1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 #include <linux/delay.h> 26 27 #include "dm_services.h" 28 #include "dm_helpers.h" 29 #include "core_types.h" 30 #include "resource.h" 31 #include "dcn20/dcn20_resource.h" 32 #include "dce110/dce110_hw_sequencer.h" 33 #include "dcn10/dcn10_hw_sequencer.h" 34 #include "dcn20_hwseq.h" 35 #include "dce/dce_hwseq.h" 36 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT 37 #include "dcn20/dcn20_dsc.h" 38 #endif 39 #include "abm.h" 40 #include "clk_mgr.h" 41 #include "dmcu.h" 42 #include "hubp.h" 43 #include "timing_generator.h" 44 #include "opp.h" 45 #include "ipp.h" 46 #include "mpc.h" 47 #include "mcif_wb.h" 48 #include "reg_helper.h" 49 #include "dcn10/dcn10_cm_common.h" 50 #include "dcn10/dcn10_hubbub.h" 51 #include "dcn10/dcn10_optc.h" 52 #include "dc_link_dp.h" 53 #include "vm_helper.h" 54 #include "dccg.h" 55 56 #define DC_LOGGER_INIT(logger) 57 58 #define CTX \ 59 hws->ctx 60 #define REG(reg)\ 61 hws->regs->reg 62 63 #undef FN 64 #define FN(reg_name, field_name) \ 65 hws->shifts->field_name, hws->masks->field_name 66 67 static void bios_golden_init(struct dc *dc) 68 { 69 struct dc_bios *bp = dc->ctx->dc_bios; 70 int i; 71 72 /* initialize dcn global */ 73 bp->funcs->enable_disp_power_gating(bp, 74 CONTROLLER_ID_D0, ASIC_PIPE_INIT); 75 76 for (i = 0; i < dc->res_pool->pipe_count; i++) { 77 /* initialize dcn per pipe */ 78 bp->funcs->enable_disp_power_gating(bp, 79 CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE); 80 } 81 } 82 83 static void enable_power_gating_plane( 84 struct dce_hwseq *hws, 85 bool enable) 86 { 87 bool force_on = 1; /* disable power gating */ 88 89 if (enable) 90 force_on = 0; 91 92 /* DCHUBP0/1/2/3/4/5 */ 93 REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on); 94 REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on); 95 REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on); 96 REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on); 97 REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); 98 /*Do not power gate DCHUB5, should be left at HW default, power on permanently*/ 99 /*REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN10_POWER_FORCEON, force_on);*/ 100 101 /* DPP0/1/2/3/4/5 */ 102 REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on); 103 REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on); 104 REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on); 105 REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on); 106 REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); 107 /*Do not power gate DPP5, should be left at HW default, power on permanently*/ 108 /*REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN11_POWER_FORCEON, force_on);*/ 109 110 REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on); 111 REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on); 112 REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on); 113 REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on); 114 REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on); 115 REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on); 116 } 117 118 static void dcn20_dccg_init(struct dce_hwseq *hws) 119 { 120 /* 121 * set MICROSECOND_TIME_BASE_DIV 122 * 100Mhz refclk -> 0x120264 123 * 27Mhz refclk -> 0x12021b 124 * 48Mhz refclk -> 0x120230 125 * 126 */ 127 REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264); 128 129 /* 130 * set MILLISECOND_TIME_BASE_DIV 131 * 100Mhz refclk -> 0x1186a0 132 * 27Mhz refclk -> 0x106978 133 * 48Mhz refclk -> 0x10bb80 134 * 135 */ 136 REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0); 137 138 /* This value is dependent on the hardware pipeline delay so set once per SOC */ 139 REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c); 140 } 141 142 static void disable_vga( 143 struct dce_hwseq *hws) 144 { 145 REG_WRITE(D1VGA_CONTROL, 0); 146 REG_WRITE(D2VGA_CONTROL, 0); 147 REG_WRITE(D3VGA_CONTROL, 0); 148 REG_WRITE(D4VGA_CONTROL, 0); 149 REG_WRITE(D5VGA_CONTROL, 0); 150 REG_WRITE(D6VGA_CONTROL, 0); 151 } 152 153 void dcn20_program_tripleBuffer( 154 const struct dc *dc, 155 struct pipe_ctx *pipe_ctx, 156 bool enableTripleBuffer) 157 { 158 if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) { 159 pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer( 160 pipe_ctx->plane_res.hubp, 161 enableTripleBuffer); 162 } 163 } 164 165 /* Blank pixel data during initialization */ 166 static void dcn20_init_blank( 167 struct dc *dc, 168 struct timing_generator *tg) 169 { 170 enum dc_color_space color_space; 171 struct tg_color black_color = {0}; 172 struct output_pixel_processor *opp = NULL; 173 struct output_pixel_processor *bottom_opp = NULL; 174 uint32_t num_opps, opp_id_src0, opp_id_src1; 175 uint32_t otg_active_width, otg_active_height; 176 177 /* program opp dpg blank color */ 178 color_space = COLOR_SPACE_SRGB; 179 color_space_to_black_color(dc, color_space, &black_color); 180 181 /* get the OTG active size */ 182 tg->funcs->get_otg_active_size(tg, 183 &otg_active_width, 184 &otg_active_height); 185 186 /* get the OPTC source */ 187 tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); 188 ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp); 189 opp = dc->res_pool->opps[opp_id_src0]; 190 191 if (num_opps == 2) { 192 otg_active_width = otg_active_width / 2; 193 ASSERT(opp_id_src1 < dc->res_pool->res_cap->num_opp); 194 bottom_opp = dc->res_pool->opps[opp_id_src1]; 195 } 196 197 opp->funcs->opp_set_disp_pattern_generator( 198 opp, 199 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, 200 COLOR_DEPTH_UNDEFINED, 201 &black_color, 202 otg_active_width, 203 otg_active_height); 204 205 if (num_opps == 2) { 206 bottom_opp->funcs->opp_set_disp_pattern_generator( 207 bottom_opp, 208 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, 209 COLOR_DEPTH_UNDEFINED, 210 &black_color, 211 otg_active_width, 212 otg_active_height); 213 } 214 215 dcn20_hwss_wait_for_blank_complete(opp); 216 } 217 218 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT 219 static void dcn20_dsc_pg_control( 220 struct dce_hwseq *hws, 221 unsigned int dsc_inst, 222 bool power_on) 223 { 224 uint32_t power_gate = power_on ? 0 : 1; 225 uint32_t pwr_status = power_on ? 0 : 2; 226 uint32_t org_ip_request_cntl = 0; 227 228 if (hws->ctx->dc->debug.disable_dsc_power_gate) 229 return; 230 231 if (REG(DOMAIN16_PG_CONFIG) == 0) 232 return; 233 234 REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); 235 if (org_ip_request_cntl == 0) 236 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); 237 238 switch (dsc_inst) { 239 case 0: /* DSC0 */ 240 REG_UPDATE(DOMAIN16_PG_CONFIG, 241 DOMAIN16_POWER_GATE, power_gate); 242 243 REG_WAIT(DOMAIN16_PG_STATUS, 244 DOMAIN16_PGFSM_PWR_STATUS, pwr_status, 245 1, 1000); 246 break; 247 case 1: /* DSC1 */ 248 REG_UPDATE(DOMAIN17_PG_CONFIG, 249 DOMAIN17_POWER_GATE, power_gate); 250 251 REG_WAIT(DOMAIN17_PG_STATUS, 252 DOMAIN17_PGFSM_PWR_STATUS, pwr_status, 253 1, 1000); 254 break; 255 case 2: /* DSC2 */ 256 REG_UPDATE(DOMAIN18_PG_CONFIG, 257 DOMAIN18_POWER_GATE, power_gate); 258 259 REG_WAIT(DOMAIN18_PG_STATUS, 260 DOMAIN18_PGFSM_PWR_STATUS, pwr_status, 261 1, 1000); 262 break; 263 case 3: /* DSC3 */ 264 REG_UPDATE(DOMAIN19_PG_CONFIG, 265 DOMAIN19_POWER_GATE, power_gate); 266 267 REG_WAIT(DOMAIN19_PG_STATUS, 268 DOMAIN19_PGFSM_PWR_STATUS, pwr_status, 269 1, 1000); 270 break; 271 case 4: /* DSC4 */ 272 REG_UPDATE(DOMAIN20_PG_CONFIG, 273 DOMAIN20_POWER_GATE, power_gate); 274 275 REG_WAIT(DOMAIN20_PG_STATUS, 276 DOMAIN20_PGFSM_PWR_STATUS, pwr_status, 277 1, 1000); 278 break; 279 case 5: /* DSC5 */ 280 REG_UPDATE(DOMAIN21_PG_CONFIG, 281 DOMAIN21_POWER_GATE, power_gate); 282 283 REG_WAIT(DOMAIN21_PG_STATUS, 284 DOMAIN21_PGFSM_PWR_STATUS, pwr_status, 285 1, 1000); 286 break; 287 default: 288 BREAK_TO_DEBUGGER(); 289 break; 290 } 291 292 if (org_ip_request_cntl == 0) 293 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); 294 } 295 #endif 296 297 static void dcn20_dpp_pg_control( 298 struct dce_hwseq *hws, 299 unsigned int dpp_inst, 300 bool power_on) 301 { 302 uint32_t power_gate = power_on ? 