1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 #include <linux/delay.h> 26 27 #include "dm_services.h" 28 #include "basics/dc_common.h" 29 #include "dm_helpers.h" 30 #include "core_types.h" 31 #include "resource.h" 32 #include "dcn20_resource.h" 33 #include "dcn20_hwseq.h" 34 #include "dce/dce_hwseq.h" 35 #include "dcn20_dsc.h" 36 #include "dcn20_optc.h" 37 #include "abm.h" 38 #include "clk_mgr.h" 39 #include "dmcu.h" 40 #include "hubp.h" 41 #include "timing_generator.h" 42 #include "opp.h" 43 #include "ipp.h" 44 #include "mpc.h" 45 #include "mcif_wb.h" 46 #include "dchubbub.h" 47 #include "reg_helper.h" 48 #include "dcn10/dcn10_cm_common.h" 49 #include "dc_link_dp.h" 50 #include "vm_helper.h" 51 #include "dccg.h" 52 53 #define DC_LOGGER_INIT(logger) 54 55 #define CTX \ 56 hws->ctx 57 #define REG(reg)\ 58 hws->regs->reg 59 60 #undef FN 61 #define FN(reg_name, field_name) \ 62 hws->shifts->field_name, hws->masks->field_name 63 64 static int find_free_gsl_group(const struct dc *dc) 65 { 66 if (dc->res_pool->gsl_groups.gsl_0 == 0) 67 return 1; 68 if (dc->res_pool->gsl_groups.gsl_1 == 0) 69 return 2; 70 if (dc->res_pool->gsl_groups.gsl_2 == 0) 71 return 3; 72 73 return 0; 74 } 75 76 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock) 77 * This is only used to lock pipes in pipe splitting case with immediate flip 78 * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate, 79 * so we get tearing with freesync since we cannot flip multiple pipes 80 * atomically. 81 * We use GSL for this: 82 * - immediate flip: find first available GSL group if not already assigned 83 * program gsl with that group, set current OTG as master 84 * and always us 0x4 = AND of flip_ready from all pipes 85 * - vsync flip: disable GSL if used 86 * 87 * Groups in stream_res are stored as +1 from HW registers, i.e. 88 * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1 89 * Using a magic value like -1 would require tracking all inits/resets 90 */ 91 static void dcn20_setup_gsl_group_as_lock( 92 const struct dc *dc, 93 struct pipe_ctx *pipe_ctx, 94 bool enable) 95 { 96 struct gsl_params gsl; 97 int group_idx; 98 99 memset(&gsl, 0, sizeof(struct gsl_params)); 100 101 if (enable) { 102 /* return if group already assigned since GSL was set up 103 * for vsync flip, we would unassign so it can't be "left over" 104 */ 105 if (pipe_ctx->stream_res.gsl_group > 0) 106 return; 107 108 group_idx = find_free_gsl_group(dc); 109 ASSERT(group_idx != 0); 110 pipe_ctx->stream_res.gsl_group = group_idx; 111 112 /* set gsl group reg field and mark resource used */ 113 switch (group_idx) { 114 case 1: 115 gsl.gsl0_en = 1; 116 dc->res_pool->gsl_groups.gsl_0 = 1; 117 break; 118 case 2: 119 gsl.gsl1_en = 1; 120 dc->res_pool->gsl_groups.gsl_1 = 1; 121 break; 122 case 3: 123 gsl.gsl2_en = 1; 124 dc->res_pool->gsl_groups.gsl_2 = 1; 125 break; 126 default: 127 BREAK_TO_DEBUGGER(); 128 return; // invalid case 129 } 130 gsl.gsl_master_en = 1; 131 } else { 132 group_idx = pipe_ctx->stream_res.gsl_group; 133 if (group_idx == 0) 134 return; // if not in use, just return 135 136 pipe_ctx->stream_res.gsl_group = 0; 137 138 /* unset gsl group reg field and mark resource free */ 139 switch (group_idx) { 140 case 1: 141 gsl.gsl0_en = 0; 142 dc->res_pool->gsl_groups.gsl_0 = 0; 143 break; 144 case 2: 145 gsl.gsl1_en = 0; 146 dc->res_pool->gsl_groups.gsl_1 = 0; 147 break; 148 case 3: 149 gsl.gsl2_en = 0; 150 dc->res_pool->gsl_groups.gsl_2 = 0; 151 break; 152 default: 153 BREAK_TO_DEBUGGER(); 154 return; 155 } 156 gsl.gsl_master_en = 0; 157 } 158 159 /* at this point we want to program whether it's to enable or disable */ 160 if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL && 161 pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) { 162 pipe_ctx->stream_res.tg->funcs->set_gsl( 163 pipe_ctx->stream_res.tg, 164 &gsl); 165 166 pipe_ctx->stream_res.tg->funcs->set_gsl_source_select( 167 pipe_ctx->stream_res.tg, group_idx, enable ? 4 : 0); 168 } else 169 BREAK_TO_DEBUGGER(); 170 } 171 172 void dcn20_set_flip_control_gsl( 173 struct pipe_ctx *pipe_ctx, 174 bool flip_immediate) 175 { 176 if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl) 177 pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl( 178 pipe_ctx->plane_res.hubp, flip_immediate); 179 180 } 181 182 void dcn20_enable_power_gating_plane( 183 struct dce_hwseq *hws, 184 bool enable) 185 { 186 bool force_on = true; /* disable power gating */ 187 188 if (enable) 189 force_on = false; 190 191 /* DCHUBP0/1/2/3/4/5 */ 192 REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on); 193 REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on); 194 REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on); 195 REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on); 196 if (REG(DOMAIN8_PG_CONFIG)) 197 REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); 198 if (REG(DOMAIN10_PG_CONFIG)) 199 REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); 200 201 /* DPP0/1/2/3/4/5 */ 202 REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on); 203 REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on); 204 REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on); 205 REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on); 206 if (REG(DOMAIN9_PG_CONFIG)) 207 REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); 208 if (REG(DOMAIN11_PG_CONFIG)) 209 REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); 210 211 /* DCS0/1/2/3/4/5 */ 212 REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on); 213 REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on); 214 REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on); 215 if (REG(DOMAIN19_PG_CONFIG)) 216 REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on); 217 if (REG(DOMAIN20_PG_CONFIG)) 218 REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on); 219 if (REG(DOMAIN21_PG_CONFIG)) 220 REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on); 221 } 222 223 void dcn20_dccg_init(struct dce_hwseq *hws) 224 { 225 /* 226 * set MICROSECOND_TIME_BASE_DIV 227 * 100Mhz refclk -> 0x120264 228 * 27Mhz refclk -> 0x12021b 229 * 48Mhz refclk -> 0x120230 230 * 231 */ 232 REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264); 233 234 /* 235 * set MILLISECOND_TIME_BASE_DIV 236 * 100Mhz refclk -> 0x1186a0 237 * 27Mhz refclk -> 0x106978 238 * 48Mhz refclk -> 0x10bb80 239 * 240 */ 241 REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0); 242 243 /* This value is dependent on the hardware pipeline delay so set once per SOC */ 244 REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c); 245 } 246 247 void dcn20_disable_vga( 248 struct dce_hwseq *hws) 249 { 250 REG_WRITE(D1VGA_CONTROL, 0); 251 REG_WRITE(D2VGA_CONTROL, 0); 252 REG_WRITE(D3VGA_CONTROL, 0); 253 REG_WRITE(D4VGA_CONTROL, 0); 254 REG_WRITE(D5VGA_CONTROL, 0); 255 REG_WRITE(D6VGA_CONTROL, 0); 256 } 257 258 void dcn20_program_triple_buffer( 259 const struct dc *dc, 260 struct pipe_ctx *pipe_ctx, 261 bool enable_triple_buffer) 262 { 263 if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) { 264 pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer( 265 pipe_ctx->plane_res.hubp, 266 enable_triple_buffer); 267 } 268 } 269 270 /* Blank pixel data during initialization */ 271 void dcn20_init_blank( 272 struct dc *dc, 273 struct timing_generator *tg) 274 { 275 struct dce_hwseq *hws = dc->hwseq; 276 enum dc_color_space color_space; 277 struct tg_color black_color = {0}; 278 struct output_pixel_processor *opp = NULL; 279 struct output_pixel_processor *bottom_opp = NULL; 280 uint32_t num_opps, opp_id_src0, opp_id_src1; 281 uint32_t otg_active_width, otg_active_height; 282 283 /* program opp dpg blank color */ 284 color_space = COLOR_SPACE_SRGB; 285 color_space_to_black_color(dc, color_space, &black_color); 286 287 /* get the OTG active size */ 288 tg->funcs->get_otg_active_size(tg, 289 &otg_active_width, 290 &otg_active_height); 291 292 /* get the OPTC source */ 293 tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); 294 ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp); 295 opp = dc->res_pool->opps[opp_id_src0]; 296 297 if (num_opps == 2) { 298 otg_active_width = otg_active_width / 2; 299 ASSERT(opp_id_src1 < dc->res_pool->res_cap->num_opp); 300 bottom_opp = dc->res_pool->opps[opp_id_src1]; 301 } 302 303 opp->funcs->opp_set_disp_pattern_generator( 304 opp, 305 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, 306 CONTROLLER_DP_COLOR_SPACE_UDEFINED, 307 COLOR_DEPTH_UNDEFINED, 308 &black_color, 309 otg_active_width, 310 otg_active_height, 311 0); 312 313 if (num_opps == 2) { 314 bottom_opp->funcs->opp_set_disp_pattern_generator( 315 bottom_opp, 316 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, 317 CONTROLLER_DP_COLOR_SPACE_UDEFINED, 318 COLOR_DEPTH_UNDEFINED, 319 &black_color, 320 otg_active_width, 321 otg_active_height, 322 0); 323 } 324 325 hws->funcs.wait_for_blank_complete(opp); 326 } 327 328 void dcn20_dsc_pg_control( 329 struct dce_hwseq *hws, 330 unsigned int dsc_inst, 331 bool power_on) 332 { 333 uint32_t power_gate = power_on ? 0 : 1; 334 uint32_t pwr_status = power_on ? 