1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include <linux/delay.h>
26 
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "dm_helpers.h"
30 #include "core_types.h"
31 #include "resource.h"
32 #include "dcn20_resource.h"
33 #include "dcn20_hwseq.h"
34 #include "dce/dce_hwseq.h"
35 #include "dcn20_dsc.h"
36 #include "dcn20_optc.h"
37 #include "abm.h"
38 #include "clk_mgr.h"
39 #include "dmcu.h"
40 #include "hubp.h"
41 #include "timing_generator.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "mpc.h"
45 #include "mcif_wb.h"
46 #include "dchubbub.h"
47 #include "reg_helper.h"
48 #include "dcn10/dcn10_cm_common.h"
49 #include "dc_link_dp.h"
50 #include "vm_helper.h"
51 #include "dccg.h"
52 #include "dc_dmub_srv.h"
53 #include "dce/dmub_hw_lock_mgr.h"
54 
55 #define DC_LOGGER_INIT(logger)
56 
57 #define CTX \
58 	hws->ctx
59 #define REG(reg)\
60 	hws->regs->reg
61 
62 #undef FN
63 #define FN(reg_name, field_name) \
64 	hws->shifts->field_name, hws->masks->field_name
65 
66 static int find_free_gsl_group(const struct dc *dc)
67 {
68 	if (dc->res_pool->gsl_groups.gsl_0 == 0)
69 		return 1;
70 	if (dc->res_pool->gsl_groups.gsl_1 == 0)
71 		return 2;
72 	if (dc->res_pool->gsl_groups.gsl_2 == 0)
73 		return 3;
74 
75 	return 0;
76 }
77 
78 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
79  * This is only used to lock pipes in pipe splitting case with immediate flip
80  * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
81  * so we get tearing with freesync since we cannot flip multiple pipes
82  * atomically.
83  * We use GSL for this:
84  * - immediate flip: find first available GSL group if not already assigned
85  *                   program gsl with that group, set current OTG as master
86  *                   and always us 0x4 = AND of flip_ready from all pipes
87  * - vsync flip: disable GSL if used
88  *
89  * Groups in stream_res are stored as +1 from HW registers, i.e.
90  * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
91  * Using a magic value like -1 would require tracking all inits/resets
92  */
93 static void dcn20_setup_gsl_group_as_lock(
94 		const struct dc *dc,
95 		struct pipe_ctx *pipe_ctx,
96 		bool enable)
97 {
98 	struct gsl_params gsl;
99 	int group_idx;
100 
101 	memset(&gsl, 0, sizeof(struct gsl_params));
102 
103 	if (enable) {
104 		/* return if group already assigned since GSL was set up
105 		 * for vsync flip, we would unassign so it can't be "left over"
106 		 */
107 		if (pipe_ctx->stream_res.gsl_group > 0)
108 			return;
109 
110 		group_idx = find_free_gsl_group(dc);
111 		ASSERT(group_idx != 0);
112 		pipe_ctx->stream_res.gsl_group = group_idx;
113 
114 		/* set gsl group reg field and mark resource used */
115 		switch (group_idx) {
116 		case 1:
117 			gsl.gsl0_en = 1;
118 			dc->res_pool->gsl_groups.gsl_0 = 1;
119 			break;
120 		case 2:
121 			gsl.gsl1_en = 1;
122 			dc->res_pool->gsl_groups.gsl_1 = 1;
123 			break;
124 		case 3:
125 			gsl.gsl2_en = 1;
126 			dc->res_pool->gsl_groups.gsl_2 = 1;
127 			break;
128 		default:
129 			BREAK_TO_DEBUGGER();
130 			return; // invalid case
131 		}
132 		gsl.gsl_master_en = 1;
133 	} else {
134 		group_idx = pipe_ctx->stream_res.gsl_group;
135 		if (group_idx == 0)
136 			return; // if not in use, just return
137 
138 		pipe_ctx->stream_res.gsl_group = 0;
139 
140 		/* unset gsl group reg field and mark resource free */
141 		switch (group_idx) {
142 		case 1:
143 			gsl.gsl0_en = 0;
144 			dc->res_pool->gsl_groups.gsl_0 = 0;
145 			break;
146 		case 2:
147 			gsl.gsl1_en = 0;
148 			dc->res_pool->gsl_groups.gsl_1 = 0;
149 			break;
150 		case 3:
151 			gsl.gsl2_en = 0;
152 			dc->res_pool->gsl_groups.gsl_2 = 0;
153 			break;
154 		default:
155 			BREAK_TO_DEBUGGER();
156 			return;
157 		}
158 		gsl.gsl_master_en = 0;
159 	}
160 
161 	/* at this point we want to program whether it's to enable or disable */
162 	if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
163 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
164 		pipe_ctx->stream_res.tg->funcs->set_gsl(
165 			pipe_ctx->stream_res.tg,
166 			&gsl);
167 
168 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
169 			pipe_ctx->stream_res.tg, group_idx,	enable ? 4 : 0);
170 	} else
171 		BREAK_TO_DEBUGGER();
172 }
173 
174 void dcn20_set_flip_control_gsl(
175 		struct pipe_ctx *pipe_ctx,
176 		bool flip_immediate)
177 {
178 	if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
179 		pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
180 				pipe_ctx->plane_res.hubp, flip_immediate);
181 
182 }
183 
184 void dcn20_enable_power_gating_plane(
185 	struct dce_hwseq *hws,
186 	bool enable)
187 {
188 	bool force_on = true; /* disable power gating */
189 
190 	if (enable)
191 		force_on = false;
192 
193 	/* DCHUBP0/1/2/3/4/5 */
194 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
195 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
196 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
197 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
198 	if (REG(DOMAIN8_PG_CONFIG))
199 		REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
200 	if (REG(DOMAIN10_PG_CONFIG))
201 		REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
202 
203 	/* DPP0/1/2/3/4/5 */
204 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
205 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
206 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
207 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
208 	if (REG(DOMAIN9_PG_CONFIG))
209 		REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
210 	if (REG(DOMAIN11_PG_CONFIG))
211 		REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
212 
213 	/* DCS0/1/2/3/4/5 */
214 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
215 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
216 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
217 	if (REG(DOMAIN19_PG_CONFIG))
218 		REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
219 	if (REG(DOMAIN20_PG_CONFIG))
220 		REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
221 	if (REG(DOMAIN21_PG_CONFIG))
222 		REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
223 }
224 
225 void dcn20_dccg_init(struct dce_hwseq *hws)
226 {
227 	/*
228 	 * set MICROSECOND_TIME_BASE_DIV
229 	 * 100Mhz refclk -> 0x120264
230 	 * 27Mhz refclk -> 0x12021b
231 	 * 48Mhz refclk -> 0x120230
232 	 *
233 	 */
234 	REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
235 
236 	/*
237 	 * set MILLISECOND_TIME_BASE_DIV
238 	 * 100Mhz refclk -> 0x1186a0
239 	 * 27Mhz refclk -> 0x106978
240 	 * 48Mhz refclk -> 0x10bb80
241 	 *
242 	 */
243 	REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
244 
245 	/* This value is dependent on the hardware pipeline delay so set once per SOC */
246 	REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c);
247 }
248 
249 void dcn20_disable_vga(
250 	struct dce_hwseq *hws)
251 {
252 	REG_WRITE(D1VGA_CONTROL, 0);
253 	REG_WRITE(D2VGA_CONTROL, 0);
254 	REG_WRITE(D3VGA_CONTROL, 0);
255 	REG_WRITE(D4VGA_CONTROL, 0);
256 	REG_WRITE(D5VGA_CONTROL, 0);
257 	REG_WRITE(D6VGA_CONTROL, 0);
258 }
259 
260 void dcn20_program_triple_buffer(
261 	const struct dc *dc,
262 	struct pipe_ctx *pipe_ctx,
263 	bool enable_triple_buffer)
264 {
265 	if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
266 		pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
267 			pipe_ctx->plane_res.hubp,
268 			enable_triple_buffer);
269 	}
270 }
271 
272 /* Blank pixel data during initialization */
273 void dcn20_init_blank(
274 		struct dc *dc,
275 		struct timing_generator *tg)
276 {
277 	struct dce_hwseq *hws = dc->hwseq;
278 	enum dc_color_space color_space;
279 	struct tg_color black_color = {0};
280 	struct output_pixel_processor *opp = NULL;
281 	struct output_pixel_processor *bottom_opp = NULL;
282 	uint32_t num_opps, opp_id_src0, opp_id_src1;
283 	uint32_t otg_active_width, otg_active_height;
284 
285 	/* program opp dpg blank color */
286 	color_space = COLOR_SPACE_SRGB;
287 	color_space_to_black_color(dc, color_space, &black_color);
288 
289 	/* get the OTG active size */
290 	tg->funcs->get_otg_active_size(tg,
291 			&otg_active_width,
292 			&otg_active_height);
293 
294 	/* get the OPTC source */
295 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
296 
297 	if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
298 		ASSERT(false);
299 		return;
300 	}
301 	opp = dc->res_pool->opps[opp_id_src0];
302 
303 	if (num_opps == 2) {
304 		otg_active_width = otg_active_width / 2;
305 
306 		if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
307 			ASSERT(false);
308 			return;
309 		}
310 		bottom_opp = dc->res_pool->opps[opp_id_src1];
311 	}
312 
313 	opp->funcs->opp_set_disp_pattern_generator(
314 			opp,
315 			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
316 			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
317 			COLOR_DEPTH_UNDEFINED,
318 			&black_color,
319 			otg_active_width,
320 			otg_active_height,
321 			0);
322 
323 	if (num_opps == 2) {
324 		bottom_opp->funcs->opp_set_disp_pattern_generator(
325 				bottom_opp,
326 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
327 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
328 				COLOR_DEPTH_UNDEFINED,
329 				&black_color,
330 				otg_active_width,
331 				otg_active_height,
332 				0);
333 	}
334 
335 	hws->funcs.wait_for_blank_complete(opp);
336 }
337 
338 void dcn20_dsc_pg_control(
339 		struct dce_hwseq *hws,
340 		unsigned int dsc_inst,
341 		bool power_on)
342 {
343 	uint32_t power_gate = power_on ? 0 : 1;
344 	uint32_t pwr_status = power_on ? 0 : 2;