0 : 1; 303 uint32_t pwr_status = power_on ? 0 : 2; 304 305 if (hws->ctx->dc->debug.disable_dpp_power_gate) 306 return; 307 if (REG(DOMAIN1_PG_CONFIG) == 0) 308 return; 309 310 switch (dpp_inst) { 311 case 0: /* DPP0 */ 312 REG_UPDATE(DOMAIN1_PG_CONFIG, 313 DOMAIN1_POWER_GATE, power_gate); 314 315 REG_WAIT(DOMAIN1_PG_STATUS, 316 DOMAIN1_PGFSM_PWR_STATUS, pwr_status, 317 1, 1000); 318 break; 319 case 1: /* DPP1 */ 320 REG_UPDATE(DOMAIN3_PG_CONFIG, 321 DOMAIN3_POWER_GATE, power_gate); 322 323 REG_WAIT(DOMAIN3_PG_STATUS, 324 DOMAIN3_PGFSM_PWR_STATUS, pwr_status, 325 1, 1000); 326 break; 327 case 2: /* DPP2 */ 328 REG_UPDATE(DOMAIN5_PG_CONFIG, 329 DOMAIN5_POWER_GATE, power_gate); 330 331 REG_WAIT(DOMAIN5_PG_STATUS, 332 DOMAIN5_PGFSM_PWR_STATUS, pwr_status, 333 1, 1000); 334 break; 335 case 3: /* DPP3 */ 336 REG_UPDATE(DOMAIN7_PG_CONFIG, 337 DOMAIN7_POWER_GATE, power_gate); 338 339 REG_WAIT(DOMAIN7_PG_STATUS, 340 DOMAIN7_PGFSM_PWR_STATUS, pwr_status, 341 1, 1000); 342 break; 343 case 4: /* DPP4 */ 344 REG_UPDATE(DOMAIN9_PG_CONFIG, 345 DOMAIN9_POWER_GATE, power_gate); 346 347 REG_WAIT(DOMAIN9_PG_STATUS, 348 DOMAIN9_PGFSM_PWR_STATUS, pwr_status, 349 1, 1000); 350 break; 351 case 5: /* DPP5 */ 352 /* 353 * Do not power gate DPP5, should be left at HW default, power on permanently. 354 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard 355 * reset. 356 * REG_UPDATE(DOMAIN11_PG_CONFIG, 357 * DOMAIN11_POWER_GATE, power_gate); 358 * 359 * REG_WAIT(DOMAIN11_PG_STATUS, 360 * DOMAIN11_PGFSM_PWR_STATUS, pwr_status, 361 * 1, 1000); 362 */ 363 break; 364 default: 365 BREAK_TO_DEBUGGER(); 366 break; 367 } 368 } 369 370 371 static void dcn20_hubp_pg_control( 372 struct dce_hwseq *hws, 373 unsigned int hubp_inst, 374 bool power_on) 375 { 376 uint32_t power_gate = power_on ? 0 : 1; 377 uint32_t pwr_status = power_on ? 0 : 2; 378 379 if (hws->ctx->dc->debug.disable_hubp_power_gate) 380 return; 381 if (REG(DOMAIN0_PG_CONFIG) == 0) 382 return; 383 384 switch (hubp_inst) { 385 case 0: /* DCHUBP0 */ 386 REG_UPDATE(DOMAIN0_PG_CONFIG, 387 DOMAIN0_POWER_GATE, power_gate); 388 389 REG_WAIT(DOMAIN0_PG_STATUS, 390 DOMAIN0_PGFSM_PWR_STATUS, pwr_status, 391 1, 1000); 392 break; 393 case 1: /* DCHUBP1 */ 394 REG_UPDATE(DOMAIN2_PG_CONFIG, 395 DOMAIN2_POWER_GATE, power_gate); 396 397 REG_WAIT(DOMAIN2_PG_STATUS, 398 DOMAIN2_PGFSM_PWR_STATUS, pwr_status, 399 1, 1000); 400 break; 401 case 2: /* DCHUBP2 */ 402 REG_UPDATE(DOMAIN4_PG_CONFIG, 403 DOMAIN4_POWER_GATE, power_gate); 404 405 REG_WAIT(DOMAIN4_PG_STATUS, 406 DOMAIN4_PGFSM_PWR_STATUS, pwr_status, 407 1, 1000); 408 break; 409 case 3: /* DCHUBP3 */ 410 REG_UPDATE(DOMAIN6_PG_CONFIG, 411 DOMAIN6_POWER_GATE, power_gate); 412 413 REG_WAIT(DOMAIN6_PG_STATUS, 414 DOMAIN6_PGFSM_PWR_STATUS, pwr_status, 415 1, 1000); 416 break; 417 case 4: /* DCHUBP4 */ 418 REG_UPDATE(DOMAIN8_PG_CONFIG, 419 DOMAIN8_POWER_GATE, power_gate); 420 421 REG_WAIT(DOMAIN8_PG_STATUS, 422 DOMAIN8_PGFSM_PWR_STATUS, pwr_status, 423 1, 1000); 424 break; 425 case 5: /* DCHUBP5 */ 426 /* 427 * Do not power gate DCHUB5, should be left at HW default, power on permanently. 428 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard 429 * reset. 430 * REG_UPDATE(DOMAIN10_PG_CONFIG, 431 * DOMAIN10_POWER_GATE, power_gate); 432 * 433 * REG_WAIT(DOMAIN10_PG_STATUS, 434 * DOMAIN10_PGFSM_PWR_STATUS, pwr_status, 435 * 1, 1000); 436 */ 437 break; 438 default: 439 BREAK_TO_DEBUGGER(); 440 break; 441 } 442 } 443 444 445 446 static void dcn20_plane_atomic_power_down(struct dc *dc, struct pipe_ctx *pipe_ctx) 447 { 448 struct dce_hwseq *hws = dc->hwseq; 449 struct dpp *dpp = pipe_ctx->plane_res.dpp; 450 451 DC_LOGGER_INIT(dc->ctx->logger); 452 453 if (REG(DC_IP_REQUEST_CNTL)) { 454 REG_SET(DC_IP_REQUEST_CNTL, 0, 455 IP_REQUEST_EN, 1); 456 dcn20_dpp_pg_control(hws, dpp->inst, false); 457 dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, false); 458 dpp->funcs->dpp_reset(dpp); 459 REG_SET(DC_IP_REQUEST_CNTL, 0, 460 IP_REQUEST_EN, 0); 461 DC_LOG_DEBUG( 462 "Power gated front end %d\n", pipe_ctx->pipe_idx); 463 } 464 } 465 466 467 468 /* disable HW used by plane. 469 * note: cannot disable until disconnect is complete 470 */ 471 static void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx) 472 { 473 struct hubp *hubp = pipe_ctx->plane_res.hubp; 474 struct dpp *dpp = pipe_ctx->plane_res.dpp; 475 476 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx); 477 478 /* In flip immediate with pipe splitting case GSL is used for 479 * synchronization so we must disable it when the plane is disabled. 480 */ 481 if (pipe_ctx->stream_res.gsl_group != 0) 482 dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false); 483 484 dc->hwss.set_flip_control_gsl(pipe_ctx, false); 485 486 hubp->funcs->hubp_clk_cntl(hubp, false); 487 488 dpp->funcs->dpp_dppclk_control(dpp, false, false); 489 490 hubp->power_gated = true; 491 dc->optimized_required = false; /* We're powering off, no need to optimize */ 492 493 dcn20_plane_atomic_power_down(dc, pipe_ctx); 494 495 pipe_ctx->stream = NULL; 496 memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res)); 497 memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res)); 498 pipe_ctx->top_pipe = NULL; 499 pipe_ctx->bottom_pipe = NULL; 500 pipe_ctx->plane_state = NULL; 501 } 502 503 504 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx) 505 { 506 DC_LOGGER_INIT(dc->ctx->logger); 507 508 if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) 509 return; 510 511 dcn20_plane_atomic_disable(dc, pipe_ctx); 512 513 DC_LOG_DC("Power down front end %d\n", 514 pipe_ctx->pipe_idx); 515 } 516 517 static void dcn20_init_hw(struct dc *dc) 518 { 519 int i, j; 520 struct abm *abm = dc->res_pool->abm; 521 struct dmcu *dmcu = dc->res_pool->dmcu; 522 struct dce_hwseq *hws = dc->hwseq; 523 struct dc_bios *dcb = dc->ctx->dc_bios; 524 struct resource_pool *res_pool = dc->res_pool; 525 struct dc_state *context = dc->current_state; 526 struct dc_firmware_info fw_info = { { 0 } }; 527 528 if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) 529 dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); 530 531 // Initialize the dccg 532 if (res_pool->dccg->funcs->dccg_init) 533 res_pool->dccg->funcs->dccg_init(res_pool->dccg); 534 535 //Enable ability to power gate / don't force power on permanently 536 enable_power_gating_plane(dc->hwseq, true); 537 538 if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { 539 REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF); 540 REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF); 541 542 dcn20_dccg_init(hws); 543 544 REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2); 545 REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1); 546 REG_WRITE(REFCLK_CNTL, 0); 547 } else { 548 if (!dcb->funcs->is_accelerated_mode(dcb)) { 549 bios_golden_init(dc); 550 if (dc->ctx->dc_bios->funcs->get_firmware_info( 551 dc->ctx->dc_bios, &fw_info) == BP_RESULT_OK) { 552 res_pool->ref_clocks.xtalin_clock_inKhz = fw_info.pll_info.crystal_frequency; 553 554 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { 555 if (res_pool->dccg && res_pool->hubbub) { 556 557 (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg, 558 fw_info.pll_info.crystal_frequency, 559 &res_pool->ref_clocks.dccg_ref_clock_inKhz); 560 561 (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub, 562 res_pool->ref_clocks.dccg_ref_clock_inKhz, 563 &res_pool->ref_clocks.dchub_ref_clock_inKhz); 564 } else { 565 // Not all ASICs have DCCG sw component 566 res_pool->ref_clocks.dccg_ref_clock_inKhz = 567 res_pool->ref_clocks.xtalin_clock_inKhz; 568 res_pool->ref_clocks.dchub_ref_clock_inKhz = 569 res_pool->ref_clocks.xtalin_clock_inKhz; 570 } 571 } 572 } else 573 ASSERT_CRITICAL(false); 574 disable_vga(dc->hwseq); 575 } 576 577 for (i = 0; i < dc->link_count; i++) { 578 /* Power up AND update implementation according to the 579 * required signal (which may be different from the 580 * default signal on connector). 