0 : 2; 335 uint32_t org_ip_request_cntl = 0; 336 337 if (hws->ctx->dc->debug.disable_dsc_power_gate) 338 return; 339 340 if (REG(DOMAIN16_PG_CONFIG) == 0) 341 return; 342 343 REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); 344 if (org_ip_request_cntl == 0) 345 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); 346 347 switch (dsc_inst) { 348 case 0: /* DSC0 */ 349 REG_UPDATE(DOMAIN16_PG_CONFIG, 350 DOMAIN16_POWER_GATE, power_gate); 351 352 REG_WAIT(DOMAIN16_PG_STATUS, 353 DOMAIN16_PGFSM_PWR_STATUS, pwr_status, 354 1, 1000); 355 break; 356 case 1: /* DSC1 */ 357 REG_UPDATE(DOMAIN17_PG_CONFIG, 358 DOMAIN17_POWER_GATE, power_gate); 359 360 REG_WAIT(DOMAIN17_PG_STATUS, 361 DOMAIN17_PGFSM_PWR_STATUS, pwr_status, 362 1, 1000); 363 break; 364 case 2: /* DSC2 */ 365 REG_UPDATE(DOMAIN18_PG_CONFIG, 366 DOMAIN18_POWER_GATE, power_gate); 367 368 REG_WAIT(DOMAIN18_PG_STATUS, 369 DOMAIN18_PGFSM_PWR_STATUS, pwr_status, 370 1, 1000); 371 break; 372 case 3: /* DSC3 */ 373 REG_UPDATE(DOMAIN19_PG_CONFIG, 374 DOMAIN19_POWER_GATE, power_gate); 375 376 REG_WAIT(DOMAIN19_PG_STATUS, 377 DOMAIN19_PGFSM_PWR_STATUS, pwr_status, 378 1, 1000); 379 break; 380 case 4: /* DSC4 */ 381 REG_UPDATE(DOMAIN20_PG_CONFIG, 382 DOMAIN20_POWER_GATE, power_gate); 383 384 REG_WAIT(DOMAIN20_PG_STATUS, 385 DOMAIN20_PGFSM_PWR_STATUS, pwr_status, 386 1, 1000); 387 break; 388 case 5: /* DSC5 */ 389 REG_UPDATE(DOMAIN21_PG_CONFIG, 390 DOMAIN21_POWER_GATE, power_gate); 391 392 REG_WAIT(DOMAIN21_PG_STATUS, 393 DOMAIN21_PGFSM_PWR_STATUS, pwr_status, 394 1, 1000); 395 break; 396 default: 397 BREAK_TO_DEBUGGER(); 398 break; 399 } 400 401 if (org_ip_request_cntl == 0) 402 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); 403 } 404 405 void dcn20_dpp_pg_control( 406 struct dce_hwseq *hws, 407 unsigned int dpp_inst, 408 bool power_on) 409 { 410 uint32_t power_gate = power_on ? 0 : 1; 411 uint32_t pwr_status = power_on ? 0 : 2; 412 413 if (hws->ctx->dc->debug.disable_dpp_power_gate) 414 return; 415 if (REG(DOMAIN1_PG_CONFIG) == 0) 416 return; 417 418 switch (dpp_inst) { 419 case 0: /* DPP0 */ 420 REG_UPDATE(DOMAIN1_PG_CONFIG, 421 DOMAIN1_POWER_GATE, power_gate); 422 423 REG_WAIT(DOMAIN1_PG_STATUS, 424 DOMAIN1_PGFSM_PWR_STATUS, pwr_status, 425 1, 1000); 426 break; 427 case 1: /* DPP1 */ 428 REG_UPDATE(DOMAIN3_PG_CONFIG, 429 DOMAIN3_POWER_GATE, power_gate); 430 431 REG_WAIT(DOMAIN3_PG_STATUS, 432 DOMAIN3_PGFSM_PWR_STATUS, pwr_status, 433 1, 1000); 434 break; 435 case 2: /* DPP2 */ 436 REG_UPDATE(DOMAIN5_PG_CONFIG, 437 DOMAIN5_POWER_GATE, power_gate); 438 439 REG_WAIT(DOMAIN5_PG_STATUS, 440 DOMAIN5_PGFSM_PWR_STATUS, pwr_status, 441 1, 1000); 442 break; 443 case 3: /* DPP3 */ 444 REG_UPDATE(DOMAIN7_PG_CONFIG, 445 DOMAIN7_POWER_GATE, power_gate); 446 447 REG_WAIT(DOMAIN7_PG_STATUS, 448 DOMAIN7_PGFSM_PWR_STATUS, pwr_status, 449 1, 1000); 450 break; 451 case 4: /* DPP4 */ 452 REG_UPDATE(DOMAIN9_PG_CONFIG, 453 DOMAIN9_POWER_GATE, power_gate); 454 455 REG_WAIT(DOMAIN9_PG_STATUS, 456 DOMAIN9_PGFSM_PWR_STATUS, pwr_status, 457 1, 1000); 458 break; 459 case 5: /* DPP5 */ 460 /* 461 * Do not power gate DPP5, should be left at HW default, power on permanently. 462 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard 463 * reset. 464 * REG_UPDATE(DOMAIN11_PG_CONFIG, 465 * DOMAIN11_POWER_GATE, power_gate); 466 * 467 * REG_WAIT(DOMAIN11_PG_STATUS, 468 * DOMAIN11_PGFSM_PWR_STATUS, pwr_status, 469 * 1, 1000); 470 */ 471 break; 472 default: 473 BREAK_TO_DEBUGGER(); 474 break; 475 } 476 } 477 478 479 void dcn20_hubp_pg_control( 480 struct dce_hwseq *hws, 481 unsigned int hubp_inst, 482 bool power_on) 483 { 484 uint32_t power_gate = power_on ? 0 : 1; 485 uint32_t pwr_status = power_on ? 0 : 2; 486 487 if (hws->ctx->dc->debug.disable_hubp_power_gate) 488 return; 489 if (REG(DOMAIN0_PG_CONFIG) == 0) 490 return; 491 492 switch (hubp_inst) { 493 case 0: /* DCHUBP0 */ 494 REG_UPDATE(DOMAIN0_PG_CONFIG, 495 DOMAIN0_POWER_GATE, power_gate); 496 497 REG_WAIT(DOMAIN0_PG_STATUS, 498 DOMAIN0_PGFSM_PWR_STATUS, pwr_status, 499 1, 1000); 500 break; 501 case 1: /* DCHUBP1 */ 502 REG_UPDATE(DOMAIN2_PG_CONFIG, 503 DOMAIN2_POWER_GATE, power_gate); 504 505 REG_WAIT(DOMAIN2_PG_STATUS, 506 DOMAIN2_PGFSM_PWR_STATUS, pwr_status, 507 1, 1000); 508 break; 509 case 2: /* DCHUBP2 */ 510 REG_UPDATE(DOMAIN4_PG_CONFIG, 511 DOMAIN4_POWER_GATE, power_gate); 512 513 REG_WAIT(DOMAIN4_PG_STATUS, 514 DOMAIN4_PGFSM_PWR_STATUS, pwr_status, 515 1, 1000); 516 break; 517 case 3: /* DCHUBP3 */ 518 REG_UPDATE(DOMAIN6_PG_CONFIG, 519 DOMAIN6_POWER_GATE, power_gate); 520 521 REG_WAIT(DOMAIN6_PG_STATUS, 522 DOMAIN6_PGFSM_PWR_STATUS, pwr_status, 523 1, 1000); 524 break; 525 case 4: /* DCHUBP4 */ 526 REG_UPDATE(DOMAIN8_PG_CONFIG, 527 DOMAIN8_POWER_GATE, power_gate); 528 529 REG_WAIT(DOMAIN8_PG_STATUS, 530 DOMAIN8_PGFSM_PWR_STATUS, pwr_status, 531 1, 1000); 532 break; 533 case 5: /* DCHUBP5 */ 534 /* 535 * Do not power gate DCHUB5, should be left at HW default, power on permanently. 536 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard 537 * reset. 538 * REG_UPDATE(DOMAIN10_PG_CONFIG, 539 * DOMAIN10_POWER_GATE, power_gate); 540 * 541 * REG_WAIT(DOMAIN10_PG_STATUS, 542 * DOMAIN10_PGFSM_PWR_STATUS, pwr_status, 543 * 1, 1000); 544 */ 545 break; 546 default: 547 BREAK_TO_DEBUGGER(); 548 break; 549 } 550 } 551 552 553 /* disable HW used by plane. 554 * note: cannot disable until disconnect is complete 555 */ 556 void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx) 557 { 558 struct dce_hwseq *hws = dc->hwseq; 559 struct hubp *hubp = pipe_ctx->plane_res.hubp; 560 struct dpp *dpp = pipe_ctx->plane_res.dpp; 561 562 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx); 563 564 /* In flip immediate with pipe splitting case GSL is used for 565 * synchronization so we must disable it when the plane is disabled. 566 */ 567 if (pipe_ctx->stream_res.gsl_group != 0) 568 dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false); 569 570 dc->hwss.set_flip_control_gsl(pipe_ctx, false); 571 572 hubp->funcs->hubp_clk_cntl(hubp, false); 573 574 dpp->funcs->dpp_dppclk_control(dpp, false, false); 575 576 hubp->power_gated = true; 577 578 hws->funcs.plane_atomic_power_down(dc, 579 pipe_ctx->plane_res.dpp, 580 pipe_ctx->plane_res.hubp); 581 582 pipe_ctx->stream = NULL; 583 memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res)); 584 memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res)); 585 pipe_ctx->top_pipe = NULL; 586 pipe_ctx->bottom_pipe = NULL; 587 pipe_ctx->plane_state = NULL; 588 } 589 590 591 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx) 592 { 593 DC_LOGGER_INIT(dc->ctx->logger); 594 595 if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) 596 return; 597 598 dcn20_plane_atomic_disable(dc, pipe_ctx); 599 600 DC_LOG_DC("Power down front end %d\n", 601 pipe_ctx->pipe_idx); 602 } 603 604 enum dc_status dcn20_enable_stream_timing( 605 struct pipe_ctx *pipe_ctx, 606 struct dc_state *context, 607 struct dc *dc) 608 { 609 struct dce_hwseq *hws = dc->hwseq; 610 struct dc_stream_state *stream = pipe_ctx->stream; 611 struct drr_params params = {0}; 612 unsigned int event_triggers = 0; 613 struct pipe_ctx *odm_pipe; 614 int opp_cnt = 1; 615 int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst }; 616 617 /* by upper caller loop, pipe0 is parent pipe and be called first. 618 * back end is set up by for pipe0. Other children pipe share back end 619 * with pipe 0. No program is needed. 620 */ 621 if (pipe_ctx->top_pipe != NULL) 622 return DC_OK; 623 624 /* TODO check if timing_changed, disable stream if timing changed */ 625 626 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 627 opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; 628 opp_cnt++; 629 } 630 631 if (opp_cnt > 1) 632 pipe_ctx->stream_res.tg->funcs->set_odm_combine( 633 pipe_ctx->stream_res.tg, 634 opp_inst, opp_cnt, 635 &pipe_ctx->stream->timing); 636 637 /* HW program guide assume display already disable 638 * by unplug sequence. OTG assume stop. 639 */ 640 pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true); 641 642 if (false == pipe_ctx->clock_source->funcs->program_pix_clk( 643 pipe_ctx->clock_source, 644 &pipe_ctx->stream_res.pix_clk_params, 645 &pipe_ctx->pll_settings)) { 646 BREAK_TO_DEBUGGER(); 647 return DC_ERROR_UNEXPECTED; 648 } 649 650 if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal))) 651 dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx); 652 653 pipe_ctx->stream_res.tg->funcs->program_timing( 654 pipe_ctx->stream_res.tg, 655 &stream->timing, 656 pipe_ctx->pipe_dlg_param.vready_offset, 657 pipe_ctx->pipe_dlg_param.vstartup_start, 658 pipe_ctx->pipe_dlg_param.vupdate_offset, 659 pipe_ctx->pipe_dlg_param.vupdate_width, 660 pipe_ctx->stream->signal, 661 true); 662 663 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 664 odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( 665 odm_pipe->stream_res.opp, 666 true); 667 668 pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( 669 pipe_ctx->stream_res.opp, 670 true); 671 672 hws->funcs.blank_pixel_data(dc, pipe_ctx, true); 673 674 /* VTG is within DCHUB command block. DCFCLK is always on */ 675 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) { 676 BREAK_TO_DEBUGGER(); 677 return DC_ERROR_UNEXPECTED; 678 } 679 680 hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp); 681 682 params.vertical_total_min = stream->adjust.v_total_min; 683 params.vertical_total_max = stream->adjust.v_total_max; 684 params.vertical_total_mid = stream->adjust.v_total_mid; 685 params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num; 686 if (pipe_ctx->stream_res.tg->funcs->set_drr) 687 pipe_ctx->stream_res.tg->funcs->set_drr( 688 pipe_ctx->stream_res.tg, ¶ms); 689 690 // DRR should set trigger event to monitor surface update event 691 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0) 692 event_triggers = 0x80; 693 /* Event triggers and num frames initialized for DRR, but can be 694 * later updated for PSR use. Note DRR trigger events are generated 695 * regardless of whether num frames met. 696 */ 697 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control) 698 pipe_ctx->stream_res.tg->funcs->set_static_screen_control( 699 pipe_ctx->stream_res.tg, event_triggers, 2); 700 701 /* TODO program crtc source select for non-virtual signal*/ 702 /* TODO program FMT */ 703 /* TODO setup link_enc */ 704 /* TODO set stream attributes */ 705 /* TODO program audio */ 706 /* TODO enable stream if timing changed */ 707 /* TODO unblank stream if DP */ 708 709 return DC_OK; 710 } 711 712 void dcn20_program_output_csc(struct dc *dc, 713 struct pipe_ctx *pipe_ctx, 714 enum dc_color_space colorspace, 715 uint16_t *matrix, 716 int opp_id) 717 { 718 struct mpc *mpc = dc->res_pool->mpc; 719 enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A; 720 int mpcc_id = pipe_ctx->plane_res.hubp->inst; 721 722 if (mpc->funcs->power_on_mpc_mem_pwr) 723 mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true); 724 725 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) { 726 if (mpc->funcs->set_output_csc != NULL) 727 mpc->funcs->set_output_csc(mpc, 728 opp_id, 729 matrix, 730 ocsc_mode); 731 } else { 732 if (mpc->funcs->set_ocsc_default != NULL) 733 mpc->funcs->set_ocsc_default(mpc, 734 opp_id, 735 colorspace, 736 ocsc_mode); 737 } 738 } 739 740 bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, 741 const struct dc_stream_state *stream) 742 { 743 int mpcc_id = pipe_ctx->plane_res.hubp->inst; 744 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; 745 struct pwl_params *params = NULL; 746 /* 747 * program OGAM only for the top pipe 748 * if there is a pipe split then fix diagnostic is required: 749 * how to pass OGAM parameter for stream. 