345 	uint32_t org_ip_request_cntl = 0;
346 
347 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
348 		return;
349 
350 	if (REG(DOMAIN16_PG_CONFIG) == 0)
351 		return;
352 
353 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
354 	if (org_ip_request_cntl == 0)
355 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
356 
357 	switch (dsc_inst) {
358 	case 0: /* DSC0 */
359 		REG_UPDATE(DOMAIN16_PG_CONFIG,
360 				DOMAIN16_POWER_GATE, power_gate);
361 
362 		REG_WAIT(DOMAIN16_PG_STATUS,
363 				DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
364 				1, 1000);
365 		break;
366 	case 1: /* DSC1 */
367 		REG_UPDATE(DOMAIN17_PG_CONFIG,
368 				DOMAIN17_POWER_GATE, power_gate);
369 
370 		REG_WAIT(DOMAIN17_PG_STATUS,
371 				DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
372 				1, 1000);
373 		break;
374 	case 2: /* DSC2 */
375 		REG_UPDATE(DOMAIN18_PG_CONFIG,
376 				DOMAIN18_POWER_GATE, power_gate);
377 
378 		REG_WAIT(DOMAIN18_PG_STATUS,
379 				DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
380 				1, 1000);
381 		break;
382 	case 3: /* DSC3 */
383 		REG_UPDATE(DOMAIN19_PG_CONFIG,
384 				DOMAIN19_POWER_GATE, power_gate);
385 
386 		REG_WAIT(DOMAIN19_PG_STATUS,
387 				DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
388 				1, 1000);
389 		break;
390 	case 4: /* DSC4 */
391 		REG_UPDATE(DOMAIN20_PG_CONFIG,
392 				DOMAIN20_POWER_GATE, power_gate);
393 
394 		REG_WAIT(DOMAIN20_PG_STATUS,
395 				DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
396 				1, 1000);
397 		break;
398 	case 5: /* DSC5 */
399 		REG_UPDATE(DOMAIN21_PG_CONFIG,
400 				DOMAIN21_POWER_GATE, power_gate);
401 
402 		REG_WAIT(DOMAIN21_PG_STATUS,
403 				DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
404 				1, 1000);
405 		break;
406 	default:
407 		BREAK_TO_DEBUGGER();
408 		break;
409 	}
410 
411 	if (org_ip_request_cntl == 0)
412 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
413 }
414 
415 void dcn20_dpp_pg_control(
416 		struct dce_hwseq *hws,
417 		unsigned int dpp_inst,
418 		bool power_on)
419 {
420 	uint32_t power_gate = power_on ? 0 : 1;
421 	uint32_t pwr_status = power_on ? 0 : 2;
422 
423 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
424 		return;
425 	if (REG(DOMAIN1_PG_CONFIG) == 0)
426 		return;
427 
428 	switch (dpp_inst) {
429 	case 0: /* DPP0 */
430 		REG_UPDATE(DOMAIN1_PG_CONFIG,
431 				DOMAIN1_POWER_GATE, power_gate);
432 
433 		REG_WAIT(DOMAIN1_PG_STATUS,
434 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
435 				1, 1000);
436 		break;
437 	case 1: /* DPP1 */
438 		REG_UPDATE(DOMAIN3_PG_CONFIG,
439 				DOMAIN3_POWER_GATE, power_gate);
440 
441 		REG_WAIT(DOMAIN3_PG_STATUS,
442 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
443 				1, 1000);
444 		break;
445 	case 2: /* DPP2 */
446 		REG_UPDATE(DOMAIN5_PG_CONFIG,
447 				DOMAIN5_POWER_GATE, power_gate);
448 
449 		REG_WAIT(DOMAIN5_PG_STATUS,
450 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
451 				1, 1000);
452 		break;
453 	case 3: /* DPP3 */
454 		REG_UPDATE(DOMAIN7_PG_CONFIG,
455 				DOMAIN7_POWER_GATE, power_gate);
456 
457 		REG_WAIT(DOMAIN7_PG_STATUS,
458 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
459 				1, 1000);
460 		break;
461 	case 4: /* DPP4 */
462 		REG_UPDATE(DOMAIN9_PG_CONFIG,
463 				DOMAIN9_POWER_GATE, power_gate);
464 
465 		REG_WAIT(DOMAIN9_PG_STATUS,
466 				DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
467 				1, 1000);
468 		break;
469 	case 5: /* DPP5 */
470 		/*
471 		 * Do not power gate DPP5, should be left at HW default, power on permanently.
472 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
473 		 * reset.
474 		 * REG_UPDATE(DOMAIN11_PG_CONFIG,
475 		 *		DOMAIN11_POWER_GATE, power_gate);
476 		 *
477 		 * REG_WAIT(DOMAIN11_PG_STATUS,
478 		 *		DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
479 		 * 		1, 1000);
480 		 */
481 		break;
482 	default:
483 		BREAK_TO_DEBUGGER();
484 		break;
485 	}
486 }
487 
488 
489 void dcn20_hubp_pg_control(
490 		struct dce_hwseq *hws,
491 		unsigned int hubp_inst,
492 		bool power_on)
493 {
494 	uint32_t power_gate = power_on ? 0 : 1;
495 	uint32_t pwr_status = power_on ? 0 : 2;
496 
497 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
498 		return;
499 	if (REG(DOMAIN0_PG_CONFIG) == 0)
500 		return;
501 
502 	switch (hubp_inst) {
503 	case 0: /* DCHUBP0 */
504 		REG_UPDATE(DOMAIN0_PG_CONFIG,
505 				DOMAIN0_POWER_GATE, power_gate);
506 
507 		REG_WAIT(DOMAIN0_PG_STATUS,
508 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
509 				1, 1000);
510 		break;
511 	case 1: /* DCHUBP1 */
512 		REG_UPDATE(DOMAIN2_PG_CONFIG,
513 				DOMAIN2_POWER_GATE, power_gate);
514 
515 		REG_WAIT(DOMAIN2_PG_STATUS,
516 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
517 				1, 1000);
518 		break;
519 	case 2: /* DCHUBP2 */
520 		REG_UPDATE(DOMAIN4_PG_CONFIG,
521 				DOMAIN4_POWER_GATE, power_gate);
522 
523 		REG_WAIT(DOMAIN4_PG_STATUS,
524 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
525 				1, 1000);
526 		break;
527 	case 3: /* DCHUBP3 */
528 		REG_UPDATE(DOMAIN6_PG_CONFIG,
529 				DOMAIN6_POWER_GATE, power_gate);
530 
531 		REG_WAIT(DOMAIN6_PG_STATUS,
532 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
533 				1, 1000);
534 		break;
535 	case 4: /* DCHUBP4 */
536 		REG_UPDATE(DOMAIN8_PG_CONFIG,
537 				DOMAIN8_POWER_GATE, power_gate);
538 
539 		REG_WAIT(DOMAIN8_PG_STATUS,
540 				DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
541 				1, 1000);
542 		break;
543 	case 5: /* DCHUBP5 */
544 		/*
545 		 * Do not power gate DCHUB5, should be left at HW default, power on permanently.
546 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
547 		 * reset.
548 		 * REG_UPDATE(DOMAIN10_PG_CONFIG,
549 		 *		DOMAIN10_POWER_GATE, power_gate);
550 		 *
551 		 * REG_WAIT(DOMAIN10_PG_STATUS,
552 		 *		DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
553 		 *		1, 1000);
554 		 */
555 		break;
556 	default:
557 		BREAK_TO_DEBUGGER();
558 		break;
559 	}
560 }
561 
562 
563 /* disable HW used by plane.
564  * note:  cannot disable until disconnect is complete
565  */
566 void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
567 {
568 	struct dce_hwseq *hws = dc->hwseq;
569 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
570 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
571 
572 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
573 
574 	/* In flip immediate with pipe splitting case GSL is used for
575 	 * synchronization so we must disable it when the plane is disabled.
576 	 */
577 	if (pipe_ctx->stream_res.gsl_group != 0)
578 		dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
579 
580 	dc->hwss.set_flip_control_gsl(pipe_ctx, false);
581 
582 	hubp->funcs->hubp_clk_cntl(hubp, false);
583 
584 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
585 
586 	hubp->power_gated = true;
587 
588 	hws->funcs.plane_atomic_power_down(dc,
589 			pipe_ctx->plane_res.dpp,
590 			pipe_ctx->plane_res.hubp);
591 
592 	pipe_ctx->stream = NULL;
593 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
594 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
595 	pipe_ctx->top_pipe = NULL;
596 	pipe_ctx->bottom_pipe = NULL;
597 	pipe_ctx->plane_state = NULL;
598 }
599 
600 
601 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
602 {
603 	DC_LOGGER_INIT(dc->ctx->logger);
604 
605 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
606 		return;
607 
608 	dcn20_plane_atomic_disable(dc, pipe_ctx);
609 
610 	DC_LOG_DC("Power down front end %d\n",
611 					pipe_ctx->pipe_idx);
612 }
613 
614 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
615 		int opp_cnt)
616 {
617 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
618 	int flow_ctrl_cnt;
619 
620 	if (opp_cnt >= 2)
621 		hblank_halved = true;
622 
623 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
624 			stream->timing.h_border_left -
625 			stream->timing.h_border_right;
626 
627 	if (hblank_halved)
628 		flow_ctrl_cnt /= 2;
629 
630 	/* ODM combine 4:1 case */
631 	if (opp_cnt == 4)
632 		flow_ctrl_cnt /= 2;
633 
634 	return flow_ctrl_cnt;
635 }
636 
637 enum dc_status dcn20_enable_stream_timing(
638 		struct pipe_ctx *pipe_ctx,
639 		struct dc_state *context,
640 		struct dc *dc)
641 {
642 	struct dce_hwseq *hws = dc->hwseq;
643 	struct dc_stream_state *stream = pipe_ctx->stream;
644 	struct drr_params params = {0};
645 	unsigned int event_triggers = 0;
646 	struct pipe_ctx *odm_pipe;
647 	int opp_cnt = 1;
648 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
649 	bool interlace = stream->timing.flags.INTERLACE;
650 	int i;
651 	struct mpc_dwb_flow_control flow_control;
652 	struct mpc *mpc = dc->res_pool->mpc;
653 	bool rate_control_2x_pclk = (interlace || optc2_is_two_pixels_per_containter(&stream->timing));
654 
655 	/* by upper caller loop, pipe0 is parent pipe and be called first.
656 	 * back end is set up by for pipe0. Other children pipe share back end
657 	 * with pipe 0. No program is needed.
658 	 */
659 	if (pipe_ctx->top_pipe != NULL)
660 		return DC_OK;
661 
662 	/* TODO check if timing_changed, disable stream if timing changed */
663 
664 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
665 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
666 		opp_cnt++;
667 	}
668 
669 	if (opp_cnt > 1)
670 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
671 				pipe_ctx->stream_res.tg,
672 				opp_inst, opp_cnt,
673 				&pipe_ctx->stream->timing);
674 
675 	/* HW program guide assume display already disable
676 	 * by unplug sequence. OTG assume stop.
