xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn20/dcn20_hwseq.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include <linux/delay.h>
26 
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "dm_helpers.h"
30 #include "core_types.h"
31 #include "resource.h"
32 #include "dcn20_resource.h"
33 #include "dcn20_hwseq.h"
34 #include "dce/dce_hwseq.h"
35 #include "dcn20_dsc.h"
36 #include "dcn20_optc.h"
37 #include "abm.h"
38 #include "clk_mgr.h"
39 #include "dmcu.h"
40 #include "hubp.h"
41 #include "timing_generator.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "mpc.h"
45 #include "mcif_wb.h"
46 #include "dchubbub.h"
47 #include "reg_helper.h"
48 #include "dcn10/dcn10_cm_common.h"
49 #include "vm_helper.h"
50 #include "dccg.h"
51 #include "dc_dmub_srv.h"
52 #include "dce/dmub_hw_lock_mgr.h"
53 #include "hw_sequencer.h"
54 #include "dpcd_defs.h"
55 #include "inc/link_enc_cfg.h"
56 #include "link_hwss.h"
57 #include "link.h"
58 
59 #define DC_LOGGER_INIT(logger)
60 
61 #define CTX \
62 	hws->ctx
63 #define REG(reg)\
64 	hws->regs->reg
65 
66 #undef FN
67 #define FN(reg_name, field_name) \
68 	hws->shifts->field_name, hws->masks->field_name
69 
70 static int find_free_gsl_group(const struct dc *dc)
71 {
72 	if (dc->res_pool->gsl_groups.gsl_0 == 0)
73 		return 1;
74 	if (dc->res_pool->gsl_groups.gsl_1 == 0)
75 		return 2;
76 	if (dc->res_pool->gsl_groups.gsl_2 == 0)
77 		return 3;
78 
79 	return 0;
80 }
81 
82 /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
83  * This is only used to lock pipes in pipe splitting case with immediate flip
84  * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
85  * so we get tearing with freesync since we cannot flip multiple pipes
86  * atomically.
87  * We use GSL for this:
88  * - immediate flip: find first available GSL group if not already assigned
89  *                   program gsl with that group, set current OTG as master
90  *                   and always us 0x4 = AND of flip_ready from all pipes
91  * - vsync flip: disable GSL if used
92  *
93  * Groups in stream_res are stored as +1 from HW registers, i.e.
94  * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
95  * Using a magic value like -1 would require tracking all inits/resets
96  */
97 static void dcn20_setup_gsl_group_as_lock(
98 		const struct dc *dc,
99 		struct pipe_ctx *pipe_ctx,
100 		bool enable)
101 {
102 	struct gsl_params gsl;
103 	int group_idx;
104 
105 	memset(&gsl, 0, sizeof(struct gsl_params));
106 
107 	if (enable) {
108 		/* return if group already assigned since GSL was set up
109 		 * for vsync flip, we would unassign so it can't be "left over"
110 		 */
111 		if (pipe_ctx->stream_res.gsl_group > 0)
112 			return;
113 
114 		group_idx = find_free_gsl_group(dc);
115 		ASSERT(group_idx != 0);
116 		pipe_ctx->stream_res.gsl_group = group_idx;
117 
118 		/* set gsl group reg field and mark resource used */
119 		switch (group_idx) {
120 		case 1:
121 			gsl.gsl0_en = 1;
122 			dc->res_pool->gsl_groups.gsl_0 = 1;
123 			break;
124 		case 2:
125 			gsl.gsl1_en = 1;
126 			dc->res_pool->gsl_groups.gsl_1 = 1;
127 			break;
128 		case 3:
129 			gsl.gsl2_en = 1;
130 			dc->res_pool->gsl_groups.gsl_2 = 1;
131 			break;
132 		default:
133 			BREAK_TO_DEBUGGER();
134 			return; // invalid case
135 		}
136 		gsl.gsl_master_en = 1;
137 	} else {
138 		group_idx = pipe_ctx->stream_res.gsl_group;
139 		if (group_idx == 0)
140 			return; // if not in use, just return