750 * if programming for all pipes is required then remove condition 751 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic. 752 */ 753 if (mpc->funcs->power_on_mpc_mem_pwr) 754 mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true); 755 if (pipe_ctx->top_pipe == NULL 756 && mpc->funcs->set_output_gamma && stream->out_transfer_func) { 757 if (stream->out_transfer_func->type == TF_TYPE_HWPWL) 758 params = &stream->out_transfer_func->pwl; 759 else if (pipe_ctx->stream->out_transfer_func->type == 760 TF_TYPE_DISTRIBUTED_POINTS && 761 cm_helper_translate_curve_to_hw_format( 762 stream->out_transfer_func, 763 &mpc->blender_params, false)) 764 params = &mpc->blender_params; 765 /* 766 * there is no ROM 767 */ 768 if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED) 769 BREAK_TO_DEBUGGER(); 770 } 771 /* 772 * if above if is not executed then 'params' equal to 0 and set in bypass 773 */ 774 mpc->funcs->set_output_gamma(mpc, mpcc_id, params); 775 776 return true; 777 } 778 779 bool dcn20_set_blend_lut( 780 struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) 781 { 782 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 783 bool result = true; 784 struct pwl_params *blend_lut = NULL; 785 786 if (plane_state->blend_tf) { 787 if (plane_state->blend_tf->type == TF_TYPE_HWPWL) 788 blend_lut = &plane_state->blend_tf->pwl; 789 else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) { 790 cm_helper_translate_curve_to_hw_format( 791 plane_state->blend_tf, 792 &dpp_base->regamma_params, false); 793 blend_lut = &dpp_base->regamma_params; 794 } 795 } 796 result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut); 797 798 return result; 799 } 800 801 bool dcn20_set_shaper_3dlut( 802 struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) 803 { 804 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 805 bool result = true; 806 struct pwl_params *shaper_lut = NULL; 807 808 if (plane_state->in_shaper_func) { 809 if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL) 810 shaper_lut = &plane_state->in_shaper_func->pwl; 811 else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) { 812 cm_helper_translate_curve_to_hw_format( 813 plane_state->in_shaper_func, 814 &dpp_base->shaper_params, true); 815 shaper_lut = &dpp_base->shaper_params; 816 } 817 } 818 819 result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut); 820 if (plane_state->lut3d_func && 821 plane_state->lut3d_func->state.bits.initialized == 1) 822 result = dpp_base->funcs->dpp_program_3dlut(dpp_base, 823 &plane_state->lut3d_func->lut_3d); 824 else 825 result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL); 826 827 return result; 828 } 829 830 bool dcn20_set_input_transfer_func(struct dc *dc, 831 struct pipe_ctx *pipe_ctx, 832 const struct dc_plane_state *plane_state) 833 { 834 struct dce_hwseq *hws = dc->hwseq; 835 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 836 const struct dc_transfer_func *tf = NULL; 837 bool result = true; 838 bool use_degamma_ram = false; 839 840 if (dpp_base == NULL || plane_state == NULL) 841 return false; 842 843 hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state); 844 hws->funcs.set_blend_lut(pipe_ctx, plane_state); 845 846 if (plane_state->in_transfer_func) 847 tf = plane_state->in_transfer_func; 848 849 850 if (tf == NULL) { 851 dpp_base->funcs->dpp_set_degamma(dpp_base, 852 IPP_DEGAMMA_MODE_BYPASS); 853 return true; 854 } 855 856 if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS) 857 use_degamma_ram = true; 858 859 if (use_degamma_ram == true) { 860 if (tf->type == TF_TYPE_HWPWL) 861 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, 862 &tf->pwl); 863 else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) { 864 cm_helper_translate_curve_to_degamma_hw_format(tf, 865 &dpp_base->degamma_params); 866 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, 867 &dpp_base->degamma_params); 868 } 869 return true; 870 } 871 /* handle here the optimized cases when de-gamma ROM could be used. 872 * 873 */ 874 if (tf->type == TF_TYPE_PREDEFINED) { 875 switch (tf->tf) { 876 case TRANSFER_FUNCTION_SRGB: 877 dpp_base->funcs->dpp_set_degamma(dpp_base, 878 IPP_DEGAMMA_MODE_HW_sRGB); 879 break; 880 case TRANSFER_FUNCTION_BT709: 881 dpp_base->funcs->dpp_set_degamma(dpp_base, 882 IPP_DEGAMMA_MODE_HW_xvYCC); 883 break; 884 case TRANSFER_FUNCTION_LINEAR: 885 dpp_base->funcs->dpp_set_degamma(dpp_base, 886 IPP_DEGAMMA_MODE_BYPASS); 887 break; 888 case TRANSFER_FUNCTION_PQ: 889 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL); 890 cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params); 891 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params); 892 result = true; 893 break; 894 default: 895 result = false; 896 break; 897 } 898 } else if (tf->type == TF_TYPE_BYPASS) 899 dpp_base->funcs->dpp_set_degamma(dpp_base, 900 IPP_DEGAMMA_MODE_BYPASS); 901 else { 902 /* 903 * if we are here, we did not handle correctly. 904 * fix is required for this use case 905 */ 906 BREAK_TO_DEBUGGER(); 907 dpp_base->funcs->dpp_set_degamma(dpp_base, 908 IPP_DEGAMMA_MODE_BYPASS); 909 } 910 911 return result; 912 } 913 914 void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) 915 { 916 struct pipe_ctx *odm_pipe; 917 int opp_cnt = 1; 918 int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst }; 919 920 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 921 opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; 922 opp_cnt++; 923 } 924 925 if (opp_cnt > 1) 926 pipe_ctx->stream_res.tg->funcs->set_odm_combine( 927 pipe_ctx->stream_res.tg, 928 opp_inst, opp_cnt, 929 &pipe_ctx->stream->timing); 930 else 931 pipe_ctx->stream_res.tg->funcs->set_odm_bypass( 932 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 933 } 934 935 void dcn20_blank_pixel_data( 936 struct dc *dc, 937 struct pipe_ctx *pipe_ctx, 938 bool blank) 939 { 940 struct tg_color black_color = {0}; 941 struct stream_resource *stream_res = &pipe_ctx->stream_res; 942 struct dc_stream_state *stream = pipe_ctx->stream; 943 enum dc_color_space color_space = stream->output_color_space; 944 enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR; 945 enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED; 946 struct pipe_ctx *odm_pipe; 947 int odm_cnt = 1; 948 949 int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right; 950 int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top; 951 952 if (stream->link->test_pattern_enabled) 953 return; 954 955 /* get opp dpg blank color */ 956 color_space_to_black_color(dc, color_space, &black_color); 957 958 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 959 odm_cnt++; 960 961 width = width / odm_cnt; 962 963 if (blank) { 964 dc->hwss.set_abm_immediate_disable(pipe_ctx); 965 966 if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) { 967 test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES; 968 test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB; 969 } 970 } else { 971 test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE; 972 } 973 974 stream_res->opp->funcs->opp_set_disp_pattern_generator( 975 stream_res->opp, 976 test_pattern, 977 test_pattern_color_space, 978 stream->timing.display_color_depth, 979 &black_color, 980 width, 981 height, 982 0); 983 984 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 985 odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator( 986 odm_pipe->stream_res.opp, 987 dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ? 