677 	 */
678 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
679 
680 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
681 			pipe_ctx->clock_source,
682 			&pipe_ctx->stream_res.pix_clk_params,
683 			&pipe_ctx->pll_settings)) {
684 		BREAK_TO_DEBUGGER();
685 		return DC_ERROR_UNEXPECTED;
686 	}
687 
688 	if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
689 		dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
690 
691 	pipe_ctx->stream_res.tg->funcs->program_timing(
692 			pipe_ctx->stream_res.tg,
693 			&stream->timing,
694 			pipe_ctx->pipe_dlg_param.vready_offset,
695 			pipe_ctx->pipe_dlg_param.vstartup_start,
696 			pipe_ctx->pipe_dlg_param.vupdate_offset,
697 			pipe_ctx->pipe_dlg_param.vupdate_width,
698 			pipe_ctx->stream->signal,
699 			true);
700 
701 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
702 	flow_control.flow_ctrl_mode = 0;
703 	flow_control.flow_ctrl_cnt0 = 0x80;
704 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(stream, opp_cnt);
705 	if (mpc->funcs->set_out_rate_control) {
706 		for (i = 0; i < opp_cnt; ++i) {
707 			mpc->funcs->set_out_rate_control(
708 					mpc, opp_inst[i],
709 					true,
710 					rate_control_2x_pclk,
711 					&flow_control);
712 		}
713 	}
714 
715 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
716 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
717 				odm_pipe->stream_res.opp,
718 				true);
719 
720 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
721 			pipe_ctx->stream_res.opp,
722 			true);
723 
724 	hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
725 
726 	/* VTG is  within DCHUB command block. DCFCLK is always on */
727 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
728 		BREAK_TO_DEBUGGER();
729 		return DC_ERROR_UNEXPECTED;
730 	}
731 
732 	hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
733 
734 	params.vertical_total_min = stream->adjust.v_total_min;
735 	params.vertical_total_max = stream->adjust.v_total_max;
736 	params.vertical_total_mid = stream->adjust.v_total_mid;
737 	params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
738 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
739 		pipe_ctx->stream_res.tg->funcs->set_drr(
740 			pipe_ctx->stream_res.tg, &params);
741 
742 	// DRR should set trigger event to monitor surface update event
743 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
744 		event_triggers = 0x80;
745 	/* Event triggers and num frames initialized for DRR, but can be
746 	 * later updated for PSR use. Note DRR trigger events are generated
747 	 * regardless of whether num frames met.
748 	 */
749 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
750 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
751 				pipe_ctx->stream_res.tg, event_triggers, 2);
752 
753 	/* TODO program crtc source select for non-virtual signal*/
754 	/* TODO program FMT */
755 	/* TODO setup link_enc */
756 	/* TODO set stream attributes */
757 	/* TODO program audio */
758 	/* TODO enable stream if timing changed */
759 	/* TODO unblank stream if DP */
760 
761 	return DC_OK;
762 }
763 
764 void dcn20_program_output_csc(struct dc *dc,
765 		struct pipe_ctx *pipe_ctx,
766 		enum dc_color_space colorspace,
767 		uint16_t *matrix,
768 		int opp_id)
769 {
770 	struct mpc *mpc = dc->res_pool->mpc;
771 	enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
772 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
773 
774 	if (mpc->funcs->power_on_mpc_mem_pwr)
775 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
776 
777 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
778 		if (mpc->funcs->set_output_csc != NULL)
779 			mpc->funcs->set_output_csc(mpc,
780 					opp_id,
781 					matrix,
782 					ocsc_mode);
783 	} else {
784 		if (mpc->funcs->set_ocsc_default != NULL)
785 			mpc->funcs->set_ocsc_default(mpc,
786 					opp_id,
787 					colorspace,
788 					ocsc_mode);
789 	}
790 }
791 
792 bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
793 				const struct dc_stream_state *stream)
794 {
795 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
796 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
797 	struct pwl_params *params = NULL;
798 	/*
799 	 * program OGAM only for the top pipe
800 	 * if there is a pipe split then fix diagnostic is required:
801 	 * how to pass OGAM parameter for stream.
802 	 * if programming for all pipes is required then remove condition
803 	 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
804 	 */
805 	if (mpc->funcs->power_on_mpc_mem_pwr)
806 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
807 	if (pipe_ctx->top_pipe == NULL
808 			&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
809 		if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
810 			params = &stream->out_transfer_func->pwl;
811 		else if (pipe_ctx->stream->out_transfer_func->type ==
812 			TF_TYPE_DISTRIBUTED_POINTS &&
813 			cm_helper_translate_curve_to_hw_format(
814 			stream->out_transfer_func,
815 			&mpc->blender_params, false))
816 			params = &mpc->blender_params;
817 		/*
818 		 * there is no ROM
819 		 */
820 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
821 			BREAK_TO_DEBUGGER();
822 	}
823 	/*
824 	 * if above if is not executed then 'params' equal to 0 and set in bypass
825 	 */
826 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
827 
828 	return true;
829 }
830 
831 bool dcn20_set_blend_lut(
832 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
833 {
834 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
835 	bool result = true;
836 	struct pwl_params *blend_lut = NULL;
837 
838 	if (plane_state->blend_tf) {
839 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
840 			blend_lut = &plane_state->blend_tf->pwl;
841 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
842 			cm_helper_translate_curve_to_hw_format(
843 					plane_state->blend_tf,
844 					&dpp_base->regamma_params, false);
845 			blend_lut = &dpp_base->regamma_params;
846 		}
847 	}
848 	result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
849 
850 	return result;
851 }
852 
853 bool dcn20_set_shaper_3dlut(
854 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
855 {
856 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
857 	bool result = true;
858 	struct pwl_params *shaper_lut = NULL;
859 
860 	if (plane_state->in_shaper_func) {
861 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
862 			shaper_lut = &plane_state->in_shaper_func->pwl;
863 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
864 			cm_helper_translate_curve_to_hw_format(
865 					plane_state->in_shaper_func,
866 					&dpp_base->shaper_params, true);
867 			shaper_lut = &dpp_base->shaper_params;
868 		}
869 	}
870 
871 	result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
872 	if (plane_state->lut3d_func &&
873 		plane_state->lut3d_func->state.bits.initialized == 1)
874 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
875 								&plane_state->lut3d_func->lut_3d);
876 	else
877 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
878 
879 	return result;
880 }
881 
882 bool dcn20_set_input_transfer_func(struct dc *dc,
883 				struct pipe_ctx *pipe_ctx,
884 				const struct dc_plane_state *plane_state)
885 {
886 	struct dce_hwseq *hws = dc->hwseq;
887 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
888 	const struct dc_transfer_func *tf = NULL;
889 	bool result = true;
890 	bool use_degamma_ram = false;
891 
892 	if (dpp_base == NULL || plane_state == NULL)
893 		return false;
894 
895 	hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
896 	hws->funcs.set_blend_lut(pipe_ctx, plane_state);
897 
898 	if (plane_state->in_transfer_func)
899 		tf = plane_state->in_transfer_func;
900 
901 
902 	if (tf == NULL) {
903 		dpp_base->funcs->dpp_set_degamma(dpp_base,
904 				IPP_DEGAMMA_MODE_BYPASS);
905 		return true;
906 	}
907 
908 	if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
909 		use_degamma_ram = true;
910 
911 	if (use_degamma_ram == true) {
912 		if (tf->type == TF_TYPE_HWPWL)
913 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
914 					&tf->pwl);
915 		else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
916 			cm_helper_translate_curve_to_degamma_hw_format(tf,
917 					&dpp_base->degamma_params);
918 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
919 				&dpp_base->degamma_params);
920 		}
921 		return true;
922 	}
923 	/* handle here the optimized cases when de-gamma ROM could be used.
924 	 *
925 	 */
926 	if (tf->type == TF_TYPE_PREDEFINED) {
927 		switch (tf->tf) {
928 		case TRANSFER_FUNCTION_SRGB:
929 			dpp_base->funcs->dpp_set_degamma(dpp_base,
930 					IPP_DEGAMMA_MODE_HW_sRGB);
931 			break;
932 		case TRANSFER_FUNCTION_BT709:
933 			dpp_base->funcs->dpp_set_degamma(dpp_base,
934 					IPP_DEGAMMA_MODE_HW_xvYCC);
935 			break;
936 		case TRANSFER_FUNCTION_LINEAR:
937 			dpp_base->funcs->dpp_set_degamma(dpp_base,
938 					IPP_DEGAMMA_MODE_BYPASS);
939 			break;
940 		case TRANSFER_FUNCTION_PQ:
941 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
942 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
943 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
944 			result = true;
945 			break;
946 		default:
947 			result = false;
948 			break;
949 		}
950 	} else if (tf->type == TF_TYPE_BYPASS)
951 		dpp_base->funcs->dpp_set_degamma(dpp_base,
952 				IPP_DEGAMMA_MODE_BYPASS);
953 	else {
954 		/*
955 		 * if we are here, we did not handle correctly.
956 		 * fix is required for this use case
957 		 */
958 		BREAK_TO_DEBUGGER();
959 		dpp_base->funcs->dpp_set_degamma(dpp_base,
960 				IPP_DEGAMMA_MODE_BYPASS);
961 	}
962 
963 	return result;
964 }
965 
966 void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
967 {
968 	struct pipe_ctx *odm_pipe;
969 	int opp_cnt = 1;
970 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
971 
972 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
973 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
974 		opp_cnt++;
975 	}
976 
977 	if (opp_cnt > 1)
978 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
979 				pipe_ctx->stream_res.tg,
980 				opp_inst, opp_cnt,
981 				&pipe_ctx->stream->timing);
982 	else
983 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
984 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
985 }
986 
987 void dcn20_blank_pixel_data(
988 		struct dc *dc,
989 		struct pipe_ctx *pipe_ctx,
990 		bool blank)
991 {
992 	struct tg_color black_color = {0};
993 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
994 	struct dc_stream_state *stream = pipe_ctx->stream;
995 	enum dc_color_space color_space = stream->output_color_space;
996 	enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
997 	enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
998 	struct pipe_ctx *odm_pipe;
999 	int odm_cnt = 1;
1000 
1001 	int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
1002 	int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
1003 
1004 	if (stream->link->test_pattern_enabled)
1005 		return;
1006 
1007 	/* get opp dpg blank color */
1008 	color_space_to_black_color(dc, color_space, &black_color);
1009 
1010 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1011 		odm_cnt++;
1012 
1013 	width = width / odm_cnt;
1014 
1015 	if (blank) {
1016 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
1017 
1018 		if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
1019 			test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1020 			test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1021 		}
1022 	} else {
1023 		test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1024 	}
1025 
1026 	dc->hwss.set_disp_pattern_generator(dc,
1027 			pipe_ctx,
1028 			test_pattern,
1029 			test_pattern_color_space,
1030 			stream->timing.display_color_depth,
1031 			&black_color,
1032 			width,
1033 			height,
1034 			0);
1035 
1036 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1037 		dc->hwss.set_disp_pattern_generator(dc,
1038 				odm_pipe,
1039 				dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ?
