1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include <linux/delay.h>
26 
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "dm_helpers.h"
30 #include "core_types.h"
31 #include "resource.h"
32 #include "dcn20_resource.h"
33 #include "dcn20_hwseq.h"
34 #include "dce/dce_hwseq.h"
35 #include "dcn20_dsc.h"
36 #include "dcn20_optc.h"
37 #include "abm.h"
38 #include "clk_mgr.h"
39 #include "dmcu.h"
40 #include "hubp.h"
41 #include "timing_generator.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "mpc.h"
45 #include "mcif_wb.h"
46 #include "dchubbub.h"
47 #include "reg_helper.h"
48 #include "dcn10/dcn10_cm_common.h"
49 #include "vm_helper.h"
50 #include "dccg.h"
51 #include "dc_dmub_srv.h"
52 #include "dce/dmub_hw_lock_mgr.h"
53 #include "hw_sequencer.h"
54 #include "dpcd_defs.h"
55 #include "inc/link_enc_cfg.h"
56 #include "link_hwss.h"
57 #include "link.h"
58 
59 #define DC_LOGGER_INIT(logger)
60 
61 #define CTX \
62 	hws->ctx
63 #define REG(reg)\
64 	hws->regs->reg
65 
66 #undef FN
67 #define FN(reg_name, field_name) \
68 	hws->shifts->field_name, hws->masks->field_name
69 
70 static int find_free_gsl_group(const struct dc *dc)
71 {
72 	if (dc->res_pool->gsl_groups.gsl_0 == 0)
73 		return 1;
74 	if (dc->res_pool->gsl_groups.gsl_1 == 0)
75 		return 2;
76 	if (dc->res_pool->gsl_groups.gsl_2 == 0)
77 		return 3;
78 
79 	return 0;
80 }
81 
82 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
83  * This is only used to lock pipes in pipe splitting case with immediate flip
84  * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
85  * so we get tearing with freesync since we cannot flip multiple pipes
86  * atomically.
87  * We use GSL for this:
88  * - immediate flip: find first available GSL group if not already assigned
89  *                   program gsl with that group, set current OTG as master
90  *                   and always us 0x4 = AND of flip_ready from all pipes
91  * - vsync flip: disable GSL if used
92  *
93  * Groups in stream_res are stored as +1 from HW registers, i.e.
94  * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
95  * Using a magic value like -1 would require tracking all inits/resets
96  */
97 static void dcn20_setup_gsl_group_as_lock(
98 		const struct dc *dc,
99 		struct pipe_ctx *pipe_ctx,
100 		bool enable)
101 {
102 	struct gsl_params gsl;
103 	int group_idx;
104 
105 	memset(&gsl, 0, sizeof(struct gsl_params));
106 
107 	if (enable) {
108 		/* return if group already assigned since GSL was set up
109 		 * for vsync flip, we would unassign so it can't be "left over"
110 		 */
111 		if (pipe_ctx->stream_res.gsl_group > 0)
112 			return;
113 
114 		group_idx = find_free_gsl_group(dc);
115 		ASSERT(group_idx != 0);
116 		pipe_ctx->stream_res.gsl_group = group_idx;
117 
118 		/* set gsl group reg field and mark resource used */
119 		switch (group_idx) {
120 		case 1:
121 			gsl.gsl0_en = 1;
122 			dc->res_pool->gsl_groups.gsl_0 = 1;
123 			break;
124 		case 2:
125 			gsl.gsl1_en = 1;
126 			dc->res_pool->gsl_groups.gsl_1 = 1;
127 			break;
128 		case 3:
129 			gsl.gsl2_en = 1;
130 			dc->res_pool->gsl_groups.gsl_2 = 1;
131 			break;
132 		default:
133 			BREAK_TO_DEBUGGER();
134 			return; // invalid case
135 		}
136 		gsl.gsl_master_en = 1;
137 	} else {
138 		group_idx = pipe_ctx->stream_res.gsl_group;
139 		if (group_idx == 0)
140 			return; // if not in use, just return
141 
142 		pipe_ctx->stream_res.gsl_group = 0;
143 
144 		/* unset gsl group reg field and mark resource free */
145 		switch (group_idx) {
146 		case 1:
147 			gsl.gsl0_en = 0;
148 			dc->res_pool->gsl_groups.gsl_0 = 0;
149 			break;
150 		case 2:
151 			gsl.gsl1_en = 0;
152 			dc->res_pool->gsl_groups.gsl_1 = 0;
153 			break;
154 		case 3:
155 			gsl.gsl2_en = 0;
156 			dc->res_pool->gsl_groups.gsl_2 = 0;
157 			break;
158 		default:
159 			BREAK_TO_DEBUGGER();
160 			return;
161 		}
162 		gsl.gsl_master_en = 0;
163 	}
164 
165 	/* at this point we want to program whether it's to enable or disable */
166 	if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
167 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
168 		pipe_ctx->stream_res.tg->funcs->set_gsl(
169 			pipe_ctx->stream_res.tg,
170 			&gsl);
171 
172 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
173 			pipe_ctx->stream_res.tg, group_idx,	enable ? 4 : 0);
174 	} else
175 		BREAK_TO_DEBUGGER();
176 }
177 
178 void dcn20_set_flip_control_gsl(
179 		struct pipe_ctx *pipe_ctx,
180 		bool flip_immediate)
181 {
182 	if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
183 		pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
184 				pipe_ctx->plane_res.hubp, flip_immediate);
185 
186 }
187 
188 void dcn20_enable_power_gating_plane(
189 	struct dce_hwseq *hws,
190 	bool enable)
191 {
192 	bool force_on = true; /* disable power gating */
193 	uint32_t org_ip_request_cntl = 0;
194 
195 	if (enable)
196 		force_on = false;
197 
198 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
199 	if (org_ip_request_cntl == 0)
200 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
201 
202 	/* DCHUBP0/1/2/3/4/5 */
203 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
204 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
205 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
206 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
207 	if (REG(DOMAIN8_PG_CONFIG))
208 		REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
209 	if (REG(DOMAIN10_PG_CONFIG))
210 		REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
211 
212 	/* DPP0/1/2/3/4/5 */
213 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
214 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
215 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
216 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
217 	if (REG(DOMAIN9_PG_CONFIG))
218 		REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
219 	if (REG(DOMAIN11_PG_CONFIG))
220 		REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
221 
222 	/* DCS0/1/2/3/4/5 */
223 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
224 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
225 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
226 	if (REG(DOMAIN19_PG_CONFIG))
227 		REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
228 	if (REG(DOMAIN20_PG_CONFIG))
229 		REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
230 	if (REG(DOMAIN21_PG_CONFIG))
231 		REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
232 
233 	if (org_ip_request_cntl == 0)
234 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
235 
236 }
237 
238 void dcn20_dccg_init(struct dce_hwseq *hws)
239 {
240 	/*
241 	 * set MICROSECOND_TIME_BASE_DIV
242 	 * 100Mhz refclk -> 0x120264
243 	 * 27Mhz refclk -> 0x12021b
244 	 * 48Mhz refclk -> 0x120230
245 	 *
246 	 */
247 	REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
248 
249 	/*
250 	 * set MILLISECOND_TIME_BASE_DIV
251 	 * 100Mhz refclk -> 0x1186a0
252 	 * 27Mhz refclk -> 0x106978
253 	 * 48Mhz refclk -> 0x10bb80
254 	 *
255 	 */
256 	REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
257 
258 	/* This value is dependent on the hardware pipeline delay so set once per SOC */
259 	REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0xe01003c);
260 }
261 
262 void dcn20_disable_vga(
263 	struct dce_hwseq *hws)
264 {
265 	REG_WRITE(D1VGA_CONTROL, 0);
266 	REG_WRITE(D2VGA_CONTROL, 0);
267 	REG_WRITE(D3VGA_CONTROL, 0);
268 	REG_WRITE(D4VGA_CONTROL, 0);
269 	REG_WRITE(D5VGA_CONTROL, 0);
270 	REG_WRITE(D6VGA_CONTROL, 0);
271 }
272 
273 void dcn20_program_triple_buffer(
274 	const struct dc *dc,
275 	struct pipe_ctx *pipe_ctx,
276 	bool enable_triple_buffer)
277 {
278 	if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
279 		pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
280 			pipe_ctx->plane_res.hubp,
281 			enable_triple_buffer);
282 	}
283 }
284 
285 /* Blank pixel data during initialization */
286 void dcn20_init_blank(
287 		struct dc *dc,
288 		struct timing_generator *tg)
289 {
290 	struct dce_hwseq *hws = dc->hwseq;
291 	enum dc_color_space color_space;
292 	struct tg_color black_color = {0};
293 	struct output_pixel_processor *opp = NULL;
294 	struct output_pixel_processor *bottom_opp = NULL;
295 	uint32_t num_opps, opp_id_src0, opp_id_src1;
296 	uint32_t otg_active_width, otg_active_height;
297 
298 	/* program opp dpg blank color */
299 	color_space = COLOR_SPACE_SRGB;
300 	color_space_to_black_color(dc, color_space, &black_color);
301 
302 	/* get the OTG active size */
303 	tg->funcs->get_otg_active_size(tg,
304 			&otg_active_width,
305 			&otg_active_height);
306 
307 	/* get the OPTC source */
308 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
309 
310 	if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
311 		ASSERT(false);
312 		return;
313 	}
314 	opp = dc->res_pool->opps[opp_id_src0];
315 
316 	/* don't override the blank pattern if already enabled with the correct one. */
317 	if (opp->funcs->dpg_is_blanked && opp->funcs->dpg_is_blanked(opp))
318 		return;
319 
320 	if (num_opps == 2) {
321 		otg_active_width = otg_active_width / 2;
322 
323 		if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
324 			ASSERT(false);
325 			return;
326 		}
327 		bottom_opp = dc->res_pool->opps[opp_id_src1];
328 	}
329 
330 	opp->funcs->opp_set_disp_pattern_generator(
331 			opp,
332 			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
333 			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
334 			COLOR_DEPTH_UNDEFINED,
335 			&black_color,
336 			otg_active_width,
337 			otg_active_height,
338 			0);
339 
340 	if (num_opps == 2) {
341 		bottom_opp->funcs->opp_set_disp_pattern_generator(
342 				bottom_opp,
343 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
344 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
345 				COLOR_DEPTH_UNDEFINED,
346 				&black_color,
347 				otg_active_width,
348 				otg_active_height,
349 				0);
350 	}
351 
352 	hws->funcs.wait_for_blank_complete(opp);
353 }
354 
355 void dcn20_dsc_pg_control(
356 		struct dce_hwseq *hws,
357 		unsigned int dsc_inst,
358 		bool power_on)
359 {
360 	uint32_t power_gate = power_on ? 0 : 1;
361 	uint32_t pwr_status = power_on ? 0 : 2;
362 	uint32_t org_ip_request_cntl = 0;
363 
364 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
365 		return;
366 
367 	if (REG(DOMAIN16_PG_CONFIG) == 0)
368 		return;
369 
370 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
371 	if (org_ip_request_cntl == 0)
372 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
373 
374 	switch (dsc_inst) {
375 	case 0: /* DSC0 */
376 		REG_UPDATE(DOMAIN16_PG_CONFIG,
377 				DOMAIN16_POWER_GATE, power_gate);
378 
379 		REG_WAIT(DOMAIN16_PG_STATUS,
380 				DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
381 				1, 1000);
382 		break;
383 	case 1: /* DSC1 */
384 		REG_UPDATE(DOMAIN17_PG_CONFIG,
385 				DOMAIN17_POWER_GATE, power_gate);
386 
387 		REG_WAIT(DOMAIN17_PG_STATUS,
388 				DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
389 				1, 1000);
390 		break;
391 	case 2: /* DSC2 */
392 		REG_UPDATE(DOMAIN18_PG_CONFIG,
393 				DOMAIN18_POWER_GATE, power_gate);
394 
395 		REG_WAIT(DOMAIN18_PG_STATUS,
396 				DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
397 				1, 1000);
398 		break;
399 	case 3: /* DSC3 */
400 		REG_UPDATE(DOMAIN19_PG_CONFIG,
401 				DOMAIN19_POWER_GATE, power_gate);
402 
403 		REG_WAIT(DOMAIN19_PG_STATUS,
404 				DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
405 				1, 1000);
406 		break;
407 	case 4: /* DSC4 */
408 		REG_UPDATE(DOMAIN20_PG_CONFIG,
409 				DOMAIN20_POWER_GATE, power_gate);
410 
411 		REG_WAIT(DOMAIN20_PG_STATUS,
412 				DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
413 				1, 1000);
414 		break;
415 	case 5: /* DSC5 */
416 		REG_UPDATE(DOMAIN21_PG_CONFIG,
417 				DOMAIN21_POWER_GATE, power_gate);
418 
419 		REG_WAIT(DOMAIN21_PG_STATUS,
420 				DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
421 				1, 1000);
422 		break;
423 	default:
424 		BREAK_TO_DEBUGGER();
425 		break;
426 	}
427 
428 	if (org_ip_request_cntl == 0)
429 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
430 }
431 
432 void dcn20_dpp_pg_control(
433 		struct dce_hwseq *hws,
434 		unsigned int dpp_inst,
435 		bool power_on)
436 {
437 	uint32_t power_gate = power_on ? 0 : 1;
438 	uint32_t pwr_status = power_on ? 0 : 2;
439 
440 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
441 		return;
442 	if (REG(DOMAIN1_PG_CONFIG) == 0)
443 		return;
444 
445 	switch (dpp_inst) {
446 	case 0: /* DPP0 */
447 		REG_UPDATE(DOMAIN1_PG_CONFIG,
448 				DOMAIN1_POWER_GATE, power_gate);
449 
450 		REG_WAIT(DOMAIN1_PG_STATUS,
451 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
452 				1, 1000);
453 		break;
454 	case 1: /* DPP1 */
455 		REG_UPDATE(DOMAIN3_PG_CONFIG,
456 				DOMAIN3_POWER_GATE, power_gate);
457 
458 		REG_WAIT(DOMAIN3_PG_STATUS,
459 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
460 				1, 1000);
461 		break;
462 	case 2: /* DPP2 */
463 		REG_UPDATE(DOMAIN5_PG_CONFIG,
464 				DOMAIN5_POWER_GATE, power_gate);
465 
466 		REG_WAIT(DOMAIN5_PG_STATUS,
467 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
468 				1, 1000);
469 		break;
470 	case 3: /* DPP3 */
471 		REG_UPDATE(DOMAIN7_PG_CONFIG,
472 				DOMAIN7_POWER_GATE, power_gate);
473 
474 		REG_WAIT(DOMAIN7_PG_STATUS,
475 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
476 				1, 1000);
477 		break;
478 	case 4: /* DPP4 */
479 		REG_UPDATE(DOMAIN9_PG_CONFIG,
480 				DOMAIN9_POWER_GATE, power_gate);
481 
482 		REG_WAIT(DOMAIN9_PG_STATUS,
483 				DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
484 				1, 1000);
485 		break;
486 	case 5: /* DPP5 */
487 		/*
488 		 * Do not power gate DPP5, should be left at HW default, power on permanently.