581 */ 582 struct dc_link *link = dc->links[i]; 583 584 link->link_enc->funcs->hw_init(link->link_enc); 585 } 586 } 587 588 /* Blank pixel data with OPP DPG */ 589 for (i = 0; i < dc->res_pool->timing_generator_count; i++) { 590 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 591 592 if (tg->funcs->is_tg_enabled(tg)) { 593 dcn20_init_blank(dc, tg); 594 } 595 } 596 597 for (i = 0; i < res_pool->timing_generator_count; i++) { 598 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 599 600 if (tg->funcs->is_tg_enabled(tg)) 601 tg->funcs->lock(tg); 602 } 603 604 for (i = 0; i < dc->res_pool->pipe_count; i++) { 605 struct dpp *dpp = res_pool->dpps[i]; 606 607 dpp->funcs->dpp_reset(dpp); 608 } 609 610 /* Reset all MPCC muxes */ 611 res_pool->mpc->funcs->mpc_init(res_pool->mpc); 612 613 /* initialize OPP mpc_tree parameter */ 614 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { 615 res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst; 616 res_pool->opps[i]->mpc_tree_params.opp_list = NULL; 617 for (j = 0; j < MAX_PIPES; j++) 618 res_pool->opps[i]->mpcc_disconnect_pending[j] = false; 619 } 620 621 for (i = 0; i < dc->res_pool->pipe_count; i++) { 622 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 623 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 624 struct hubp *hubp = dc->res_pool->hubps[i]; 625 struct dpp *dpp = dc->res_pool->dpps[i]; 626 627 pipe_ctx->stream_res.tg = tg; 628 pipe_ctx->pipe_idx = i; 629 630 pipe_ctx->plane_res.hubp = hubp; 631 pipe_ctx->plane_res.dpp = dpp; 632 pipe_ctx->plane_res.mpcc_inst = dpp->inst; 633 hubp->mpcc_id = dpp->inst; 634 hubp->opp_id = OPP_ID_INVALID; 635 hubp->power_gated = false; 636 pipe_ctx->stream_res.opp = NULL; 637 638 hubp->funcs->hubp_init(hubp); 639 640 //dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst; 641 //dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; 642 dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; 643 pipe_ctx->stream_res.opp = dc->res_pool->opps[i]; 644 /*to do*/ 645 hwss1_plane_atomic_disconnect(dc, pipe_ctx); 646 } 647 648 /* initialize DWB pointer to MCIF_WB */ 649 for (i = 0; i < res_pool->res_cap->num_dwb; i++) 650 res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i]; 651 652 for (i = 0; i < dc->res_pool->timing_generator_count; i++) { 653 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 654 655 if (tg->funcs->is_tg_enabled(tg)) 656 tg->funcs->unlock(tg); 657 } 658 659 for (i = 0; i < dc->res_pool->pipe_count; i++) { 660 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 661 662 dc->hwss.disable_plane(dc, pipe_ctx); 663 664 pipe_ctx->stream_res.tg = NULL; 665 pipe_ctx->plane_res.hubp = NULL; 666 } 667 668 for (i = 0; i < dc->res_pool->timing_generator_count; i++) { 669 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 670 671 tg->funcs->tg_init(tg); 672 } 673 674 /* end of FPGA. Below if real ASIC */ 675 if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) 676 return; 677 678 679 for (i = 0; i < res_pool->audio_count; i++) { 680 struct audio *audio = res_pool->audios[i]; 681 682 audio->funcs->hw_init(audio); 683 } 684 685 if (abm != NULL) { 686 abm->funcs->init_backlight(abm); 687 abm->funcs->abm_init(abm); 688 } 689 690 if (dmcu != NULL) 691 dmcu->funcs->dmcu_init(dmcu); 692 693 if (abm != NULL && dmcu != NULL) 694 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu); 695 696 /* power AFMT HDMI memory TODO: may move to dis/en output save power*/ 697 REG_WRITE(DIO_MEM_PWR_CTRL, 0); 698 699 if (!dc->debug.disable_clock_gate) { 700 /* enable all DCN clock gating */ 701 REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0); 702 703 REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0); 704 705 REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); 706 } 707 708 } 709 710 enum dc_status dcn20_enable_stream_timing( 711 struct pipe_ctx *pipe_ctx, 712 struct dc_state *context, 713 struct dc *dc) 714 { 715 struct dc_stream_state *stream = pipe_ctx->stream; 716 struct drr_params params = {0}; 717 unsigned int event_triggers = 0; 718 719 720 #if defined(CONFIG_DRM_AMD_DC_DCN2_0) 721 struct pipe_ctx *odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx); 722 #endif 723 724 /* by upper caller loop, pipe0 is parent pipe and be called first. 725 * back end is set up by for pipe0. Other children pipe share back end 726 * with pipe 0. No program is needed. 727 */ 728 if (pipe_ctx->top_pipe != NULL) 729 return DC_OK; 730 731 /* TODO check if timing_changed, disable stream if timing changed */ 732 733 if (odm_pipe) 734 pipe_ctx->stream_res.tg->funcs->set_odm_combine( 735 pipe_ctx->stream_res.tg, 736 odm_pipe->stream_res.opp->inst, 737 pipe_ctx->stream->timing.h_addressable/2, 738 pipe_ctx->stream->timing.pixel_encoding); 739 /* HW program guide assume display already disable 740 * by unplug sequence. OTG assume stop. 741 */ 742 pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true); 743 744 if (false == pipe_ctx->clock_source->funcs->program_pix_clk( 745 pipe_ctx->clock_source, 746 &pipe_ctx->stream_res.pix_clk_params, 747 &pipe_ctx->pll_settings)) { 748 BREAK_TO_DEBUGGER(); 749 return DC_ERROR_UNEXPECTED; 750 } 751 752 pipe_ctx->stream_res.tg->funcs->program_timing( 753 pipe_ctx->stream_res.tg, 754 &stream->timing, 755 pipe_ctx->pipe_dlg_param.vready_offset, 756 pipe_ctx->pipe_dlg_param.vstartup_start, 757 pipe_ctx->pipe_dlg_param.vupdate_offset, 758 pipe_ctx->pipe_dlg_param.vupdate_width, 759 pipe_ctx->stream->signal, 760 true); 761 762 if (pipe_ctx->stream_res.tg->funcs->setup_global_lock) 763 pipe_ctx->stream_res.tg->funcs->setup_global_lock( 764 pipe_ctx->stream_res.tg); 765 766 if (odm_pipe) 767 odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( 768 odm_pipe->stream_res.opp, 769 true); 770 771 pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( 772 pipe_ctx->stream_res.opp, 773 true); 774 775 dc->hwss.blank_pixel_data(dc, pipe_ctx, true); 776 777 /* VTG is within DCHUB command block. DCFCLK is always on */ 778 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) { 779 BREAK_TO_DEBUGGER(); 780 return DC_ERROR_UNEXPECTED; 781 } 782 783 dcn20_hwss_wait_for_blank_complete(pipe_ctx->stream_res.opp); 784 785 params.vertical_total_min = stream->adjust.v_total_min; 786 params.vertical_total_max = stream->adjust.v_total_max; 787 if (pipe_ctx->stream_res.tg->funcs->set_drr) 788 pipe_ctx->stream_res.tg->funcs->set_drr( 789 pipe_ctx->stream_res.tg, ¶ms); 790 791 // DRR should set trigger event to monitor surface update event 792 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0) 793 event_triggers = 0x80; 794 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control) 795 pipe_ctx->stream_res.tg->funcs->set_static_screen_control( 796 pipe_ctx->stream_res.tg, event_triggers); 797 798 /* TODO program crtc source select for non-virtual signal*/ 799 /* TODO program FMT */ 800 /* TODO setup link_enc */ 801 /* TODO set stream attributes */ 802 /* TODO program audio */ 803 /* TODO enable stream if timing changed */ 804 /* TODO unblank stream if DP */ 805 806 return DC_OK; 807 } 808 809 void dcn20_program_output_csc(struct dc *dc, 810 struct pipe_ctx *pipe_ctx, 811 enum dc_color_space colorspace, 812 uint16_t *matrix, 813 int opp_id) 814 { 815 struct mpc *mpc = dc->res_pool->mpc; 816 enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A; 817 818 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) { 819 if (mpc->funcs->set_output_csc != NULL) 820 mpc->funcs->set_output_csc(mpc, 821 opp_id, 822 matrix, 823 ocsc_mode); 824 } else { 825 if (mpc->funcs->set_ocsc_default != NULL) 826 mpc->funcs->set_ocsc_default(mpc, 827 opp_id, 828 colorspace, 829 ocsc_mode); 830 } 831 } 832 833 bool dcn20_set_output_transfer_func(struct pipe_ctx *pipe_ctx, 834 const struct dc_stream_state *stream) 835 { 836 int mpcc_id = pipe_ctx->plane_res.hubp->inst; 837 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; 838 struct pwl_params *params = NULL; 839 /* 840 * program OGAM only for the top pipe 841 * if there is a pipe split then fix diagnostic is required: 842 * how to pass OGAM parameter for stream. 