);
1770 
1771 	if (pipe_ctx->update_flags.bits.enable ||
1772 	    pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
1773 	    pipe_ctx->plane_state->update_flags.bits.gamma_change ||
1774 	    pipe_ctx->plane_state->update_flags.bits.lut_3d)
1775 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
1776 
1777 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
1778 	 * only do gamma programming for powering on, internal memcmp to avoid
1779 	 * updating on slave planes
1780 	 */
1781 	if (pipe_ctx->update_flags.bits.enable ||
1782 			pipe_ctx->update_flags.bits.plane_changed ||
1783 			pipe_ctx->stream->update_flags.bits.out_tf ||
1784 			pipe_ctx->plane_state->update_flags.bits.output_tf_change)
1785 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
1786 
1787 	/* If the pipe has been enabled or has a different opp, we
1788 	 * should reprogram the fmt. This deals with cases where
1789 	 * interation between mpc and odm combine on different streams
1790 	 * causes a different pipe to be chosen to odm combine with.
1791 	 */
1792 	if (pipe_ctx->update_flags.bits.enable
1793 	    || pipe_ctx->update_flags.bits.opp_changed) {
1794 
1795 		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1796 			pipe_ctx->stream_res.opp,
1797 			COLOR_SPACE_YCBCR601,
1798 			pipe_ctx->stream->timing.display_color_depth,
1799 			pipe_ctx->stream->signal);
1800 
1801 		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1802 			pipe_ctx->stream_res.opp,
1803 			&pipe_ctx->stream->bit_depth_params,
1804 			&pipe_ctx->stream->clamping);
1805 	}
1806 
1807 	/* Set ABM pipe after other pipe configurations done */
1808 	if (pipe_ctx->plane_state->visible) {
1809 		if (pipe_ctx->stream_res.abm) {
1810 			dc->hwss.set_pipe(pipe_ctx);
1811 			pipe_ctx->stream_res.abm->funcs->set_abm_level(pipe_ctx->stream_res.abm,
1812 				pipe_ctx->stream->abm_level);
1813 		}
1814 	}
1815 }
1816 
1817 void dcn20_program_front_end_for_ctx(
1818 		struct dc *dc,
1819 		struct dc_state *context)
1820 {
1821 	int i;
1822 	struct dce_hwseq *hws = dc->hwseq;
1823 	DC_LOGGER_INIT(dc->ctx->logger);
1824 
1825 	/* Carry over GSL groups in case the context is changing. */
1826 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1827 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1828 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1829 
1830 		if (pipe_ctx->stream == old_pipe_ctx->stream)
1831 			pipe_ctx->stream_res.gsl_group = old_pipe_ctx->stream_res.gsl_group;
1832 	}
1833 
1834 	if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
1835 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1836 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1837 
1838 			if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) {
1839 				ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
1840 				/*turn off triple buffer for full update*/
1841 				dc->hwss.program_triplebuffer(
1842 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
1843 			}
1844 		}
1845 	}
1846 
1847 	/* Set pipe update flags and lock pipes */
1848 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1849 		dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i],
1850 				&context->res_ctx.pipe_ctx[i]);
1851 
1852 	/* When disabling phantom pipes, turn on phantom OTG first (so we can get double
1853 	 * buffer updates properly)
1854 	 */
1855 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1856 		struct dc_stream_state *stream = dc->current_state->res_ctx.pipe_ctx[i].stream;
1857 
1858 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && stream &&
1859 			dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1860 			struct timing_generator *tg = dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg;
1861 
1862 			if (tg->funcs->enable_crtc)
1863 				tg->funcs->enable_crtc(tg);
1864 		}
1865 	}
1866 	/* OTG blank before disabling all front ends */
1867 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1868 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1869 				&& !context->res_ctx.pipe_ctx[i].top_pipe
1870 				&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
1871 				&& context->res_ctx.pipe_ctx[i].stream)
1872 			hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);
1873 
1874 
1875 	/* Disconnect mpcc */
1876 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1877 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1878 				|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
1879 			struct hubbub *hubbub = dc->res_pool->hubbub;
1880 
1881 			/* Phantom pipe DET should be 0, but if a pipe in use is being transitioned to phantom
1882 			 * then we want to do the programming here (effectively it's being disabled). If we do
1883 			 * the programming later the DET won't be updated until the OTG for the phantom pipe is
1884 			 * turned on (i.e. in an MCLK switch) which can come in too late and cause issues with
1885 			 * DET allocation.
1886 			 */
1887 			if (hubbub->funcs->program_det_size && (context->res_ctx.pipe_ctx[i].update_flags.bits.disable ||
1888 					(context->res_ctx.pipe_ctx[i].plane_state && context->res_ctx.pipe_ctx[i].plane_state->is_phantom)))
1889 				hubbub->funcs->program_det_size(hubbub, dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0);
1890 			hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1891 			DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
1892 		}
1893 
1894 	/*
1895 	 * Program all updated pipes, order matters for mpcc setup. Start with
1896 	 * top pipe and program all pipes that follow in order
1897 	 */
1898 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1899 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1900 
1901 		if (pipe->plane_state && !pipe->top_pipe) {
1902 			while (pipe) {
1903 				if (hws->funcs.program_pipe)
1904 					hws->funcs.program_pipe(dc, pipe, context);
1905 				else {
1906 					/* Don't program phantom pipes in the regular front end programming sequence.