489 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
490 		 * reset.
491 		 * REG_UPDATE(DOMAIN11_PG_CONFIG,
492 		 *		DOMAIN11_POWER_GATE, power_gate);
493 		 *
494 		 * REG_WAIT(DOMAIN11_PG_STATUS,
495 		 *		DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
496 		 * 		1, 1000);
497 		 */
498 		break;
499 	default:
500 		BREAK_TO_DEBUGGER();
501 		break;
502 	}
503 }
504 
505 
506 void dcn20_hubp_pg_control(
507 		struct dce_hwseq *hws,
508 		unsigned int hubp_inst,
509 		bool power_on)
510 {
511 	uint32_t power_gate = power_on ? 0 : 1;
512 	uint32_t pwr_status = power_on ? 0 : 2;
513 
514 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
515 		return;
516 	if (REG(DOMAIN0_PG_CONFIG) == 0)
517 		return;
518 
519 	switch (hubp_inst) {
520 	case 0: /* DCHUBP0 */
521 		REG_UPDATE(DOMAIN0_PG_CONFIG,
522 				DOMAIN0_POWER_GATE, power_gate);
523 
524 		REG_WAIT(DOMAIN0_PG_STATUS,
525 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
526 				1, 1000);
527 		break;
528 	case 1: /* DCHUBP1 */
529 		REG_UPDATE(DOMAIN2_PG_CONFIG,
530 				DOMAIN2_POWER_GATE, power_gate);
531 
532 		REG_WAIT(DOMAIN2_PG_STATUS,
533 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
534 				1, 1000);
535 		break;
536 	case 2: /* DCHUBP2 */
537 		REG_UPDATE(DOMAIN4_PG_CONFIG,
538 				DOMAIN4_POWER_GATE, power_gate);
539 
540 		REG_WAIT(DOMAIN4_PG_STATUS,
541 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
542 				1, 1000);
543 		break;
544 	case 3: /* DCHUBP3 */
545 		REG_UPDATE(DOMAIN6_PG_CONFIG,
546 				DOMAIN6_POWER_GATE, power_gate);
547 
548 		REG_WAIT(DOMAIN6_PG_STATUS,
549 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
550 				1, 1000);
551 		break;
552 	case 4: /* DCHUBP4 */
553 		REG_UPDATE(DOMAIN8_PG_CONFIG,
554 				DOMAIN8_POWER_GATE, power_gate);
555 
556 		REG_WAIT(DOMAIN8_PG_STATUS,
557 				DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
558 				1, 1000);
559 		break;
560 	case 5: /* DCHUBP5 */
561 		/*
562 		 * Do not power gate DCHUB5, should be left at HW default, power on permanently.
563 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
564 		 * reset.
565 		 * REG_UPDATE(DOMAIN10_PG_CONFIG,
566 		 *		DOMAIN10_POWER_GATE, power_gate);
567 		 *
568 		 * REG_WAIT(DOMAIN10_PG_STATUS,
569 		 *		DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
570 		 *		1, 1000);
571 		 */
572 		break;
573 	default:
574 		BREAK_TO_DEBUGGER();
575 		break;
576 	}
577 }
578 
579 
580 /* disable HW used by plane.
581  * note:  cannot disable until disconnect is complete
582  */
583 void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
584 {
585 	struct dce_hwseq *hws = dc->hwseq;
586 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
587 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
588 
589 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
590 
591 	/* In flip immediate with pipe splitting case GSL is used for
592 	 * synchronization so we must disable it when the plane is disabled.
593 	 */
594 	if (pipe_ctx->stream_res.gsl_group != 0)
595 		dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
596 
597 	if (hubp->funcs->hubp_update_mall_sel)
598 		hubp->funcs->hubp_update_mall_sel(hubp, 0, false);
599 
600 	dc->hwss.set_flip_control_gsl(pipe_ctx, false);
601 
602 	hubp->funcs->hubp_clk_cntl(hubp, false);
603 
604 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
605 
606 	hubp->power_gated = true;
607 
608 	hws->funcs.plane_atomic_power_down(dc,
609 			pipe_ctx->plane_res.dpp,
610 			pipe_ctx->plane_res.hubp);
611 
612 	pipe_ctx->stream = NULL;
613 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
614 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
615 	pipe_ctx->top_pipe = NULL;
616 	pipe_ctx->bottom_pipe = NULL;
617 	pipe_ctx->plane_state = NULL;
618 }
619 
620 
621 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
622 {
623 	bool is_phantom = pipe_ctx->plane_state && pipe_ctx->plane_state->is_phantom;
624 	struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL;
625 
626 	DC_LOGGER_INIT(dc->ctx->logger);
627 
628 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
629 		return;
630 
631 	dcn20_plane_atomic_disable(dc, pipe_ctx);
632 
633 	/* Turn back off the phantom OTG after the phantom plane is fully disabled
634 	 */
635 	if (is_phantom)
636 		if (tg && tg->funcs->disable_phantom_crtc)
637 			tg->funcs->disable_phantom_crtc(tg);
638 
639 	DC_LOG_DC("Power down front end %d\n",
640 					pipe_ctx->pipe_idx);
641 }
642 
643 void dcn20_disable_pixel_data(struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank)
644 {
645 	dcn20_blank_pixel_data(dc, pipe_ctx, blank);
646 }
647 
648 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
649 		int opp_cnt)
650 {
651 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
652 	int flow_ctrl_cnt;
653 
654 	if (opp_cnt >= 2)
655 		hblank_halved = true;
656 
657 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
658 			stream->timing.h_border_left -
659 			stream->timing.h_border_right;
660 
661 	if (hblank_halved)
662 		flow_ctrl_cnt /= 2;
663 
664 	/* ODM combine 4:1 case */
665 	if (opp_cnt == 4)
666 		flow_ctrl_cnt /= 2;
667 
668 	return flow_ctrl_cnt;
669 }
670 
671 enum dc_status dcn20_enable_stream_timing(
672 		struct pipe_ctx *pipe_ctx,
673 		struct dc_state *context,
674 		struct dc *dc)
675 {
676 	struct dce_hwseq *hws = dc->hwseq;
677 	struct dc_stream_state *stream = pipe_ctx->stream;
678 	struct drr_params params = {0};
679 	unsigned int event_triggers = 0;
680 	struct pipe_ctx *odm_pipe;
681 	int opp_cnt = 1;
682 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
683 	bool interlace = stream->timing.flags.INTERLACE;
684 	int i;
685 	struct mpc_dwb_flow_control flow_control;
686 	struct mpc *mpc = dc->res_pool->mpc;
687 	bool rate_control_2x_pclk = (interlace || optc2_is_two_pixels_per_containter(&stream->timing));
688 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
689 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
690 
691 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
692 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
693 
694 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
695 			dc->res_pool->dccg,
696 			pipe_ctx->stream_res.tg->inst,
697 			k1_div, k2_div);
698 	}
699 	/* by upper caller loop, pipe0 is parent pipe and be called first.
700 	 * back end is set up by for pipe0. Other children pipe share back end
701 	 * with pipe 0. No program is needed.
702 	 */
703 	if (pipe_ctx->top_pipe != NULL)
704 		return DC_OK;
705 
706 	/* TODO check if timing_changed, disable stream if timing changed */
707 
708 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
709 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
710 		opp_cnt++;
711 	}
712 
713 	if (opp_cnt > 1)
714 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
715 				pipe_ctx->stream_res.tg,
716 				opp_inst, opp_cnt,
717 				&pipe_ctx->stream->timing);
718 
719 	/* HW program guide assume display already disable
720 	 * by unplug sequence. OTG assume stop.
721 	 */
722 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
723 
724 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
725 			pipe_ctx->clock_source,
726 			&pipe_ctx->stream_res.pix_clk_params,
727 			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
728 			&pipe_ctx->pll_settings)) {
729 		BREAK_TO_DEBUGGER();
730 		return DC_ERROR_UNEXPECTED;
731 	}
732 
733 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
734 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
735 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
736 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
737 		else
738 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
739 	}
740 
741 	if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
742 		dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
743 
744 	pipe_ctx->stream_res.tg->funcs->program_timing(
745 			pipe_ctx->stream_res.tg,
746 			&stream->timing,
747 			pipe_ctx->pipe_dlg_param.vready_offset,
748 			pipe_ctx->pipe_dlg_param.vstartup_start,
749 			pipe_ctx->pipe_dlg_param.vupdate_offset,
750 			pipe_ctx->pipe_dlg_param.vupdate_width,
751 			pipe_ctx->stream->signal,
752 			true);
753 
754 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
755 	flow_control.flow_ctrl_mode = 0;
756 	flow_control.flow_ctrl_cnt0 = 0x80;
757 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(stream, opp_cnt);
758 	if (mpc->funcs->set_out_rate_control) {
759 		for (i = 0; i < opp_cnt; ++i) {
760 			mpc->funcs->set_out_rate_control(
761 					mpc, opp_inst[i],
762 					true,
763 					rate_control_2x_pclk,
764 					&flow_control);
765 		}
766 	}
767 
768 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
769 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
770 				odm_pipe->stream_res.opp,
771 				true);
772 
773 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
774 			pipe_ctx->stream_res.opp,
775 			true);
776 
777 	hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
778 
779 	/* VTG is  within DCHUB command block. DCFCLK is always on */
780 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
781 		BREAK_TO_DEBUGGER();
782 		return DC_ERROR_UNEXPECTED;
783 	}
784 
785 	hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
786 
787 	params.vertical_total_min = stream->adjust.v_total_min;
788 	params.vertical_total_max = stream->adjust.v_total_max;
789 	params.vertical_total_mid = stream->adjust.v_total_mid;
790 	params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
791 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
792 		pipe_ctx->stream_res.tg->funcs->set_drr(
793 			pipe_ctx->stream_res.tg, &params);
794 
795 	// DRR should set trigger event to monitor surface update event
796 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
797 		event_triggers = 0x80;
798 	/* Event triggers and num frames initialized for DRR, but can be
799 	 * later updated for PSR use. Note DRR trigger events are generated
800 	 * regardless of whether num frames met.