843 * if programming for all pipes is required then remove condition 844 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic. 845 */ 846 if ((pipe_ctx->top_pipe == NULL || dc_res_is_odm_head_pipe(pipe_ctx)) 847 && mpc->funcs->set_output_gamma && stream->out_transfer_func) { 848 if (stream->out_transfer_func->type == TF_TYPE_HWPWL) 849 params = &stream->out_transfer_func->pwl; 850 else if (pipe_ctx->stream->out_transfer_func->type == 851 TF_TYPE_DISTRIBUTED_POINTS && 852 cm_helper_translate_curve_to_hw_format( 853 stream->out_transfer_func, 854 &mpc->blender_params, false)) 855 params = &mpc->blender_params; 856 /* 857 * there is no ROM 858 */ 859 if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED) 860 BREAK_TO_DEBUGGER(); 861 } 862 /* 863 * if above if is not executed then 'params' equal to 0 and set in bypass 864 */ 865 mpc->funcs->set_output_gamma(mpc, mpcc_id, params); 866 867 return true; 868 } 869 870 static bool dcn20_set_blend_lut( 871 struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) 872 { 873 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 874 bool result = true; 875 struct pwl_params *blend_lut = NULL; 876 877 if (plane_state->blend_tf) { 878 if (plane_state->blend_tf->type == TF_TYPE_HWPWL) 879 blend_lut = &plane_state->blend_tf->pwl; 880 else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) { 881 cm_helper_translate_curve_to_hw_format( 882 plane_state->blend_tf, 883 &dpp_base->regamma_params, false); 884 blend_lut = &dpp_base->regamma_params; 885 } 886 } 887 result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut); 888 889 return result; 890 } 891 892 static bool dcn20_set_shaper_3dlut( 893 struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) 894 { 895 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 896 bool result = true; 897 struct pwl_params *shaper_lut = NULL; 898 899 if (plane_state->in_shaper_func) { 900 if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL) 901 shaper_lut = &plane_state->in_shaper_func->pwl; 902 else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) { 903 cm_helper_translate_curve_to_hw_format( 904 plane_state->in_shaper_func, 905 &dpp_base->shaper_params, true); 906 shaper_lut = &dpp_base->shaper_params; 907 } 908 } 909 910 result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut); 911 if (plane_state->lut3d_func && 912 plane_state->lut3d_func->initialized == true) 913 result = dpp_base->funcs->dpp_program_3dlut(dpp_base, 914 &plane_state->lut3d_func->lut_3d); 915 else 916 result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL); 917 918 if (plane_state->lut3d_func && 919 plane_state->lut3d_func->initialized == true && 920 plane_state->lut3d_func->hdr_multiplier != 0) 921 dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base, 922 plane_state->lut3d_func->hdr_multiplier); 923 else 924 dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base, 0x1f000); 925 926 return result; 927 } 928 929 bool dcn20_set_input_transfer_func(struct pipe_ctx *pipe_ctx, 930 const struct dc_plane_state *plane_state) 931 { 932 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 933 const struct dc_transfer_func *tf = NULL; 934 bool result = true; 935 bool use_degamma_ram = false; 936 937 if (dpp_base == NULL || plane_state == NULL) 938 return false; 939 940 dcn20_set_shaper_3dlut(pipe_ctx, plane_state); 941 dcn20_set_blend_lut(pipe_ctx, plane_state); 942 943 if (plane_state->in_transfer_func) 944 tf = plane_state->in_transfer_func; 945 946 947 if (tf == NULL) { 948 dpp_base->funcs->dpp_set_degamma(dpp_base, 949 IPP_DEGAMMA_MODE_BYPASS); 950 return true; 951 } 952 953 if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS) 954 use_degamma_ram = true; 955 956 if (use_degamma_ram == true) { 957 if (tf->type == TF_TYPE_HWPWL) 958 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, 959 &tf->pwl); 960 else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) { 961 cm_helper_translate_curve_to_degamma_hw_format(tf, 962 &dpp_base->degamma_params); 963 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, 964 &dpp_base->degamma_params); 965 } 966 return true; 967 } 968 /* handle here the optimized cases when de-gamma ROM could be used. 969 * 970 */ 971 if (tf->type == TF_TYPE_PREDEFINED) { 972 switch (tf->tf) { 973 case TRANSFER_FUNCTION_SRGB: 974 dpp_base->funcs->dpp_set_degamma(dpp_base, 975 IPP_DEGAMMA_MODE_HW_sRGB); 976 break; 977 case TRANSFER_FUNCTION_BT709: 978 dpp_base->funcs->dpp_set_degamma(dpp_base, 979 IPP_DEGAMMA_MODE_HW_xvYCC); 980 break; 981 case TRANSFER_FUNCTION_LINEAR: 982 dpp_base->funcs->dpp_set_degamma(dpp_base, 983 IPP_DEGAMMA_MODE_BYPASS); 984 break; 985 case TRANSFER_FUNCTION_PQ: 986 default: 987 result = false; 988 break; 989 } 990 } else if (tf->type == TF_TYPE_BYPASS) 991 dpp_base->funcs->dpp_set_degamma(dpp_base, 992 IPP_DEGAMMA_MODE_BYPASS); 993 else { 994 /* 995 * if we are here, we did not handle correctly. 996 * fix is required for this use case 997 */ 998 BREAK_TO_DEBUGGER(); 999 dpp_base->funcs->dpp_set_degamma(dpp_base, 1000 IPP_DEGAMMA_MODE_BYPASS); 1001 } 1002 1003 return result; 1004 } 1005 1006 static void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) 1007 { 1008 struct pipe_ctx *combine_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx); 1009 1010 if (combine_pipe) 1011 pipe_ctx->stream_res.tg->funcs->set_odm_combine( 1012 pipe_ctx->stream_res.tg, 1013 combine_pipe->stream_res.opp->inst, 1014 pipe_ctx->plane_res.scl_data.h_active, 1015 pipe_ctx->stream->timing.pixel_encoding); 1016 else 1017 pipe_ctx->stream_res.tg->funcs->set_odm_bypass( 1018 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1019 } 1020 1021 void dcn20_blank_pixel_data( 1022 struct dc *dc, 1023 struct pipe_ctx *pipe_ctx, 1024 bool blank) 1025 { 1026 struct tg_color black_color = {0}; 1027 struct stream_resource *stream_res = &pipe_ctx->stream_res; 1028 struct dc_stream_state *stream = pipe_ctx->stream; 1029 enum dc_color_space color_space = stream->output_color_space; 1030 enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR; 1031 struct pipe_ctx *bot_odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx); 1032 1033 int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right; 1034 int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top; 1035 1036 /* get opp dpg blank color */ 1037 color_space_to_black_color(dc, color_space, &black_color); 1038 1039 if (bot_odm_pipe) 1040 width = width / 2; 1041 1042 if (blank) { 1043 if (stream_res->abm) 1044 stream_res->abm->funcs->set_abm_immediate_disable(stream_res->abm); 1045 1046 if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) 1047 test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES; 1048 } else { 1049 test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE; 1050 } 1051 1052 stream_res->opp->funcs->opp_set_disp_pattern_generator( 1053 stream_res->opp, 1054 test_pattern, 1055 stream->timing.display_color_depth, 1056 &black_color, 1057 width, 1058 height); 1059 1060 if (bot_odm_pipe) { 1061 bot_odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator( 1062 bot_odm_pipe->stream_res.opp, 1063 dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE ? 