141 
142 		pipe_ctx->stream_res.gsl_group = 0;
143 
144 		/* unset gsl group reg field and mark resource free */
145 		switch (group_idx) {
146 		case 1:
147 			gsl.gsl0_en = 0;
148 			dc->res_pool->gsl_groups.gsl_0 = 0;
149 			break;
150 		case 2:
151 			gsl.gsl1_en = 0;
152 			dc->res_pool->gsl_groups.gsl_1 = 0;
153 			break;
154 		case 3:
155 			gsl.gsl2_en = 0;
156 			dc->res_pool->gsl_groups.gsl_2 = 0;
157 			break;
158 		default:
159 			BREAK_TO_DEBUGGER();
160 			return;
161 		}
162 		gsl.gsl_master_en = 0;
163 	}
164 
165 	/* at this point we want to program whether it's to enable or disable */
166 	if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
167 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
168 		pipe_ctx->stream_res.tg->funcs->set_gsl(
169 			pipe_ctx->stream_res.tg,
170 			&gsl);
171 
172 		pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
173 			pipe_ctx->stream_res.tg, group_idx,	enable ? 4 : 0);
174 	} else
175 		BREAK_TO_DEBUGGER();
176 }
177 
178 void dcn20_set_flip_control_gsl(
179 		struct pipe_ctx *pipe_ctx,
180 		bool flip_immediate)
181 {
182 	if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
183 		pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
184 				pipe_ctx->plane_res.hubp, flip_immediate);
185 
186 }
187 
188 void dcn20_enable_power_gating_plane(
189 	struct dce_hwseq *hws,
190 	bool enable)
191 {
192 	bool force_on = true; /* disable power gating */
193 	uint32_t org_ip_request_cntl = 0;
194 
195 	if (enable)
196 		force_on = false;
197 
198 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
199 	if (org_ip_request_cntl == 0)
200 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
201 
202 	/* DCHUBP0/1/2/3/4/5 */
203 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
204 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
205 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
206 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
207 	if (REG(DOMAIN8_PG_CONFIG))
208 		REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
209 	if (REG(DOMAIN10_PG_CONFIG))
210 		REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
211 
212 	/* DPP0/1/2/3/4/5 */
213 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
214 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
215 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
216 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
217 	if (REG(DOMAIN9_PG_CONFIG))
218 		REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
219 	if (REG(DOMAIN11_PG_CONFIG))
220 		REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
221 
222 	/* DCS0/1/2/3/4/5 */
223 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
224 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
225 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
226 	if (REG(DOMAIN19_PG_CONFIG))
227 		REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
228 	if (REG(DOMAIN20_PG_CONFIG))
229 		REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
230 	if (REG(DOMAIN21_PG_CONFIG))
231 		REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
232 
233 	if (org_ip_request_cntl == 0)
234 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
235 
236 }
237 
238 void dcn20_dccg_init(struct dce_hwseq *hws)
239 {
240 	/*
241 	 * set MICROSECOND_TIME_BASE_DIV
242 	 * 100Mhz refclk -> 0x120264
243 	 * 27Mhz refclk -> 0x12021b
244 	 * 48Mhz refclk -> 0x120230
245 	 *
246 	 */