801 	 */
802 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
803 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
804 				pipe_ctx->stream_res.tg, event_triggers, 2);
805 
806 	/* TODO program crtc source select for non-virtual signal*/
807 	/* TODO program FMT */
808 	/* TODO setup link_enc */
809 	/* TODO set stream attributes */
810 	/* TODO program audio */
811 	/* TODO enable stream if timing changed */
812 	/* TODO unblank stream if DP */
813 
814 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
815 		if (pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable)
816 			pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg);
817 	}
818 	return DC_OK;
819 }
820 
821 void dcn20_program_output_csc(struct dc *dc,
822 		struct pipe_ctx *pipe_ctx,
823 		enum dc_color_space colorspace,
824 		uint16_t *matrix,
825 		int opp_id)
826 {
827 	struct mpc *mpc = dc->res_pool->mpc;
828 	enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
829 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
830 
831 	if (mpc->funcs->power_on_mpc_mem_pwr)
832 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
833 
834 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
835 		if (mpc->funcs->set_output_csc != NULL)
836 			mpc->funcs->set_output_csc(mpc,
837 					opp_id,
838 					matrix,
839 					ocsc_mode);
840 	} else {
841 		if (mpc->funcs->set_ocsc_default != NULL)
842 			mpc->funcs->set_ocsc_default(mpc,
843 					opp_id,
844 					colorspace,
845 					ocsc_mode);
846 	}
847 }
848 
849 bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
850 				const struct dc_stream_state *stream)
851 {
852 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
853 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
854 	struct pwl_params *params = NULL;
855 	/*
856 	 * program OGAM only for the top pipe
857 	 * if there is a pipe split then fix diagnostic is required:
858 	 * how to pass OGAM parameter for stream.
859 	 * if programming for all pipes is required then remove condition
860 	 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
861 	 */
862 	if (mpc->funcs->power_on_mpc_mem_pwr)
863 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
864 	if (pipe_ctx->top_pipe == NULL
865 			&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
866 		if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
867 			params = &stream->out_transfer_func->pwl;
868 		else if (pipe_ctx->stream->out_transfer_func->type ==
869 			TF_TYPE_DISTRIBUTED_POINTS &&
870 			cm_helper_translate_curve_to_hw_format(dc->ctx,
871 			stream->out_transfer_func,
872 			&mpc->blender_params, false))
873 			params = &mpc->blender_params;
874 		/*
875 		 * there is no ROM
876 		 */
877 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
878 			BREAK_TO_DEBUGGER();
879 	}
880 	/*
881 	 * if above if is not executed then 'params' equal to 0 and set in bypass
882 	 */
883 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
884 
885 	return true;
886 }
887 
888 bool dcn20_set_blend_lut(
889 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
890 {
891 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
892 	bool result = true;
893 	struct pwl_params *blend_lut = NULL;
894 
895 	if (plane_state->blend_tf) {
896 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
897 			blend_lut = &plane_state->blend_tf->pwl;
898 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
899 			cm_helper_translate_curve_to_hw_format(plane_state->ctx,
900 					plane_state->blend_tf,
901 					&dpp_base->regamma_params, false);
902 			blend_lut = &dpp_base->regamma_params;
903 		}
904 	}
905 	result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
906 
907 	return result;
908 }
909 
910 bool dcn20_set_shaper_3dlut(
911 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
912 {
913 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
914 	bool result = true;
915 	struct pwl_params *shaper_lut = NULL;
916 
917 	if (plane_state->in_shaper_func) {
918 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
919 			shaper_lut = &plane_state->in_shaper_func->pwl;
920 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
921 			cm_helper_translate_curve_to_hw_format(plane_state->ctx,
922 					plane_state->in_shaper_func,
923 					&dpp_base->shaper_params, true);
924 			shaper_lut = &dpp_base->shaper_params;
925 		}
926 	}
927 
928 	result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
929 	if (plane_state->lut3d_func &&
930 		plane_state->lut3d_func->state.bits.initialized == 1)
931 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
932 								&plane_state->lut3d_func->lut_3d);
933 	else
934 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
935 
936 	return result;
937 }
938 
939 bool dcn20_set_input_transfer_func(struct dc *dc,
940 				struct pipe_ctx *pipe_ctx,
941 				const struct dc_plane_state *plane_state)
942 {
943 	struct dce_hwseq *hws = dc->hwseq;
944 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
945 	const struct dc_transfer_func *tf = NULL;
946 	bool result = true;
947 	bool use_degamma_ram = false;
948 
949 	if (dpp_base == NULL || plane_state == NULL)
950 		return false;
951 
952 	hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
953 	hws->funcs.set_blend_lut(pipe_ctx, plane_state);
954 
955 	if (plane_state->in_transfer_func)
956 		tf = plane_state->in_transfer_func;
957 
958 
959 	if (tf == NULL) {
960 		dpp_base->funcs->dpp_set_degamma(dpp_base,
961 				IPP_DEGAMMA_MODE_BYPASS);
962 		return true;
963 	}
964 
965 	if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
966 		use_degamma_ram = true;
967 
968 	if (use_degamma_ram == true) {
969 		if (tf->type == TF_TYPE_HWPWL)
970 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
971 					&tf->pwl);
972 		else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
973 			cm_helper_translate_curve_to_degamma_hw_format(tf,
974 					&dpp_base->degamma_params);
975 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
976 				&dpp_base->degamma_params);
977 		}
978 		return true;
979 	}
980 	/* handle here the optimized cases when de-gamma ROM could be used.
981 	 *
982 	 */
983 	if (tf->type == TF_TYPE_PREDEFINED) {
984 		switch (tf->tf) {
985 		case TRANSFER_FUNCTION_SRGB:
986 			dpp_base->funcs->dpp_set_degamma(dpp_base,
987 					IPP_DEGAMMA_MODE_HW_sRGB);
988 			break;
989 		case TRANSFER_FUNCTION_BT709:
990 			dpp_base->funcs->dpp_set_degamma(dpp_base,
991 					IPP_DEGAMMA_MODE_HW_xvYCC);
992 			break;
993 		case TRANSFER_FUNCTION_LINEAR:
994 			dpp_base->funcs->dpp_set_degamma(dpp_base,
995 					IPP_DEGAMMA_MODE_BYPASS);
996 			break;
997 		case TRANSFER_FUNCTION_PQ:
998 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
999 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
1000 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
1001 			result = true;
1002 			break;
1003 		default:
1004 			result = false;
1005 			break;
1006 		}
1007 	} else if (tf->type == TF_TYPE_BYPASS)
1008 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1009 				IPP_DEGAMMA_MODE_BYPASS);
1010 	else {
1011 		/*
1012 		 * if we are here, we did not handle correctly.
1013 		 * fix is required for this use case
1014 		 */
1015 		BREAK_TO_DEBUGGER();
1016 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1017 				IPP_DEGAMMA_MODE_BYPASS);
1018 	}
1019 
1020 	return result;
1021 }
1022 
1023 void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1024 {
1025 	struct pipe_ctx *odm_pipe;
1026 	int opp_cnt = 1;
1027 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
1028 
1029 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1030 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
1031 		opp_cnt++;
1032 	}
1033 
1034 	if (opp_cnt > 1)
1035 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1036 				pipe_ctx->stream_res.tg,
1037 				opp_inst, opp_cnt,
1038 				&pipe_ctx->stream->timing);
1039 	else
1040 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1041 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1042 }
1043 
1044 void dcn20_blank_pixel_data(
1045 		struct dc *dc,
1046 		struct pipe_ctx *pipe_ctx,
1047 		bool blank)
1048 {
1049 	struct tg_color black_color = {0};
1050 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
1051 	struct dc_stream_state *stream = pipe_ctx->stream;
1052 	enum dc_color_space color_space = stream->output_color_space;
1053 	enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
1054 	enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1055 	struct pipe_ctx *odm_pipe;
1056 	int odm_cnt = 1;
1057 	int h_active = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
1058 	int v_active = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
1059 	int odm_slice_width, last_odm_slice_width, offset = 0;
1060 
1061 	if (stream->link->test_pattern_enabled)
1062 		return;
1063 
1064 	/* get opp dpg blank color */
1065 	color_space_to_black_color(dc, color_space, &black_color);
1066 
1067 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1068 		odm_cnt++;
1069 	odm_slice_width = h_active / odm_cnt;
1070 	last_odm_slice_width = h_active - odm_slice_width * (odm_cnt - 1);
1071 
1072 	if (blank) {
1073 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
1074 
1075 		if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
1076 			test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1077 			test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1078 		}
1079 	} else {
1080 		test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1081 	}
1082 
1083 	odm_pipe = pipe_ctx;
1084 
1085 	while (odm_pipe->next_odm_pipe) {
1086 		dc->hwss.set_disp_pattern_generator(dc,
1087 				odm_pipe,
1088 				test_pattern,
1089 				test_pattern_color_space,
1090 				stream->timing.display_color_depth,
1091 				&black_color,
1092 				odm_slice_width,
1093 				v_active,
1094 				offset);
1095 		offset += odm_slice_width;
1096 		odm_pipe = odm_pipe->next_odm_pipe;
1097 	}
1098 
1099 	dc->hwss.set_disp_pattern_generator(dc,
1100 			odm_pipe,
1101 			test_pattern,
1102 			test_pattern_color_space,
1103 			stream->timing.display_color_depth,
1104 			&black_color,
1105 			last_odm_slice_width,
1106 			v_active,
1107 			offset);
1108 
1109 	if (!blank)
1110 		if (stream_res->abm) {
1111 			dc->hwss.set_pipe(pipe_ctx);
1112 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
1113 		}
1114 }
1115 
1116 
1117 static void dcn20_power_on_plane_resources(
1118 	struct dce_hwseq *hws,
1119 	struct pipe_ctx *pipe_ctx)
1120 {
1121 	DC_LOGGER_INIT(hws->ctx->logger);
1122 
1123 	if (hws->funcs.dpp_root_clock_control)
1124 		hws->funcs.dpp_root_clock_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1125 
1126 	if (REG(DC_IP_REQUEST_CNTL)) {
1127 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1128 				IP_REQUEST_EN, 1);
1129 
1130 		if (hws->funcs.dpp_pg_control)
1131 			hws->funcs.dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1132 
1133 		if (hws->funcs.hubp_pg_control)
1134 			hws->funcs.hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
1135 
1136 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1137 				IP_REQUEST_EN, 0);
1138 		DC_LOG_DEBUG(
1139 				"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
1140 	}
1141 }
1142 
1143 static void dcn20_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx,
1144 			       struct dc_state *context)
1145 {
1146 	//if (dc->debug.sanity_checks) {
1147 	//	dcn10_verify_allow_pstate_change_high(dc);
1148 	//}
1149 	dcn20_power_on_plane_resources(dc->hwseq, pipe_ctx);
1150 
1151 	/* enable DCFCLK current DCHUB */
1152 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
1153 
1154 	/* initialize HUBP on power up */
1155 	pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
1156 
1157 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
1158 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1159 			pipe_ctx->stream_res.opp,
1160 			true);
1161 
1162 /* TODO: enable/disable in dm as per update type.