1064 CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern, 1065 stream->timing.display_color_depth, 1066 &black_color, 1067 width, 1068 height); 1069 } 1070 1071 if (!blank) 1072 if (stream_res->abm) { 1073 stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1); 1074 stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level); 1075 } 1076 } 1077 1078 1079 static void dcn20_power_on_plane( 1080 struct dce_hwseq *hws, 1081 struct pipe_ctx *pipe_ctx) 1082 { 1083 DC_LOGGER_INIT(hws->ctx->logger); 1084 if (REG(DC_IP_REQUEST_CNTL)) { 1085 REG_SET(DC_IP_REQUEST_CNTL, 0, 1086 IP_REQUEST_EN, 1); 1087 dcn20_dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true); 1088 dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true); 1089 REG_SET(DC_IP_REQUEST_CNTL, 0, 1090 IP_REQUEST_EN, 0); 1091 DC_LOG_DEBUG( 1092 "Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst); 1093 } 1094 } 1095 1096 void dcn20_enable_plane( 1097 struct dc *dc, 1098 struct pipe_ctx *pipe_ctx, 1099 struct dc_state *context) 1100 { 1101 //if (dc->debug.sanity_checks) { 1102 // dcn10_verify_allow_pstate_change_high(dc); 1103 //} 1104 dcn20_power_on_plane(dc->hwseq, pipe_ctx); 1105 1106 /* enable DCFCLK current DCHUB */ 1107 pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true); 1108 1109 /* make sure OPP_PIPE_CLOCK_EN = 1 */ 1110 pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( 1111 pipe_ctx->stream_res.opp, 1112 true); 1113 1114 /* TODO: enable/disable in dm as per update type. 1115 if (plane_state) { 1116 DC_LOG_DC(dc->ctx->logger, 1117 "Pipe:%d 0x%x: addr hi:0x%x, " 1118 "addr low:0x%x, " 1119 "src: %d, %d, %d," 1120 " %d; dst: %d, %d, %d, %d;\n", 1121 pipe_ctx->pipe_idx, 1122 plane_state, 1123 plane_state->address.grph.addr.high_part, 1124 plane_state->address.grph.addr.low_part, 1125 plane_state->src_rect.x, 1126 plane_state->src_rect.y, 1127 plane_state->src_rect.width, 1128 plane_state->src_rect.height, 1129 plane_state->dst_rect.x, 1130 plane_state->dst_rect.y, 1131 plane_state->dst_rect.width, 1132 plane_state->dst_rect.height); 1133 1134 DC_LOG_DC(dc->ctx->logger, 1135 "Pipe %d: width, height, x, y format:%d\n" 1136 "viewport:%d, %d, %d, %d\n" 1137 "recout: %d, %d, %d, %d\n", 1138 pipe_ctx->pipe_idx, 1139 plane_state->format, 1140 pipe_ctx->plane_res.scl_data.viewport.width, 1141 pipe_ctx->plane_res.scl_data.viewport.height, 1142 pipe_ctx->plane_res.scl_data.viewport.x, 1143 pipe_ctx->plane_res.scl_data.viewport.y, 1144 pipe_ctx->plane_res.scl_data.recout.width, 1145 pipe_ctx->plane_res.scl_data.recout.height, 1146 pipe_ctx->plane_res.scl_data.recout.x, 1147 pipe_ctx->plane_res.scl_data.recout.y); 1148 print_rq_dlg_ttu(dc, pipe_ctx); 1149 } 1150 */ 1151 if (dc->vm_pa_config.valid) { 1152 struct vm_system_aperture_param apt; 1153 1154 apt.sys_default.quad_part = 0; 1155 1156 apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.start_addr; 1157 apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.end_addr; 1158 1159 // Program system aperture settings 1160 pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt); 1161 } 1162 1163 // if (dc->debug.sanity_checks) { 1164 // dcn10_verify_allow_pstate_change_high(dc); 1165 // } 1166 } 1167 1168 1169 static void dcn20_program_pipe( 1170 struct dc *dc, 1171 struct pipe_ctx *pipe_ctx, 1172 struct dc_state *context) 1173 { 1174 pipe_ctx->plane_state->update_flags.bits.full_update = 1175 context->commit_hints.full_update_needed ? 1 : pipe_ctx->plane_state->update_flags.bits.full_update; 1176 1177 if (pipe_ctx->plane_state->update_flags.bits.full_update) 1178 dcn20_enable_plane(dc, pipe_ctx, context); 1179 1180 update_dchubp_dpp(dc, pipe_ctx, context); 1181 1182 set_hdr_multiplier(pipe_ctx); 1183 1184 if (pipe_ctx->plane_state->update_flags.bits.full_update || 1185 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change || 1186 pipe_ctx->plane_state->update_flags.bits.gamma_change) 1187 dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state); 1188 1189 /* dcn10_translate_regamma_to_hw_format takes 750us to finish 1190 * only do gamma programming for full update. 1191 * TODO: This can be further optimized/cleaned up 1192 * Always call this for now since it does memcmp inside before 1193 * doing heavy calculation and programming 1194 */ 1195 if (pipe_ctx->plane_state->update_flags.bits.full_update) 1196 dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream); 1197 } 1198 1199 static void dcn20_program_all_pipe_in_tree( 1200 struct dc *dc, 1201 struct pipe_ctx *pipe_ctx, 1202 struct dc_state *context) 1203 { 1204 if (pipe_ctx->top_pipe == NULL) { 1205 bool blank = !is_pipe_tree_visible(pipe_ctx); 1206 1207 pipe_ctx->stream_res.tg->funcs->program_global_sync( 1208 pipe_ctx->stream_res.tg, 1209 pipe_ctx->pipe_dlg_param.vready_offset, 1210 pipe_ctx->pipe_dlg_param.vstartup_start, 1211 pipe_ctx->pipe_dlg_param.vupdate_offset, 1212 pipe_ctx->pipe_dlg_param.vupdate_width); 1213 1214 pipe_ctx->stream_res.tg->funcs->set_vtg_params( 1215 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1216 1217 dc->hwss.blank_pixel_data(dc, pipe_ctx, blank); 1218 1219 if (dc->hwss.update_odm) 1220 dc->hwss.update_odm(dc, context, pipe_ctx); 1221 } 1222 1223 if (pipe_ctx->plane_state != NULL) 1224 dcn20_program_pipe(dc, pipe_ctx, context); 1225 1226 if (pipe_ctx->bottom_pipe != NULL && pipe_ctx->bottom_pipe != pipe_ctx) 1227 dcn20_program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context); 1228 } 1229 1230 void dcn20_pipe_control_lock_global( 1231 struct dc *dc, 1232 struct pipe_ctx *pipe, 1233 bool lock) 1234 { 1235 if (lock) { 1236 pipe->stream_res.tg->funcs->lock_doublebuffer_enable( 1237 pipe->stream_res.tg); 1238 pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); 1239 } else { 1240 pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); 1241 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, 1242 CRTC_STATE_VACTIVE); 1243 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, 1244 CRTC_STATE_VBLANK); 1245 pipe->stream_res.tg->funcs->lock_doublebuffer_disable( 1246 pipe->stream_res.tg); 1247 } 1248 } 1249 1250 void dcn20_pipe_control_lock( 1251 struct dc *dc, 1252 struct pipe_ctx *pipe, 1253 bool lock) 1254 { 1255 bool flip_immediate = false; 1256 1257 /* use TG master update lock to lock everything on the TG 1258 * therefore only top pipe need to lock 1259 */ 1260 if (pipe->top_pipe) 1261 return; 1262 1263 if (pipe->plane_state != NULL) 1264 flip_immediate = pipe->plane_state->flip_immediate; 1265 1266 /* In flip immediate and pipe splitting case, we need to use GSL 1267 * for synchronization. Only do setup on locking and on flip type change. 1268 */ 1269 if (lock && pipe->bottom_pipe != NULL) 1270 if ((flip_immediate && pipe->stream_res.gsl_group == 0) || 1271 (!flip_immediate && pipe->stream_res.gsl_group > 0)) 1272 dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate); 1273 1274 if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) { 1275 if (lock) 1276 pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg); 1277 else 1278 pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg); 1279 } else { 1280 if (lock) 1281 pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); 1282 else 1283 pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); 1284 } 1285 } 1286 1287 static void dcn20_apply_ctx_for_surface( 1288 struct dc *dc, 1289 const struct dc_stream_state *stream, 1290 int num_planes, 1291 struct dc_state *context) 1292 { 1293 1294 int i; 1295 struct timing_generator *tg; 1296 bool removed_pipe[6] = { false }; 1297 bool interdependent_update = false; 1298 struct pipe_ctx *top_pipe_to_program = 1299 find_top_pipe_for_stream(dc, context, stream); 1300 DC_LOGGER_INIT(dc->ctx->logger); 1301 1302 if (!top_pipe_to_program) 1303 return; 1304 1305 tg = top_pipe_to_program->stream_res.tg; 1306 1307 interdependent_update = top_pipe_to_program->plane_state && 1308 top_pipe_to_program->plane_state->update_flags.bits.full_update; 1309 1310 if (interdependent_update) 1311 lock_all_pipes(dc, context, true); 1312 else 1313 dcn20_pipe_control_lock(dc, top_pipe_to_program, true); 1314 1315 if (num_planes == 0) { 1316 /* OTG blank before remove all front end */ 1317 dc->hwss.blank_pixel_data(dc, top_pipe_to_program, true); 1318 } 1319 1320 /* Disconnect unused mpcc */ 1321 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1322 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1323 struct pipe_ctx *old_pipe_ctx = 1324 &dc->current_state->res_ctx.pipe_ctx[i]; 1325 /* 1326 * Powergate reused pipes that are not powergated 1327 * fairly hacky right now, using opp_id as indicator 1328 * TODO: After move dc_post to dc_update, this will 1329 * be removed. 