1907 					 * There is an MPO transition case where a pipe being used by a video plane is
1908 					 * transitioned directly to be a phantom pipe when closing the MPO video. However
1909 					 * the phantom pipe will program a new HUBP_VTG_SEL (update takes place right away),
1910 					 * but the MPO still exists until the double buffered update of the main pipe so we
1911 					 * will get a frame of underflow if the phantom pipe is programmed here.
1912 					 */
1913 					if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM)
1914 						dcn20_program_pipe(dc, pipe, context);
1915 				}
1916 
1917 				pipe = pipe->bottom_pipe;
1918 			}
1919 		}
1920 		/* Program secondary blending tree and writeback pipes */
1921 		pipe = &context->res_ctx.pipe_ctx[i];
1922 		if (!pipe->top_pipe && !pipe->prev_odm_pipe
1923 				&& pipe->stream && pipe->stream->num_wb_info > 0
1924 				&& (pipe->update_flags.raw || (pipe->plane_state && pipe->plane_state->update_flags.raw)
1925 					|| pipe->stream->update_flags.raw)
1926 				&& hws->funcs.program_all_writeback_pipes_in_tree)
1927 			hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);
1928 
1929 		/* Avoid underflow by check of pipe line read when adding 2nd plane. */
1930 		if (hws->wa.wait_hubpret_read_start_during_mpo_transition &&
1931 			!pipe->top_pipe &&
1932 			pipe->stream &&
1933 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start &&
1934 			dc->current_state->stream_status[0].plane_count == 1 &&
1935 			context->stream_status[0].plane_count > 1) {
1936 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start(pipe->plane_res.hubp);
1937 		}
1938 
1939 		/* when dynamic ODM is active, pipes must be reconfigured when all planes are
1940 		 * disabled, as some transitions will leave software and hardware state
1941 		 * mismatched.
1942 		 */
1943 		if (dc->debug.enable_single_display_2to1_odm_policy &&
1944 			pipe->stream &&
1945 			pipe->update_flags.bits.disable &&
1946 			!pipe->prev_odm_pipe &&
1947 			hws->funcs.update_odm)
1948 			hws->funcs.update_odm(dc, context, pipe);
1949 	}
1950 }
1951 
1952 void dcn20_post_unlock_program_front_end(
1953 		struct dc *dc,
1954 		struct dc_state *context)
1955 {
1956 	int i;
1957 	const unsigned int TIMEOUT_FOR_PIPE_ENABLE_US = 100000;
1958 	unsigned int polling_interval_us = 1;
1959 	struct dce_hwseq *hwseq = dc->hwseq;
1960 
1961 	DC_LOGGER_INIT(dc->ctx->logger);
1962 
1963 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1964 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
1965 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1966 
1967 	/*
1968 	 * If we are enabling a pipe, we need to wait for pending clear as this is a critical
1969 	 * part of the enable operation otherwise, DM may request an immediate flip which
1970 	 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
1971 	 * is unsupported on DCN.
1972 	 */
1973 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1974 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1975 		// Don't check flip pending on phantom pipes
1976 		if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable &&
1977 				pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1978 			struct hubp *hubp = pipe->plane_res.hubp;
1979 			int j = 0;
1980 			for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_US / polling_interval_us
1981 					&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
1982 				udelay(polling_interval_us);
1983 		}
1984 	}
1985 
1986 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1987 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1988 
1989 		if (pipe->plane_state && !pipe->top_pipe) {
1990 			/* Program phantom pipe here to prevent a frame of underflow in the MPO transition
1991 			 * case (if a pipe being used for a video plane transitions to a phantom pipe, it
1992 			 * can underflow due to HUBP_VTG_SEL programming if done in the regular front end
1993 			 * programming sequence).
1994 			 */
1995 			while (pipe) {
1996 				if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1997 					/* When turning on the phantom pipe we want to run through the
1998 					 * entire enable sequence, so apply all the "enable" flags.
1999 					 */
2000 					if (dc->hwss.apply_update_flags_for_phantom)
2001 						dc->hwss.apply_update_flags_for_phantom(pipe);
2002 					if (dc->hwss.update_phantom_vp_position)
2003 						dc->hwss.update_phantom_vp_position(dc, context, pipe);
2004 					dcn20_program_pipe(dc, pipe, context);
2005 				}
2006 				pipe = pipe->bottom_pipe;
2007 			}
2008 		}
2009 	}
2010 
2011 	/* P-State support transitions:
2012 	 * Natural -> FPO: 		P-State disabled in prepare, force disallow anytime is safe
2013 	 * FPO -> Natural: 		Unforce anytime after FW disable is safe (P-State will assert naturally)
2014 	 * Unsupported -> FPO:	P-State enabled in optimize, force disallow anytime is safe
2015 	 * FPO -> Unsupported:	P-State disabled in prepare, unforce disallow anytime is safe
2016 	 * FPO <-> SubVP:		Force disallow is maintained on the FPO / SubVP pipes
2017 	 */
2018 	if (hwseq && hwseq->funcs.update_force_pstate)
2019 		dc->hwseq->funcs.update_force_pstate(dc, context);
2020 
2021 	/* Only program the MALL registers after all the main and phantom pipes
2022 	 * are done programming.