1163 	if (plane_state) {
1164 		DC_LOG_DC(dc->ctx->logger,
1165 				"Pipe:%d 0x%x: addr hi:0x%x, "
1166 				"addr low:0x%x, "
1167 				"src: %d, %d, %d,"
1168 				" %d; dst: %d, %d, %d, %d;\n",
1169 				pipe_ctx->pipe_idx,
1170 				plane_state,
1171 				plane_state->address.grph.addr.high_part,
1172 				plane_state->address.grph.addr.low_part,
1173 				plane_state->src_rect.x,
1174 				plane_state->src_rect.y,
1175 				plane_state->src_rect.width,
1176 				plane_state->src_rect.height,
1177 				plane_state->dst_rect.x,
1178 				plane_state->dst_rect.y,
1179 				plane_state->dst_rect.width,
1180 				plane_state->dst_rect.height);
1181 
1182 		DC_LOG_DC(dc->ctx->logger,
1183 				"Pipe %d: width, height, x, y         format:%d\n"
1184 				"viewport:%d, %d, %d, %d\n"
1185 				"recout:  %d, %d, %d, %d\n",
1186 				pipe_ctx->pipe_idx,
1187 				plane_state->format,
1188 				pipe_ctx->plane_res.scl_data.viewport.width,
1189 				pipe_ctx->plane_res.scl_data.viewport.height,
1190 				pipe_ctx->plane_res.scl_data.viewport.x,
1191 				pipe_ctx->plane_res.scl_data.viewport.y,
1192 				pipe_ctx->plane_res.scl_data.recout.width,
1193 				pipe_ctx->plane_res.scl_data.recout.height,
1194 				pipe_ctx->plane_res.scl_data.recout.x,
1195 				pipe_ctx->plane_res.scl_data.recout.y);
1196 		print_rq_dlg_ttu(dc, pipe_ctx);
1197 	}
1198 */
1199 	if (dc->vm_pa_config.valid) {
1200 		struct vm_system_aperture_param apt;
1201 
1202 		apt.sys_default.quad_part = 0;
1203 
1204 		apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
1205 		apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
1206 
1207 		// Program system aperture settings
1208 		pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
1209 	}
1210 
1211 	if (!pipe_ctx->top_pipe
1212 		&& pipe_ctx->plane_state
1213 		&& pipe_ctx->plane_state->flip_int_enabled
1214 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
1215 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
1216 
1217 //	if (dc->debug.sanity_checks) {
1218 //		dcn10_verify_allow_pstate_change_high(dc);
1219 //	}
1220 }
1221 
1222 void dcn20_pipe_control_lock(
1223 	struct dc *dc,
1224 	struct pipe_ctx *pipe,
1225 	bool lock)
1226 {
1227 	struct pipe_ctx *temp_pipe;
1228 	bool flip_immediate = false;
1229 
1230 	/* use TG master update lock to lock everything on the TG
1231 	 * therefore only top pipe need to lock
1232 	 */
1233 	if (!pipe || pipe->top_pipe)
1234 		return;
1235 
1236 	if (pipe->plane_state != NULL)
1237 		flip_immediate = pipe->plane_state->flip_immediate;
1238 
1239 	if  (pipe->stream_res.gsl_group > 0) {
1240 	    temp_pipe = pipe->bottom_pipe;
1241 	    while (!flip_immediate && temp_pipe) {
1242 		    if (temp_pipe->plane_state != NULL)
1243 			    flip_immediate = temp_pipe->plane_state->flip_immediate;
1244 		    temp_pipe = temp_pipe->bottom_pipe;
1245 	    }
1246 	}
1247 
1248 	if (flip_immediate && lock) {
1249 		const int TIMEOUT_FOR_FLIP_PENDING_US = 100000;
1250 		unsigned int polling_interval_us = 1;
1251 		int i;
1252 
1253 		temp_pipe = pipe;
1254 		while (temp_pipe) {
1255 			if (temp_pipe->plane_state && temp_pipe->plane_state->flip_immediate) {
1256 				for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING_US / polling_interval_us; ++i) {
1257 					if (!temp_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(temp_pipe->plane_res.hubp))
1258 						break;
1259 					udelay(polling_interval_us);
1260 				}
1261 
1262 				/* no reason it should take this long for immediate flips */
1263 				ASSERT(i != TIMEOUT_FOR_FLIP_PENDING_US);
1264 			}
1265 			temp_pipe = temp_pipe->bottom_pipe;
1266 		}
1267 	}
1268 
1269 	/* In flip immediate and pipe splitting case, we need to use GSL
1270 	 * for synchronization. Only do setup on locking and on flip type change.
1271 	 */
1272 	if (lock && (pipe->bottom_pipe != NULL || !flip_immediate))
1273 		if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
1274 		    (!flip_immediate && pipe->stream_res.gsl_group > 0))
1275 			dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
1276 
1277 	if (pipe->plane_state != NULL)
1278 		flip_immediate = pipe->plane_state->flip_immediate;
1279 
1280 	temp_pipe = pipe->bottom_pipe;
1281 	while (flip_immediate && temp_pipe) {
1282 	    if (temp_pipe->plane_state != NULL)
1283 		flip_immediate = temp_pipe->plane_state->flip_immediate;
1284 	    temp_pipe = temp_pipe->bottom_pipe;
1285 	}
1286 
1287 	if (!lock && pipe->stream_res.gsl_group > 0 && pipe->plane_state &&
1288 		!flip_immediate)
1289 	    dcn20_setup_gsl_group_as_lock(dc, pipe, false);
1290 
1291 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1292 		union dmub_hw_lock_flags hw_locks = { 0 };
1293 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1294 
1295 		hw_locks.bits.lock_pipe = 1;
1296 		inst_flags.otg_inst =  pipe->stream_res.tg->inst;
1297 
1298 		if (pipe->plane_state != NULL)
1299 			hw_locks.bits.triple_buffer_lock = pipe->plane_state->triplebuffer_flips;
1300 
1301 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1302 					lock,
1303 					&hw_locks,
1304 					&inst_flags);
1305 	} else if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
1306 		if (lock)
1307 			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
1308 		else
1309 			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
1310 	} else {
1311 		if (lock)
1312 			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1313 		else
1314 			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1315 	}
1316 }
1317 
1318 static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe)
1319 {
1320 	new_pipe->update_flags.raw = 0;
1321 
1322 	/* If non-phantom pipe is being transitioned to a phantom pipe,
1323 	 * set disable and return immediately. This is because the pipe
1324 	 * that was previously in use must be fully disabled before we
1325 	 * can "enable" it as a phantom pipe (since the OTG will certainly
1326 	 * be different). The post_unlock sequence will set the correct
1327 	 * update flags to enable the phantom pipe.
1328 	 */
1329 	if (old_pipe->plane_state && !old_pipe->plane_state->is_phantom &&
1330 			new_pipe->plane_state && new_pipe->plane_state->is_phantom) {
1331 		new_pipe->update_flags.bits.disable = 1;
1332 		return;
1333 	}
1334 
1335 	/* Exit on unchanged, unused pipe */
1336 	if (!old_pipe->plane_state && !new_pipe->plane_state)
1337 		return;
1338 	/* Detect pipe enable/disable */
1339 	if (!old_pipe->plane_state && new_pipe->plane_state) {
1340 		new_pipe->update_flags.bits.enable = 1;
1341 		new_pipe->update_flags.bits.mpcc = 1;
1342 		new_pipe->update_flags.bits.dppclk = 1;
1343 		new_pipe->update_flags.bits.hubp_interdependent = 1;
1344 		new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1345 		new_pipe->update_flags.bits.unbounded_req = 1;
1346 		new_pipe->update_flags.bits.gamut_remap = 1;
1347 		new_pipe->update_flags.bits.scaler = 1;
1348 		new_pipe->update_flags.bits.viewport = 1;
1349 		new_pipe->update_flags.bits.det_size = 1;
1350 		if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1351 			new_pipe->update_flags.bits.odm = 1;
1352 			new_pipe->update_flags.bits.global_sync = 1;
1353 		}
1354 		return;
1355 	}
1356 
1357 	/* For SubVP we need to unconditionally enable because any phantom pipes are
1358 	 * always removed then newly added for every full updates whenever SubVP is in use.
1359 	 * The remove-add sequence of the phantom pipe always results in the pipe
1360 	 * being blanked in enable_stream_timing (DPG).
1361 	 */
1362 	if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1363 		new_pipe->update_flags.bits.enable = 1;
1364 
1365 	/* Phantom pipes are effectively disabled, if the pipe was previously phantom
1366 	 * we have to enable
1367 	 */
1368 	if (old_pipe->plane_state && old_pipe->plane_state->is_phantom &&
1369 			new_pipe->plane_state && !new_pipe->plane_state->is_phantom)
1370 		new_pipe->update_flags.bits.enable = 1;
1371 
1372 	if (old_pipe->plane_state && !new_pipe->plane_state) {
1373 		new_pipe->update_flags.bits.disable = 1;
1374 		return;
1375 	}
1376 
1377 	/* Detect plane change */
1378 	if (old_pipe->plane_state != new_pipe->plane_state) {
1379 		new_pipe->update_flags.bits.plane_changed = true;
1380 	}
1381 
1382 	/* Detect top pipe only changes */
1383 	if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1384 		/* Detect odm changes */
1385 		if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe
1386 			&& old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx)
1387 				|| (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe)
1388 				|| (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe)
1389 				|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1390 			new_pipe->update_flags.bits.odm = 1;
1391 
1392 		/* Detect global sync changes */
1393 		if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset
1394 				|| old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start
1395 				|| old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset
1396 				|| old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width)
1397 			new_pipe->update_flags.bits.global_sync = 1;
1398 	}
1399 
1400 	if (old_pipe->det_buffer_size_kb != new_pipe->det_buffer_size_kb)
1401 		new_pipe->update_flags.bits.det_size = 1;
1402 
1403 	/*
1404 	 * Detect opp / tg change, only set on change, not on enable
1405 	 * Assume mpcc inst = pipe index, if not this code needs to be updated
1406 	 * since mpcc is what is affected by these. In fact all of our sequence
1407 	 * makes this assumption at the moment with how hubp reset is matched to
1408 	 * same index mpcc reset.