1330 */ 1331 if (pipe_ctx->plane_state && !old_pipe_ctx->plane_state) { 1332 if (old_pipe_ctx->stream_res.tg == tg && 1333 old_pipe_ctx->plane_res.hubp && 1334 old_pipe_ctx->plane_res.hubp->opp_id != OPP_ID_INVALID) 1335 dcn20_disable_plane(dc, old_pipe_ctx); 1336 } 1337 1338 if ((!pipe_ctx->plane_state || 1339 pipe_ctx->stream_res.tg != old_pipe_ctx->stream_res.tg) && 1340 old_pipe_ctx->plane_state && 1341 old_pipe_ctx->stream_res.tg == tg) { 1342 1343 dc->hwss.plane_atomic_disconnect(dc, old_pipe_ctx); 1344 removed_pipe[i] = true; 1345 1346 DC_LOG_DC("Reset mpcc for pipe %d\n", 1347 old_pipe_ctx->pipe_idx); 1348 } 1349 } 1350 1351 if (num_planes > 0) 1352 dcn20_program_all_pipe_in_tree(dc, top_pipe_to_program, context); 1353 1354 /* Program secondary blending tree and writeback pipes */ 1355 if ((stream->num_wb_info > 0) && (dc->hwss.program_all_writeback_pipes_in_tree)) 1356 dc->hwss.program_all_writeback_pipes_in_tree(dc, stream, context); 1357 1358 if (interdependent_update) 1359 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1360 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1361 1362 /* Skip inactive pipes and ones already updated */ 1363 if (!pipe_ctx->stream || pipe_ctx->stream == stream || 1364 !pipe_ctx->plane_state || !tg->funcs->is_tg_enabled(tg)) 1365 continue; 1366 1367 pipe_ctx->plane_res.hubp->funcs->hubp_setup_interdependent( 1368 pipe_ctx->plane_res.hubp, 1369 &pipe_ctx->dlg_regs, 1370 &pipe_ctx->ttu_regs); 1371 } 1372 1373 if (interdependent_update) 1374 lock_all_pipes(dc, context, false); 1375 else 1376 dcn20_pipe_control_lock(dc, top_pipe_to_program, false); 1377 1378 for (i = 0; i < dc->res_pool->pipe_count; i++) 1379 if (removed_pipe[i]) 1380 dcn20_disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]); 1381 } 1382 1383 1384 void dcn20_prepare_bandwidth( 1385 struct dc *dc, 1386 struct dc_state *context) 1387 { 1388 struct hubbub *hubbub = dc->res_pool->hubbub; 1389 1390 /* program dchubbub watermarks */ 1391 hubbub->funcs->program_watermarks(hubbub, 1392 &context->bw_ctx.bw.dcn.watermarks, 1393 dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, 1394 false); 1395 1396 dc->clk_mgr->funcs->update_clocks( 1397 dc->clk_mgr, 1398 context, 1399 false); 1400 } 1401 1402 void dcn20_optimize_bandwidth( 1403 struct dc *dc, 1404 struct dc_state *context) 1405 { 1406 struct hubbub *hubbub = dc->res_pool->hubbub; 1407 1408 /* program dchubbub watermarks */ 1409 hubbub->funcs->program_watermarks(hubbub, 1410 &context->bw_ctx.bw.dcn.watermarks, 1411 dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, 1412 true); 1413 1414 dc->clk_mgr->funcs->update_clocks( 1415 dc->clk_mgr, 1416 context, 1417 true); 1418 } 1419 1420 bool dcn20_update_bandwidth( 1421 struct dc *dc, 1422 struct dc_state *context) 1423 { 1424 int i; 1425 1426 /* recalculate DML parameters */ 1427 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) 1428 return false; 1429 1430 /* apply updated bandwidth parameters */ 1431 dc->hwss.prepare_bandwidth(dc, context); 1432 1433 /* update hubp configs for all pipes */ 1434 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1435 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1436 1437 if (pipe_ctx->plane_state == NULL) 1438 continue; 1439 1440 if (pipe_ctx->top_pipe == NULL) { 1441 bool blank = !is_pipe_tree_visible(pipe_ctx); 1442 1443 pipe_ctx->stream_res.tg->funcs->program_global_sync( 1444 pipe_ctx->stream_res.tg, 1445 pipe_ctx->pipe_dlg_param.vready_offset, 1446 pipe_ctx->pipe_dlg_param.vstartup_start, 1447 pipe_ctx->pipe_dlg_param.vupdate_offset, 1448 pipe_ctx->pipe_dlg_param.vupdate_width); 1449 1450 pipe_ctx->stream_res.tg->funcs->set_vtg_params( 1451 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1452 1453 dc->hwss.blank_pixel_data(dc, pipe_ctx, blank); 1454 } 1455 1456 pipe_ctx->plane_res.hubp->funcs->hubp_setup( 1457 pipe_ctx->plane_res.hubp, 1458 &pipe_ctx->dlg_regs, 1459 &pipe_ctx->ttu_regs, 1460 &pipe_ctx->rq_regs, 1461 &pipe_ctx->pipe_dlg_param); 1462 } 1463 1464 return true; 1465 } 1466 1467 static void dcn20_enable_writeback( 1468 struct dc *dc, 1469 const struct dc_stream_status *stream_status, 1470 struct dc_writeback_info *wb_info) 1471 { 1472 struct dwbc *dwb; 1473 struct mcif_wb *mcif_wb; 1474 struct timing_generator *optc; 1475 1476 ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES); 1477 ASSERT(wb_info->wb_enabled); 1478 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; 1479 mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst]; 1480 1481 /* set the OPTC source mux */ 1482 ASSERT(stream_status->primary_otg_inst < MAX_PIPES); 1483 optc = dc->res_pool->timing_generators[stream_status->primary_otg_inst]; 1484 optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst); 1485 /* set MCIF_WB buffer and arbitration configuration */ 1486 mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height); 1487 mcif_wb->funcs->config_mcif_arb(mcif_wb, &dc->current_state->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]); 1488 /* Enable MCIF_WB */ 1489 mcif_wb->funcs->enable_mcif(mcif_wb); 1490 /* Enable DWB */ 1491 dwb->funcs->enable(dwb, &wb_info->dwb_params); 1492 /* TODO: add sequence to enable/disable warmup */ 1493 } 1494 1495 void dcn20_disable_writeback( 1496 struct dc *dc, 1497 unsigned int dwb_pipe_inst) 1498 { 1499 struct dwbc *dwb; 1500 struct mcif_wb *mcif_wb; 1501 1502 ASSERT(dwb_pipe_inst < MAX_DWB_PIPES); 1503 dwb = dc->res_pool->dwbc[dwb_pipe_inst]; 1504 mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst]; 1505 1506 dwb->funcs->disable(dwb); 1507 mcif_wb->funcs->disable_mcif(mcif_wb); 1508 } 1509 1510 bool dcn20_hwss_wait_for_blank_complete( 1511 struct output_pixel_processor *opp) 1512 { 1513 int counter; 1514 1515 for (counter = 0; counter < 1000; counter++) { 1516 if (opp->funcs->dpg_is_blanked(opp)) 1517 break; 1518 1519 udelay(100); 1520 } 1521 1522 if (counter == 1000) { 1523 dm_error("DC: failed to blank crtc!\n"); 1524 return false; 1525 } 1526 1527 return true; 1528 } 1529 1530 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx) 1531 { 1532 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1533 1534 if (!hubp) 1535 return false; 1536 return hubp->funcs->dmdata_status_done(hubp); 1537 } 1538 1539 static void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) 1540 { 1541 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT 1542 struct dce_hwseq *hws = dc->hwseq; 1543 struct pipe_ctx *bot_odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx); 1544 1545 if (pipe_ctx->stream_res.dsc) { 1546 dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true); 1547 if (bot_odm_pipe) 1548 dcn20_dsc_pg_control(hws, bot_odm_pipe->stream_res.dsc->inst, true); 1549 } 1550 #endif 1551 } 1552 1553 static void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) 1554 { 1555 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT 1556 struct dce_hwseq *hws = dc->hwseq; 1557 struct pipe_ctx *bot_odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx); 1558 1559 if (pipe_ctx->stream_res.dsc) { 1560 dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false); 1561 if (bot_odm_pipe) 1562 dcn20_dsc_pg_control(hws, bot_odm_pipe->stream_res.dsc->inst, false); 1563 } 1564 #endif 1565 } 1566 1567 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx) 1568 { 1569 struct dc_dmdata_attributes attr = { 0 }; 1570 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1571 1572 attr.dmdata_mode = DMDATA_HW_MODE; 1573 attr.dmdata_size = 1574 dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36; 1575 attr.address.quad_part = 1576 pipe_ctx->stream->dmdata_address.quad_part; 1577 attr.dmdata_dl_delta = 0; 1578 