2023 	 */
2024 	if (hwseq->funcs.program_mall_pipe_config)
2025 		hwseq->funcs.program_mall_pipe_config(dc, context);
2026 
2027 	/* WA to apply WM setting*/
2028 	if (hwseq->wa.DEGVIDCN21)
2029 		dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);
2030 
2031 
2032 	/* WA for stutter underflow during MPO transitions when adding 2nd plane */
2033 	if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {
2034 
2035 		if (dc->current_state->stream_status[0].plane_count == 1 &&
2036 				context->stream_status[0].plane_count > 1) {
2037 
2038 			struct timing_generator *tg = dc->res_pool->timing_generators[0];
2039 
2040 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);
2041 
2042 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
2043 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg);
2044 		}
2045 	}
2046 }
2047 
2048 void dcn20_prepare_bandwidth(
2049 		struct dc *dc,
2050 		struct dc_state *context)
2051 {
2052 	struct hubbub *hubbub = dc->res_pool->hubbub;
2053 	unsigned int compbuf_size_kb = 0;
2054 	unsigned int cache_wm_a = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns;
2055 	unsigned int i;
2056 
2057 	dc->clk_mgr->funcs->update_clocks(
2058 			dc->clk_mgr,
2059 			context,
2060 			false);
2061 
2062 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2063 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2064 
2065 		// At optimize don't restore the original watermark value
2066 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2067 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2068 			break;
2069 		}
2070 	}
2071 
2072 	/* program dchubbub watermarks:
2073 	 * For assigning wm_optimized_required, use |= operator since we don't want
2074 	 * to clear the value if the optimize has not happened yet
2075 	 */
2076 	dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub,
2077 					&context->bw_ctx.bw.dcn.watermarks,
2078 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2079 					false);
2080 
2081 	// Restore the real watermark so we can commit the value to DMCUB
2082 	// DMCUB uses the "original" watermark value in SubVP MCLK switch
2083 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = cache_wm_a;
2084 
2085 	/* decrease compbuf size */
2086 	if (hubbub->funcs->program_compbuf_size) {
2087 		if (context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes) {
2088 			compbuf_size_kb = context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes;
2089 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.dml.ip.min_comp_buffer_size_kbytes);
2090 		} else {
2091 			compbuf_size_kb = context->bw_ctx.bw.dcn.compbuf_size_kb;
2092 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.bw.dcn.compbuf_size_kb);
2093 		}
2094 
2095 		hubbub->funcs->program_compbuf_size(hubbub, compbuf_size_kb, false);
2096 	}
2097 }
2098 
2099 void dcn20_optimize_bandwidth(
2100 		struct dc *dc,
2101 		struct dc_state *context)
2102 {
2103 	struct hubbub *hubbub = dc->res_pool->hubbub;
2104 	int i;
2105 
2106 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2107 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2108 
2109 		// At optimize don't need  to restore the original watermark value
2110 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2111 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2112 			break;
2113 		}
2114 	}
2115 
2116 	/* program dchubbub watermarks */
2117 	hubbub->funcs->program_watermarks(hubbub,
2118 					&context->bw_ctx.bw.dcn.watermarks,
2119 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2120 					true);
2121 
2122 	if (dc->clk_mgr->dc_mode_softmax_enabled)
2123 		if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
2124 				context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
2125 			dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk);
2126 
2127 	/* increase compbuf size */
2128 	if (hubbub->funcs->program_compbuf_size)
2129 		hubbub->funcs->program_compbuf_size(hubbub, context->bw_ctx.bw.dcn.compbuf_size_kb, true);
2130 
2131 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2132 		dc_dmub_srv_p_state_delegate(dc,
2133 			true, context);
2134 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
2135 		dc->clk_mgr->clks.fw_based_mclk_switching = true;
2136 	} else {
2137 		dc->clk_mgr->clks.fw_based_mclk_switching = false;
2138 	}
2139 
2140 	dc->clk_mgr->funcs->update_clocks(
2141 			dc->clk_mgr,
2142 			context,
2143 			true);
2144 	if (context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) {
2145 		for (i = 0; i < dc->res_pool->pipe_count; ++i) {
2146 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2147 
2148 			if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank
2149 				&& pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max
2150 				&& pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total)
2151 					pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp,
2152 						pipe_ctx->dlg_regs.min_dst_y_next_start);
2153 		}
2154 	}
2155 }
2156 
2157 bool dcn20_update_bandwidth(
2158 		struct dc *dc,
2159 		struct dc_state *context)
2160 {
2161 	int i;
2162 	struct dce_hwseq *hws = dc->hwseq;
2163 
2164 	/* recalculate DML parameters */
2165 	if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
2166 		return false;
2167 
2168 	/* apply updated bandwidth parameters */
2169 	dc->hwss.prepare_bandwidth(dc, context);
2170 
2171 	/* update hubp configs for all pipes */
2172 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2173 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2174 
2175 		if (pipe_ctx->plane_state == NULL)
2176 			continue;
2177 
2178 		if (pipe_ctx->top_pipe == NULL) {
2179 			bool blank = !is_pipe_tree_visible(pipe_ctx);
2180 
2181 			pipe_ctx->stream_res.tg->funcs->program_global_sync(
2182 					pipe_ctx->stream_res.tg,