247 	REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
248 
249 	/*
250 	 * set MILLISECOND_TIME_BASE_DIV
251 	 * 100Mhz refclk -> 0x1186a0
252 	 * 27Mhz refclk -> 0x106978
253 	 * 48Mhz refclk -> 0x10bb80
254 	 *
255 	 */
256 	REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
257 
258 	/* This value is dependent on the hardware pipeline delay so set once per SOC */
259 	REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0xe01003c);
260 }
261 
262 void dcn20_disable_vga(
263 	struct dce_hwseq *hws)
264 {
265 	REG_WRITE(D1VGA_CONTROL, 0);
266 	REG_WRITE(D2VGA_CONTROL, 0);
267 	REG_WRITE(D3VGA_CONTROL, 0);
268 	REG_WRITE(D4VGA_CONTROL, 0);
269 	REG_WRITE(D5VGA_CONTROL, 0);
270 	REG_WRITE(D6VGA_CONTROL, 0);
271 }
272 
273 void dcn20_program_triple_buffer(
274 	const struct dc *dc,
275 	struct pipe_ctx *pipe_ctx,
276 	bool enable_triple_buffer)
277 {
278 	if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
279 		pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
280 			pipe_ctx->plane_res.hubp,
281 			enable_triple_buffer);
282 	}
283 }
284 
285 /* Blank pixel data during initialization */
286 void dcn20_init_blank(
287 		struct dc *dc,
288 		struct timing_generator *tg)
289 {
290 	struct dce_hwseq *hws = dc->hwseq;
291 	enum dc_color_space color_space;
292 	struct tg_color black_color = {0};
293 	struct output_pixel_processor *opp = NULL;
294 	struct output_pixel_processor *bottom_opp = NULL;
295 	uint32_t num_opps, opp_id_src0, opp_id_src1;
296 	uint32_t otg_active_width, otg_active_height;
297 
298 	/* program opp dpg blank color */
299 	color_space = COLOR_SPACE_SRGB;
300 	color_space_to_black_color(dc, color_space, &black_color);
301 
302 	/* get the OTG active size */
303 	tg->funcs->get_otg_active_size(tg,
304 			&otg_active_width,
305 			&otg_active_height);
306 
307 	/* get the OPTC source */
308 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
309 
310 	if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
311 		ASSERT(false);
312 		return;
313 	}
314 	opp = dc->res_pool->opps[opp_id_src0];
315 
316 	if (num_opps == 2) {
317 		otg_active_width = otg_active_width / 2;
318 
319 		if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
320 			ASSERT(false);
321 			return;
322 		}
323 		bottom_opp = dc->res_pool->opps[opp_id_src1];
324 	}
325 
326 	opp->funcs->opp_set_disp_pattern_generator(
327 			opp,
328 			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
329 			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
330 			COLOR_DEPTH_UNDEFINED,
331 			&black_color,
332 			otg_active_width,
333 			otg_active_height,
334 			0);
335 
336 	if (num_opps == 2) {
337 		bottom_opp->funcs->opp_set_disp_pattern_generator(
338 				bottom_opp,
339 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
340 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
341 				COLOR_DEPTH_UNDEFINED,
342 				&black_color,
343 				otg_active_width,
344 				otg_active_height,
345 				0);
346 	}
347 
348 	hws->funcs.wait_for_blank_complete(opp);
349 }
350 
351 void dcn20_dsc_pg_control(
352 		struct dce_hwseq *hws,
353 		unsigned int dsc_inst,
354 		bool power_on)
355 {
356 	uint32_t power_gate = power_on ? 0 : 1;
357 	uint32_t pwr_status = power_on ? 0 : 2;
358 	uint32_t org_ip_request_cntl = 0;
359 
360 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
361 		return;
362 
363 	if (REG(DOMAIN16_PG_CONFIG) == 0)
364 		return;
365 
366 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