1040 						CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern,
1041 				test_pattern_color_space,
1042 				stream->timing.display_color_depth,
1043 				&black_color,
1044 				width,
1045 				height,
1046 				0);
1047 	}
1048 
1049 	if (!blank)
1050 		if (stream_res->abm) {
1051 			dc->hwss.set_pipe(pipe_ctx);
1052 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
1053 		}
1054 }
1055 
1056 
1057 static void dcn20_power_on_plane(
1058 	struct dce_hwseq *hws,
1059 	struct pipe_ctx *pipe_ctx)
1060 {
1061 	DC_LOGGER_INIT(hws->ctx->logger);
1062 	if (REG(DC_IP_REQUEST_CNTL)) {
1063 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1064 				IP_REQUEST_EN, 1);
1065 
1066 		if (hws->funcs.dpp_pg_control)
1067 			hws->funcs.dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1068 
1069 		if (hws->funcs.hubp_pg_control)
1070 			hws->funcs.hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
1071 
1072 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1073 				IP_REQUEST_EN, 0);
1074 		DC_LOG_DEBUG(
1075 				"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
1076 	}
1077 }
1078 
1079 void dcn20_enable_plane(
1080 	struct dc *dc,
1081 	struct pipe_ctx *pipe_ctx,
1082 	struct dc_state *context)
1083 {
1084 	//if (dc->debug.sanity_checks) {
1085 	//	dcn10_verify_allow_pstate_change_high(dc);
1086 	//}
1087 	dcn20_power_on_plane(dc->hwseq, pipe_ctx);
1088 
1089 	/* enable DCFCLK current DCHUB */
1090 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
1091 
1092 	/* initialize HUBP on power up */
1093 	pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
1094 
1095 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
1096 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1097 			pipe_ctx->stream_res.opp,
1098 			true);
1099 
1100 /* TODO: enable/disable in dm as per update type.
1101 	if (plane_state) {
1102 		DC_LOG_DC(dc->ctx->logger,
1103 				"Pipe:%d 0x%x: addr hi:0x%x, "
1104 				"addr low:0x%x, "
1105 				"src: %d, %d, %d,"
1106 				" %d; dst: %d, %d, %d, %d;\n",
1107 				pipe_ctx->pipe_idx,
1108 				plane_state,
1109 				plane_state->address.grph.addr.high_part,
1110 				plane_state->address.grph.addr.low_part,
1111 				plane_state->src_rect.x,
1112 				plane_state->src_rect.y,
1113 				plane_state->src_rect.width,
1114 				plane_state->src_rect.height,
1115 				plane_state->dst_rect.x,
1116 				plane_state->dst_rect.y,
1117 				plane_state->dst_rect.width,
1118 				plane_state->dst_rect.height);
1119 
1120 		DC_LOG_DC(dc->ctx->logger,
1121 				"Pipe %d: width, height, x, y         format:%d\n"
1122 				"viewport:%d, %d, %d, %d\n"
1123 				"recout:  %d, %d, %d, %d\n",
1124 				pipe_ctx->pipe_idx,
1125 				plane_state->format,
1126 				pipe_ctx->plane_res.scl_data.viewport.width,
1127 				pipe_ctx->plane_res.scl_data.viewport.height,
1128 				pipe_ctx->plane_res.scl_data.viewport.x,
1129 				pipe_ctx->plane_res.scl_data.viewport.y,
1130 				pipe_ctx->plane_res.scl_data.recout.width,
1131 				pipe_ctx->plane_res.scl_data.recout.height,
1132 				pipe_ctx->plane_res.scl_data.recout.x,
1133 				pipe_ctx->plane_res.scl_data.recout.y);
1134 		print_rq_dlg_ttu(dc, pipe_ctx);
1135 	}
1136 */
1137 	if (dc->vm_pa_config.valid) {
1138 		struct vm_system_aperture_param apt;
1139 
1140 		apt.sys_default.quad_part = 0;
1141 
1142 		apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
1143 		apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
1144 
1145 		// Program system aperture settings
1146 		pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
1147 	}
1148 
1149 //	if (dc->debug.sanity_checks) {
1150 //		dcn10_verify_allow_pstate_change_high(dc);
1151 //	}
1152 }
1153 
1154 void dcn20_pipe_control_lock(
1155 	struct dc *dc,
1156 	struct pipe_ctx *pipe,
1157 	bool lock)
1158 {
1159 	struct pipe_ctx *temp_pipe;
1160 	bool flip_immediate = false;
1161 
1162 	/* use TG master update lock to lock everything on the TG
1163 	 * therefore only top pipe need to lock
1164 	 */
1165 	if (!pipe || pipe->top_pipe)
1166 		return;
1167 
1168 	if (pipe->plane_state != NULL)
1169 		flip_immediate = pipe->plane_state->flip_immediate;
1170 
1171 	if  (pipe->stream_res.gsl_group > 0) {
1172 	    temp_pipe = pipe->bottom_pipe;
1173 	    while (!flip_immediate && temp_pipe) {
1174 		    if (temp_pipe->plane_state != NULL)
1175 			    flip_immediate = temp_pipe->plane_state->flip_immediate;
1176 		    temp_pipe = temp_pipe->bottom_pipe;
1177 	    }
1178 	}
1179 
1180 	if (flip_immediate && lock) {
1181 		const int TIMEOUT_FOR_FLIP_PENDING = 100000;
1182 		int i;
1183 
1184 		temp_pipe = pipe;
1185 		while (temp_pipe) {
1186 			if (temp_pipe->plane_state && temp_pipe->plane_state->flip_immediate) {
1187 				for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) {
1188 					if (!temp_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(temp_pipe->plane_res.hubp))
1189 						break;
1190 					udelay(1);
1191 				}
1192 
1193 				/* no reason it should take this long for immediate flips */
1194 				ASSERT(i != TIMEOUT_FOR_FLIP_PENDING);
1195 			}
1196 			temp_pipe = temp_pipe->bottom_pipe;
1197 		}
1198 	}
1199 
1200 	/* In flip immediate and pipe splitting case, we need to use GSL
1201 	 * for synchronization. Only do setup on locking and on flip type change.
1202 	 */
1203 	if (lock && (pipe->bottom_pipe != NULL || !flip_immediate))
1204 		if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
1205 		    (!flip_immediate && pipe->stream_res.gsl_group > 0))
1206 			dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
1207 
1208 	if (pipe->plane_state != NULL)
1209 		flip_immediate = pipe->plane_state->flip_immediate;
1210 
1211 	temp_pipe = pipe->bottom_pipe;
1212 	while (flip_immediate && temp_pipe) {
1213 	    if (temp_pipe->plane_state != NULL)
1214 		flip_immediate = temp_pipe->plane_state->flip_immediate;
1215 	    temp_pipe = temp_pipe->bottom_pipe;
1216 	}
1217 
1218 	if (!lock && pipe->stream_res.gsl_group > 0 && pipe->plane_state &&
1219 		!flip_immediate)
1220 	    dcn20_setup_gsl_group_as_lock(dc, pipe, false);
1221 
1222 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1223 		union dmub_hw_lock_flags hw_locks = { 0 };
1224 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1225 
1226 		hw_locks.bits.lock_pipe = 1;
1227 		inst_flags.otg_inst =  pipe->stream_res.tg->inst;
1228 
1229 		if (pipe->plane_state != NULL)
1230 			hw_locks.bits.triple_buffer_lock = pipe->plane_state->triplebuffer_flips;
1231 
1232 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1233 					lock,
1234 					&hw_locks,
1235 					&inst_flags);
1236 	} else if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
1237 		if (lock)
1238 			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
1239 		else
1240 			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
1241 	} else {
1242 		if (lock)
1243 			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1244 		else
1245 			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1246 	}
1247 }
1248 
1249 static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe)
1250 {
1251 	new_pipe->update_flags.raw = 0;
1252 
1253 	/* Exit on unchanged, unused pipe */
1254 	if (!old_pipe->plane_state && !new_pipe->plane_state)
1255 		return;
1256 	/* Detect pipe enable/disable */
1257 	if (!old_pipe->plane_state && new_pipe->plane_state) {
1258 		new_pipe->update_flags.bits.enable = 1;
1259 		new_pipe->update_flags.bits.mpcc = 1;
1260 		new_pipe->update_flags.bits.dppclk = 1;
1261 		new_pipe->update_flags.bits.hubp_interdependent = 1;
1262 		new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1263 		new_pipe->update_flags.bits.gamut_remap = 1;
1264 		new_pipe->update_flags.bits.scaler = 1;
1265 		new_pipe->update_flags.bits.viewport = 1;
1266 		if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1267 			new_pipe->update_flags.bits.odm = 1;
1268 			new_pipe->update_flags.bits.global_sync = 1;
1269 		}
1270 		return;
1271 	}
1272 	if (old_pipe->plane_state && !new_pipe->plane_state) {
1273 		new_pipe->update_flags.bits.disable = 1;
1274 		return;
1275 	}
1276 
1277 	/* Detect plane change */
1278 	if (old_pipe->plane_state != new_pipe->plane_state) {
1279 		new_pipe->update_flags.bits.plane_changed = true;
1280 	}
1281 
1282 	/* Detect top pipe only changes */
1283 	if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1284 		/* Detect odm changes */
1285 		if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe
1286 			&& old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx)
1287 				|| (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe)
1288 				|| (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe)
1289 				|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1290 			new_pipe->update_flags.bits.odm = 1;
1291 
1292 		/* Detect global sync changes */
1293 		if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset
1294 				|| old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start
1295 				|| old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset
1296 				|| old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width)
1297 			new_pipe->update_flags.bits.global_sync = 1;
1298 	}
1299 
1300 	/*
1301 	 * Detect opp / tg change, only set on change, not on enable
1302 	 * Assume mpcc inst = pipe index, if not this code needs to be updated
1303 	 * since mpcc is what is affected by these. In fact all of our sequence
1304 	 * makes this assumption at the moment with how hubp reset is matched to
1305 	 * same index mpcc reset.