attr.dmdata_qos_mode = 0; 1579 attr.dmdata_qos_level = 0; 1580 attr.dmdata_repeat = 1; /* always repeat */ 1581 attr.dmdata_updated = 1; 1582 attr.dmdata_sw_data = NULL; 1583 1584 hubp->funcs->dmdata_set_attributes(hubp, &attr); 1585 } 1586 1587 void dcn20_disable_stream(struct pipe_ctx *pipe_ctx, int option) 1588 { 1589 dce110_disable_stream(pipe_ctx, option); 1590 } 1591 1592 static void dcn20_init_vm_ctx( 1593 struct dce_hwseq *hws, 1594 struct dc *dc, 1595 struct dc_virtual_addr_space_config *va_config, 1596 int vmid) 1597 { 1598 struct dcn_hubbub_virt_addr_config config; 1599 1600 if (vmid == 0) { 1601 ASSERT(0); /* VMID cannot be 0 for vm context */ 1602 return; 1603 } 1604 1605 config.page_table_start_addr = va_config->page_table_start_addr; 1606 config.page_table_end_addr = va_config->page_table_end_addr; 1607 config.page_table_block_size = va_config->page_table_block_size_in_bytes; 1608 config.page_table_depth = va_config->page_table_depth; 1609 config.page_table_base_addr = va_config->page_table_base_addr; 1610 1611 dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid); 1612 } 1613 1614 static int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config) 1615 { 1616 struct dcn_hubbub_phys_addr_config config; 1617 1618 config.system_aperture.fb_top = pa_config->system_aperture.fb_top; 1619 config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset; 1620 config.system_aperture.fb_base = pa_config->system_aperture.fb_base; 1621 config.system_aperture.agp_top = pa_config->system_aperture.agp_top; 1622 config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot; 1623 config.system_aperture.agp_base = pa_config->system_aperture.agp_base; 1624 config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr; 1625 config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr; 1626 config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr; 1627 1628 return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config); 1629 } 1630 1631 static bool patch_address_for_sbs_tb_stereo( 1632 struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr) 1633 { 1634 struct dc_plane_state *plane_state = pipe_ctx->plane_state; 1635 bool sec_split = pipe_ctx->top_pipe && 1636 pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state; 1637 if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO && 1638 (pipe_ctx->stream->timing.timing_3d_format == 1639 TIMING_3D_FORMAT_SIDE_BY_SIDE || 1640 pipe_ctx->stream->timing.timing_3d_format == 1641 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) { 1642 *addr = plane_state->address.grph_stereo.left_addr; 1643 plane_state->address.grph_stereo.left_addr = 1644 plane_state->address.grph_stereo.right_addr; 1645 return true; 1646 } 1647 1648 if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE && 1649 plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) { 1650 plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO; 1651 plane_state->address.grph_stereo.right_addr = 1652 plane_state->address.grph_stereo.left_addr; 1653 } 1654 return false; 1655 } 1656 1657 1658 static void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx) 1659 { 1660 bool addr_patched = false; 1661 PHYSICAL_ADDRESS_LOC addr; 1662 struct dc_plane_state *plane_state = pipe_ctx->plane_state; 1663 1664 if (plane_state == NULL) 1665 return; 1666 1667 addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr); 1668 1669 // Call Helper to track VMID use 1670 vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst); 1671 1672 pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr( 1673 pipe_ctx->plane_res.hubp, 1674 &plane_state->address, 1675 plane_state->flip_immediate); 1676 1677 plane_state->status.requested_address = plane_state->address; 1678 1679 if (plane_state->flip_immediate) 1680 plane_state->status.current_address = plane_state->address; 1681 1682 if (addr_patched) 1683 pipe_ctx->plane_state->address.grph_stereo.left_addr = addr; 1684 } 1685 1686 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx, 1687 struct dc_link_settings *link_settings) 1688 { 1689 struct encoder_unblank_param params = { { 0 } }; 1690 struct dc_stream_state *stream = pipe_ctx->stream; 1691 struct dc_link *link = stream->link; 1692 params.odm = dc_res_get_odm_bottom_pipe(pipe_ctx); 1693 1694 /* only 3 items below are used by unblank */ 1695 params.timing = pipe_ctx->stream->timing; 1696 1697 params.link_settings.link_rate = link_settings->link_rate; 1698 1699 if (dc_is_dp_signal(pipe_ctx->stream->signal)) { 1700 if (optc1_is_two_pixels_per_containter(&stream->timing) || params.odm) 1701 params.timing.pix_clk_100hz /= 2; 1702 pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine( 1703 pipe_ctx->stream_res.stream_enc, params.odm); 1704 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, ¶ms); 1705 } 1706 1707 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { 1708 link->dc->hwss.edp_backlight_control(link, true); 1709 } 1710 } 1711 1712 void dcn20_setup_vupdate_interrupt(struct pipe_ctx *pipe_ctx) 1713 { 1714 struct timing_generator *tg = pipe_ctx->stream_res.tg; 1715 int start_line = get_vupdate_offset_from_vsync(pipe_ctx); 1716 1717 if (start_line < 0) 1718 start_line = 0; 1719 1720 if (tg->funcs->setup_vertical_interrupt2) 1721 tg->funcs->setup_vertical_interrupt2(tg, start_line); 1722 } 1723 1724 static void dcn20_reset_back_end_for_pipe( 1725 struct dc *dc, 1726 struct pipe_ctx *pipe_ctx, 1727 struct dc_state *context) 1728 { 1729 int i; 1730 DC_LOGGER_INIT(dc->ctx->logger); 1731 if (pipe_ctx->stream_res.stream_enc == NULL) { 1732 pipe_ctx->stream = NULL; 1733 return; 1734 } 1735 1736 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { 1737 /* DPMS may already disable */ 1738 if (!pipe_ctx->stream->dpms_off) 1739 core_link_disable_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE); 1740 else if (pipe_ctx->stream_res.audio) { 1741 dc->hwss.disable_audio_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE); 1742 } 1743 1744 } 1745 1746 /* by upper caller loop, parent pipe: pipe0, will be reset last. 1747 * back end share by all pipes and will be disable only when disable 1748 * parent pipe. 1749 */ 1750 if (pipe_ctx->top_pipe == NULL) { 1751 pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg); 1752 1753 pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false); 1754 if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass) 1755 pipe_ctx->stream_res.tg->funcs->set_odm_bypass( 1756 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1757 } 1758 1759 for (i = 0; i < dc->res_pool->pipe_count; i++) 1760 if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx) 1761 break; 1762 1763 if (i == dc->res_pool->pipe_count) 1764 return; 1765 1766 pipe_ctx->stream = NULL; 1767 DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n", 1768 pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); 1769 } 1770 1771 static void dcn20_reset_hw_ctx_wrap( 1772 struct dc *dc, 1773 struct dc_state *context) 1774 { 1775 int i; 1776 1777 /* Reset Back End*/ 1778 for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) { 1779 struct pipe_ctx *pipe_ctx_old = 1780 &dc->current_state->res_ctx.pipe_ctx[i]; 1781 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1782 1783 if (!pipe_ctx_old->stream) 1784 continue; 1785 1786 if (pipe_ctx_old->top_pipe) 1787 continue; 1788 1789 if (!pipe_ctx->stream || 1790 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) { 1791 struct clock_source *old_clk = pipe_ctx_old->clock_source; 1792 1793 dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state); 1794 if (dc->hwss.enable_stream_gating) 1795 dc->hwss.enable_stream_gating(dc, pipe_ctx); 1796 if (old_clk) 1797 old_clk->funcs->cs_power_down(old_clk); 1798 } 1799 } 1800 } 1801 1802 static void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx) 1803 { 1804 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1805 struct mpcc_blnd_cfg blnd_cfg = { {0} }; 1806 bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe; 