1409 	 */
1410 	if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1411 		new_pipe->update_flags.bits.opp_changed = 1;
1412 	if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
1413 		new_pipe->update_flags.bits.tg_changed = 1;
1414 
1415 	/*
1416 	 * Detect mpcc blending changes, only dpp inst and opp matter here,
1417 	 * mpccs getting removed/inserted update connected ones during their own
1418 	 * programming
1419 	 */
1420 	if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
1421 			|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1422 		new_pipe->update_flags.bits.mpcc = 1;
1423 
1424 	/* Detect dppclk change */
1425 	if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
1426 		new_pipe->update_flags.bits.dppclk = 1;
1427 
1428 	/* Check for scl update */
1429 	if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
1430 			new_pipe->update_flags.bits.scaler = 1;
1431 	/* Check for vp update */
1432 	if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
1433 			|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
1434 				&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
1435 		new_pipe->update_flags.bits.viewport = 1;
1436 
1437 	/* Detect dlg/ttu/rq updates */
1438 	{
1439 		struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs;
1440 		struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs;
1441 		struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs;
1442 		struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs;
1443 
1444 		/* Detect pipe interdependent updates */
1445 		if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch ||
1446 				old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch ||
1447 				old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c ||
1448 				old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank ||
1449 				old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank ||
1450 				old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip ||
1451 				old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip ||
1452 				old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l ||
1453 				old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c ||
1454 				old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l ||
1455 				old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l ||
1456 				old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c ||
1457 				old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l ||
1458 				old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c ||
1459 				old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 ||
1460 				old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 ||
1461 				old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank ||
1462 				old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) {
1463 			old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch;
1464 			old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch;
1465 			old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c;
1466 			old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank;
1467 			old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank;
1468 			old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip;
1469 			old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip;
1470 			old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l;
1471 			old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c;
1472 			old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l;
1473 			old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l;
1474 			old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c;
1475 			old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l;
1476 			old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c;
1477 			old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0;
1478 			old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1;
1479 			old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank;
1480 			old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip;
1481 			new_pipe->update_flags.bits.hubp_interdependent = 1;
1482 		}
1483 		/* Detect any other updates to ttu/rq/dlg */
1484 		if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) ||
1485 				memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) ||
1486 				memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs)))
1487 			new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1488 	}
1489 
1490 	if (old_pipe->unbounded_req != new_pipe->unbounded_req)
1491 		new_pipe->update_flags.bits.unbounded_req = 1;
1492 }
1493 
1494 static void dcn20_update_dchubp_dpp(
1495 	struct dc *dc,
1496 	struct pipe_ctx *pipe_ctx,
1497 	struct dc_state *context)
1498 {
1499 	struct dce_hwseq *hws = dc->hwseq;
1500 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1501 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1502 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1503 	struct dccg *dccg = dc->res_pool->dccg;
1504 	bool viewport_changed = false;
1505 
1506 	if (pipe_ctx->update_flags.bits.dppclk)
1507 		dpp->funcs->dpp_dppclk_control(dpp, false, true);
1508 
1509 	if (pipe_ctx->update_flags.bits.enable)
1510 		dccg->funcs->update_dpp_dto(dccg, dpp->inst, pipe_ctx->plane_res.bw.dppclk_khz);
1511 
1512 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
1513 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
1514 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
1515 	 */
1516 	if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) {
1517 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
1518 
1519 		hubp->funcs->hubp_setup(
1520 			hubp,
1521 			&pipe_ctx->dlg_regs,
1522 			&pipe_ctx->ttu_regs,
1523 			&pipe_ctx->rq_regs,
1524 			&pipe_ctx->pipe_dlg_param);
1525 	}
1526 
1527 	if (pipe_ctx->update_flags.bits.unbounded_req && hubp->funcs->set_unbounded_requesting)
1528 		hubp->funcs->set_unbounded_requesting(hubp, pipe_ctx->unbounded_req);
1529 
1530 	if (pipe_ctx->update_flags.bits.hubp_interdependent)
1531 		hubp->funcs->hubp_setup_interdependent(
1532 			hubp,
1533 			&pipe_ctx->dlg_regs,
1534 			&pipe_ctx->ttu_regs);
1535 
1536 	if (pipe_ctx->update_flags.bits.enable ||
1537 			pipe_ctx->update_flags.bits.plane_changed ||
1538 			plane_state->update_flags.bits.bpp_change ||
1539 			plane_state->update_flags.bits.input_csc_change ||
1540 			plane_state->update_flags.bits.color_space_change ||
1541 			plane_state->update_flags.bits.coeff_reduction_change) {
1542 		struct dc_bias_and_scale bns_params = {0};
1543 
1544 		// program the input csc
1545 		dpp->funcs->dpp_setup(dpp,
1546 				plane_state->format,
1547 				EXPANSION_MODE_ZERO,
1548 				plane_state->input_csc_color_matrix,
1549 				plane_state->color_space,
1550 				NULL);
1551 
1552 		if (dpp->funcs->dpp_program_bias_and_scale) {
1553 			//TODO :for CNVC set scale and bias registers if necessary
1554 			build_prescale_params(&bns_params, plane_state);
1555 			dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
1556 		}
1557 	}
1558 
1559 	if (pipe_ctx->update_flags.bits.mpcc
1560 			|| pipe_ctx->update_flags.bits.plane_changed
1561 			|| plane_state->update_flags.bits.global_alpha_change
1562 			|| plane_state->update_flags.bits.per_pixel_alpha_change) {
1563 		// MPCC inst is equal to pipe index in practice
1564 		hws->funcs.update_mpcc(dc, pipe_ctx);
1565 	}
1566 
1567 	if (pipe_ctx->update_flags.bits.scaler ||
1568 			plane_state->update_flags.bits.scaling_change ||
1569 			plane_state->update_flags.bits.position_change ||
1570 			plane_state->update_flags.bits.per_pixel_alpha_change ||
1571 			pipe_ctx->stream->update_flags.bits.scaling) {
1572 		pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha;
1573 		ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_36BPP);
1574 		/* scaler configuration */
1575 		pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
1576 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
1577 	}
1578 
1579 	if (pipe_ctx->update_flags.bits.viewport ||
1580 			(context == dc->current_state && plane_state->update_flags.bits.position_change) ||
1581 			(context == dc->current_state && plane_state->update_flags.bits.scaling_change) ||
1582 			(context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) {
1583 
1584 		hubp->funcs->mem_program_viewport(
1585 			hubp,
1586 			&pipe_ctx->plane_res.scl_data.viewport,
1587 			&pipe_ctx->plane_res.scl_data.viewport_c);
1588 		viewport_changed = true;
1589 	}
1590 
1591 	/* Any updates are handled in dc interface, just need to apply existing for plane enable */
1592 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed ||
1593 			pipe_ctx->update_flags.bits.scaler || viewport_changed == true) &&
1594 			pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
1595 		dc->hwss.set_cursor_position(pipe_ctx);
1596 		dc->hwss.set_cursor_attribute(pipe_ctx);
1597 
1598 		if (dc->hwss.set_cursor_sdr_white_level)
1599 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
1600 	}
1601 
1602 	/* Any updates are handled in dc interface, just need
1603 	 * to apply existing for plane enable / opp change */
1604 	if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed
1605 			|| pipe_ctx->update_flags.bits.plane_changed
1606 			|| pipe_ctx->stream->update_flags.bits.gamut_remap
1607 			|| plane_state->update_flags.bits.gamut_remap_change
1608 			|| pipe_ctx->stream->update_flags.bits.out_csc) {
1609 		/* dpp/cm gamut remap*/
1610 		dc->hwss.program_gamut_remap(pipe_ctx);
1611 
1612 		/*call the dcn2 method which uses mpc csc*/
1613 		dc->hwss.program_output_csc(dc,
1614 				pipe_ctx,
1615 				pipe_ctx->stream->output_color_space,
1616 				pipe_ctx->stream->csc_color_matrix.matrix,
1617 				hubp->opp_id);
1618 	}
1619 
1620 	if (pipe_ctx->update_flags.bits.enable ||
1621 			pipe_ctx->update_flags.bits.plane_changed ||
1622 			pipe_ctx->update_flags.bits.opp_changed ||
1623 			plane_state->update_flags.bits.pixel_format_change ||
1624 			plane_state->update_flags.bits.horizontal_mirror_change ||
1625 			plane_state->update_flags.bits.rotation_change ||
1626 			plane_state->update_flags.bits.swizzle_change ||
1627 			plane_state->update_flags.bits.dcc_change ||
1628 			plane_state->update_flags.bits.bpp_change ||
1629 			plane_state->update_flags.bits.scaling_change ||
1630 			plane_state->update_flags.bits.plane_size_change) {
1631 		struct plane_size size = plane_state->plane_size;
1632 
1633 		size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
1634 		hubp->funcs->hubp_program_surface_config(
1635 			hubp,
1636 			plane_state->format,
1637 			&plane_state->tiling_info,
1638 			&size,
1639 			plane_state->rotation,
1640 			&plane_state->dcc,
1641 			plane_state->horizontal_mirror,
1642 			0);
1643 		hubp->power_gated = false;
1644 	}
1645 
1646 	if (pipe_ctx->update_flags.bits.enable ||
1647 		pipe_ctx->update_flags.bits.plane_changed ||
1648 		plane_state->update_flags.bits.addr_update)
1649 		hws->funcs.update_plane_addr(dc, pipe_ctx);
1650 
1651 	if (pipe_ctx->update_flags.bits.enable)
1652 		hubp->funcs->set_blank(hubp, false);
1653 	/* If the stream paired with this plane is phantom, the plane is also phantom */
1654 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM
1655 			&& hubp->funcs->phantom_hubp_post_enable)
1656 		hubp->funcs->phantom_hubp_post_enable(hubp);
1657 }
1658 
1659 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
1660 {
1661 	struct pipe_ctx *other_pipe;
1662 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
1663 
1664 	/* Always use the largest vready_offset of all connected pipes */
1665 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
1666 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1667 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1668 	}
1669 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
1670 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1671 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1672 	}
1673 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
1674 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1675 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1676 	}
1677 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
1678 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1679 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1680 	}
1681 
1682 	return vready_offset;
1683 }
1684 
1685 static void dcn20_program_pipe(
1686 		struct dc *dc,
1687 		struct pipe_ctx *pipe_ctx,
1688 		struct dc_state *context)
1689 {
1690 	struct dce_hwseq *hws = dc->hwseq;
1691 
1692 	/* Only need to unblank on top pipe */
1693 	if (resource_is_pipe_type(pipe_ctx, OTG_MASTER)) {
1694 		if (pipe_ctx->update_flags.bits.enable ||
1695 				pipe_ctx->update_flags.bits.odm ||
1696 				pipe_ctx->stream->update_flags.bits.abm_level)
1697 			hws->funcs.blank_pixel_data(dc, pipe_ctx,
1698 					!pipe_ctx->plane_state ||
1699 					!pipe_ctx->plane_state->visible);
1700 	}
1701 
1702 	/* Only update TG on top pipe */
1703 	if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe
1704 			&& !pipe_ctx->prev_odm_pipe) {
1705 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
1706 				pipe_ctx->stream_res.tg,
1707 				calculate_vready_offset_for_group(pipe_ctx),
1708 				pipe_ctx->pipe_dlg_param.vstartup_start,
1709 				pipe_ctx->pipe_dlg_param.vupdate_offset,
1710 				pipe_ctx->pipe_dlg_param.vupdate_width);
1711 
1712 		if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM)
1713 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
1714 
1715 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
1716 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
1717 
1718 		if (hws->funcs.setup_vupdate_interrupt)
1719 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1720 	}
1721 
1722 	if (pipe_ctx->update_flags.bits.odm)
1723 		hws->funcs.update_odm(dc, context, pipe_ctx);
1724 
1725 	if (pipe_ctx->update_flags.bits.enable) {
1726 		dcn20_enable_plane(dc, pipe_ctx, context);
1727 		if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes)
1728 			dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub);
1729 	}
1730 
1731 	if (dc->res_pool->hubbub->funcs->program_det_size && pipe_ctx->update_flags.bits.det_size)
1732 		dc->res_pool->hubbub->funcs->program_det_size(
1733 			dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->det_buffer_size_kb);
1734 
1735 	if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw)
1736 		dcn20_update_dchubp_dpp(dc, pipe_ctx, context);
1737 
1738 	if (pipe_ctx->update_flags.bits.enable
1739 			|| pipe_ctx->plane_state->update_flags.bits.hdr_mult)
1740 		hws->funcs.set_hdr_multiplier(pipe_ctx);
1741 
1742 	if (pipe_ctx->update_flags.bits.enable ||
1743 	    pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
1744 	    pipe_ctx->plane_state->update_flags.bits.gamma_change ||
1745 	    pipe_ctx->plane_state->update_flags.bits.lut_3d)
1746 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
1747 
1748 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
1749 	 * only do gamma programming for powering on, internal memcmp to avoid
1750 	 * updating on slave planes
1751 	 */
1752 	if (pipe_ctx->update_flags.bits.enable ||
1753 			pipe_ctx->update_flags.bits.plane_changed ||
1754 			pipe_ctx->stream->update_flags.bits.out_tf ||
1755 			pipe_ctx->plane_state->update_flags.bits.output_tf_change)
1756 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
1757 
1758 	/* If the pipe has been enabled or has a different opp, we
1759 	 * should reprogram the fmt. This deals with cases where
1760 	 * interation between mpc and odm combine on different streams
1761 	 * causes a different pipe to be chosen to odm combine with.
1762 	 */
1763 	if (pipe_ctx->update_flags.bits.enable
1764 	    || pipe_ctx->update_flags.bits.opp_changed) {
1765 
1766 		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1767 			pipe_ctx->stream_res.opp,
1768 			COLOR_SPACE_YCBCR601,
1769 			pipe_ctx->stream->timing.display_color_depth,
1770 			pipe_ctx->stream->signal);
1771 
1772 		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1773 			pipe_ctx->stream_res.opp,
1774 			&pipe_ctx->stream->bit_depth_params,
1775 			&pipe_ctx->stream->clamping);
1776 	}
1777 
1778 	/* Set ABM pipe after other pipe configurations done */
1779 	if (pipe_ctx->plane_state->visible) {
1780 		if (pipe_ctx->stream_res.abm) {
1781 			dc->hwss.set_pipe(pipe_ctx);
1782 			pipe_ctx->stream_res.abm->funcs->set_abm_level(pipe_ctx->stream_res.abm,
1783 				pipe_ctx->stream->abm_level);
1784 		}
1785 	}
1786 }
1787 
1788 void dcn20_program_front_end_for_ctx(
1789 		struct dc *dc,
1790 		struct dc_state *context)
1791 {
1792 	int i;
1793 	struct dce_hwseq *hws = dc->hwseq;
1794 	DC_LOGGER_INIT(dc->ctx->logger);
1795 
1796 	/* Carry over GSL groups in case the context is changing. */
1797 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1798 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1799 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1800 
1801 		if (pipe_ctx->stream == old_pipe_ctx->stream)
1802 			pipe_ctx->stream_res.gsl_group = old_pipe_ctx->stream_res.gsl_group;
1803 	}
1804 
1805 	if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
1806 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1807 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1808 
1809 			if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) {
1810 				ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
1811 				/*turn off triple buffer for full update*/
1812 				dc->hwss.program_triplebuffer(
1813 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
1814 			}
1815 		}
1816 	}
1817 
1818 	/* Set pipe update flags and lock pipes */
1819 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1820 		dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i],
1821 				&context->res_ctx.pipe_ctx[i]);
1822 
1823 	/* When disabling phantom pipes, turn on phantom OTG first (so we can get double
1824 	 * buffer updates properly)
1825 	 */
1826 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1827 		struct dc_stream_state *stream = dc->current_state->res_ctx.pipe_ctx[i].stream;
1828 
1829 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && stream &&
1830 			dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1831 			struct timing_generator *tg = dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg;
1832 
1833 			if (tg->funcs->enable_crtc) {
1834 				if (dc->hwss.blank_phantom) {
1835 					int main_pipe_width, main_pipe_height;
1836 
1837 					main_pipe_width = dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.paired_stream->dst.width;
1838 					main_pipe_height = dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.paired_stream->dst.height;
1839 					dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1840 				}
1841 				tg->funcs->enable_crtc(tg);
1842 			}
1843 		}
1844 	}
1845 	/* OTG blank before disabling all front ends */
1846 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1847 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1848 				&& !context->res_ctx.pipe_ctx[i].top_pipe
1849 				&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
1850 				&& context->res_ctx.pipe_ctx[i].stream)
1851 			hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);
1852 
1853 
1854 	/* Disconnect mpcc */
1855 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1856 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1857 				|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
1858 			struct hubbub *hubbub = dc->res_pool->hubbub;
1859 
1860 			/* Phantom pipe DET should be 0, but if a pipe in use is being transitioned to phantom
1861 			 * then we want to do the programming here (effectively it's being disabled). If we do
1862 			 * the programming later the DET won't be updated until the OTG for the phantom pipe is
1863 			 * turned on (i.e. in an MCLK switch) which can come in too late and cause issues with
1864 			 * DET allocation.