1306 	 */
1307 	if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1308 		new_pipe->update_flags.bits.opp_changed = 1;
1309 	if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
1310 		new_pipe->update_flags.bits.tg_changed = 1;
1311 
1312 	/*
1313 	 * Detect mpcc blending changes, only dpp inst and opp matter here,
1314 	 * mpccs getting removed/inserted update connected ones during their own
1315 	 * programming
1316 	 */
1317 	if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
1318 			|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1319 		new_pipe->update_flags.bits.mpcc = 1;
1320 
1321 	/* Detect dppclk change */
1322 	if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
1323 		new_pipe->update_flags.bits.dppclk = 1;
1324 
1325 	/* Check for scl update */
1326 	if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
1327 			new_pipe->update_flags.bits.scaler = 1;
1328 	/* Check for vp update */
1329 	if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
1330 			|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
1331 				&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
1332 		new_pipe->update_flags.bits.viewport = 1;
1333 
1334 	/* Detect dlg/ttu/rq updates */
1335 	{
1336 		struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs;
1337 		struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs;
1338 		struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs;
1339 		struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs;
1340 
1341 		/* Detect pipe interdependent updates */
1342 		if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch ||
1343 				old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch ||
1344 				old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c ||
1345 				old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank ||
1346 				old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank ||
1347 				old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip ||
1348 				old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip ||
1349 				old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l ||
1350 				old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c ||
1351 				old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l ||
1352 				old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l ||
1353 				old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c ||
1354 				old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l ||
1355 				old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c ||
1356 				old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 ||
1357 				old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 ||
1358 				old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank ||
1359 				old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) {
1360 			old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch;
1361 			old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch;
1362 			old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c;
1363 			old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank;
1364 			old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank;
1365 			old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip;
1366 			old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip;
1367 			old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l;
1368 			old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c;
1369 			old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l;
1370 			old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l;
1371 			old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c;
1372 			old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l;
1373 			old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c;
1374 			old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0;
1375 			old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1;
1376 			old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank;
1377 			old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip;
1378 			new_pipe->update_flags.bits.hubp_interdependent = 1;
1379 		}
1380 		/* Detect any other updates to ttu/rq/dlg */
1381 		if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) ||
1382 				memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) ||
1383 				memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs)))
1384 			new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1385 	}
1386 }
1387 
1388 static void dcn20_update_dchubp_dpp(
1389 	struct dc *dc,
1390 	struct pipe_ctx *pipe_ctx,
1391 	struct dc_state *context)
1392 {
1393 	struct dce_hwseq *hws = dc->hwseq;
1394 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1395 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1396 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1397 	bool viewport_changed = false;
1398 
1399 	if (pipe_ctx->update_flags.bits.dppclk)
1400 		dpp->funcs->dpp_dppclk_control(dpp, false, true);
1401 
1402 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
1403 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
1404 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
1405 	 */
1406 	if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) {
1407 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
1408 
1409 		hubp->funcs->hubp_setup(
1410 			hubp,
1411 			&pipe_ctx->dlg_regs,
1412 			&pipe_ctx->ttu_regs,
1413 			&pipe_ctx->rq_regs,
1414 			&pipe_ctx->pipe_dlg_param);
1415 	}
1416 	if (pipe_ctx->update_flags.bits.hubp_interdependent)
1417 		hubp->funcs->hubp_setup_interdependent(
1418 			hubp,
1419 			&pipe_ctx->dlg_regs,
1420 			&pipe_ctx->ttu_regs);
1421 
1422 	if (pipe_ctx->update_flags.bits.enable ||
1423 			pipe_ctx->update_flags.bits.plane_changed ||
1424 			plane_state->update_flags.bits.bpp_change ||
1425 			plane_state->update_flags.bits.input_csc_change ||
1426 			plane_state->update_flags.bits.color_space_change ||
1427 			plane_state->update_flags.bits.coeff_reduction_change) {
1428 		struct dc_bias_and_scale bns_params = {0};
1429 
1430 		// program the input csc
1431 		dpp->funcs->dpp_setup(dpp,
1432 				plane_state->format,
1433 				EXPANSION_MODE_ZERO,
1434 				plane_state->input_csc_color_matrix,
1435 				plane_state->color_space,
1436 				NULL);
1437 
1438 		if (dpp->funcs->dpp_program_bias_and_scale) {
1439 			//TODO :for CNVC set scale and bias registers if necessary
1440 			build_prescale_params(&bns_params, plane_state);
1441 			dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
1442 		}
1443 	}
1444 
1445 	if (pipe_ctx->update_flags.bits.mpcc
1446 			|| pipe_ctx->update_flags.bits.plane_changed
1447 			|| plane_state->update_flags.bits.global_alpha_change
1448 			|| plane_state->update_flags.bits.per_pixel_alpha_change) {
1449 		// MPCC inst is equal to pipe index in practice
1450 		int mpcc_inst = hubp->inst;
1451 		int opp_inst;
1452 		int opp_count = dc->res_pool->pipe_count;
1453 
1454 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
1455 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
1456 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
1457 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
1458 				break;
1459 			}
1460 		}
1461 		hws->funcs.update_mpcc(dc, pipe_ctx);
1462 	}
1463 
1464 	if (pipe_ctx->update_flags.bits.scaler ||
1465 			plane_state->update_flags.bits.scaling_change ||
1466 			plane_state->update_flags.bits.position_change ||
1467 			plane_state->update_flags.bits.per_pixel_alpha_change ||
1468 			pipe_ctx->stream->update_flags.bits.scaling) {
1469 		pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha;
1470 		ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_30BPP);
1471 		/* scaler configuration */
1472 		pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
1473 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
1474 	}
1475 
1476 	if (pipe_ctx->update_flags.bits.viewport ||
1477 			(context == dc->current_state && plane_state->update_flags.bits.position_change) ||
1478 			(context == dc->current_state && plane_state->update_flags.bits.scaling_change) ||
1479 			(context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) {
1480 
1481 		hubp->funcs->mem_program_viewport(
1482 			hubp,
1483 			&pipe_ctx->plane_res.scl_data.viewport,
1484 			&pipe_ctx->plane_res.scl_data.viewport_c);
1485 		viewport_changed = true;
1486 	}
1487 
1488 	/* Any updates are handled in dc interface, just need to apply existing for plane enable */
1489 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed ||
1490 			pipe_ctx->update_flags.bits.scaler || viewport_changed == true) &&
1491 			pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
1492 		dc->hwss.set_cursor_position(pipe_ctx);
1493 		dc->hwss.set_cursor_attribute(pipe_ctx);
1494 
1495 		if (dc->hwss.set_cursor_sdr_white_level)
1496 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
1497 	}
1498 
1499 	/* Any updates are handled in dc interface, just need
1500 	 * to apply existing for plane enable / opp change */
1501 	if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed
1502 			|| pipe_ctx->stream->update_flags.bits.gamut_remap
1503 			|| pipe_ctx->stream->update_flags.bits.out_csc) {
1504 		struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
1505 
1506 		if (mpc->funcs->set_gamut_remap) {
1507 			int i;
1508 			int mpcc_id = hubp->inst;
1509 			struct mpc_grph_gamut_adjustment adjust;
1510 			bool enable_remap_dpp = false;
1511 
1512 			memset(&adjust, 0, sizeof(adjust));
1513 			adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
1514 
1515 			/* save the enablement of gamut remap for dpp */
1516 			enable_remap_dpp = pipe_ctx->stream->gamut_remap_matrix.enable_remap;
1517 
1518 			/* force bypass gamut remap for dpp/cm */
1519 			pipe_ctx->stream->gamut_remap_matrix.enable_remap = false;
1520 			dc->hwss.program_gamut_remap(pipe_ctx);
1521 
1522 			/* restore gamut remap flag and use this remap into mpc */
1523 			pipe_ctx->stream->gamut_remap_matrix.enable_remap = enable_remap_dpp;
1524 
1525 			/* build remap matrix for top plane if enabled */
1526 			if (enable_remap_dpp && pipe_ctx->top_pipe == NULL) {
1527 					adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
1528 					for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
1529 						adjust.temperature_matrix[i] =
1530 								pipe_ctx->stream->gamut_remap_matrix.matrix[i];
1531 			}
1532 			mpc->funcs->set_gamut_remap(mpc, mpcc_id, &adjust);
1533 		} else
1534 			/* dpp/cm gamut remap*/
1535 			dc->hwss.program_gamut_remap(pipe_ctx);
1536 
1537 		/*call the dcn2 method which uses mpc csc*/
1538 		dc->hwss.program_output_csc(dc,
1539 				pipe_ctx,
1540 				pipe_ctx->stream->output_color_space,
1541 				pipe_ctx->stream->csc_color_matrix.matrix,
1542 				hubp->opp_id);
1543 	}
1544 
1545 	if (pipe_ctx->update_flags.bits.enable ||
1546 			pipe_ctx->update_flags.bits.plane_changed ||
1547 			pipe_ctx->update_flags.bits.opp_changed ||
1548 			plane_state->update_flags.bits.pixel_format_change ||
1549 			plane_state->update_flags.bits.horizontal_mirror_change ||
1550 			plane_state->update_flags.bits.rotation_change ||
1551 			plane_state->update_flags.bits.swizzle_change ||
1552 			plane_state->update_flags.bits.dcc_change ||
1553 			plane_state->update_flags.bits.bpp_change ||
1554 			plane_state->update_flags.bits.scaling_change ||
1555 			plane_state->update_flags.bits.plane_size_change) {
1556 		struct plane_size size = plane_state->plane_size;
1557 
1558 		size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
1559 		hubp->funcs->hubp_program_surface_config(
1560 			hubp,
1561 			plane_state->format,
1562 			&plane_state->tiling_info,
1563 			&size,
1564 			plane_state->rotation,
1565 			&plane_state->dcc,
1566 			plane_state->horizontal_mirror,
1567 			0);
1568 		hubp->power_gated = false;
1569 	}
1570 
1571 	if (pipe_ctx->update_flags.bits.enable ||
1572 		pipe_ctx->update_flags.bits.plane_changed ||
1573 		plane_state->update_flags.bits.addr_update)
1574 		hws->funcs.update_plane_addr(dc, pipe_ctx);
1575 
1576 
1577 
1578 	if (pipe_ctx->update_flags.bits.enable)
1579 		hubp->funcs->set_blank(hubp, false);
1580 }
1581 
1582 
1583 static void dcn20_program_pipe(
1584 		struct dc *dc,
1585 		struct pipe_ctx *pipe_ctx,
1586 		struct dc_state *context)
1587 {
1588 	struct dce_hwseq *hws = dc->hwseq;
1589 	/* Only need to unblank on top pipe */
1590 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level)
1591 			&& !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe)
1592 		hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible);
1593 
1594 	/* Only update TG on top pipe */
1595 	if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe
1596 			&& !pipe_ctx->prev_odm_pipe) {
1597 
1598 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
1599 				pipe_ctx->stream_res.tg,
1600 				pipe_ctx->pipe_dlg_param.vready_offset,
1601 				pipe_ctx->pipe_dlg_param.vstartup_start,
1602 				pipe_ctx->pipe_dlg_param.vupdate_offset,
1603 				pipe_ctx->pipe_dlg_param.vupdate_width);
1604 
1605 		pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK);
1606 		pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
1607 
1608 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
1609 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
1610 
1611 		if (hws->funcs.setup_vupdate_interrupt)
1612 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1613 	}
1614 
1615 	if (pipe_ctx->update_flags.bits.odm)
1616 		hws->funcs.update_odm(dc, context, pipe_ctx);
1617 
1618 	if (pipe_ctx->update_flags.bits.enable) {
1619 		dcn20_enable_plane(dc, pipe_ctx, context);
1620 		if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes)
1621 			dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub);
1622 	}
1623 
1624 	if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw)
1625 		dcn20_update_dchubp_dpp(dc, pipe_ctx, context);
1626 
1627 	if (pipe_ctx->update_flags.bits.enable
1628 			|| pipe_ctx->plane_state->update_flags.bits.hdr_mult)
1629 		hws->funcs.set_hdr_multiplier(pipe_ctx);
1630 
1631 	if (pipe_ctx->update_flags.bits.enable ||
1632 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
1633 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
1634 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
1635 
1636 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
1637 	 * only do gamma programming for powering on, internal memcmp to avoid
1638 	 * updating on slave planes
1639 	 */
1640 	if (pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.out_tf)
1641 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
1642 
1643 	/* If the pipe has been enabled or has a different opp, we
1644 	 * should reprogram the fmt. This deals with cases where
1645 	 * interation between mpc and odm combine on different streams
1646 	 * causes a different pipe to be chosen to odm combine with.