367 	if (org_ip_request_cntl == 0)
368 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
369 
370 	switch (dsc_inst) {
371 	case 0: /* DSC0 */
372 		REG_UPDATE(DOMAIN16_PG_CONFIG,
373 				DOMAIN16_POWER_GATE, power_gate);
374 
375 		REG_WAIT(DOMAIN16_PG_STATUS,
376 				DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
377 				1, 1000);
378 		break;
379 	case 1: /* DSC1 */
380 		REG_UPDATE(DOMAIN17_PG_CONFIG,
381 				DOMAIN17_POWER_GATE, power_gate);
382 
383 		REG_WAIT(DOMAIN17_PG_STATUS,
384 				DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
385 				1, 1000);
386 		break;
387 	case 2: /* DSC2 */
388 		REG_UPDATE(DOMAIN18_PG_CONFIG,
389 				DOMAIN18_POWER_GATE, power_gate);
390 
391 		REG_WAIT(DOMAIN18_PG_STATUS,
392 				DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
393 				1, 1000);
394 		break;
395 	case 3: /* DSC3 */
396 		REG_UPDATE(DOMAIN19_PG_CONFIG,
397 				DOMAIN19_POWER_GATE, power_gate);
398 
399 		REG_WAIT(DOMAIN19_PG_STATUS,
400 				DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
401 				1, 1000);
402 		break;
403 	case 4: /* DSC4 */
404 		REG_UPDATE(DOMAIN20_PG_CONFIG,
405 				DOMAIN20_POWER_GATE, power_gate);
406 
407 		REG_WAIT(DOMAIN20_PG_STATUS,
408 				DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
409 				1, 1000);
410 		break;
411 	case 5: /* DSC5 */
412 		REG_UPDATE(DOMAIN21_PG_CONFIG,
413 				DOMAIN21_POWER_GATE, power_gate);
414 
415 		REG_WAIT(DOMAIN21_PG_STATUS,
416 				DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
417 				1, 1000);
418 		break;
419 	default:
420 		BREAK_TO_DEBUGGER();
421 		break;
422 	}
423 
424 	if (org_ip_request_cntl == 0)
425 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
426 }
427 
428 void dcn20_dpp_pg_control(
429 		struct dce_hwseq *hws,
430 		unsigned int dpp_inst,
431 		bool power_on)
432 {
433 	uint32_t power_gate = power_on ? 0 : 1;
434 	uint32_t pwr_status = power_on ? 0 : 2;
435 
436 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
437 		return;
438 	if (REG(DOMAIN1_PG_CONFIG) == 0)
439 		return;
440 
441 	switch (dpp_inst) {
442 	case 0: /* DPP0 */
443 		REG_UPDATE(DOMAIN1_PG_CONFIG,
444 				DOMAIN1_POWER_GATE, power_gate);
445 
446 		REG_WAIT(DOMAIN1_PG_STATUS,
447 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
448 				1, 1000);
449 		break;
450 	case 1: /* DPP1 */
451 		REG_UPDATE(DOMAIN3_PG_CONFIG,
452 				DOMAIN3_POWER_GATE, power_gate);
453 
454 		REG_WAIT(DOMAIN3_PG_STATUS,
455 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
456 				1, 1000);
457 		break;
458 	case 2: /* DPP2 */
459 		REG_UPDATE(DOMAIN5_PG_CONFIG,
460 				DOMAIN5_POWER_GATE, power_gate);
461 
462 		REG_WAIT(DOMAIN5_PG_STATUS,
463 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
464 				1, 1000);
465 		break;
466 	case 3: /* DPP3 */
467 		REG_UPDATE(DOMAIN7_PG_CONFIG,
468 				DOMAIN7_POWER_GATE, power_gate);
469 
470 		REG_WAIT(DOMAIN7_PG_STATUS,
471 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
472 				1, 1000);
473 		break;
474 	case 4: /* DPP4 */
475 		REG_UPDATE(DOMAIN9_PG_CONFIG,
476 				DOMAIN9_POWER_GATE, power_gate);
477 
478 		REG_WAIT(DOMAIN9_PG_STATUS,
479 				DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
480 				1, 1000);
481 		break;
482 	case 5: /* DPP5 */
483 		/*
484 		 * Do not power gate DPP5, should be left at HW default, power on permanently.
485 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
486 		 * reset.