1865 			 */
1866 			if (hubbub->funcs->program_det_size && (context->res_ctx.pipe_ctx[i].update_flags.bits.disable ||
1867 					(context->res_ctx.pipe_ctx[i].plane_state && context->res_ctx.pipe_ctx[i].plane_state->is_phantom)))
1868 				hubbub->funcs->program_det_size(hubbub, dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0);
1869 			hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1870 			DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
1871 		}
1872 
1873 	/*
1874 	 * Program all updated pipes, order matters for mpcc setup. Start with
1875 	 * top pipe and program all pipes that follow in order
1876 	 */
1877 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1878 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1879 
1880 		if (pipe->plane_state && !pipe->top_pipe) {
1881 			while (pipe) {
1882 				if (hws->funcs.program_pipe)
1883 					hws->funcs.program_pipe(dc, pipe, context);
1884 				else {
1885 					/* Don't program phantom pipes in the regular front end programming sequence.
1886 					 * There is an MPO transition case where a pipe being used by a video plane is
1887 					 * transitioned directly to be a phantom pipe when closing the MPO video. However
1888 					 * the phantom pipe will program a new HUBP_VTG_SEL (update takes place right away),
1889 					 * but the MPO still exists until the double buffered update of the main pipe so we
1890 					 * will get a frame of underflow if the phantom pipe is programmed here.
1891 					 */
1892 					if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM)
1893 						dcn20_program_pipe(dc, pipe, context);
1894 				}
1895 
1896 				pipe = pipe->bottom_pipe;
1897 			}
1898 		}
1899 		/* Program secondary blending tree and writeback pipes */
1900 		pipe = &context->res_ctx.pipe_ctx[i];
1901 		if (!pipe->top_pipe && !pipe->prev_odm_pipe
1902 				&& pipe->stream && pipe->stream->num_wb_info > 0
1903 				&& (pipe->update_flags.raw || (pipe->plane_state && pipe->plane_state->update_flags.raw)
1904 					|| pipe->stream->update_flags.raw)
1905 				&& hws->funcs.program_all_writeback_pipes_in_tree)
1906 			hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);
1907 
1908 		/* Avoid underflow by check of pipe line read when adding 2nd plane. */
1909 		if (hws->wa.wait_hubpret_read_start_during_mpo_transition &&
1910 			!pipe->top_pipe &&
1911 			pipe->stream &&
1912 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start &&
1913 			dc->current_state->stream_status[0].plane_count == 1 &&
1914 			context->stream_status[0].plane_count > 1) {
1915 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start(pipe->plane_res.hubp);
1916 		}
1917 
1918 		/* when dynamic ODM is active, pipes must be reconfigured when all planes are
1919 		 * disabled, as some transitions will leave software and hardware state
1920 		 * mismatched.
1921 		 */
1922 		if (dc->debug.enable_single_display_2to1_odm_policy &&
1923 			pipe->stream &&
1924 			pipe->update_flags.bits.disable &&
1925 			!pipe->prev_odm_pipe &&
1926 			hws->funcs.update_odm)
1927 			hws->funcs.update_odm(dc, context, pipe);
1928 	}
1929 }
1930 
1931 void dcn20_post_unlock_program_front_end(
1932 		struct dc *dc,
1933 		struct dc_state *context)
1934 {
1935 	int i;
1936 	const unsigned int TIMEOUT_FOR_PIPE_ENABLE_US = 100000;
1937 	unsigned int polling_interval_us = 1;
1938 	struct dce_hwseq *hwseq = dc->hwseq;
1939 
1940 	DC_LOGGER_INIT(dc->ctx->logger);
1941 
1942 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1943 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
1944 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1945 
1946 	/*
1947 	 * If we are enabling a pipe, we need to wait for pending clear as this is a critical
1948 	 * part of the enable operation otherwise, DM may request an immediate flip which
1949 	 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
1950 	 * is unsupported on DCN.
1951 	 */
1952 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1953 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1954 		// Don't check flip pending on phantom pipes
1955 		if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable &&
1956 				pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1957 			struct hubp *hubp = pipe->plane_res.hubp;
1958 			int j = 0;
1959 			for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_US / polling_interval_us
1960 					&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
1961 				udelay(polling_interval_us);
1962 		}
1963 	}
1964 
1965 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1966 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1967 
1968 		if (pipe->plane_state && !pipe->top_pipe) {
1969 			/* Program phantom pipe here to prevent a frame of underflow in the MPO transition
1970 			 * case (if a pipe being used for a video plane transitions to a phantom pipe, it
1971 			 * can underflow due to HUBP_VTG_SEL programming if done in the regular front end
1972 			 * programming sequence).
1973 			 */
1974 			while (pipe) {
1975 				if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1976 					/* When turning on the phantom pipe we want to run through the
1977 					 * entire enable sequence, so apply all the "enable" flags.
1978 					 */
1979 					if (dc->hwss.apply_update_flags_for_phantom)
1980 						dc->hwss.apply_update_flags_for_phantom(pipe);
1981 					if (dc->hwss.update_phantom_vp_position)
1982 						dc->hwss.update_phantom_vp_position(dc, context, pipe);
1983 					dcn20_program_pipe(dc, pipe, context);
1984 				}
1985 				pipe = pipe->bottom_pipe;
1986 			}
1987 		}
1988 	}
1989 
1990 	/* P-State support transitions:
1991 	 * Natural -> FPO: 		P-State disabled in prepare, force disallow anytime is safe
1992 	 * FPO -> Natural: 		Unforce anytime after FW disable is safe (P-State will assert naturally)
1993 	 * Unsupported -> FPO:	P-State enabled in optimize, force disallow anytime is safe
1994 	 * FPO -> Unsupported:	P-State disabled in prepare, unforce disallow anytime is safe
1995 	 * FPO <-> SubVP:		Force disallow is maintained on the FPO / SubVP pipes
1996 	 */
1997 	if (hwseq && hwseq->funcs.update_force_pstate)
1998 		dc->hwseq->funcs.update_force_pstate(dc, context);
1999 
2000 	/* Only program the MALL registers after all the main and phantom pipes
2001 	 * are done programming.
2002 	 */
2003 	if (hwseq->funcs.program_mall_pipe_config)
2004 		hwseq->funcs.program_mall_pipe_config(dc, context);
2005 
2006 	/* WA to apply WM setting*/
2007 	if (hwseq->wa.DEGVIDCN21)
2008 		dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);
2009 
2010 
2011 	/* WA for stutter underflow during MPO transitions when adding 2nd plane */
2012 	if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {
2013 
2014 		if (dc->current_state->stream_status[0].plane_count == 1 &&
2015 				context->stream_status[0].plane_count > 1) {
2016 
2017 			struct timing_generator *tg = dc->res_pool->timing_generators[0];
2018 
2019 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);
2020 
2021 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
2022 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg);
2023 		}
2024 	}
2025 }
2026 
2027 void dcn20_prepare_bandwidth(
2028 		struct dc *dc,
2029 		struct dc_state *context)
2030 {
2031 	struct hubbub *hubbub = dc->res_pool->hubbub;
2032 	unsigned int compbuf_size_kb = 0;
2033 	unsigned int cache_wm_a = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns;
2034 	unsigned int i;
2035 
2036 	dc->clk_mgr->funcs->update_clocks(
2037 			dc->clk_mgr,
2038 			context,
2039 			false);
2040 
2041 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2042 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2043 
2044 		// At optimize don't restore the original watermark value
2045 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2046 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2047 			break;
2048 		}
2049 	}
2050 
2051 	/* program dchubbub watermarks:
2052 	 * For assigning wm_optimized_required, use |= operator since we don't want
2053 	 * to clear the value if the optimize has not happened yet
2054 	 */
2055 	dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub,
2056 					&context->bw_ctx.bw.dcn.watermarks,
2057 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2058 					false);
2059 
2060 	// Restore the real watermark so we can commit the value to DMCUB
2061 	// DMCUB uses the "original" watermark value in SubVP MCLK switch
2062 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = cache_wm_a;
2063 
2064 	/* decrease compbuf size */
2065 	if (hubbub->funcs->program_compbuf_size) {
2066 		if (context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes) {
2067 			compbuf_size_kb = context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes;
2068 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.dml.ip.min_comp_buffer_size_kbytes);
2069 		} else {
2070 			compbuf_size_kb = context->bw_ctx.bw.dcn.compbuf_size_kb;
2071 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.bw.dcn.compbuf_size_kb);
2072 		}
2073 
2074 		hubbub->funcs->program_compbuf_size(hubbub, compbuf_size_kb, false);
2075 	}
2076 }
2077 
2078 void dcn20_optimize_bandwidth(
2079 		struct dc *dc,
2080 		struct dc_state *context)
2081 {
2082 	struct hubbub *hubbub = dc->res_pool->hubbub;
2083 	int i;
2084 
2085 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2086 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2087 
2088 		// At optimize don't need  to restore the original watermark value
2089 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2090 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2091 			break;
2092 		}
2093 	}
2094 
2095 	/* program dchubbub watermarks */
2096 	hubbub->funcs->program_watermarks(hubbub,
2097 					&context->bw_ctx.bw.dcn.watermarks,
2098 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2099 					true);
2100 
2101 	if (dc->clk_mgr->dc_mode_softmax_enabled)
2102 		if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
2103 				context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
2104 			dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk);
2105 
2106 	/* increase compbuf size */
2107 	if (hubbub->funcs->program_compbuf_size)
2108 		hubbub->funcs->program_compbuf_size(hubbub, context->bw_ctx.bw.dcn.compbuf_size_kb, true);
2109 
2110 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2111 		dc_dmub_srv_p_state_delegate(dc,
2112 			true, context);
2113 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
2114 		dc->clk_mgr->clks.fw_based_mclk_switching = true;
2115 	} else {
2116 		dc->clk_mgr->clks.fw_based_mclk_switching = false;
2117 	}
2118 
2119 	dc->clk_mgr->funcs->update_clocks(
2120 			dc->clk_mgr,
2121 			context,
2122 			true);
2123 	if (context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) {
2124 		for (i = 0; i < dc->res_pool->pipe_count; ++i) {
2125 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2126 
2127 			if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank
2128 				&& pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max
2129 				&& pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total)
2130 					pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp,
2131 						pipe_ctx->dlg_regs.min_dst_y_next_start);
2132 		}
2133 	}
2134 }
2135 
2136 bool dcn20_update_bandwidth(
2137 		struct dc *dc,
2138 		struct dc_state *context)
2139 {
2140 	int i;
2141 	struct dce_hwseq *hws = dc->hwseq;
2142 
2143 	/* recalculate DML parameters */
2144 	if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
2145 		return false;
2146 
2147 	/* apply updated bandwidth parameters */
2148 	dc->hwss.prepare_bandwidth(dc, context);
2149 
2150 	/* update hubp configs for all pipes */
2151 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2152 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2153 
2154 		if (pipe_ctx->plane_state == NULL)
2155 			continue;
2156 
2157 		if (pipe_ctx->top_pipe == NULL) {
2158 			bool blank = !is_pipe_tree_visible(pipe_ctx);
2159 
2160 			pipe_ctx->stream_res.tg->funcs->program_global_sync(
2161 					pipe_ctx->stream_res.tg,
2162 					calculate_vready_offset_for_group(pipe_ctx),
2163 					pipe_ctx->pipe_dlg_param.vstartup_start,
2164 					pipe_ctx->pipe_dlg_param.vupdate_offset,
2165 					pipe_ctx->pipe_dlg_param.vupdate_width);
2166 
2167 			pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2168 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false);
2169 
2170 			if (pipe_ctx->prev_odm_pipe == NULL)
2171 				hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2172 
2173 			if (hws->funcs.setup_vupdate_interrupt)
2174 				hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2175 		}
2176 
2177 		pipe_ctx->plane_res.hubp->funcs->hubp_setup(
2178 				pipe_ctx->plane_res.hubp,
2179 					&pipe_ctx->dlg_regs,
2180 					&pipe_ctx->ttu_regs,
2181 					&pipe_ctx->rq_regs,
2182 					&pipe_ctx->pipe_dlg_param);
2183 	}
2184 
2185 	return true;
2186 }
2187 
2188 void dcn20_enable_writeback(
2189 		struct dc *dc,
2190 		struct dc_writeback_info *wb_info,
2191 		struct dc_state *context)
2192 {
2193 	struct dwbc *dwb;
2194 	struct mcif_wb *mcif_wb;
2195 	struct timing_generator *optc;
2196 
2197 	ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
2198 	ASSERT(wb_info->wb_enabled);
2199 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
2200 	mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
2201 
2202 	/* set the OPTC source mux */
2203 	optc = dc->res_pool->timing_generators[dwb->otg_inst];
2204 	optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
2205 	/* set MCIF_WB buffer and arbitration configuration */
2206 	mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
2207 	mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
2208 	/* Enable MCIF_WB */
2209 	mcif_wb->funcs->enable_mcif(mcif_wb);
2210 	/* Enable DWB */
2211 	dwb->funcs->enable(dwb, &wb_info->dwb_params);