2183 					calculate_vready_offset_for_group(pipe_ctx),
2184 					pipe_ctx->pipe_dlg_param.vstartup_start,
2185 					pipe_ctx->pipe_dlg_param.vupdate_offset,
2186 					pipe_ctx->pipe_dlg_param.vupdate_width);
2187 
2188 			pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2189 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false);
2190 
2191 			if (pipe_ctx->prev_odm_pipe == NULL)
2192 				hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2193 
2194 			if (hws->funcs.setup_vupdate_interrupt)
2195 				hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2196 		}
2197 
2198 		pipe_ctx->plane_res.hubp->funcs->hubp_setup(
2199 				pipe_ctx->plane_res.hubp,
2200 					&pipe_ctx->dlg_regs,
2201 					&pipe_ctx->ttu_regs,
2202 					&pipe_ctx->rq_regs,
2203 					&pipe_ctx->pipe_dlg_param);
2204 	}
2205 
2206 	return true;
2207 }
2208 
2209 void dcn20_enable_writeback(
2210 		struct dc *dc,
2211 		struct dc_writeback_info *wb_info,
2212 		struct dc_state *context)
2213 {
2214 	struct dwbc *dwb;
2215 	struct mcif_wb *mcif_wb;
2216 	struct timing_generator *optc;
2217 
2218 	ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
2219 	ASSERT(wb_info->wb_enabled);
2220 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
2221 	mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
2222 
2223 	/* set the OPTC source mux */
2224 	optc = dc->res_pool->timing_generators[dwb->otg_inst];
2225 	optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
2226 	/* set MCIF_WB buffer and arbitration configuration */
2227 	mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
2228 	mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
2229 	/* Enable MCIF_WB */
2230 	mcif_wb->funcs->enable_mcif(mcif_wb);
2231 	/* Enable DWB */
2232 	dwb->funcs->enable(dwb, &wb_info->dwb_params);
2233 	/* TODO: add sequence to enable/disable warmup */
2234 }
2235 
2236 void dcn20_disable_writeback(
2237 		struct dc *dc,
2238 		unsigned int dwb_pipe_inst)
2239 {
2240 	struct dwbc *dwb;
2241 	struct mcif_wb *mcif_wb;
2242 
2243 	ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
2244 	dwb = dc->res_pool->dwbc[dwb_pipe_inst];
2245 	mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
2246 
2247 	dwb->funcs->disable(dwb);
2248 	mcif_wb->funcs->disable_mcif(mcif_wb);
2249 }
2250 
2251 bool dcn20_wait_for_blank_complete(
2252 		struct output_pixel_processor *opp)
2253 {
2254 	int counter;
2255 
2256 	for (counter = 0; counter < 1000; counter++) {
2257 		if (opp->funcs->dpg_is_blanked(opp))
2258 			break;
2259 
2260 		udelay(100);
2261 	}
2262 
2263 	if (counter == 1000) {
2264 		dm_error("DC: failed to blank crtc!\n");
2265 		return false;
2266 	}
2267 
2268 	return true;
2269 }
2270 
2271 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
2272 {
2273 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2274 
2275 	if (!hubp)
2276 		return false;
2277 	return hubp->funcs->dmdata_status_done(hubp);
2278 }
2279 
2280 void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2281 {
2282 	struct dce_hwseq *hws = dc->hwseq;
2283 
2284 	if (pipe_ctx->stream_res.dsc) {
2285 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2286 
2287 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
2288 		while (odm_pipe) {
2289 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
2290 			odm_pipe = odm_pipe->next_odm_pipe;
2291 		}
2292 	}
2293 }
2294 
2295 void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2296 {
2297 	struct dce_hwseq *hws = dc->hwseq;
2298 
2299 	if (pipe_ctx->stream_res.dsc) {
2300 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2301 
2302 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
2303 		while (odm_pipe) {
2304 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
2305 			odm_pipe = odm_pipe->next_odm_pipe;
2306 		}
2307 	}
2308 }
2309 
2310 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
2311 {
2312 	struct dc_dmdata_attributes attr = { 0 };
2313 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2314 
2315 	attr.dmdata_mode = DMDATA_HW_MODE;
2316 	attr.dmdata_size =
2317 		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
2318 	attr.address.quad_part =
2319 			pipe_ctx->stream->dmdata_address.quad_part;
2320 	attr.dmdata_dl_delta = 0;
2321 	attr.dmdata_qos_mode = 0;
2322 	attr.dmdata_qos_level = 0;
2323 	attr.dmdata_repeat = 1; /* always repeat */
2324 	attr.dmdata_updated = 1;
2325 	attr.dmdata_sw_data = NULL;
2326 
2327 	hubp->funcs->dmdata_set_attributes(hubp, &attr);
2328 }
2329 
2330 void dcn20_init_vm_ctx(
2331 		struct dce_hwseq *hws,
2332 		struct dc *dc,
2333 		struct dc_virtual_addr_space_config *va_config,
2334 		int vmid)
2335 {
2336 	struct dcn_hubbub_virt_addr_config config;
2337 
2338 	if (vmid == 0) {
2339 		ASSERT(0); /* VMID cannot be 0 for vm context */
2340 		return;
2341 	}
2342 
2343 	config.page_table_start_addr = va_config->page_table_start_addr;
2344 	config.page_table_end_addr = va_config->page_table_end_addr;
2345 	config.page_table_block_size = va_config->page_table_block_size_in_bytes;
2346 	config.page_table_depth = va_config->page_table_depth;
2347 	config.page_table_base_addr = va_config->page_table_base_addr;
2348 
2349 	dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
2350 }
2351 
2352 int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
2353 {
2354 	struct dcn_hubbub_phys_addr_config config;
2355 
2356 	config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
2357 	config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
2358 	config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
2359 	config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
2360 	config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
2361 	config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