988 CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern, 989 test_pattern_color_space, 990 stream->timing.display_color_depth, 991 &black_color, 992 width, 993 height, 994 0); 995 } 996 997 if (!blank) 998 if (stream_res->abm) { 999 stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1, 1000 stream->link->panel_cntl->inst); 1001 stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level); 1002 } 1003 } 1004 1005 1006 static void dcn20_power_on_plane( 1007 struct dce_hwseq *hws, 1008 struct pipe_ctx *pipe_ctx) 1009 { 1010 DC_LOGGER_INIT(hws->ctx->logger); 1011 if (REG(DC_IP_REQUEST_CNTL)) { 1012 REG_SET(DC_IP_REQUEST_CNTL, 0, 1013 IP_REQUEST_EN, 1); 1014 dcn20_dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true); 1015 dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true); 1016 REG_SET(DC_IP_REQUEST_CNTL, 0, 1017 IP_REQUEST_EN, 0); 1018 DC_LOG_DEBUG( 1019 "Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst); 1020 } 1021 } 1022 1023 void dcn20_enable_plane( 1024 struct dc *dc, 1025 struct pipe_ctx *pipe_ctx, 1026 struct dc_state *context) 1027 { 1028 //if (dc->debug.sanity_checks) { 1029 // dcn10_verify_allow_pstate_change_high(dc); 1030 //} 1031 dcn20_power_on_plane(dc->hwseq, pipe_ctx); 1032 1033 /* enable DCFCLK current DCHUB */ 1034 pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true); 1035 1036 /* initialize HUBP on power up */ 1037 pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp); 1038 1039 /* make sure OPP_PIPE_CLOCK_EN = 1 */ 1040 pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( 1041 pipe_ctx->stream_res.opp, 1042 true); 1043 1044 /* TODO: enable/disable in dm as per update type. 1045 if (plane_state) { 1046 DC_LOG_DC(dc->ctx->logger, 1047 "Pipe:%d 0x%x: addr hi:0x%x, " 1048 "addr low:0x%x, " 1049 "src: %d, %d, %d," 1050 " %d; dst: %d, %d, %d, %d;\n", 1051 pipe_ctx->pipe_idx, 1052 plane_state, 1053 plane_state->address.grph.addr.high_part, 1054 plane_state->address.grph.addr.low_part, 1055 plane_state->src_rect.x, 1056 plane_state->src_rect.y, 1057 plane_state->src_rect.width, 1058 plane_state->src_rect.height, 1059 plane_state->dst_rect.x, 1060 plane_state->dst_rect.y, 1061 plane_state->dst_rect.width, 1062 plane_state->dst_rect.height); 1063 1064 DC_LOG_DC(dc->ctx->logger, 1065 "Pipe %d: width, height, x, y format:%d\n" 1066 "viewport:%d, %d, %d, %d\n" 1067 "recout: %d, %d, %d, %d\n", 1068 pipe_ctx->pipe_idx, 1069 plane_state->format, 1070 pipe_ctx->plane_res.scl_data.viewport.width, 1071 pipe_ctx->plane_res.scl_data.viewport.height, 1072 pipe_ctx->plane_res.scl_data.viewport.x, 1073 pipe_ctx->plane_res.scl_data.viewport.y, 1074 pipe_ctx->plane_res.scl_data.recout.width, 1075 pipe_ctx->plane_res.scl_data.recout.height, 1076 pipe_ctx->plane_res.scl_data.recout.x, 1077 pipe_ctx->plane_res.scl_data.recout.y); 1078 print_rq_dlg_ttu(dc, pipe_ctx); 1079 } 1080 */ 1081 if (dc->vm_pa_config.valid) { 1082 struct vm_system_aperture_param apt; 1083 1084 apt.sys_default.quad_part = 0; 1085 1086 apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr; 1087 apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr; 1088 1089 // Program system aperture settings 1090 pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt); 1091 } 1092 1093 // if (dc->debug.sanity_checks) { 1094 // dcn10_verify_allow_pstate_change_high(dc); 1095 // } 1096 } 1097 1098 void dcn20_pipe_control_lock( 1099 struct dc *dc, 1100 struct pipe_ctx *pipe, 1101 bool lock) 1102 { 1103 bool flip_immediate = false; 1104 1105 /* use TG master update lock to lock everything on the TG 1106 * therefore only top pipe need to lock 1107 */ 1108 if (!pipe || pipe->top_pipe) 1109 return; 1110 1111 if (pipe->plane_state != NULL) 1112 flip_immediate = pipe->plane_state->flip_immediate; 1113 1114 if (flip_immediate && lock) { 1115 const int TIMEOUT_FOR_FLIP_PENDING = 100000; 1116 int i; 1117 1118 for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) { 1119 if (!pipe->plane_res.hubp->funcs->hubp_is_flip_pending(pipe->plane_res.hubp)) 1120 break; 1121 udelay(1); 1122 } 1123 1124 if (pipe->bottom_pipe != NULL) { 1125 for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) { 1126 if (!pipe->bottom_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(pipe->bottom_pipe->plane_res.hubp)) 1127 break; 1128 udelay(1); 1129 } 1130 } 1131 } 1132 1133 /* In flip immediate and pipe splitting case, we need to use GSL 1134 * for synchronization. Only do setup on locking and on flip type change. 1135 */ 1136 if (lock && pipe->bottom_pipe != NULL) 1137 if ((flip_immediate && pipe->stream_res.gsl_group == 0) || 1138 (!flip_immediate && pipe->stream_res.gsl_group > 0)) 1139 dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate); 1140 1141 if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) { 1142 if (lock) 1143 pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg); 1144 else 1145 pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg); 1146 } else { 1147 if (lock) 1148 pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); 1149 else 1150 pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); 1151 } 1152 } 1153 1154 static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe) 1155 { 1156 new_pipe->update_flags.raw = 0; 1157 1158 /* Exit on unchanged, unused pipe */ 1159 if (!old_pipe->plane_state && !new_pipe->plane_state) 1160 return; 1161 /* Detect pipe enable/disable */ 1162 if (!old_pipe->plane_state && new_pipe->plane_state) { 1163 new_pipe->update_flags.bits.enable = 1; 1164 new_pipe->update_flags.bits.mpcc = 1; 1165 new_pipe->update_flags.bits.dppclk = 1; 1166 new_pipe->update_flags.bits.hubp_interdependent = 1; 1167 new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1; 1168 new_pipe->update_flags.bits.gamut_remap = 1; 1169 new_pipe->update_flags.bits.scaler = 1; 1170 new_pipe->update_flags.bits.viewport = 1; 1171 if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) { 1172 new_pipe->update_flags.bits.odm = 1; 1173 new_pipe->update_flags.bits.global_sync = 1; 1174 } 1175 return; 1176 } 1177 if (old_pipe->plane_state && !new_pipe->plane_state) { 1178 new_pipe->update_flags.bits.disable = 1; 1179 return; 1180 } 1181 1182 /* Detect top pipe only changes */ 1183 if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) { 1184 /* Detect odm changes */ 1185 if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe 1186 && old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx) 1187 || (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe) 1188 || (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe) 1189 || old_pipe->stream_res.opp != new_pipe->stream_res.opp) 1190 new_pipe->update_flags.bits.odm = 1; 1191 1192 /* Detect global sync changes */ 1193 if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset 1194 || old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start 1195 || old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset 1196 || old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width) 1197 new_pipe->update_flags.bits.global_sync = 1; 1198 } 1199 1200 /* 1201 * Detect opp / tg change, only set on change, not on enable 1202 * Assume mpcc inst = pipe index, if not this code needs to be updated 1203 * since mpcc is what is affected by these. In fact all of our sequence 1204 * makes this assumption at the moment with how hubp reset is matched to 1205 * same index mpcc reset. 1206 */ 1207 if (old_pipe->stream_res.opp != new_pipe->stream_res.opp) 1208 new_pipe->update_flags.bits.opp_changed = 1; 1209 if (old_pipe->stream_res.tg != new_pipe->stream_res.tg) 1210 new_pipe->update_flags.bits.tg_changed = 1; 1211 1212 /* Detect mpcc blending changes, only dpp inst and bot matter here */ 1213 if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp 1214 || old_pipe->stream_res.opp != new_pipe->stream_res.opp 1215 || (!old_pipe->bottom_pipe && new_pipe->bottom_pipe) 1216 || (old_pipe->bottom_pipe && !new_pipe->bottom_pipe) 1217 || (old_pipe->bottom_pipe && new_pipe->bottom_pipe 1218 && old_pipe->bottom_pipe->plane_res.mpcc_inst 1219 != new_pipe->bottom_pipe->plane_res.mpcc_inst)) 1220 new_pipe->update_flags.bits.mpcc = 1; 1221 1222 /* Detect dppclk change */ 1223 if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz) 1224 new_pipe->update_flags.bits.dppclk = 1; 1225 1226 /* Check for scl update */ 1227 if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data))) 1228 new_pipe->update_flags.bits.scaler = 1; 1229 /* Check for vp update */ 1230 if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect)) 1231 || memcmp(&old_pipe->plane_res.scl_data.viewport_c, 1232 &new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect))) 1233 new_pipe->update_flags.bits.viewport = 1; 1234 1235 /* Detect dlg/ttu/rq updates */ 1236 { 1237 struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs; 1238 struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs; 1239 struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs; 1240 struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs; 1241 1242 /* Detect pipe interdependent updates */ 1243 if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch || 1244 old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch || 1245 old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c || 1246 old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank || 1247 old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank || 1248 old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip || 1249 old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip || 1250 old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l || 1251 old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c || 1252 old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l || 1253 old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l || 1254 old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c || 1255 old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l || 1256 old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c || 1257 old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 || 1258 old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 || 1259 old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank || 1260 old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) { 1261 old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch; 1262 old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch; 1263 old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c; 1264 old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank; 1265 old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank; 1266 old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip; 1267 old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip; 1268 old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l; 