2212 	/* TODO: add sequence to enable/disable warmup */
2213 }
2214 
2215 void dcn20_disable_writeback(
2216 		struct dc *dc,
2217 		unsigned int dwb_pipe_inst)
2218 {
2219 	struct dwbc *dwb;
2220 	struct mcif_wb *mcif_wb;
2221 
2222 	ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
2223 	dwb = dc->res_pool->dwbc[dwb_pipe_inst];
2224 	mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
2225 
2226 	dwb->funcs->disable(dwb);
2227 	mcif_wb->funcs->disable_mcif(mcif_wb);
2228 }
2229 
2230 bool dcn20_wait_for_blank_complete(
2231 		struct output_pixel_processor *opp)
2232 {
2233 	int counter;
2234 
2235 	for (counter = 0; counter < 1000; counter++) {
2236 		if (opp->funcs->dpg_is_blanked(opp))
2237 			break;
2238 
2239 		udelay(100);
2240 	}
2241 
2242 	if (counter == 1000) {
2243 		dm_error("DC: failed to blank crtc!\n");
2244 		return false;
2245 	}
2246 
2247 	return true;
2248 }
2249 
2250 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
2251 {
2252 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2253 
2254 	if (!hubp)
2255 		return false;
2256 	return hubp->funcs->dmdata_status_done(hubp);
2257 }
2258 
2259 void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2260 {
2261 	struct dce_hwseq *hws = dc->hwseq;
2262 
2263 	if (pipe_ctx->stream_res.dsc) {
2264 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2265 
2266 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
2267 		while (odm_pipe) {
2268 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
2269 			odm_pipe = odm_pipe->next_odm_pipe;
2270 		}
2271 	}
2272 }
2273 
2274 void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2275 {
2276 	struct dce_hwseq *hws = dc->hwseq;
2277 
2278 	if (pipe_ctx->stream_res.dsc) {
2279 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2280 
2281 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
2282 		while (odm_pipe) {
2283 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
2284 			odm_pipe = odm_pipe->next_odm_pipe;
2285 		}
2286 	}
2287 }
2288 
2289 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
2290 {
2291 	struct dc_dmdata_attributes attr = { 0 };
2292 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2293 
2294 	attr.dmdata_mode = DMDATA_HW_MODE;
2295 	attr.dmdata_size =
2296 		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
2297 	attr.address.quad_part =
2298 			pipe_ctx->stream->dmdata_address.quad_part;
2299 	attr.dmdata_dl_delta = 0;
2300 	attr.dmdata_qos_mode = 0;
2301 	attr.dmdata_qos_level = 0;
2302 	attr.dmdata_repeat = 1; /* always repeat */
2303 	attr.dmdata_updated = 1;
2304 	attr.dmdata_sw_data = NULL;
2305 
2306 	hubp->funcs->dmdata_set_attributes(hubp, &attr);
2307 }
2308 
2309 void dcn20_init_vm_ctx(
2310 		struct dce_hwseq *hws,
2311 		struct dc *dc,
2312 		struct dc_virtual_addr_space_config *va_config,
2313 		int vmid)
2314 {
2315 	struct dcn_hubbub_virt_addr_config config;
2316 
2317 	if (vmid == 0) {
2318 		ASSERT(0); /* VMID cannot be 0 for vm context */
2319 		return;
2320 	}
2321 
2322 	config.page_table_start_addr = va_config->page_table_start_addr;
2323 	config.page_table_end_addr = va_config->page_table_end_addr;
2324 	config.page_table_block_size = va_config->page_table_block_size_in_bytes;
2325 	config.page_table_depth = va_config->page_table_depth;
2326 	config.page_table_base_addr = va_config->page_table_base_addr;
2327 
2328 	dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
2329 }
2330 
2331 int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
2332 {
2333 	struct dcn_hubbub_phys_addr_config config;
2334 
2335 	config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
2336 	config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
2337 	config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
2338 	config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
2339 	config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
2340 	config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
2341 	config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
2342 	config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
2343 	config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
2344 	config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
2345 
2346 	return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
2347 }
2348 
2349 static bool patch_address_for_sbs_tb_stereo(
2350 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
2351 {
2352 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2353 	bool sec_split = pipe_ctx->top_pipe &&
2354 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
2355 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2356 			(pipe_ctx->stream->timing.timing_3d_format ==
2357 			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
2358 			pipe_ctx->stream->timing.timing_3d_format ==
2359 			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
2360 		*addr = plane_state->address.grph_stereo.left_addr;
2361 		plane_state->address.grph_stereo.left_addr =
2362 				plane_state->address.grph_stereo.right_addr;
2363 		return true;
2364 	}
2365 
2366 	if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
2367 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
2368 		plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
2369 		plane_state->address.grph_stereo.right_addr =
2370 				plane_state->address.grph_stereo.left_addr;
2371 		plane_state->address.grph_stereo.right_meta_addr =
2372 				plane_state->address.grph_stereo.left_meta_addr;
2373 	}
2374 	return false;
2375 }
2376 
2377 void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
2378 {
2379 	bool addr_patched = false;
2380 	PHYSICAL_ADDRESS_LOC addr;
2381 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2382 
2383 	if (plane_state == NULL)
2384 		return;
2385 
2386 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
2387 
2388 	// Call Helper to track VMID use
2389 	vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
2390 
2391 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
2392 			pipe_ctx->plane_res.hubp,
2393 			&plane_state->address,
2394 			plane_state->flip_immediate);
2395 
2396 	plane_state->status.requested_address = plane_state->address;
2397 
2398 	if (plane_state->flip_immediate)
2399 		plane_state->status.current_address = plane_state->address;
2400 
2401 	if (addr_patched)
2402 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
2403 }
2404 
2405 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
2406 		struct dc_link_settings *link_settings)
2407 {
2408 	struct encoder_unblank_param params = {0};
2409 	struct dc_stream_state *stream = pipe_ctx->stream;
2410 	struct dc_link *link = stream->link;
2411 	struct dce_hwseq *hws = link->dc->hwseq;
2412 	struct pipe_ctx *odm_pipe;
2413 
2414 	params.opp_cnt = 1;
2415 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
2416 		params.opp_cnt++;
2417 	}
2418 	/* only 3 items below are used by unblank */
2419 	params.timing = pipe_ctx->stream->timing;
2420 
2421 	params.link_settings.link_rate = link_settings->link_rate;
2422 
2423 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2424 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
2425 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
2426 				pipe_ctx->stream_res.hpo_dp_stream_enc,
2427 				pipe_ctx->stream_res.tg->inst);
2428 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
2429 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
2430 			params.timing.pix_clk_100hz /= 2;
2431 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
2432 				pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
2433 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
2434 	}
2435 
2436 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
2437 		hws->funcs.edp_backlight_control(link, true);
2438 	}
2439 }
2440 
2441 void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
2442 {
2443 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2444 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
2445 
2446 	if (start_line < 0)
2447 		start_line = 0;
2448 
2449 	if (tg->funcs->setup_vertical_interrupt2)
2450 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
2451 }
2452 
2453 static void dcn20_reset_back_end_for_pipe(
2454 		struct dc *dc,
2455 		struct pipe_ctx *pipe_ctx,
2456 		struct dc_state *context)
2457 {
2458 	int i;
2459 	struct dc_link *link = pipe_ctx->stream->link;
2460 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2461 
2462 	DC_LOGGER_INIT(dc->ctx->logger);
2463 	if (pipe_ctx->stream_res.stream_enc == NULL) {
2464 		pipe_ctx->stream = NULL;
2465 		return;
2466 	}
2467 
2468 	/* DPMS may already disable or */
2469 	/* dpms_off status is incorrect due to fastboot
2470 	 * feature. When system resume from S4 with second
2471 	 * screen only, the dpms_off would be true but
2472 	 * VBIOS lit up eDP, so check link status too.
2473 	 */
2474 	if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
2475 		dc->link_srv->set_dpms_off(pipe_ctx);
2476 	else if (pipe_ctx->stream_res.audio)
2477 		dc->hwss.disable_audio_stream(pipe_ctx);
2478 
2479 	/* free acquired resources */
2480 	if (pipe_ctx->stream_res.audio) {
2481 		/*disable az_endpoint*/
2482 		pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2483 
2484 		/*free audio*/
2485 		if (dc->caps.dynamic_audio == true) {
2486 			/*we have to dynamic arbitrate the audio endpoints*/
2487 			/*we free the resource, need reset is_audio_acquired*/
2488 			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2489 					pipe_ctx->stream_res.audio, false);
2490 			pipe_ctx->stream_res.audio = NULL;
2491 		}
2492 	}
2493 
2494 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
2495 	 * back end share by all pipes and will be disable only when disable
2496 	 * parent pipe.
2497 	 */
2498 	if (pipe_ctx->top_pipe == NULL) {
2499 
2500 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2501 
2502 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
2503 
2504 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
2505 		if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
2506 			pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
2507 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
2508 
2509 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
2510 			pipe_ctx->stream_res.tg->funcs->set_drr(
2511 					pipe_ctx->stream_res.tg, NULL);
2512 		/* TODO - convert symclk_ref_cnts for otg to a bit map to solve
2513 		 * the case where the same symclk is shared across multiple otg
2514 		 * instances
2515 		 */
2516 		link->phy_state.symclk_ref_cnts.otg = 0;
2517 		if (link->phy_state.symclk_state == SYMCLK_ON_TX_OFF) {
2518 			link_hwss->disable_link_output(link,
2519 					&pipe_ctx->link_res, pipe_ctx->stream->signal);
2520 			link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
2521 		}
2522 	}
2523 
2524 	for (i = 0; i < dc->res_pool->pipe_count; i++)
2525 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
2526 			break;
2527 
2528 	if (i == dc->res_pool->pipe_count)
2529 		return;
2530 
2531 	pipe_ctx->stream = NULL;
2532 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
2533 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
2534 }
2535 
2536 void dcn20_reset_hw_ctx_wrap(
2537 		struct dc *dc,
2538 		struct dc_state *context)
2539 {
2540 	int i;
2541 	struct dce_hwseq *hws = dc->hwseq;
2542 
2543 	/* Reset Back End*/
2544 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
2545 		struct pipe_ctx *pipe_ctx_old =
2546 			&dc->current_state->res_ctx.pipe_ctx[i];
2547 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2548 
2549 		if (!pipe_ctx_old->stream)
2550 			continue;
2551 
2552 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
2553 			continue;
2554 
2555 		if (!pipe_ctx->stream ||
2556 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2557 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2558 
2559 			dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
2560 			if (hws->funcs.enable_stream_gating)
2561 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
2562 			if (old_clk)
2563 				old_clk->funcs->cs_power_down(old_clk);
2564 		}
2565 	}
2566 }
2567 
2568 void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2569 {
2570 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2571 	struct mpcc_blnd_cfg blnd_cfg = {0};
2572 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
2573 	int mpcc_id;
2574 	struct mpcc *new_mpcc;
2575 	struct mpc *mpc = dc->res_pool->mpc;
2576 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2577 
2578 	blnd_cfg.overlap_only = false;
2579 	blnd_cfg.global_gain = 0xff;
2580 
2581 	if (per_pixel_alpha) {
2582 		blnd_cfg.pre_multiplied_alpha = pipe_ctx->plane_state->pre_multiplied_alpha;
2583 		if (pipe_ctx->plane_state->global_alpha) {
2584 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2585 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2586 		} else {
2587 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2588 		}
2589 	} else {
2590 		blnd_cfg.pre_multiplied_alpha = false;
2591 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2592 	}
2593 
2594 	if (pipe_ctx->plane_state->global_alpha)
2595 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2596 	else
2597 		blnd_cfg.global_alpha = 0xff;
2598 
2599 	blnd_cfg.background_color_bpc = 4;
2600 	blnd_cfg.bottom_gain_mode = 0;
2601 	blnd_cfg.top_gain = 0x1f000;
2602 	blnd_cfg.bottom_inside_gain = 0x1f000;
2603 	blnd_cfg.bottom_outside_gain = 0x1f000;
2604 
2605 	if (pipe_ctx->plane_state->format
2606 			== SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA)
2607 		blnd_cfg.pre_multiplied_alpha = false;
2608 
2609 	/*
2610 	 * TODO: remove hack
2611 	 * Note: currently there is a bug in init_hw such that
2612 	 * on resume from hibernate, BIOS sets up MPCC0, and
2613 	 * we do mpcc_remove but the mpcc cannot go to idle
2614 	 * after remove. This cause us to pick mpcc1 here,
2615 	 * which causes a pstate hang for yet unknown reason.