1807 int mpcc_id; 1808 struct mpcc *new_mpcc; 1809 struct mpc *mpc = dc->res_pool->mpc; 1810 struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params); 1811 1812 // input to MPCC is always RGB, by default leave black_color at 0 1813 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) { 1814 dcn10_get_hdr_visual_confirm_color( 1815 pipe_ctx, &blnd_cfg.black_color); 1816 } else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) { 1817 dcn10_get_surface_visual_confirm_color( 1818 pipe_ctx, &blnd_cfg.black_color); 1819 } 1820 1821 if (per_pixel_alpha) 1822 blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA; 1823 else 1824 blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA; 1825 1826 blnd_cfg.overlap_only = false; 1827 blnd_cfg.global_gain = 0xff; 1828 1829 if (pipe_ctx->plane_state->global_alpha) 1830 blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value; 1831 else 1832 blnd_cfg.global_alpha = 0xff; 1833 1834 blnd_cfg.background_color_bpc = 4; 1835 blnd_cfg.bottom_gain_mode = 0; 1836 blnd_cfg.top_gain = 0x1f000; 1837 blnd_cfg.bottom_inside_gain = 0x1f000; 1838 blnd_cfg.bottom_outside_gain = 0x1f000; 1839 blnd_cfg.pre_multiplied_alpha = per_pixel_alpha; 1840 1841 /* 1842 * TODO: remove hack 1843 * Note: currently there is a bug in init_hw such that 1844 * on resume from hibernate, BIOS sets up MPCC0, and 1845 * we do mpcc_remove but the mpcc cannot go to idle 1846 * after remove. This cause us to pick mpcc1 here, 1847 * which causes a pstate hang for yet unknown reason. 1848 */ 1849 mpcc_id = hubp->inst; 1850 1851 /* If there is no full update, don't need to touch MPC tree*/ 1852 if (!pipe_ctx->plane_state->update_flags.bits.full_update) { 1853 mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id); 1854 return; 1855 } 1856 1857 /* check if this MPCC is already being used */ 1858 new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id); 1859 /* remove MPCC if being used */ 1860 if (new_mpcc != NULL) 1861 mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc); 1862 else 1863 if (dc->debug.sanity_checks) 1864 mpc->funcs->assert_mpcc_idle_before_connect( 1865 dc->res_pool->mpc, mpcc_id); 1866 1867 /* Call MPC to insert new plane */ 1868 new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc, 1869 mpc_tree_params, 1870 &blnd_cfg, 1871 NULL, 1872 NULL, 1873 hubp->inst, 1874 mpcc_id); 1875 1876 ASSERT(new_mpcc != NULL); 1877 hubp->opp_id = pipe_ctx->stream_res.opp->inst; 1878 hubp->mpcc_id = mpcc_id; 1879 } 1880 1881 static int find_free_gsl_group(const struct dc *dc) 1882 { 1883 if (dc->res_pool->gsl_groups.gsl_0 == 0) 1884 return 1; 1885 if (dc->res_pool->gsl_groups.gsl_1 == 0) 1886 return 2; 1887 if (dc->res_pool->gsl_groups.gsl_2 == 0) 1888 return 3; 1889 1890 return 0; 1891 } 1892 1893 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock) 1894 * This is only used to lock pipes in pipe splitting case with immediate flip 1895 * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate, 1896 * so we get tearing with freesync since we cannot flip multiple pipes 1897 * atomically. 1898 * We use GSL for this: 1899 * - immediate flip: find first available GSL group if not already assigned 1900 * program gsl with that group, set current OTG as master 1901 * and always us 0x4 = AND of flip_ready from all pipes 1902 * - vsync flip: disable GSL if used 1903 * 1904 * Groups in stream_res are stored as +1 from HW registers, i.e. 1905 * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1 1906 * Using a magic value like -1 would require tracking all inits/resets 1907 */ 1908 void dcn20_setup_gsl_group_as_lock( 1909 const struct dc *dc, 1910 struct pipe_ctx *pipe_ctx, 1911 bool enable) 1912 { 1913 struct gsl_params gsl; 1914 int group_idx; 1915 1916 memset(&gsl, 0, sizeof(struct gsl_params)); 1917 1918 if (enable) { 1919 /* return if group already assigned since GSL was set up 1920 * for vsync flip, we would unassign so it can't be "left over" 1921 */ 1922 if (pipe_ctx->stream_res.gsl_group > 0) 1923 return; 1924 1925 group_idx = find_free_gsl_group(dc); 1926 ASSERT(group_idx != 0); 1927 pipe_ctx->stream_res.gsl_group = group_idx; 1928 1929 /* set gsl group reg field and mark resource used */ 1930 switch (group_idx) { 1931 case 1: 1932 gsl.gsl0_en = 1; 1933 dc->res_pool->gsl_groups.gsl_0 = 1; 1934 break; 1935 case 2: 1936 gsl.gsl1_en = 1; 1937 dc->res_pool->gsl_groups.gsl_1 = 1; 1938 break; 1939 case 3: 1940 gsl.gsl2_en = 1; 1941 dc->res_pool->gsl_groups.gsl_2 = 1; 1942 break; 1943 default: 1944 BREAK_TO_DEBUGGER(); 1945 return; // invalid case 1946 } 1947 gsl.gsl_master_en = 1; 1948 } else { 1949 group_idx = pipe_ctx->stream_res.gsl_group; 1950 if (group_idx == 0) 1951 return; // if not in use, just return 1952 1953 pipe_ctx->stream_res.gsl_group = 0; 1954 1955 /* unset gsl group reg field and mark resource free */ 1956 switch (group_idx) { 1957 case 1: 1958 gsl.gsl0_en = 0; 1959 dc->res_pool->gsl_groups.gsl_0 = 0; 1960 break; 1961 case 2: 1962 gsl.gsl1_en = 0; 1963 dc->res_pool->gsl_groups.gsl_1 = 0; 1964 break; 1965 case 3: 1966 gsl.gsl2_en = 0; 1967 dc->res_pool->gsl_groups.gsl_2 = 0; 1968 break; 1969 default: 1970 BREAK_TO_DEBUGGER(); 1971 return; 1972 } 1973 gsl.gsl_master_en = 0; 1974 } 1975 1976 /* at this point we want to program whether it's to enable or disable */ 1977 if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL && 1978 pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) { 1979 pipe_ctx->stream_res.tg->funcs->set_gsl( 1980 pipe_ctx->stream_res.tg, 1981 &gsl); 1982 1983 pipe_ctx->stream_res.tg->funcs->set_gsl_source_select( 1984 pipe_ctx->stream_res.tg, group_idx, enable ? 4 : 0); 1985 } else 1986 BREAK_TO_DEBUGGER(); 1987 } 1988 1989 static void dcn20_set_flip_control_gsl( 1990 struct pipe_ctx *pipe_ctx, 1991 bool flip_immediate) 1992 { 1993 if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl) 1994 pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl( 1995 pipe_ctx->plane_res.hubp, flip_immediate); 1996 1997 } 1998 1999 void dcn20_hw_sequencer_construct(struct dc *dc) 2000 { 2001 dcn10_hw_sequencer_construct(dc); 2002 dc->hwss.init_hw = dcn20_init_hw; 2003 dc->hwss.init_pipes = NULL; 2004 dc->hwss.unblank_stream = dcn20_unblank_stream; 2005 dc->hwss.update_plane_addr = dcn20_update_plane_addr; 2006 dc->hwss.disable_plane = dcn20_disable_plane, 2007 dc->hwss.enable_stream_timing = dcn20_enable_stream_timing; 2008 dc->hwss.program_triplebuffer = dcn20_program_tripleBuffer; 2009 dc->hwss.set_input_transfer_func = dcn20_set_input_transfer_func; 2010 dc->hwss.set_output_transfer_func = dcn20_set_output_transfer_func; 2011 dc->hwss.apply_ctx_for_surface = dcn20_apply_ctx_for_surface; 2012 dc->hwss.pipe_control_lock = dcn20_pipe_control_lock; 2013 dc->hwss.pipe_control_lock_global = dcn20_pipe_control_lock_global; 2014 dc->hwss.optimize_bandwidth = dcn20_optimize_bandwidth; 2015 dc->hwss.prepare_bandwidth = dcn20_prepare_bandwidth; 2016 dc->hwss.update_bandwidth = dcn20_update_bandwidth; 2017 dc->hwss.enable_writeback = dcn20_enable_writeback; 2018 dc->hwss.disable_writeback = dcn20_disable_writeback; 2019 dc->hwss.program_output_csc = dcn20_program_output_csc; 2020 dc->hwss.update_odm = dcn20_update_odm; 2021 dc->hwss.blank_pixel_data = dcn20_blank_pixel_data; 2022 dc->hwss.dmdata_status_done = dcn20_dmdata_status_done; 2023 dc->hwss.disable_stream = dcn20_disable_stream; 2024 dc->hwss.init_sys_ctx = dcn20_init_sys_ctx; 2025 dc->hwss.init_vm_ctx = dcn20_init_vm_ctx; 2026 dc->hwss.disable_stream_gating = dcn20_disable_stream_gating; 2027 dc->hwss.enable_stream_gating = dcn20_enable_stream_gating; 2028 dc->hwss.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt; 2029 dc->hwss.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap; 2030 dc->hwss.update_mpcc = dcn20_update_mpcc; 2031 dc->hwss.set_flip_control_gsl = dcn20_set_flip_control_gsl; 2032 dc->hwss.did_underflow_occur = dcn10_did_underflow_occur; 2033 } 2034