1269 old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c; 1270 old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l; 1271 old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l; 1272 old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c; 1273 old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l; 1274 old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c; 1275 old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0; 1276 old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1; 1277 old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank; 1278 old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip; 1279 new_pipe->update_flags.bits.hubp_interdependent = 1; 1280 } 1281 /* Detect any other updates to ttu/rq/dlg */ 1282 if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) || 1283 memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) || 1284 memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs))) 1285 new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1; 1286 } 1287 } 1288 1289 static void dcn20_update_dchubp_dpp( 1290 struct dc *dc, 1291 struct pipe_ctx *pipe_ctx, 1292 struct dc_state *context) 1293 { 1294 struct dce_hwseq *hws = dc->hwseq; 1295 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1296 struct dpp *dpp = pipe_ctx->plane_res.dpp; 1297 struct dc_plane_state *plane_state = pipe_ctx->plane_state; 1298 bool viewport_changed = false; 1299 1300 if (pipe_ctx->update_flags.bits.dppclk) 1301 dpp->funcs->dpp_dppclk_control(dpp, false, true); 1302 1303 /* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG 1304 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP. 1305 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG 1306 */ 1307 if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) { 1308 hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst); 1309 1310 hubp->funcs->hubp_setup( 1311 hubp, 1312 &pipe_ctx->dlg_regs, 1313 &pipe_ctx->ttu_regs, 1314 &pipe_ctx->rq_regs, 1315 &pipe_ctx->pipe_dlg_param); 1316 } 1317 if (pipe_ctx->update_flags.bits.hubp_interdependent) 1318 hubp->funcs->hubp_setup_interdependent( 1319 hubp, 1320 &pipe_ctx->dlg_regs, 1321 &pipe_ctx->ttu_regs); 1322 1323 if (pipe_ctx->update_flags.bits.enable || 1324 plane_state->update_flags.bits.bpp_change || 1325 plane_state->update_flags.bits.input_csc_change || 1326 plane_state->update_flags.bits.color_space_change || 1327 plane_state->update_flags.bits.coeff_reduction_change) { 1328 struct dc_bias_and_scale bns_params = {0}; 1329 1330 // program the input csc 1331 dpp->funcs->dpp_setup(dpp, 1332 plane_state->format, 1333 EXPANSION_MODE_ZERO, 1334 plane_state->input_csc_color_matrix, 1335 plane_state->color_space, 1336 NULL); 1337 1338 if (dpp->funcs->dpp_program_bias_and_scale) { 1339 //TODO :for CNVC set scale and bias registers if necessary 1340 build_prescale_params(&bns_params, plane_state); 1341 dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params); 1342 } 1343 } 1344 1345 if (pipe_ctx->update_flags.bits.mpcc 1346 || plane_state->update_flags.bits.global_alpha_change 1347 || plane_state->update_flags.bits.per_pixel_alpha_change) { 1348 // MPCC inst is equal to pipe index in practice 1349 int mpcc_inst = hubp->inst; 1350 int opp_inst; 1351 int opp_count = dc->res_pool->pipe_count; 1352 1353 for (opp_inst = 0; opp_inst < opp_count; opp_inst++) { 1354 if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) { 1355 dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst); 1356 dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false; 1357 break; 1358 } 1359 } 1360 hws->funcs.update_mpcc(dc, pipe_ctx); 1361 } 1362 1363 if (pipe_ctx->update_flags.bits.scaler || 1364 plane_state->update_flags.bits.scaling_change || 1365 plane_state->update_flags.bits.position_change || 1366 plane_state->update_flags.bits.per_pixel_alpha_change || 1367 pipe_ctx->stream->update_flags.bits.scaling) { 1368 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha; 1369 ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_30BPP); 1370 /* scaler configuration */ 1371 pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler( 1372 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data); 1373 } 1374 1375 if (pipe_ctx->update_flags.bits.viewport || 1376 (context == dc->current_state && plane_state->update_flags.bits.position_change) || 1377 (context == dc->current_state && plane_state->update_flags.bits.scaling_change) || 1378 (context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) { 1379 1380 hubp->funcs->mem_program_viewport( 1381 hubp, 1382 &pipe_ctx->plane_res.scl_data.viewport, 1383 &pipe_ctx->plane_res.scl_data.viewport_c); 1384 viewport_changed = true; 1385 } 1386 1387 /* Any updates are handled in dc interface, just need to apply existing for plane enable */ 1388 if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed || 1389 pipe_ctx->update_flags.bits.scaler || pipe_ctx->update_flags.bits.viewport) 1390 && pipe_ctx->stream->cursor_attributes.address.quad_part != 0) { 1391 dc->hwss.set_cursor_position(pipe_ctx); 1392 dc->hwss.set_cursor_attribute(pipe_ctx); 1393 1394 if (dc->hwss.set_cursor_sdr_white_level) 1395 dc->hwss.set_cursor_sdr_white_level(pipe_ctx); 1396 } 1397 1398 /* Any updates are handled in dc interface, just need 1399 * to apply existing for plane enable / opp change */ 1400 if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed 1401 || pipe_ctx->stream->update_flags.bits.gamut_remap 1402 || pipe_ctx->stream->update_flags.bits.out_csc) { 1403 /* dpp/cm gamut remap*/ 1404 dc->hwss.program_gamut_remap(pipe_ctx); 1405 1406 /*call the dcn2 method which uses mpc csc*/ 1407 dc->hwss.program_output_csc(dc, 1408 pipe_ctx, 1409 pipe_ctx->stream->output_color_space, 1410 pipe_ctx->stream->csc_color_matrix.matrix, 1411 hubp->opp_id); 1412 } 1413 1414 if (pipe_ctx->update_flags.bits.enable || 1415 pipe_ctx->update_flags.bits.opp_changed || 1416 plane_state->update_flags.bits.pixel_format_change || 1417 plane_state->update_flags.bits.horizontal_mirror_change || 1418 plane_state->update_flags.bits.rotation_change || 1419 plane_state->update_flags.bits.swizzle_change || 1420 plane_state->update_flags.bits.dcc_change || 1421 plane_state->update_flags.bits.bpp_change || 1422 plane_state->update_flags.bits.scaling_change || 1423 plane_state->update_flags.bits.plane_size_change) { 1424 struct plane_size size = plane_state->plane_size; 1425 1426 size.surface_size = pipe_ctx->plane_res.scl_data.viewport; 1427 hubp->funcs->hubp_program_surface_config( 1428 hubp, 1429 plane_state->format, 1430 &plane_state->tiling_info, 1431 &size, 1432 plane_state->rotation, 1433 &plane_state->dcc, 1434 plane_state->horizontal_mirror, 1435 0); 1436 hubp->power_gated = false; 1437 } 1438 1439 if (hubp->funcs->apply_PLAT_54186_wa && viewport_changed) 1440 hubp->funcs->apply_PLAT_54186_wa(hubp, &plane_state->address); 1441 1442 if (pipe_ctx->update_flags.bits.enable || plane_state->update_flags.bits.addr_update) 1443 hws->funcs.update_plane_addr(dc, pipe_ctx); 1444 1445 1446 1447 if (pipe_ctx->update_flags.bits.enable) 1448 hubp->funcs->set_blank(hubp, false); 1449 } 1450 1451 1452 static void dcn20_program_pipe( 1453 struct dc *dc, 1454 struct pipe_ctx *pipe_ctx, 1455 struct dc_state *context) 1456 { 1457 struct dce_hwseq *hws = dc->hwseq; 1458 /* Only need to unblank on top pipe */ 1459 if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level) 1460 && !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe) 1461 hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible); 1462 1463 if (pipe_ctx->update_flags.bits.global_sync) { 1464 pipe_ctx->stream_res.tg->funcs->program_global_sync( 1465 pipe_ctx->stream_res.tg, 1466 pipe_ctx->pipe_dlg_param.vready_offset, 1467 pipe_ctx->pipe_dlg_param.vstartup_start, 1468 pipe_ctx->pipe_dlg_param.vupdate_offset, 1469 pipe_ctx->pipe_dlg_param.vupdate_width); 1470 1471 pipe_ctx->stream_res.tg->funcs->set_vtg_params( 1472 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1473 1474 if (hws->funcs.setup_vupdate_interrupt) 1475 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx); 1476 } 1477 1478 if (pipe_ctx->update_flags.bits.odm) 1479 hws->funcs.update_odm(dc, context, pipe_ctx); 1480 1481 if (pipe_ctx->update_flags.bits.enable) { 1482 dcn20_enable_plane(dc, pipe_ctx, context); 1483 if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes) 1484 dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub); 1485 } 1486 1487 if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw) 1488 dcn20_update_dchubp_dpp(dc, pipe_ctx, context); 1489 1490 if (pipe_ctx->update_flags.bits.enable 1491 || pipe_ctx->plane_state->update_flags.bits.hdr_mult) 1492 hws->funcs.set_hdr_multiplier(pipe_ctx); 1493 1494 if (pipe_ctx->update_flags.bits.enable || 1495 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change || 1496 pipe_ctx->plane_state->update_flags.bits.gamma_change) 1497 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state); 1498 1499 /* dcn10_translate_regamma_to_hw_format takes 750us to finish 1500 * only do gamma programming for powering on, internal memcmp to avoid 1501 * updating on slave planes 1502 */ 1503 if (pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.out_tf) 1504 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream); 1505 1506 /* If the pipe has been enabled or has a different opp, we 1507 * should reprogram the fmt. This deals with cases where 1508 * interation between mpc and odm combine on different streams 1509 * causes a different pipe to be chosen to odm combine with. 1510 */ 1511 if (pipe_ctx->update_flags.bits.enable 1512 || pipe_ctx->update_flags.bits.opp_changed) { 1513 1514 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion( 1515 pipe_ctx->stream_res.opp, 1516 