2362 	config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
2363 	config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
2364 	config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
2365 	config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
2366 
2367 	return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
2368 }
2369 
2370 static bool patch_address_for_sbs_tb_stereo(
2371 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
2372 {
2373 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2374 	bool sec_split = pipe_ctx->top_pipe &&
2375 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
2376 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2377 			(pipe_ctx->stream->timing.timing_3d_format ==
2378 			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
2379 			pipe_ctx->stream->timing.timing_3d_format ==
2380 			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
2381 		*addr = plane_state->address.grph_stereo.left_addr;
2382 		plane_state->address.grph_stereo.left_addr =
2383 				plane_state->address.grph_stereo.right_addr;
2384 		return true;
2385 	}
2386 
2387 	if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
2388 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
2389 		plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
2390 		plane_state->address.grph_stereo.right_addr =
2391 				plane_state->address.grph_stereo.left_addr;
2392 		plane_state->address.grph_stereo.right_meta_addr =
2393 				plane_state->address.grph_stereo.left_meta_addr;
2394 	}
2395 	return false;
2396 }
2397 
2398 void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
2399 {
2400 	bool addr_patched = false;
2401 	PHYSICAL_ADDRESS_LOC addr;
2402 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2403 
2404 	if (plane_state == NULL)
2405 		return;
2406 
2407 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
2408 
2409 	// Call Helper to track VMID use
2410 	vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
2411 
2412 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
2413 			pipe_ctx->plane_res.hubp,
2414 			&plane_state->address,
2415 			plane_state->flip_immediate);
2416 
2417 	plane_state->status.requested_address = plane_state->address;
2418 
2419 	if (plane_state->flip_immediate)
2420 		plane_state->status.current_address = plane_state->address;
2421 
2422 	if (addr_patched)
2423 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
2424 }
2425 
2426 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
2427 		struct dc_link_settings *link_settings)
2428 {
2429 	struct encoder_unblank_param params = {0};
2430 	struct dc_stream_state *stream = pipe_ctx->stream;
2431 	struct dc_link *link = stream->link;
2432 	struct dce_hwseq *hws = link->dc->hwseq;
2433 	struct pipe_ctx *odm_pipe;
2434 
2435 	params.opp_cnt = 1;
2436 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
2437 		params.opp_cnt++;
2438 	}
2439 	/* only 3 items below are used by unblank */
2440 	params.timing = pipe_ctx->stream->timing;
2441 
2442 	params.link_settings.link_rate = link_settings->link_rate;
2443 
2444 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2445 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
2446 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
2447 				pipe_ctx->stream_res.hpo_dp_stream_enc,
2448 				pipe_ctx->stream_res.tg->inst);
2449 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
2450 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
2451 			params.timing.pix_clk_100hz /= 2;
2452 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
2453 				pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
2454 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
2455 	}
2456 
2457 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
2458 		hws->funcs.edp_backlight_control(link, true);
2459 	}
2460 }
2461 
2462 void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
2463 {
2464 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2465 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
2466 
2467 	if (start_line < 0)
2468 		start_line = 0;
2469 
2470 	if (tg->funcs->setup_vertical_interrupt2)
2471 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
2472 }
2473 
2474 static void dcn20_reset_back_end_for_pipe(
2475 		struct dc *dc,
2476 		struct pipe_ctx *pipe_ctx,
2477 		struct dc_state *context)
2478 {
2479 	int i;
2480 	struct dc_link *link = pipe_ctx->stream->link;
2481 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2482 
2483 	DC_LOGGER_INIT(dc->ctx->logger);
2484 	if (pipe_ctx->stream_res.stream_enc == NULL) {
2485 		pipe_ctx->stream = NULL;
2486 		return;
2487 	}
2488 
2489 	/* DPMS may already disable or */
2490 	/* dpms_off status is incorrect due to fastboot
2491 	 * feature. When system resume from S4 with second
2492 	 * screen only, the dpms_off would be true but
2493 	 * VBIOS lit up eDP, so check link status too.
2494 	 */
2495 	if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
2496 		dc->link_srv->set_dpms_off(pipe_ctx);
2497 	else if (pipe_ctx->stream_res.audio)
2498 		dc->hwss.disable_audio_stream(pipe_ctx);
2499 
2500 	/* free acquired resources */
2501 	if (pipe_ctx->stream_res.audio) {
2502 		/*disable az_endpoint*/
2503 		pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2504 
2505 		/*free audio*/
2506 		if (dc->caps.dynamic_audio == true) {
2507 			/*we have to dynamic arbitrate the audio endpoints*/
2508 			/*we free the resource, need reset is_audio_acquired*/
2509 			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2510 					pipe_ctx->stream_res.audio, false);
2511 			pipe_ctx->stream_res.audio = NULL;
2512 		}
2513 	}
2514 
2515 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
2516 	 * back end share by all pipes and will be disable only when disable
2517 	 * parent pipe.