1647 	 */
1648 	if (pipe_ctx->update_flags.bits.enable
1649 	    || pipe_ctx->update_flags.bits.opp_changed) {
1650 
1651 		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1652 			pipe_ctx->stream_res.opp,
1653 			COLOR_SPACE_YCBCR601,
1654 			pipe_ctx->stream->timing.display_color_depth,
1655 			pipe_ctx->stream->signal);
1656 
1657 		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1658 			pipe_ctx->stream_res.opp,
1659 			&pipe_ctx->stream->bit_depth_params,
1660 			&pipe_ctx->stream->clamping);
1661 	}
1662 }
1663 
1664 void dcn20_program_front_end_for_ctx(
1665 		struct dc *dc,
1666 		struct dc_state *context)
1667 {
1668 	int i;
1669 	struct dce_hwseq *hws = dc->hwseq;
1670 	DC_LOGGER_INIT(dc->ctx->logger);
1671 
1672 	/* Carry over GSL groups in case the context is changing. */
1673        for (i = 0; i < dc->res_pool->pipe_count; i++) {
1674                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1675                struct pipe_ctx *old_pipe_ctx =
1676                        &dc->current_state->res_ctx.pipe_ctx[i];
1677 
1678                if (pipe_ctx->stream == old_pipe_ctx->stream)
1679                        pipe_ctx->stream_res.gsl_group =
1680                                old_pipe_ctx->stream_res.gsl_group;
1681        }
1682 
1683 	if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
1684 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1685 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1686 
1687 			if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) {
1688 				ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
1689 				/*turn off triple buffer for full update*/
1690 				dc->hwss.program_triplebuffer(
1691 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
1692 			}
1693 		}
1694 	}
1695 
1696 	/* Set pipe update flags and lock pipes */
1697 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1698 		dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i],
1699 				&context->res_ctx.pipe_ctx[i]);
1700 
1701 	/* OTG blank before disabling all front ends */
1702 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1703 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1704 				&& !context->res_ctx.pipe_ctx[i].top_pipe
1705 				&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
1706 				&& context->res_ctx.pipe_ctx[i].stream)
1707 			hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);
1708 
1709 
1710 	/* Disconnect mpcc */
1711 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1712 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1713 				|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
1714 			hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1715 			DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
1716 		}
1717 
1718 	/*
1719 	 * Program all updated pipes, order matters for mpcc setup. Start with
1720 	 * top pipe and program all pipes that follow in order
1721 	 */
1722 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1723 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1724 
1725 		if (pipe->plane_state && !pipe->top_pipe) {
1726 			while (pipe) {
1727 				dcn20_program_pipe(dc, pipe, context);
1728 				pipe = pipe->bottom_pipe;
1729 			}
1730 			/* Program secondary blending tree and writeback pipes */
1731 			pipe = &context->res_ctx.pipe_ctx[i];
1732 			if (!pipe->prev_odm_pipe && pipe->stream->num_wb_info > 0
1733 					&& (pipe->update_flags.raw || pipe->plane_state->update_flags.raw || pipe->stream->update_flags.raw)
1734 					&& hws->funcs.program_all_writeback_pipes_in_tree)
1735 				hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);
1736 		}
1737 	}
1738 }
1739 
1740 void dcn20_post_unlock_program_front_end(
1741 		struct dc *dc,
1742 		struct dc_state *context)
1743 {
1744 	int i;
1745 	const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100;
1746 	struct dce_hwseq *hwseq = dc->hwseq;
1747 
1748 	DC_LOGGER_INIT(dc->ctx->logger);
1749 
1750 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1751 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
1752 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1753 
1754 	/*
1755 	 * If we are enabling a pipe, we need to wait for pending clear as this is a critical
1756 	 * part of the enable operation otherwise, DM may request an immediate flip which
1757 	 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
1758 	 * is unsupported on DCN.
1759 	 */
1760 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1761 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1762 
1763 		if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable) {
1764 			struct hubp *hubp = pipe->plane_res.hubp;
1765 			int j = 0;
1766 
1767 			for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_MS*1000
1768 					&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
1769 				mdelay(1);
1770 		}
1771 	}
1772 
1773 	/* WA to apply WM setting*/
1774 	if (hwseq->wa.DEGVIDCN21)
1775 		dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);
1776 
1777 
1778 	/* WA for stutter underflow during MPO transitions when adding 2nd plane */
1779 	if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {
1780 
1781 		if (dc->current_state->stream_status[0].plane_count == 1 &&
1782 				context->stream_status[0].plane_count > 1) {
1783 
1784 			struct timing_generator *tg = dc->res_pool->timing_generators[0];
1785 
1786 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);
1787 
1788 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
1789 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg);
1790 		}
1791 	}
1792 }
1793 
1794 void dcn20_prepare_bandwidth(
1795 		struct dc *dc,
1796 		struct dc_state *context)
1797 {
1798 	struct hubbub *hubbub = dc->res_pool->hubbub;
1799 
1800 	dc->clk_mgr->funcs->update_clocks(
1801 			dc->clk_mgr,
1802 			context,
1803 			false);
1804 
1805 	/* program dchubbub watermarks */
1806 	dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub,
1807 					&context->bw_ctx.bw.dcn.watermarks,
1808 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
1809 					false);
1810 }
1811 
1812 void dcn20_optimize_bandwidth(
1813 		struct dc *dc,
1814 		struct dc_state *context)
1815 {
1816 	struct hubbub *hubbub = dc->res_pool->hubbub;
1817 
1818 	/* program dchubbub watermarks */
1819 	hubbub->funcs->program_watermarks(hubbub,
1820 					&context->bw_ctx.bw.dcn.watermarks,
1821 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
1822 					true);
1823 
1824 	dc->clk_mgr->funcs->update_clocks(
1825 			dc->clk_mgr,
1826 			context,
1827 			true);
1828 }
1829 
1830 bool dcn20_update_bandwidth(
1831 		struct dc *dc,
1832 		struct dc_state *context)
1833 {
1834 	int i;
1835 	struct dce_hwseq *hws = dc->hwseq;
1836 
1837 	/* recalculate DML parameters */
1838 	if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
1839 		return false;
1840 
1841 	/* apply updated bandwidth parameters */
1842 	dc->hwss.prepare_bandwidth(dc, context);
1843 
1844 	/* update hubp configs for all pipes */
1845 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1846 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1847 
1848 		if (pipe_ctx->plane_state == NULL)
1849 			continue;
1850 
1851 		if (pipe_ctx->top_pipe == NULL) {
1852 			bool blank = !is_pipe_tree_visible(pipe_ctx);
1853 
1854 			pipe_ctx->stream_res.tg->funcs->program_global_sync(
1855 					pipe_ctx->stream_res.tg,
1856 					pipe_ctx->pipe_dlg_param.vready_offset,
1857 					pipe_ctx->pipe_dlg_param.vstartup_start,
1858 					pipe_ctx->pipe_dlg_param.vupdate_offset,
1859 					pipe_ctx->pipe_dlg_param.vupdate_width);
1860 
1861 			pipe_ctx->stream_res.tg->funcs->set_vtg_params(
1862 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false);
1863 
1864 			if (pipe_ctx->prev_odm_pipe == NULL)
1865 				hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
1866 
1867 			if (hws->funcs.setup_vupdate_interrupt)
1868 				hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1869 		}
1870 
1871 		pipe_ctx->plane_res.hubp->funcs->hubp_setup(
1872 				pipe_ctx->plane_res.hubp,
1873 					&pipe_ctx->dlg_regs,
1874 					&pipe_ctx->ttu_regs,
1875 					&pipe_ctx->rq_regs,
1876 					&pipe_ctx->pipe_dlg_param);
1877 	}
1878 
1879 	return true;
1880 }
1881 
1882 void dcn20_enable_writeback(
1883 		struct dc *dc,
1884 		struct dc_writeback_info *wb_info,
1885 		struct dc_state *context)
1886 {
1887 	struct dwbc *dwb;
1888 	struct mcif_wb *mcif_wb;
1889 	struct timing_generator *optc;
1890 
1891 	ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
1892 	ASSERT(wb_info->wb_enabled);
1893 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
1894 	mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
1895 
1896 	/* set the OPTC source mux */
1897 	optc = dc->res_pool->timing_generators[dwb->otg_inst];
1898 	optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
1899 	/* set MCIF_WB buffer and arbitration configuration */
1900 	mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
1901 	mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
1902 	/* Enable MCIF_WB */
1903 	mcif_wb->funcs->enable_mcif(mcif_wb);
1904 	/* Enable DWB */
1905 	dwb->funcs->enable(dwb, &wb_info->dwb_params);
1906 	/* TODO: add sequence to enable/disable warmup */
1907 }
1908 
1909 void dcn20_disable_writeback(
1910 		struct dc *dc,
1911 		unsigned int dwb_pipe_inst)
1912 {
1913 	struct dwbc *dwb;
1914 	struct mcif_wb *mcif_wb;
1915 
1916 	ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
1917 	dwb = dc->res_pool->dwbc[dwb_pipe_inst];
1918 	mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
1919 
1920 	dwb->funcs->disable(dwb);
1921 	mcif_wb->funcs->disable_mcif(mcif_wb);
1922 }
1923 
1924 bool dcn20_wait_for_blank_complete(
1925 		struct output_pixel_processor *opp)
1926 {
1927 	int counter;
1928 
1929 	for (counter = 0; counter < 1000; counter++) {
1930 		if (opp->funcs->dpg_is_blanked(opp))
1931 			break;
1932 
1933 		udelay(100);
1934 	}
1935 
1936 	if (counter == 1000) {
1937 		dm_error("DC: failed to blank crtc!\n");
1938 		return false;
1939 	}
1940 
1941 	return true;
1942 }
1943 
1944 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
1945 {
1946 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1947 
1948 	if (!hubp)
1949 		return false;
1950 	return hubp->funcs->dmdata_status_done(hubp);
1951 }
1952 
1953 void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
1954 {
1955 	struct dce_hwseq *hws = dc->hwseq;
1956 
1957 	if (pipe_ctx->stream_res.dsc) {
1958 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1959 
1960 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
1961 		while (odm_pipe) {
1962 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
1963 			odm_pipe = odm_pipe->next_odm_pipe;
1964 		}
1965 	}
1966 }
1967 
1968 void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
1969 {
1970 	struct dce_hwseq *hws = dc->hwseq;
1971 
1972 	if (pipe_ctx->stream_res.dsc) {
1973 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1974 
1975 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
1976 		while (odm_pipe) {
1977 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
1978 			odm_pipe = odm_pipe->next_odm_pipe;
1979 		}
1980 	}
1981 }
1982 
1983 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
1984 {
1985 	struct dc_dmdata_attributes attr = { 0 };
1986 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1987 
1988 	attr.dmdata_mode = DMDATA_HW_MODE;
1989 	attr.dmdata_size =
1990 		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
1991 	attr.address.quad_part =
1992 			pipe_ctx->stream->dmdata_address.quad_part;
1993 	attr.dmdata_dl_delta = 0;
1994 	attr.dmdata_qos_mode = 0;
1995 	attr.dmdata_qos_level = 0;
1996 	attr.dmdata_repeat = 1; /* always repeat */
1997 	attr.dmdata_updated = 1;
1998 	attr.dmdata_sw_data = NULL;