COLOR_SPACE_YCBCR601, 1517 pipe_ctx->stream->timing.display_color_depth, 1518 pipe_ctx->stream->signal); 1519 1520 pipe_ctx->stream_res.opp->funcs->opp_program_fmt( 1521 pipe_ctx->stream_res.opp, 1522 &pipe_ctx->stream->bit_depth_params, 1523 &pipe_ctx->stream->clamping); 1524 } 1525 } 1526 1527 void dcn20_program_front_end_for_ctx( 1528 struct dc *dc, 1529 struct dc_state *context) 1530 { 1531 int i; 1532 struct dce_hwseq *hws = dc->hwseq; 1533 DC_LOGGER_INIT(dc->ctx->logger); 1534 1535 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1536 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1537 1538 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) { 1539 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips); 1540 if (dc->hwss.program_triplebuffer != NULL && 1541 !dc->debug.disable_tri_buf) { 1542 /*turn off triple buffer for full update*/ 1543 dc->hwss.program_triplebuffer( 1544 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); 1545 } 1546 } 1547 } 1548 1549 /* Set pipe update flags and lock pipes */ 1550 for (i = 0; i < dc->res_pool->pipe_count; i++) 1551 dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i], 1552 &context->res_ctx.pipe_ctx[i]); 1553 1554 /* OTG blank before disabling all front ends */ 1555 for (i = 0; i < dc->res_pool->pipe_count; i++) 1556 if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable 1557 && !context->res_ctx.pipe_ctx[i].top_pipe 1558 && !context->res_ctx.pipe_ctx[i].prev_odm_pipe 1559 && context->res_ctx.pipe_ctx[i].stream) 1560 hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true); 1561 1562 /* Disconnect mpcc */ 1563 for (i = 0; i < dc->res_pool->pipe_count; i++) 1564 if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable 1565 || context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) { 1566 hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]); 1567 DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx); 1568 } 1569 1570 /* 1571 * Program all updated pipes, order matters for mpcc setup. Start with 1572 * top pipe and program all pipes that follow in order 1573 */ 1574 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1575 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1576 1577 if (pipe->plane_state && !pipe->top_pipe) { 1578 while (pipe) { 1579 dcn20_program_pipe(dc, pipe, context); 1580 pipe = pipe->bottom_pipe; 1581 } 1582 /* Program secondary blending tree and writeback pipes */ 1583 pipe = &context->res_ctx.pipe_ctx[i]; 1584 if (!pipe->prev_odm_pipe && pipe->stream->num_wb_info > 0 1585 && (pipe->update_flags.raw || pipe->plane_state->update_flags.raw || pipe->stream->update_flags.raw) 1586 && hws->funcs.program_all_writeback_pipes_in_tree) 1587 hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context); 1588 } 1589 } 1590 } 1591 1592 void dcn20_post_unlock_program_front_end( 1593 struct dc *dc, 1594 struct dc_state *context) 1595 { 1596 int i; 1597 const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100; 1598 struct dce_hwseq *hwseq = dc->hwseq; 1599 1600 DC_LOGGER_INIT(dc->ctx->logger); 1601 1602 for (i = 0; i < dc->res_pool->pipe_count; i++) 1603 if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) 1604 dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]); 1605 1606 /* 1607 * If we are enabling a pipe, we need to wait for pending clear as this is a critical 1608 * part of the enable operation otherwise, DM may request an immediate flip which 1609 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which 1610 * is unsupported on DCN. 1611 */ 1612 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1613 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1614 1615 if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable) { 1616 struct hubp *hubp = pipe->plane_res.hubp; 1617 int j = 0; 1618 1619 for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_MS*1000 1620 && hubp->funcs->hubp_is_flip_pending(hubp); j++) 1621 mdelay(1); 1622 } 1623 } 1624 1625 /* WA to apply WM setting*/ 1626 if (hwseq->wa.DEGVIDCN21) 1627 dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub); 1628 1629 1630 /* WA for stutter underflow during MPO transitions when adding 2nd plane */ 1631 if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) { 1632 1633 if (dc->current_state->stream_status[0].plane_count == 1 && 1634 context->stream_status[0].plane_count > 1) { 1635 1636 struct timing_generator *tg = dc->res_pool->timing_generators[0]; 1637 1638 dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false); 1639 1640 hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true; 1641 hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg); 1642 } 1643 } 1644 } 1645 1646 void dcn20_prepare_bandwidth( 1647 struct dc *dc, 1648 struct dc_state *context) 1649 { 1650 struct hubbub *hubbub = dc->res_pool->hubbub; 1651 1652 dc->clk_mgr->funcs->update_clocks( 1653 dc->clk_mgr, 1654 context, 1655 false); 1656 1657 /* program dchubbub watermarks */ 1658 dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub, 1659 &context->bw_ctx.bw.dcn.watermarks, 1660 dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, 1661 false); 1662 } 1663 1664 void dcn20_optimize_bandwidth( 1665 struct dc *dc, 1666 struct dc_state *context) 1667 { 1668 struct hubbub *hubbub = dc->res_pool->hubbub; 1669 1670 /* program dchubbub watermarks */ 1671 hubbub->funcs->program_watermarks(hubbub, 1672 &context->bw_ctx.bw.dcn.watermarks, 1673 dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, 1674 true); 1675 1676 dc->clk_mgr->funcs->update_clocks( 1677 dc->clk_mgr, 1678 context, 1679 true); 1680 } 1681 1682 bool dcn20_update_bandwidth( 1683 struct dc *dc, 1684 struct dc_state *context) 1685 { 1686 int i; 1687 struct dce_hwseq *hws = dc->hwseq; 1688 1689 /* recalculate DML parameters */ 1690 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) 1691 return false; 1692 1693 /* apply updated bandwidth parameters */ 1694 dc->hwss.prepare_bandwidth(dc, context); 1695 1696 /* update hubp configs for all pipes */ 1697 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1698 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1699 1700 if (pipe_ctx->plane_state == NULL) 1701 continue; 1702 1703 if (pipe_ctx->top_pipe == NULL) { 1704 bool blank = !is_pipe_tree_visible(pipe_ctx); 1705 1706 pipe_ctx->stream_res.tg->funcs->program_global_sync( 1707 pipe_ctx->stream_res.tg, 1708 pipe_ctx->pipe_dlg_param.vready_offset, 1709 pipe_ctx->pipe_dlg_param.vstartup_start, 1710 pipe_ctx->pipe_dlg_param.vupdate_offset, 1711 pipe_ctx->pipe_dlg_param.vupdate_width); 1712 1713 pipe_ctx->stream_res.tg->funcs->set_vtg_params( 1714 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1715 1716 if (pipe_ctx->prev_odm_pipe == NULL) 1717 hws->funcs.blank_pixel_data(dc, pipe_ctx, blank); 1718 1719 if (hws->funcs.setup_vupdate_interrupt) 1720 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx); 1721 } 1722 1723 pipe_ctx->plane_res.hubp->funcs->hubp_setup( 1724 pipe_ctx->plane_res.hubp, 1725 &pipe_ctx->dlg_regs, 1726 &pipe_ctx->ttu_regs, 1727 &pipe_ctx->rq_regs, 1728 &pipe_ctx->pipe_dlg_param); 1729 } 1730 1731 return true; 1732 } 1733 1734 void dcn20_enable_writeback( 1735 struct dc *dc, 1736 struct dc_writeback_info *wb_info, 1737 struct dc_state *context) 1738 { 1739 struct dwbc *dwb; 1740 struct mcif_wb *mcif_wb; 1741 struct timing_generator *optc; 1742 1743 ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES); 1744 ASSERT(wb_info->wb_enabled); 1745 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; 1746 mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst]; 1747 1748 /* set the OPTC source mux */ 1749 optc = dc->res_pool->timing_generators[dwb->otg_inst]; 1750 optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst); 1751 /* set MCIF_WB buffer and arbitration configuration */ 1752 mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height); 1753 mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]); 1754 /* Enable MCIF_WB */ 1755 mcif_wb->funcs->enable_mcif(mcif_wb); 1756 /* Enable DWB */ 1757 dwb->funcs->enable(dwb, &wb_info->dwb_params); 1758 /* TODO: add sequence to enable/disable warmup */ 1759 } 1760 1761 void dcn20_disable_writeback( 1762 struct dc *dc, 1763 unsigned int dwb_pipe_inst) 1764 { 1765 struct dwbc *dwb; 1766 struct mcif_wb *mcif_wb; 1767 1768 ASSERT(dwb_pipe_inst < MAX_DWB_PIPES); 1769 dwb = dc->res_pool->dwbc[dwb_pipe_inst]; 1770 mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst]; 1771 1772 dwb->funcs->disable(dwb); 1773 mcif_wb->funcs->disable_mcif(mcif_wb); 1774 } 1775 1776 bool dcn20_wait_for_blank_complete( 1777 struct output_pixel_processor *opp) 1778 { 1779 int counter; 1780 1781 for (counter = 0; counter < 1000; counter++) { 1782 if (opp->funcs->dpg_is_blanked(opp)) 1783 break; 1784 1785 udelay(100); 1786 } 1787 1788 if (counter == 1000) { 1789 dm_error("DC: failed to blank crtc!