2518 	 */
2519 	if (pipe_ctx->top_pipe == NULL) {
2520 
2521 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2522 
2523 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
2524 
2525 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
2526 		if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
2527 			pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
2528 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
2529 
2530 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
2531 			pipe_ctx->stream_res.tg->funcs->set_drr(
2532 					pipe_ctx->stream_res.tg, NULL);
2533 		/* TODO - convert symclk_ref_cnts for otg to a bit map to solve
2534 		 * the case where the same symclk is shared across multiple otg
2535 		 * instances
2536 		 */
2537 		link->phy_state.symclk_ref_cnts.otg = 0;
2538 		if (link->phy_state.symclk_state == SYMCLK_ON_TX_OFF) {
2539 			link_hwss->disable_link_output(link,
2540 					&pipe_ctx->link_res, pipe_ctx->stream->signal);
2541 			link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
2542 		}
2543 	}
2544 
2545 	for (i = 0; i < dc->res_pool->pipe_count; i++)
2546 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
2547 			break;
2548 
2549 	if (i == dc->res_pool->pipe_count)
2550 		return;
2551 
2552 	pipe_ctx->stream = NULL;
2553 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
2554 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
2555 }
2556 
2557 void dcn20_reset_hw_ctx_wrap(
2558 		struct dc *dc,
2559 		struct dc_state *context)
2560 {
2561 	int i;
2562 	struct dce_hwseq *hws = dc->hwseq;
2563 
2564 	/* Reset Back End*/
2565 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
2566 		struct pipe_ctx *pipe_ctx_old =
2567 			&dc->current_state->res_ctx.pipe_ctx[i];
2568 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2569 
2570 		if (!pipe_ctx_old->stream)
2571 			continue;
2572 
2573 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
2574 			continue;
2575 
2576 		if (!pipe_ctx->stream ||
2577 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2578 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2579 
2580 			dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
2581 			if (hws->funcs.enable_stream_gating)
2582 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
2583 			if (old_clk)
2584 				old_clk->funcs->cs_power_down(old_clk);
2585 		}
2586 	}
2587 }
2588 
2589 void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2590 {
2591 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2592 	struct mpcc_blnd_cfg blnd_cfg = {0};
2593 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
2594 	int mpcc_id;
2595 	struct mpcc *new_mpcc;
2596 	struct mpc *mpc = dc->res_pool->mpc;
2597 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2598 
2599 	blnd_cfg.overlap_only = false;
2600 	blnd_cfg.global_gain = 0xff;
2601 
2602 	if (per_pixel_alpha) {
2603 		blnd_cfg.pre_multiplied_alpha = pipe_ctx->plane_state->pre_multiplied_alpha;
2604 		if (pipe_ctx->plane_state->global_alpha) {
2605 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2606 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2607 		} else {
2608 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2609 		}
2610 	} else {
2611 		blnd_cfg.pre_multiplied_alpha = false;
2612 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2613 	}
2614 
2615 	if (pipe_ctx->plane_state->global_alpha)
2616 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2617 	else
2618 		blnd_cfg.global_alpha = 0xff;
2619 
2620 	blnd_cfg.background_color_bpc = 4;
2621 	blnd_cfg.bottom_gain_mode = 0;
2622 	blnd_cfg.top_gain = 0x1f000;
2623 	blnd_cfg.bottom_inside_gain = 0x1f000;
2624 	blnd_cfg.bottom_outside_gain = 0x1f000;
2625 
2626 	if (pipe_ctx->plane_state->format
2627 			== SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA)
2628 		blnd_cfg.pre_multiplied_alpha = false;
2629 
2630 	/*
2631 	 * TODO: remove hack
2632 	 * Note: currently there is a bug in init_hw such that
2633 	 * on resume from hibernate, BIOS sets up MPCC0, and
2634 	 * we do mpcc_remove but the mpcc cannot go to idle
2635 	 * after remove. This cause us to pick mpcc1 here,
2636 	 * which causes a pstate hang for yet unknown reason.