2616 	 */
2617 	mpcc_id = hubp->inst;
2618 
2619 	/* If there is no full update, don't need to touch MPC tree*/
2620 	if (!pipe_ctx->plane_state->update_flags.bits.full_update &&
2621 		!pipe_ctx->update_flags.bits.mpcc) {
2622 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2623 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2624 		return;
2625 	}
2626 
2627 	/* check if this MPCC is already being used */
2628 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2629 	/* remove MPCC if being used */
2630 	if (new_mpcc != NULL)
2631 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2632 	else
2633 		if (dc->debug.sanity_checks)
2634 			mpc->funcs->assert_mpcc_idle_before_connect(
2635 					dc->res_pool->mpc, mpcc_id);
2636 
2637 	/* Call MPC to insert new plane */
2638 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2639 			mpc_tree_params,
2640 			&blnd_cfg,
2641 			NULL,
2642 			NULL,
2643 			hubp->inst,
2644 			mpcc_id);
2645 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2646 
2647 	ASSERT(new_mpcc != NULL);
2648 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2649 	hubp->mpcc_id = mpcc_id;
2650 }
2651 
2652 static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link)
2653 {
2654 	switch (link->link_enc->transmitter) {
2655 	case TRANSMITTER_UNIPHY_A:
2656 		return PHYD32CLKA;
2657 	case TRANSMITTER_UNIPHY_B:
2658 		return PHYD32CLKB;
2659 	case TRANSMITTER_UNIPHY_C:
2660 		return PHYD32CLKC;
2661 	case TRANSMITTER_UNIPHY_D:
2662 		return PHYD32CLKD;
2663 	case TRANSMITTER_UNIPHY_E:
2664 		return PHYD32CLKE;
2665 	default:
2666 		return PHYD32CLKA;
2667 	}
2668 }
2669 
2670 static int get_odm_segment_count(struct pipe_ctx *pipe_ctx)
2671 {
2672 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2673 	int count = 1;
2674 
2675 	while (odm_pipe != NULL) {
2676 		count++;
2677 		odm_pipe = odm_pipe->next_odm_pipe;
2678 	}
2679 
2680 	return count;
2681 }
2682 
2683 void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
2684 {
2685 	enum dc_lane_count lane_count =
2686 		pipe_ctx->stream->link->cur_link_settings.lane_count;
2687 
2688 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
2689 	struct dc_link *link = pipe_ctx->stream->link;
2690 
2691 	uint32_t active_total_with_borders;
2692 	uint32_t early_control = 0;
2693 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2694 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2695 	struct dc *dc = pipe_ctx->stream->ctx->dc;
2696 	struct dtbclk_dto_params dto_params = {0};
2697 	struct dccg *dccg = dc->res_pool->dccg;
2698 	enum phyd32clk_clock_source phyd32clk;
2699 	int dp_hpo_inst;
2700 	struct dce_hwseq *hws = dc->hwseq;
2701 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
2702 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
2703 
2704 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2705 		if (dc->hwseq->funcs.setup_hpo_hw_control)
2706 			dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, true);
2707 	}
2708 
2709 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2710 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
2711 		dccg->funcs->set_dpstreamclk(dccg, DTBCLK0, tg->inst, dp_hpo_inst);
2712 
2713 		phyd32clk = get_phyd32clk_src(link);
2714 		dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk);
2715 
2716 		dto_params.otg_inst = tg->inst;
2717 		dto_params.pixclk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10;
2718 		dto_params.num_odm_segments = get_odm_segment_count(pipe_ctx);
2719 		dto_params.timing = &pipe_ctx->stream->timing;
2720 		dto_params.ref_dtbclk_khz = dc->clk_mgr->funcs->get_dtb_ref_clk_frequency(dc->clk_mgr);
2721 		dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
2722 	} else {
2723 		}
2724 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
2725 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
2726 
2727 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
2728 			dc->res_pool->dccg,
2729 			pipe_ctx->stream_res.tg->inst,
2730 			k1_div, k2_div);
2731 	}
2732 
2733 	link_hwss->setup_stream_encoder(pipe_ctx);
2734 
2735 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
2736 		if (dc->hwss.program_dmdata_engine)
2737 			dc->hwss.program_dmdata_engine(pipe_ctx);
2738 	}
2739 
2740 	dc->hwss.update_info_frame(pipe_ctx);
2741 
2742 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
2743 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
2744 
2745 	/* enable early control to avoid corruption on DP monitor*/
2746 	active_total_with_borders =
2747 			timing->h_addressable
2748 				+ timing->h_border_left
2749 				+ timing->h_border_right;
2750 
2751 	if (lane_count != 0)
2752 		early_control = active_total_with_borders % lane_count;
2753 
2754 	if (early_control == 0)
2755 		early_control = lane_count;
2756 
2757 	tg->funcs->set_early_control(tg, early_control);
2758 
2759 	if (dc->hwseq->funcs.set_pixels_per_cycle)
2760 		dc->hwseq->funcs.set_pixels_per_cycle(pipe_ctx);
2761 }
2762 
2763 void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
2764 {
2765 	struct dc_stream_state    *stream     = pipe_ctx->stream;
2766 	struct hubp               *hubp       = pipe_ctx->plane_res.hubp;
2767 	bool                       enable     = false;
2768 	struct stream_encoder     *stream_enc = pipe_ctx->stream_res.stream_enc;
2769 	enum dynamic_metadata_mode mode       = dc_is_dp_signal(stream->signal)
2770 							? dmdata_dp
2771 							: dmdata_hdmi;
2772 
2773 	/* if using dynamic meta, don't set up generic infopackets */
2774 	if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
2775 		pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
2776 		enable = true;
2777 	}
2778 
2779 	if (!hubp)
2780 		return;
2781 
2782 	if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
2783 		return;
2784 
2785 	stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
2786 						hubp->inst, mode);
2787 }
2788 
2789 void dcn20_fpga_init_hw(struct dc *dc)
2790 {
2791 	int i, j;
2792 	struct dce_hwseq *hws = dc->hwseq;
2793 	struct resource_pool *res_pool = dc->res_pool;
2794 	struct dc_state  *context = dc->current_state;
2795 
2796 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
2797 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
2798 
2799 	// Initialize the dccg
2800 	if (res_pool->dccg->funcs->dccg_init)
2801 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
2802 
2803 	//Enable ability to power gate / don't force power on permanently
2804 	hws->funcs.enable_power_gating_plane(hws, true);
2805 
2806 	// Specific to FPGA dccg and registers
2807 	REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
2808 	REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
2809 
2810 	hws->funcs.dccg_init(hws);
2811 
2812 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
2813 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
2814 	if (REG(REFCLK_CNTL))
2815 		REG_WRITE(REFCLK_CNTL, 0);
2816 	//
2817 
2818 
2819 	/* Blank pixel data with OPP DPG */
2820 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2821 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2822 
2823 		if (tg->funcs->is_tg_enabled(tg))
2824 			dcn20_init_blank(dc, tg);
2825 	}
2826 
2827 	for (i = 0; i < res_pool->timing_generator_count; i++) {
2828 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2829 
2830 		if (tg->funcs->is_tg_enabled(tg))
2831 			tg->funcs->lock(tg);
2832 	}
2833 
2834 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2835 		struct dpp *dpp = res_pool->dpps[i];
2836 
2837 		dpp->funcs->dpp_reset(dpp);
2838 	}
2839 
2840 	/* Reset all MPCC muxes */
2841 	res_pool->mpc->funcs->mpc_init(res_pool->mpc);
2842 
2843 	/* initialize OPP mpc_tree parameter */
2844 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
2845 		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
2846 		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2847 		for (j = 0; j < MAX_PIPES; j++)
2848 			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
2849 	}
2850 
2851 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2852 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2853 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2854 		struct hubp *hubp = dc->res_pool->hubps[i];
2855 		struct dpp *dpp = dc->res_pool->dpps[i];
2856 
2857 		pipe_ctx->stream_res.tg = tg;
2858 		pipe_ctx->pipe_idx = i;
2859 
2860 		pipe_ctx->plane_res.hubp = hubp;
2861 		pipe_ctx->plane_res.dpp = dpp;
2862 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
2863 		hubp->mpcc_id = dpp->inst;
2864 		hubp->opp_id = OPP_ID_INVALID;
2865 		hubp->power_gated = false;
2866 		pipe_ctx->stream_res.opp = NULL;
2867 
2868 		hubp->funcs->hubp_init(hubp);
2869 
2870 		//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
2871 		//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2872 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
2873 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
2874 		/*to do*/
2875 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
2876 	}
2877 
2878 	/* initialize DWB pointer to MCIF_WB */
2879 	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
2880 		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
2881 
2882 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2883 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2884 
2885 		if (tg->funcs->is_tg_enabled(tg))
2886 			tg->funcs->unlock(tg);
2887 	}
2888 
2889 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2890 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2891 
2892 		dc->hwss.disable_plane(dc, pipe_ctx);
2893 
2894 		pipe_ctx->stream_res.tg = NULL;
2895 		pipe_ctx->plane_res.hubp = NULL;
2896 	}
2897 
2898 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2899 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2900 
2901 		tg->funcs->tg_init(tg);
2902 	}
2903 
2904 	if (dc->res_pool->hubbub->funcs->init_crb)
2905 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
2906 }
2907 #ifndef TRIM_FSFT
2908 bool dcn20_optimize_timing_for_fsft(struct dc *dc,
2909 		struct dc_crtc_timing *timing,
2910 		unsigned int max_input_rate_in_khz)
2911 {
2912 	unsigned int old_v_front_porch;
2913 	unsigned int old_v_total;
2914 	unsigned int max_input_rate_in_100hz;
2915 	unsigned long long new_v_total;
2916 
2917 	max_input_rate_in_100hz = max_input_rate_in_khz * 10;
2918 	if (max_input_rate_in_100hz < timing->pix_clk_100hz)
2919 		return false;
2920 
2921 	old_v_total = timing->v_total;
2922 	old_v_front_porch = timing->v_front_porch;
2923 
2924 	timing->fast_transport_output_rate_100hz = timing->pix_clk_100hz;
2925 	timing->pix_clk_100hz = max_input_rate_in_100hz;
2926 
2927 	new_v_total = div_u64((unsigned long long)old_v_total * max_input_rate_in_100hz, timing->pix_clk_100hz);
2928 
2929 	timing->v_total = new_v_total;
2930 	timing->v_front_porch = old_v_front_porch + (timing->v_total - old_v_total);
2931 	return true;
2932 }
2933 #endif
2934 
2935 void dcn20_set_disp_pattern_generator(const struct dc *dc,
2936 		struct pipe_ctx *pipe_ctx,
2937 		enum controller_dp_test_pattern test_pattern,
2938 		enum controller_dp_color_space color_space,
2939 		enum dc_color_depth color_depth,
2940 		const struct tg_color *solid_color,
2941 		int width, int height, int offset)
2942 {
2943 	pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern,
2944 			color_space, color_depth, solid_color, width, height, offset);
2945 }
2946