\n"); 1790 return false; 1791 } 1792 1793 return true; 1794 } 1795 1796 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx) 1797 { 1798 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1799 1800 if (!hubp) 1801 return false; 1802 return hubp->funcs->dmdata_status_done(hubp); 1803 } 1804 1805 void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) 1806 { 1807 struct dce_hwseq *hws = dc->hwseq; 1808 1809 if (pipe_ctx->stream_res.dsc) { 1810 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; 1811 1812 dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true); 1813 while (odm_pipe) { 1814 dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true); 1815 odm_pipe = odm_pipe->next_odm_pipe; 1816 } 1817 } 1818 } 1819 1820 void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) 1821 { 1822 struct dce_hwseq *hws = dc->hwseq; 1823 1824 if (pipe_ctx->stream_res.dsc) { 1825 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; 1826 1827 dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false); 1828 while (odm_pipe) { 1829 dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false); 1830 odm_pipe = odm_pipe->next_odm_pipe; 1831 } 1832 } 1833 } 1834 1835 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx) 1836 { 1837 struct dc_dmdata_attributes attr = { 0 }; 1838 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1839 1840 attr.dmdata_mode = DMDATA_HW_MODE; 1841 attr.dmdata_size = 1842 dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36; 1843 attr.address.quad_part = 1844 pipe_ctx->stream->dmdata_address.quad_part; 1845 attr.dmdata_dl_delta = 0; 1846 attr.dmdata_qos_mode = 0; 1847 attr.dmdata_qos_level = 0; 1848 attr.dmdata_repeat = 1; /* always repeat */ 1849 attr.dmdata_updated = 1; 1850 attr.dmdata_sw_data = NULL; 1851 1852 hubp->funcs->dmdata_set_attributes(hubp, &attr); 1853 } 1854 1855 void dcn20_init_vm_ctx( 1856 struct dce_hwseq *hws, 1857 struct dc *dc, 1858 struct dc_virtual_addr_space_config *va_config, 1859 int vmid) 1860 { 1861 struct dcn_hubbub_virt_addr_config config; 1862 1863 if (vmid == 0) { 1864 ASSERT(0); /* VMID cannot be 0 for vm context */ 1865 return; 1866 } 1867 1868 config.page_table_start_addr = va_config->page_table_start_addr; 1869 config.page_table_end_addr = va_config->page_table_end_addr; 1870 config.page_table_block_size = va_config->page_table_block_size_in_bytes; 1871 config.page_table_depth = va_config->page_table_depth; 1872 config.page_table_base_addr = va_config->page_table_base_addr; 1873 1874 dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid); 1875 } 1876 1877 int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config) 1878 { 1879 struct dcn_hubbub_phys_addr_config config; 1880 1881 config.system_aperture.fb_top = pa_config->system_aperture.fb_top; 1882 config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset; 1883 config.system_aperture.fb_base = pa_config->system_aperture.fb_base; 1884 config.system_aperture.agp_top = pa_config->system_aperture.agp_top; 1885 config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot; 1886 config.system_aperture.agp_base = pa_config->system_aperture.agp_base; 1887 config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr; 1888 config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr; 1889 config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr; 1890 config.page_table_default_page_addr = pa_config->page_table_default_page_addr; 1891 1892 return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config); 1893 } 1894 1895 static bool patch_address_for_sbs_tb_stereo( 1896 struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr) 1897 { 1898 struct dc_plane_state *plane_state = pipe_ctx->plane_state; 1899 bool sec_split = pipe_ctx->top_pipe && 1900 pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state; 1901 if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO && 1902 (pipe_ctx->stream->timing.timing_3d_format == 1903 TIMING_3D_FORMAT_SIDE_BY_SIDE || 1904 pipe_ctx->stream->timing.timing_3d_format == 1905 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) { 1906 *addr = plane_state->address.grph_stereo.left_addr; 1907 plane_state->address.grph_stereo.left_addr = 1908 plane_state->address.grph_stereo.right_addr; 1909 return true; 1910 } 1911 1912 if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE && 1913 plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) { 1914 plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO; 1915 plane_state->address.grph_stereo.right_addr = 1916 plane_state->address.grph_stereo.left_addr; 1917 } 1918 return false; 1919 } 1920 1921 void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx) 1922 { 1923 bool addr_patched = false; 1924 PHYSICAL_ADDRESS_LOC addr; 1925 struct dc_plane_state *plane_state = pipe_ctx->plane_state; 1926 1927 if (plane_state == NULL) 1928 return; 1929 1930 addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr); 1931 1932 // Call Helper to track VMID use 1933 vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst); 1934 1935 pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr( 1936 pipe_ctx->plane_res.hubp, 1937 &plane_state->address, 1938 plane_state->flip_immediate); 1939 1940 plane_state->status.requested_address = plane_state->address; 1941 1942 if (plane_state->flip_immediate) 1943 plane_state->status.current_address = plane_state->address; 1944 1945 if (addr_patched) 1946 pipe_ctx->plane_state->address.grph_stereo.left_addr = addr; 1947 } 1948 1949 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx, 1950 struct dc_link_settings *link_settings) 1951 { 1952 struct encoder_unblank_param params = { { 0 } }; 1953 struct dc_stream_state *stream = pipe_ctx->stream; 1954 struct dc_link *link = stream->link; 1955 struct dce_hwseq *hws = link->dc->hwseq; 1956 struct pipe_ctx *odm_pipe; 1957 1958 params.opp_cnt = 1; 1959 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 1960 params.opp_cnt++; 1961 } 1962 /* only 3 items below are used by unblank */ 1963 params.timing = pipe_ctx->stream->timing; 1964 1965 params.link_settings.link_rate = link_settings->link_rate; 1966 1967 if (dc_is_dp_signal(pipe_ctx->stream->signal)) { 1968 if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1) 1969 params.timing.pix_clk_100hz /= 2; 1970 pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine( 1971 pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1); 1972 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, ¶ms); 1973 } 1974 1975 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { 1976 hws->funcs.edp_backlight_control(link, true); 1977 } 1978 } 1979 1980 void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx) 1981 { 1982 struct timing_generator *tg = pipe_ctx->stream_res.tg; 1983 int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx); 1984 1985 if (start_line < 0) 1986 start_line = 0; 1987 1988 if (tg->funcs->setup_vertical_interrupt2) 1989 tg->funcs->setup_vertical_interrupt2(tg, start_line); 1990 } 1991 1992 static void dcn20_reset_back_end_for_pipe( 1993 struct dc *dc, 1994 struct pipe_ctx *pipe_ctx, 1995 struct dc_state *context) 1996 { 1997 int i; 1998 struct dc_link *link; 1999 DC_LOGGER_INIT(dc->ctx->logger); 2000 if (pipe_ctx->stream_res.stream_enc == NULL) { 2001 pipe_ctx->stream = NULL; 2002 return; 2003 } 2004 2005 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { 2006 link = pipe_ctx->stream->link; 2007 /* DPMS may already disable or */ 2008 /* dpms_off status is incorrect due to fastboot 2009 * feature. When system resume from S4 with second 2010 * screen only, the dpms_off would be true but 2011 * VBIOS lit up eDP, so check link status too. 2012 */ 2013 if (!pipe_ctx->stream->dpms_off || link->link_status.link_active) 2014 core_link_disable_stream(pipe_ctx); 2015 else if (pipe_ctx->stream_res.audio) 2016 dc->hwss.disable_audio_stream(pipe_ctx); 2017 2018 /* free acquired resources */ 2019 if (pipe_ctx->stream_res.audio) { 2020 /*disable az_endpoint*/ 2021 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); 2022 2023 /*free audio*/ 2024 if (dc->caps.dynamic_audio == true) { 2025 /*we have to dynamic arbitrate the audio endpoints*/ 2026 /*we free the resource, need reset is_audio_acquired*/ 2027 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, 2028 pipe_ctx->stream_res.audio, false); 2029 pipe_ctx->stream_res.audio = NULL; 2030 } 2031 } 2032 } 2033 else if (pipe_ctx->stream_res.dsc) { 2034 dp_set_dsc_enable(pipe_ctx, false); 2035 } 2036 2037 /* by upper caller loop, parent pipe: pipe0, will be reset last. 2038 * back end share by all pipes and will be disable only when disable 2039 * parent pipe. 2040 */ 2041 if (pipe_ctx->top_pipe == NULL) { 2042 2043 dc->hwss.set_abm_immediate_disable(pipe_ctx); 2044 2045 pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg); 2046 2047 pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false); 2048 if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass) 2049 pipe_ctx->stream_res.tg->funcs->set_odm_bypass( 2050 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 2051 2052 if (pipe_ctx->stream_res.tg->funcs->set_drr) 2053 pipe_ctx->stream_res.tg->funcs->set_drr( 2054 pipe_ctx->stream_res.tg, NULL); 2055 } 2056 2057 for (i = 0; i < dc->res_pool->pipe_count; i++) 2058 if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx) 2059 break; 2060 2061 if (i == dc->res_pool->pipe_count) 2062 return; 2063 2064 pipe_ctx->stream = NULL; 2065 DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n", 2066 pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); 2067 } 2068 2069 void dcn20_reset_hw_ctx_wrap( 2070 struct dc *dc, 2071 struct dc_state *context) 2072 { 2073 int i; 2074 struct dce_hwseq *hws = dc->hwseq; 2075 2076 /* Reset Back End*/ 2077 for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) { 2078 struct pipe_ctx *pipe_ctx_old = 2079 &dc->current_state->res_ctx.pipe_ctx[i]; 2080 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 2081 2082 if (!pipe_ctx_old->stream) 2083 continue; 2084 2085 if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe) 2086 continue; 2087 2088 if (!pipe_ctx->stream || 2089 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) { 2090 struct clock_source *old_clk = pipe_ctx_old->clock_source; 2091 2092 dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state); 2093 if (hws->funcs.enable_stream_gating) 2094 hws->funcs.enable_stream_gating(dc, pipe_ctx); 2095 if (old_clk) 2096 old_clk->funcs->cs_power_down(old_clk); 2097 } 2098 } 2099 } 2100 2101 void dcn20_get_mpctree_visual_confirm_color( 2102 struct pipe_ctx *pipe_ctx, 2103 struct tg_color *color) 2104 { 2105 const struct tg_color pipe_colors[6] = { 2106 {MAX_TG_COLOR_VALUE, 0, 0}, // red 2107 {MAX_TG_COLOR_VALUE, 0, MAX_TG_COLOR_VALUE}, // yellow 2108 {0, MAX_TG_COLOR_VALUE, 0}, // blue 2109 {MAX_TG_COLOR_VALUE / 2, 0, MAX_TG_COLOR_VALUE / 2}, // purple 2110 {0, 0, MAX_TG_COLOR_VALUE}, // green 2111 {MAX_TG_COLOR_VALUE, MAX_TG_COLOR_VALUE * 2 / 3, 0}, // orange 2112 }; 2113 2114 struct pipe_ctx *top_pipe = pipe_ctx; 2115 2116 while (top_pipe->top_pipe) { 2117 top_pipe = top_pipe->top_pipe; 2118 } 2119 2120 *color = pipe_colors[top_pipe->pipe_idx]; 2121 } 2122 2123 void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx) 2124 { 2125 struct dce_hwseq *hws = dc->hwseq; 2126 struct hubp *hubp = pipe_ctx->plane_res.hubp; 2127 struct mpcc_blnd_cfg blnd_cfg = { {0} }; 2128 bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha; 2129 int mpcc_id; 2130 struct mpcc *new_mpcc; 2131 struct mpc *mpc = dc->res_pool->mpc; 2132 struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params); 2133 2134 // input to MPCC is always RGB, by default leave black_color at 0 2135 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) { 2136 hws->funcs.get_hdr_visual_confirm_color( 2137 pipe_ctx, &blnd_cfg.black_color); 2138 } else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) { 2139 hws->funcs.get_surface_visual_confirm_color( 2140 pipe_ctx, &blnd_cfg.black_color); 2141 } else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE) { 2142 dcn20_get_mpctree_visual_confirm_color( 2143 pipe_ctx, &blnd_cfg.black_color); 2144 } 2145 2146 if (per_pixel_alpha) 2147 blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA; 2148 else 2149 blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA; 2150 2151 blnd_cfg.overlap_only = false; 2152 blnd_cfg.global_gain = 0xff; 2153 2154 if (pipe_ctx->plane_state->global_alpha) 2155 blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value; 2156 else 2157 blnd_cfg.global_alpha = 0xff; 2158 2159 blnd_cfg.background_color_bpc = 4; 2160 blnd_cfg.bottom_gain_mode = 0; 2161 blnd_cfg.top_gain = 0x1f000; 2162 blnd_cfg.bottom_inside_gain = 0x1f000; 2163 blnd_cfg.bottom_outside_gain = 0x1f000; 2164 blnd_cfg.pre_multiplied_alpha = per_pixel_alpha; 2165 2166 /* 2167 * TODO: remove hack 2168 * Note: currently there is a bug in init_hw such that 2169 * on resume from hibernate, BIOS sets up MPCC0, and 2170 * we do mpcc_remove but the mpcc cannot go to idle 2171 * after remove. This cause us to pick mpcc1 here, 2172 * which causes a pstate hang for yet unknown reason. 2173 */ 2174 mpcc_id = hubp->inst; 2175 2176 /* If there is no full update, don't need to touch MPC tree*/ 2177 if (!pipe_ctx->plane_state->update_flags.bits.full_update && 2178 !pipe_ctx->update_flags.bits.mpcc) { 2179 mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id); 2180 return; 2181 } 2182 2183 /* check if this MPCC is already being used */ 2184 new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id); 2185 /* remove MPCC if being used */ 2186 if (new_mpcc != NULL) 2187 mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc); 2188 else 2189 if (dc->debug.sanity_checks) 2190 mpc->funcs->assert_mpcc_idle_before_connect( 2191 dc->res_pool->mpc, mpcc_id); 2192 2193 /* Call MPC to insert new plane */ 2194 new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc, 2195 mpc_tree_params, 2196 &blnd_cfg, 2197 NULL, 2198 NULL, 2199 hubp->inst, 2200 mpcc_id); 2201 2202 ASSERT(new_mpcc != NULL); 2203 hubp->opp_id = pipe_ctx->stream_res.opp->inst; 2204 hubp->mpcc_id = mpcc_id; 2205 } 2206 2207 void dcn20_enable_stream(struct pipe_ctx *pipe_ctx) 2208 { 2209 enum dc_lane_count lane_count = 2210 pipe_ctx->stream->link->cur_link_settings.lane_count; 2211 2212 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing; 2213 struct dc_link *link = pipe_ctx->stream->link; 2214 2215 uint32_t active_total_with_borders; 2216 uint32_t early_control = 0; 2217 struct timing_generator *tg = pipe_ctx->stream_res.tg; 2218 2219 /* For MST, there are multiply stream go to only one link. 2220 * connect DIG back_end to front_end while enable_stream and 2221 * disconnect them during disable_stream 2222 * BY this, it is logic clean to separate stream and link 2223 */ 2224 link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc, 2225 pipe_ctx->stream_res.stream_enc->id, true); 2226 2227 if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) { 2228 if (link->dc->hwss.program_dmdata_engine) 2229 link->dc->hwss.program_dmdata_engine(pipe_ctx); 2230 } 2231 2232 link->dc->hwss.update_info_frame(pipe_ctx); 2233 2234 /* enable early control to avoid corruption on DP monitor*/ 2235 active_total_with_borders = 2236 timing->h_addressable 2237 + timing->h_border_left 2238 + timing->h_border_right; 2239 2240 if (lane_count != 0) 2241 early_control = active_total_with_borders % lane_count; 2242 2243 if (early_control == 0) 2244 early_control = lane_count; 2245 2246 tg->funcs->set_early_control(tg, early_control); 2247 2248 /* enable audio only within mode set */ 2249 if (pipe_ctx->stream_res.audio != NULL) { 2250 if (dc_is_dp_signal(pipe_ctx->stream->signal)) 2251 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc); 2252 } 2253 } 2254 2255 void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx) 2256 { 2257 struct dc_stream_state *stream = pipe_ctx->stream; 2258 struct hubp *hubp = pipe_ctx->plane_res.hubp; 2259 bool enable = false; 2260 struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; 2261 enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal) 2262 ? dmdata_dp 2263 : dmdata_hdmi; 2264 2265 /* if using dynamic meta, don't set up generic infopackets */ 2266 if (pipe_ctx->stream->dmdata_address.quad_part != 0) { 2267 pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false; 2268 enable = true; 2269 } 2270 2271 if (!hubp) 2272 return; 2273 2274 if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata) 2275 return; 2276 2277 stream_enc->funcs->set_dynamic_metadata(stream_enc, enable, 2278 hubp->inst, mode); 2279 } 2280 2281 void dcn20_fpga_init_hw(struct dc *dc) 2282 { 2283 int i, j; 2284 struct dce_hwseq *hws = dc->hwseq; 2285 struct resource_pool *res_pool = dc->res_pool; 2286 struct dc_state *context = dc->current_state; 2287 2288 if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) 2289 dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); 2290 2291 // Initialize the dccg 2292 if (res_pool->dccg->funcs->dccg_init) 2293 res_pool->dccg->funcs->dccg_init(res_pool->dccg); 2294 2295 //Enable ability to power gate / don't force power on permanently 2296 hws->funcs.enable_power_gating_plane(hws, true); 2297 2298 // Specific to FPGA dccg and registers 2299 REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF); 2300 REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF); 2301 2302 hws->funcs.dccg_init(hws); 2303 2304 REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2); 2305 REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1); 2306 if (REG(REFCLK_CNTL)) 2307 REG_WRITE(REFCLK_CNTL, 0); 2308 // 2309 2310 2311 /* Blank pixel data with OPP DPG */ 2312 for (i = 0; i < dc->res_pool->timing_generator_count; i++) { 2313 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 2314 2315 if (tg->funcs->is_tg_enabled(tg)) 2316 dcn20_init_blank(dc, tg); 2317 } 2318 2319 for (i = 0; i < res_pool->timing_generator_count; i++) { 2320 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 2321 2322 if (tg->funcs->is_tg_enabled(tg)) 2323 tg->funcs->lock(tg); 2324 } 2325 2326 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2327 struct dpp *dpp = res_pool->dpps[i]; 2328 2329 dpp->funcs->dpp_reset(dpp); 2330 } 2331 2332 /* Reset all MPCC muxes */ 2333 res_pool->mpc->funcs->mpc_init(res_pool->mpc); 2334 2335 /* initialize OPP mpc_tree parameter */ 2336 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { 2337 res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst; 2338 res_pool->opps[i]->mpc_tree_params.opp_list = NULL; 2339 for (j = 0; j < MAX_PIPES; j++) 2340 res_pool->opps[i]->mpcc_disconnect_pending[j] = false; 2341 } 2342 2343 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2344 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 2345 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 2346 struct hubp *hubp = dc->res_pool->hubps[i]; 2347 struct dpp *dpp = dc->res_pool->dpps[i]; 2348 2349 pipe_ctx->stream_res.tg = tg; 2350 pipe_ctx->pipe_idx = i; 2351 2352 pipe_ctx->plane_res.hubp = hubp; 2353 pipe_ctx->plane_res.dpp = dpp; 2354 pipe_ctx->plane_res.mpcc_inst = dpp->inst; 2355 hubp->mpcc_id = dpp->inst; 2356 hubp->opp_id = OPP_ID_INVALID; 2357 hubp->power_gated = false; 2358 pipe_ctx->stream_res.opp = NULL; 2359 2360 hubp->funcs->hubp_init(hubp); 2361 2362 //dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst; 2363 //dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; 2364 dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; 2365 pipe_ctx->stream_res.opp = dc->res_pool->opps[i]; 2366 /*to do*/ 2367 hws->funcs.plane_atomic_disconnect(dc, pipe_ctx); 2368 } 2369 2370 /* initialize DWB pointer to MCIF_WB */ 2371 for (i = 0; i < res_pool->res_cap->num_dwb; i++) 2372 res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i]; 2373 2374 for (i = 0; i < dc->res_pool->timing_generator_count; i++) { 2375 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 2376 2377 if (tg->funcs->is_tg_enabled(tg)) 2378 tg->funcs->unlock(tg); 2379 } 2380 2381 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2382 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 2383 2384 dc->hwss.disable_plane(dc, pipe_ctx); 2385 2386 pipe_ctx->stream_res.tg = NULL; 2387 pipe_ctx->plane_res.hubp = NULL; 2388 } 2389 2390 for (i = 0; i < dc->res_pool->timing_generator_count; i++) { 2391 struct timing_generator *tg = dc->res_pool->timing_generators[i]; 2392 2393 tg->funcs->tg_init(tg); 2394 } 2395 } 2396