2637 	 */
2638 	mpcc_id = hubp->inst;
2639 
2640 	/* If there is no full update, don't need to touch MPC tree*/
2641 	if (!pipe_ctx->plane_state->update_flags.bits.full_update &&
2642 		!pipe_ctx->update_flags.bits.mpcc) {
2643 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2644 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2645 		return;
2646 	}
2647 
2648 	/* check if this MPCC is already being used */
2649 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2650 	/* remove MPCC if being used */
2651 	if (new_mpcc != NULL)
2652 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2653 	else
2654 		if (dc->debug.sanity_checks)
2655 			mpc->funcs->assert_mpcc_idle_before_connect(
2656 					dc->res_pool->mpc, mpcc_id);
2657 
2658 	/* Call MPC to insert new plane */
2659 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2660 			mpc_tree_params,
2661 			&blnd_cfg,
2662 			NULL,
2663 			NULL,
2664 			hubp->inst,
2665 			mpcc_id);
2666 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2667 
2668 	ASSERT(new_mpcc != NULL);
2669 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2670 	hubp->mpcc_id = mpcc_id;
2671 }
2672 
2673 static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link)
2674 {
2675 	switch (link->link_enc->transmitter) {
2676 	case TRANSMITTER_UNIPHY_A:
2677 		return PHYD32CLKA;
2678 	case TRANSMITTER_UNIPHY_B:
2679 		return PHYD32CLKB;
2680 	case TRANSMITTER_UNIPHY_C:
2681 		return PHYD32CLKC;
2682 	case TRANSMITTER_UNIPHY_D:
2683 		return PHYD32CLKD;
2684 	case TRANSMITTER_UNIPHY_E:
2685 		return PHYD32CLKE;
2686 	default:
2687 		return PHYD32CLKA;
2688 	}
2689 }
2690 
2691 static int get_odm_segment_count(struct pipe_ctx *pipe_ctx)
2692 {
2693 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2694 	int count = 1;
2695 
2696 	while (odm_pipe != NULL) {
2697 		count++;
2698 		odm_pipe = odm_pipe->next_odm_pipe;
2699 	}
2700 
2701 	return count;
2702 }
2703 
2704 void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
2705 {
2706 	enum dc_lane_count lane_count =
2707 		pipe_ctx->stream->link->cur_link_settings.lane_count;
2708 
2709 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
2710 	struct dc_link *link = pipe_ctx->stream->link;
2711 
2712 	uint32_t active_total_with_borders;
2713 	uint32_t early_control = 0;
2714 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2715 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2716 	struct dc *dc = pipe_ctx->stream->ctx->dc;
2717 	struct dtbclk_dto_params dto_params = {0};
2718 	struct dccg *dccg = dc->res_pool->dccg;
2719 	enum phyd32clk_clock_source phyd32clk;
2720 	int dp_hpo_inst;
2721 	struct dce_hwseq *hws = dc->hwseq;
2722 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
2723 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
2724 	struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
2725 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
2726 
2727 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2728 		if (dc->hwseq->funcs.setup_hpo_hw_control)
2729 			dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, true);
2730 	}
2731 
2732 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2733 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
2734 		dccg->funcs->set_dpstreamclk(dccg, DTBCLK0, tg->inst, dp_hpo_inst);
2735 
2736 		phyd32clk = get_phyd32clk_src(link);
2737 		dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk);
2738 
2739 		dto_params.otg_inst = tg->inst;
2740 		dto_params.pixclk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10;
2741 		dto_params.num_odm_segments = get_odm_segment_count(pipe_ctx);
2742 		dto_params.timing = &pipe_ctx->stream->timing;
2743 		dto_params.ref_dtbclk_khz = dc->clk_mgr->funcs->get_dtb_ref_clk_frequency(dc->clk_mgr);
2744 		dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
2745 	} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST && dccg->funcs->enable_symclk_se)
2746 		dccg->funcs->enable_symclk_se(dccg,
2747 			stream_enc->stream_enc_inst, link_enc->transmitter - TRANSMITTER_UNIPHY_A);
2748 
2749 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
2750 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
2751 
2752 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
2753 			dc->res_pool->dccg,
2754 			pipe_ctx->stream_res.tg->inst,
2755 			k1_div, k2_div);
2756 	}
2757 
2758 	link_hwss->setup_stream_encoder(pipe_ctx);
2759 
2760 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
2761 		if (dc->hwss.program_dmdata_engine)
2762 			dc->hwss.program_dmdata_engine(pipe_ctx);
2763 	}
2764 
2765 	dc->hwss.update_info_frame(pipe_ctx);
2766 
2767 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
2768 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
2769 
2770 	/* enable early control to avoid corruption on DP monitor*/
2771 	active_total_with_borders =
2772 			timing->h_addressable
2773 				+ timing->h_border_left
2774 				+ timing->h_border_right;
2775 
2776 	if (lane_count != 0)
2777 		early_control = active_total_with_borders % lane_count;
2778 
2779 	if (early_control == 0)
2780 		early_control = lane_count;
2781 
2782 	tg->funcs->set_early_control(tg, early_control);
2783 
2784 	if (dc->hwseq->funcs.set_pixels_per_cycle)
2785 		dc->hwseq->funcs.set_pixels_per_cycle(pipe_ctx);
2786 }
2787 
2788 void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
2789 {
2790 	struct dc_stream_state    *stream     = pipe_ctx->stream;
2791 	struct hubp               *hubp       = pipe_ctx->plane_res.hubp;
2792 	bool                       enable     = false;
2793 	struct stream_encoder     *stream_enc = pipe_ctx->stream_res.stream_enc;
2794 	enum dynamic_metadata_mode mode       = dc_is_dp_signal(stream->signal)
2795 							? dmdata_dp
2796 							: dmdata_hdmi;
2797 
2798 	/* if using dynamic meta, don't set up generic infopackets */