1999 
2000 	hubp->funcs->dmdata_set_attributes(hubp, &attr);
2001 }
2002 
2003 void dcn20_init_vm_ctx(
2004 		struct dce_hwseq *hws,
2005 		struct dc *dc,
2006 		struct dc_virtual_addr_space_config *va_config,
2007 		int vmid)
2008 {
2009 	struct dcn_hubbub_virt_addr_config config;
2010 
2011 	if (vmid == 0) {
2012 		ASSERT(0); /* VMID cannot be 0 for vm context */
2013 		return;
2014 	}
2015 
2016 	config.page_table_start_addr = va_config->page_table_start_addr;
2017 	config.page_table_end_addr = va_config->page_table_end_addr;
2018 	config.page_table_block_size = va_config->page_table_block_size_in_bytes;
2019 	config.page_table_depth = va_config->page_table_depth;
2020 	config.page_table_base_addr = va_config->page_table_base_addr;
2021 
2022 	dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
2023 }
2024 
2025 int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
2026 {
2027 	struct dcn_hubbub_phys_addr_config config;
2028 
2029 	config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
2030 	config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
2031 	config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
2032 	config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
2033 	config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
2034 	config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
2035 	config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
2036 	config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
2037 	config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
2038 	config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
2039 
2040 	return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
2041 }
2042 
2043 static bool patch_address_for_sbs_tb_stereo(
2044 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
2045 {
2046 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2047 	bool sec_split = pipe_ctx->top_pipe &&
2048 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
2049 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2050 			(pipe_ctx->stream->timing.timing_3d_format ==
2051 			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
2052 			pipe_ctx->stream->timing.timing_3d_format ==
2053 			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
2054 		*addr = plane_state->address.grph_stereo.left_addr;
2055 		plane_state->address.grph_stereo.left_addr =
2056 				plane_state->address.grph_stereo.right_addr;
2057 		return true;
2058 	}
2059 
2060 	if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
2061 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
2062 		plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
2063 		plane_state->address.grph_stereo.right_addr =
2064 				plane_state->address.grph_stereo.left_addr;
2065 		plane_state->address.grph_stereo.right_meta_addr =
2066 				plane_state->address.grph_stereo.left_meta_addr;
2067 	}
2068 	return false;
2069 }
2070 
2071 void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
2072 {
2073 	bool addr_patched = false;
2074 	PHYSICAL_ADDRESS_LOC addr;
2075 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2076 
2077 	if (plane_state == NULL)
2078 		return;
2079 
2080 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
2081 
2082 	// Call Helper to track VMID use
2083 	vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
2084 
2085 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
2086 			pipe_ctx->plane_res.hubp,
2087 			&plane_state->address,
2088 			plane_state->flip_immediate);
2089 
2090 	plane_state->status.requested_address = plane_state->address;
2091 
2092 	if (plane_state->flip_immediate)
2093 		plane_state->status.current_address = plane_state->address;
2094 
2095 	if (addr_patched)
2096 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
2097 }
2098 
2099 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
2100 		struct dc_link_settings *link_settings)
2101 {
2102 	struct encoder_unblank_param params = { { 0 } };
2103 	struct dc_stream_state *stream = pipe_ctx->stream;
2104 	struct dc_link *link = stream->link;
2105 	struct dce_hwseq *hws = link->dc->hwseq;
2106 	struct pipe_ctx *odm_pipe;
2107 
2108 	params.opp_cnt = 1;
2109 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
2110 		params.opp_cnt++;
2111 	}
2112 	/* only 3 items below are used by unblank */
2113 	params.timing = pipe_ctx->stream->timing;
2114 
2115 	params.link_settings.link_rate = link_settings->link_rate;
2116 
2117 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
2118 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
2119 			params.timing.pix_clk_100hz /= 2;
2120 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
2121 				pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
2122 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
2123 	}
2124 
2125 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
2126 		hws->funcs.edp_backlight_control(link, true);
2127 	}
2128 }
2129 
2130 void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
2131 {
2132 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2133 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
2134 
2135 	if (start_line < 0)
2136 		start_line = 0;
2137 
2138 	if (tg->funcs->setup_vertical_interrupt2)
2139 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
2140 }
2141 
2142 static void dcn20_reset_back_end_for_pipe(
2143 		struct dc *dc,
2144 		struct pipe_ctx *pipe_ctx,
2145 		struct dc_state *context)
2146 {
2147 	int i;
2148 	struct dc_link *link;
2149 	DC_LOGGER_INIT(dc->ctx->logger);
2150 	if (pipe_ctx->stream_res.stream_enc == NULL) {
2151 		pipe_ctx->stream = NULL;
2152 		return;
2153 	}
2154 
2155 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2156 		link = pipe_ctx->stream->link;
2157 		/* DPMS may already disable or */
2158 		/* dpms_off status is incorrect due to fastboot
2159 		 * feature. When system resume from S4 with second
2160 		 * screen only, the dpms_off would be true but
2161 		 * VBIOS lit up eDP, so check link status too.
2162 		 */
2163 		if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
2164 			core_link_disable_stream(pipe_ctx);
2165 		else if (pipe_ctx->stream_res.audio)
2166 			dc->hwss.disable_audio_stream(pipe_ctx);
2167 
2168 		/* free acquired resources */
2169 		if (pipe_ctx->stream_res.audio) {
2170 			/*disable az_endpoint*/
2171 			pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2172 
2173 			/*free audio*/
2174 			if (dc->caps.dynamic_audio == true) {
2175 				/*we have to dynamic arbitrate the audio endpoints*/
2176 				/*we free the resource, need reset is_audio_acquired*/
2177 				update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2178 						pipe_ctx->stream_res.audio, false);
2179 				pipe_ctx->stream_res.audio = NULL;
2180 			}
2181 		}
2182 	}
2183 	else if (pipe_ctx->stream_res.dsc) {
2184 		dp_set_dsc_enable(pipe_ctx, false);
2185 	}
2186 
2187 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
2188 	 * back end share by all pipes and will be disable only when disable
2189 	 * parent pipe.
2190 	 */
2191 	if (pipe_ctx->top_pipe == NULL) {
2192 
2193 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2194 
2195 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
2196 
2197 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
2198 		if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
2199 			pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
2200 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
2201 
2202 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
2203 			pipe_ctx->stream_res.tg->funcs->set_drr(
2204 					pipe_ctx->stream_res.tg, NULL);
2205 	}
2206 
2207 	for (i = 0; i < dc->res_pool->pipe_count; i++)
2208 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
2209 			break;
2210 
2211 	if (i == dc->res_pool->pipe_count)
2212 		return;
2213 
2214 	pipe_ctx->stream = NULL;
2215 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
2216 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
2217 }
2218 
2219 void dcn20_reset_hw_ctx_wrap(
2220 		struct dc *dc,
2221 		struct dc_state *context)
2222 {
2223 	int i;
2224 	struct dce_hwseq *hws = dc->hwseq;
2225 
2226 	/* Reset Back End*/
2227 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
2228 		struct pipe_ctx *pipe_ctx_old =
2229 			&dc->current_state->res_ctx.pipe_ctx[i];
2230 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2231 
2232 		if (!pipe_ctx_old->stream)
2233 			continue;
2234 
2235 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
2236 			continue;
2237 
2238 		if (!pipe_ctx->stream ||
2239 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2240 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2241 
2242 			dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
2243 			if (hws->funcs.enable_stream_gating)
2244 				hws->funcs.enable_stream_gating(dc, pipe_ctx);
2245 			if (old_clk)
2246 				old_clk->funcs->cs_power_down(old_clk);
2247 		}
2248 	}
2249 }
2250 
2251 void dcn20_get_mpctree_visual_confirm_color(
2252 		struct pipe_ctx *pipe_ctx,
2253 		struct tg_color *color)
2254 {
2255 	const struct tg_color pipe_colors[6] = {
2256 			{MAX_TG_COLOR_VALUE, 0, 0}, // red
2257 			{MAX_TG_COLOR_VALUE, MAX_TG_COLOR_VALUE / 4, 0}, // orange
2258 			{MAX_TG_COLOR_VALUE, MAX_TG_COLOR_VALUE, 0}, // yellow
2259 			{0, MAX_TG_COLOR_VALUE, 0}, // green
2260 			{0, 0, MAX_TG_COLOR_VALUE}, // blue
2261 			{MAX_TG_COLOR_VALUE / 2, 0, MAX_TG_COLOR_VALUE / 2}, // purple
2262 	};
2263 
2264 	struct pipe_ctx *top_pipe = pipe_ctx;
2265 
2266 	while (top_pipe->top_pipe) {
2267 		top_pipe = top_pipe->top_pipe;
2268 	}
2269 
2270 	*color = pipe_colors[top_pipe->pipe_idx];
2271 }
2272 
2273 void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2274 {
2275 	struct dce_hwseq *hws = dc->hwseq;
2276 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2277 	struct mpcc_blnd_cfg blnd_cfg = { {0} };
2278 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
2279 	int mpcc_id;
2280 	struct mpcc *new_mpcc;
2281 	struct mpc *mpc = dc->res_pool->mpc;
2282 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2283 
2284 	// input to MPCC is always RGB, by default leave black_color at 0
2285 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
2286 		hws->funcs.get_hdr_visual_confirm_color(pipe_ctx, &blnd_cfg.black_color);
2287 	} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
2288 		hws->funcs.get_surface_visual_confirm_color(pipe_ctx, &blnd_cfg.black_color);
2289 	} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE) {
2290 		dcn20_get_mpctree_visual_confirm_color(pipe_ctx, &blnd_cfg.black_color);
2291 	}
2292 
2293 	if (per_pixel_alpha)
2294 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2295 	else
2296 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2297 
2298 	blnd_cfg.overlap_only = false;
2299 	blnd_cfg.global_gain = 0xff;
2300 
2301 	if (pipe_ctx->plane_state->global_alpha)
2302 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2303 	else
2304 		blnd_cfg.global_alpha = 0xff;
2305 
2306 	blnd_cfg.background_color_bpc = 4;
2307 	blnd_cfg.bottom_gain_mode = 0;
2308 	blnd_cfg.top_gain = 0x1f000;
2309 	blnd_cfg.bottom_inside_gain = 0x1f000;
2310 	blnd_cfg.bottom_outside_gain = 0x1f000;
2311 	blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;
2312 	if (pipe_ctx->plane_state->format
2313 			== SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA)
2314 		blnd_cfg.pre_multiplied_alpha = false;
2315 
2316 	/*
2317 	 * TODO: remove hack
2318 	 * Note: currently there is a bug in init_hw such that
2319 	 * on resume from hibernate, BIOS sets up MPCC0, and
2320 	 * we do mpcc_remove but the mpcc cannot go to idle
2321 	 * after remove. This cause us to pick mpcc1 here,
2322 	 * which causes a pstate hang for yet unknown reason.
2323 	 */
2324 	mpcc_id = hubp->inst;
2325 
2326 	/* If there is no full update, don't need to touch MPC tree*/
2327 	if (!pipe_ctx->plane_state->update_flags.bits.full_update &&
2328 		!pipe_ctx->update_flags.bits.mpcc) {
2329 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2330 		return;
2331 	}
2332 
2333 	/* check if this MPCC is already being used */
2334 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2335 	/* remove MPCC if being used */
2336 	if (new_mpcc != NULL)
2337 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2338 	else
2339 		if (dc->debug.sanity_checks)
2340 			mpc->funcs->assert_mpcc_idle_before_connect(
2341 					dc->res_pool->mpc, mpcc_id);
2342 
2343 	/* Call MPC to insert new plane */
2344 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2345 			mpc_tree_params,
2346 			&blnd_cfg,
2347 			NULL,
2348 			NULL,
2349 			hubp->inst,
2350 			mpcc_id);
2351 
2352 	ASSERT(new_mpcc != NULL);
2353 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2354 	hubp->mpcc_id = mpcc_id;
2355 }
2356 
2357 void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
2358 {
2359 	enum dc_lane_count lane_count =
2360 		pipe_ctx->stream->link->cur_link_settings.lane_count;
2361 
2362 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
2363 	struct dc_link *link = pipe_ctx->stream->link;
2364 
2365 	uint32_t active_total_with_borders;
2366 	uint32_t early_control = 0;
2367 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2368 
2369 	/* For MST, there are multiply stream go to only one link.
2370 	 * connect DIG back_end to front_end while enable_stream and
2371 	 * disconnect them during disable_stream
2372 	 * BY this, it is logic clean to separate stream and link
2373 	 */
2374 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
2375 						    pipe_ctx->stream_res.stream_enc->id, true);
2376 
2377 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
2378 		if (link->dc->hwss.program_dmdata_engine)
2379 			link->dc->hwss.program_dmdata_engine(pipe_ctx);
2380 	}
2381 
2382 	link->dc->hwss.update_info_frame(pipe_ctx);
2383 
2384 	/* enable early control to avoid corruption on DP monitor*/
2385 	active_total_with_borders =
2386 			timing->h_addressable
2387 				+ timing->h_border_left
2388 				+ timing->h_border_right;
2389 
2390 	if (lane_count != 0)
2391 		early_control = active_total_with_borders % lane_count;
2392 
2393 	if (early_control == 0)
2394 		early_control = lane_count;
2395 
2396 	tg->funcs->set_early_control(tg, early_control);
2397 
2398 	/* enable audio only within mode set */
2399 	if (pipe_ctx->stream_res.audio != NULL) {
2400 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
2401 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
2402 	}
2403 }
2404 
2405 void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
2406 {
2407 	struct dc_stream_state    *stream     = pipe_ctx->stream;
2408 	struct hubp               *hubp       = pipe_ctx->plane_res.hubp;
2409 	bool                       enable     = false;
2410 	struct stream_encoder     *stream_enc = pipe_ctx->stream_res.stream_enc;
2411 	enum dynamic_metadata_mode mode       = dc_is_dp_signal(stream->signal)
2412 							? dmdata_dp
2413 							: dmdata_hdmi;
2414 
2415 	/* if using dynamic meta, don't set up generic infopackets */
2416 	if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
2417 		pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
2418 		enable = true;
2419 	}
2420 
2421 	if (!hubp)
2422 		return;
2423 
2424 	if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
2425 		return;
2426 
2427 	stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
2428 						hubp->inst, mode);
2429 }
2430 
2431 void dcn20_fpga_init_hw(struct dc *dc)
2432 {
2433 	int i, j;
2434 	struct dce_hwseq *hws = dc->hwseq;
2435 	struct resource_pool *res_pool = dc->res_pool;
2436 	struct dc_state  *context = dc->current_state;
2437 
2438 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
2439 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
2440 
2441 	// Initialize the dccg
2442 	if (res_pool->dccg->funcs->dccg_init)
2443 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
2444 
2445 	//Enable ability to power gate / don't force power on permanently
2446 	hws->funcs.enable_power_gating_plane(hws, true);
2447 
2448 	// Specific to FPGA dccg and registers
2449 	REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
2450 	REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
2451 
2452 	hws->funcs.dccg_init(hws);
2453 
2454 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
2455 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
2456 	if (REG(REFCLK_CNTL))
2457 		REG_WRITE(REFCLK_CNTL, 0);
2458 	//
2459 
2460 
2461 	/* Blank pixel data with OPP DPG */
2462 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2463 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2464 
2465 		if (tg->funcs->is_tg_enabled(tg))
2466 			dcn20_init_blank(dc, tg);
2467 	}
2468 
2469 	for (i = 0; i < res_pool->timing_generator_count; i++) {
2470 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2471 
2472 		if (tg->funcs->is_tg_enabled(tg))
2473 			tg->funcs->lock(tg);
2474 	}
2475 
2476 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2477 		struct dpp *dpp = res_pool->dpps[i];
2478 
2479 		dpp->funcs->dpp_reset(dpp);
2480 	}
2481 
2482 	/* Reset all MPCC muxes */
2483 	res_pool->mpc->funcs->mpc_init(res_pool->mpc);
2484 
2485 	/* initialize OPP mpc_tree parameter */
2486 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
2487 		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
2488 		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2489 		for (j = 0; j < MAX_PIPES; j++)
2490 			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
2491 	}
2492 
2493 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2494 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2495 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2496 		struct hubp *hubp = dc->res_pool->hubps[i];
2497 		struct dpp *dpp = dc->res_pool->dpps[i];
2498 
2499 		pipe_ctx->stream_res.tg = tg;
2500 		pipe_ctx->pipe_idx = i;
2501 
2502 		pipe_ctx->plane_res.hubp = hubp;
2503 		pipe_ctx->plane_res.dpp = dpp;
2504 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
2505 		hubp->mpcc_id = dpp->inst;
2506 		hubp->opp_id = OPP_ID_INVALID;
2507 		hubp->power_gated = false;
2508 		pipe_ctx->stream_res.opp = NULL;
2509 
2510 		hubp->funcs->hubp_init(hubp);
2511 
2512 		//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
2513 		//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2514 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
2515 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
2516 		/*to do*/
2517 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
2518 	}
2519 
2520 	/* initialize DWB pointer to MCIF_WB */
2521 	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
2522 		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
2523 
2524 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2525 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2526 
2527 		if (tg->funcs->is_tg_enabled(tg))
2528 			tg->funcs->unlock(tg);
2529 	}
2530 
2531 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2532 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2533 
2534 		dc->hwss.disable_plane(dc, pipe_ctx);
2535 
2536 		pipe_ctx->stream_res.tg = NULL;
2537 		pipe_ctx->plane_res.hubp = NULL;
2538 	}
2539 
2540 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2541 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2542 
2543 		tg->funcs->tg_init(tg);
2544 	}
2545 }
2546 #ifndef TRIM_FSFT
2547 bool dcn20_optimize_timing_for_fsft(struct dc *dc,
2548 		struct dc_crtc_timing *timing,
2549 		unsigned int max_input_rate_in_khz)
2550 {
2551 	unsigned int old_v_front_porch;
2552 	unsigned int old_v_total;
2553 	unsigned int max_input_rate_in_100hz;
2554 	unsigned long long new_v_total;
2555 
2556 	max_input_rate_in_100hz = max_input_rate_in_khz * 10;
2557 	if (max_input_rate_in_100hz < timing->pix_clk_100hz)
2558 		return false;
2559 
2560 	old_v_total = timing->v_total;
2561 	old_v_front_porch = timing->v_front_porch;
2562 
2563 	timing->fast_transport_output_rate_100hz = timing->pix_clk_100hz;
2564 	timing->pix_clk_100hz = max_input_rate_in_100hz;
2565 
2566 	new_v_total = div_u64((unsigned long long)old_v_total * max_input_rate_in_100hz, timing->pix_clk_100hz);
2567 
2568 	timing->v_total = new_v_total;
2569 	timing->v_front_porch = old_v_front_porch + (timing->v_total - old_v_total);
2570 	return true;
2571 }
2572 #endif
2573 
2574 void dcn20_set_disp_pattern_generator(const struct dc *dc,
2575 		struct pipe_ctx *pipe_ctx,
2576 		enum controller_dp_test_pattern test_pattern,
2577 		enum controller_dp_color_space color_space,
2578 		enum dc_color_depth color_depth,
2579 		const struct tg_color *solid_color,
2580 		int width, int height, int offset)
2581 {
2582 	pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern,
2583 			color_space, color_depth, solid_color, width, height, offset);
2584 }
2585