2799 	if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
2800 		pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
2801 		enable = true;
2802 	}
2803 
2804 	if (!hubp)
2805 		return;
2806 
2807 	if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
2808 		return;
2809 
2810 	stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
2811 						hubp->inst, mode);
2812 }
2813 
2814 void dcn20_fpga_init_hw(struct dc *dc)
2815 {
2816 	int i, j;
2817 	struct dce_hwseq *hws = dc->hwseq;
2818 	struct resource_pool *res_pool = dc->res_pool;
2819 	struct dc_state  *context = dc->current_state;
2820 
2821 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
2822 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
2823 
2824 	// Initialize the dccg
2825 	if (res_pool->dccg->funcs->dccg_init)
2826 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
2827 
2828 	//Enable ability to power gate / don't force power on permanently
2829 	hws->funcs.enable_power_gating_plane(hws, true);
2830 
2831 	// Specific to FPGA dccg and registers
2832 	REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
2833 	REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
2834 
2835 	hws->funcs.dccg_init(hws);
2836 
2837 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
2838 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
2839 	if (REG(REFCLK_CNTL))
2840 		REG_WRITE(REFCLK_CNTL, 0);
2841 	//
2842 
2843 
2844 	/* Blank pixel data with OPP DPG */
2845 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2846 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2847 
2848 		if (tg->funcs->is_tg_enabled(tg))
2849 			dcn20_init_blank(dc, tg);
2850 	}
2851 
2852 	for (i = 0; i < res_pool->timing_generator_count; i++) {
2853 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2854 
2855 		if (tg->funcs->is_tg_enabled(tg))
2856 			tg->funcs->lock(tg);
2857 	}
2858 
2859 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2860 		struct dpp *dpp = res_pool->dpps[i];
2861 
2862 		dpp->funcs->dpp_reset(dpp);
2863 	}
2864 
2865 	/* Reset all MPCC muxes */
2866 	res_pool->mpc->funcs->mpc_init(res_pool->mpc);
2867 
2868 	/* initialize OPP mpc_tree parameter */
2869 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
2870 		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
2871 		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2872 		for (j = 0; j < MAX_PIPES; j++)
2873 			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
2874 	}
2875 
2876 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2877 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2878 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2879 		struct hubp *hubp = dc->res_pool->hubps[i];
2880 		struct dpp *dpp = dc->res_pool->dpps[i];
2881 
2882 		pipe_ctx->stream_res.tg = tg;
2883 		pipe_ctx->pipe_idx = i;
2884 
2885 		pipe_ctx->plane_res.hubp = hubp;
2886 		pipe_ctx->plane_res.dpp = dpp;
2887 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
2888 		hubp->mpcc_id = dpp->inst;
2889 		hubp->opp_id = OPP_ID_INVALID;
2890 		hubp->power_gated = false;
2891 		pipe_ctx->stream_res.opp = NULL;
2892 
2893 		hubp->funcs->hubp_init(hubp);
2894 
2895 		//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
2896 		//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2897 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
2898 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
2899 		/*to do*/
2900 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
2901 	}
2902 
2903 	/* initialize DWB pointer to MCIF_WB */
2904 	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
2905 		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
2906 
2907 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2908 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2909 
2910 		if (tg->funcs->is_tg_enabled(tg))
2911 			tg->funcs->unlock(tg);
2912 	}
2913 
2914 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2915 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2916 
2917 		dc->hwss.disable_plane(dc, pipe_ctx);
2918 
2919 		pipe_ctx->stream_res.tg = NULL;
2920 		pipe_ctx->plane_res.hubp = NULL;
2921 	}
2922 
2923 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2924 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2925 
2926 		tg->funcs->tg_init(tg);
2927 	}
2928 
2929 	if (dc->res_pool->hubbub->funcs->init_crb)
2930 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
2931 }
2932 #ifndef TRIM_FSFT
2933 bool dcn20_optimize_timing_for_fsft(struct dc *dc,
2934 		struct dc_crtc_timing *timing,
2935 		unsigned int max_input_rate_in_khz)
2936 {
2937 	unsigned int old_v_front_porch;
2938 	unsigned int old_v_total;
2939 	unsigned int max_input_rate_in_100hz;
2940 	unsigned long long new_v_total;
2941 
2942 	max_input_rate_in_100hz = max_input_rate_in_khz * 10;
2943 	if (max_input_rate_in_100hz < timing->pix_clk_100hz)
2944 		return false;
2945 
2946 	old_v_total = timing->v_total;
2947 	old_v_front_porch = timing->v_front_porch;
2948 
2949 	timing->fast_transport_output_rate_100hz = timing->pix_clk_100hz;
2950 	timing->pix_clk_100hz = max_input_rate_in_100hz;
2951 
2952 	new_v_total = div_u64((unsigned long long)old_v_total * max_input_rate_in_100hz, timing->pix_clk_100hz);
2953 
2954 	timing->v_total = new_v_total;
2955 	timing->v_front_porch = old_v_front_porch + (timing->v_total - old_v_total);
2956 	return true;
2957 }
2958 #endif
2959 
2960 void dcn20_set_disp_pattern_generator(const struct dc *dc,
2961 		struct pipe_ctx *pipe_ctx,
2962 		enum controller_dp_test_pattern test_pattern,
2963 		enum controller_dp_color_space color_space,
2964 		enum dc_color_depth color_depth,
2965 		const struct tg_color *solid_color,
2966 		int width, int height, int offset)
2967 {
2968 	pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern,
2969 			color_space, color_depth, solid_color, width, height, offset);
2970 }
2971