487 		 * REG_UPDATE(DOMAIN11_PG_CONFIG,
488 		 *		DOMAIN11_POWER_GATE, power_gate);
489 		 *
490 		 * REG_WAIT(DOMAIN11_PG_STATUS,
491 		 *		DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
492 		 * 		1, 1000);
493 		 */
494 		break;
495 	default:
496 		BREAK_TO_DEBUGGER();
497 		break;
498 	}
499 }
500 
501 
502 void dcn20_hubp_pg_control(
503 		struct dce_hwseq *hws,
504 		unsigned int hubp_inst,
505 		bool power_on)
506 {
507 	uint32_t power_gate = power_on ? 0 : 1;
508 	uint32_t pwr_status = power_on ? 0 : 2;
509 
510 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
511 		return;
512 	if (REG(DOMAIN0_PG_CONFIG) == 0)
513 		return;
514 
515 	switch (hubp_inst) {
516 	case 0: /* DCHUBP0 */
517 		REG_UPDATE(DOMAIN0_PG_CONFIG,
518 				DOMAIN0_POWER_GATE, power_gate);
519 
520 		REG_WAIT(DOMAIN0_PG_STATUS,
521 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
522 				1, 1000);
523 		break;
524 	case 1: /* DCHUBP1 */
525 		REG_UPDATE(DOMAIN2_PG_CONFIG,
526 				DOMAIN2_POWER_GATE, power_gate);
527 
528 		REG_WAIT(DOMAIN2_PG_STATUS,
529 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
530 				1, 1000);
531 		break;
532 	case 2: /* DCHUBP2 */
533 		REG_UPDATE(DOMAIN4_PG_CONFIG,
534 				DOMAIN4_POWER_GATE, power_gate);
535 
536 		REG_WAIT(DOMAIN4_PG_STATUS,
537 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
538 				1, 1000);
539 		break;
540 	case 3: /* DCHUBP3 */
541 		REG_UPDATE(DOMAIN6_PG_CONFIG,
542 				DOMAIN6_POWER_GATE, power_gate);
543 
544 		REG_WAIT(DOMAIN6_PG_STATUS,
545 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
546 				1, 1000);
547 		break;
548 	case 4: /* DCHUBP4 */
549 		REG_UPDATE(DOMAIN8_PG_CONFIG,
550 				DOMAIN8_POWER_GATE, power_gate);
551 
552 		REG_WAIT(DOMAIN8_PG_STATUS,
553 				DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
554 				1, 1000);
555 		break;
556 	case 5: /* DCHUBP5 */
557 		/*
558 		 * Do not power gate DCHUB5, should be left at HW default, power on permanently.
559 		 * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
560 		 * reset.
561 		 * REG_UPDATE(DOMAIN10_PG_CONFIG,
562 		 *		DOMAIN10_POWER_GATE, power_gate);
563 		 *
564 		 * REG_WAIT(DOMAIN10_PG_STATUS,
565 		 *		DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
566 		 *		1, 1000);
567 		 */
568 		break;
569 	default:
570 		BREAK_TO_DEBUGGER();
571 		break;
572 	}
573 }
574 
575 
576 /* disable HW used by plane.
577  * note:  cannot disable until disconnect is complete
578  */
579 void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
580 {
581 	struct dce_hwseq *hws = dc->hwseq;
582 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
583 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
584 
585 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
586 
587 	/* In flip immediate with pipe splitting case GSL is used for
588 	 * synchronization so we must disable it when the plane is disabled.
589 	 */
590 	if (pipe_ctx->stream_res.gsl_group != 0)
591 		dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
592 
593 	if (hubp->funcs->hubp_update_mall_sel)
594 		hubp->funcs->hubp_update_mall_sel(hubp, 0, false);
595 
596 	dc->hwss.set_flip_control_gsl(pipe_ctx, false);
597 
598 	hubp->funcs->hubp_clk_cntl(hubp, false);
599 
600 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
601 
602 	hubp->power_gated = true;
603 
604 	hws->funcs.plane_atomic_power_down(dc,
605 			pipe_ctx->plane_res.dpp,
606 			pipe_ctx->plane_res.hubp);
607 
608 	pipe_ctx->stream = NULL;
609 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
610 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
611 	pipe_ctx->top_pipe = NULL;
612 	pipe_ctx->bottom_pipe = NULL;
613 	pipe_ctx->plane_state = NULL;
614 }
615 
616 
617 void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
618 {
619 	bool is_phantom = pipe_ctx->plane_state && pipe_ctx->plane_state->is_phantom;
620 	struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL;
621 
622 	DC_LOGGER_INIT(dc->ctx->logger);
623 
624 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
625 		return;
626 
627 	dcn20_plane_atomic_disable(dc, pipe_ctx);
628 
629 	/* Turn back off the phantom OTG after the phantom plane is fully disabled
630 	 */
631 	if (is_phantom)
632 		if (tg && tg->funcs->disable_phantom_crtc)
633 			tg->funcs->disable_phantom_crtc(tg);
634 
635 	DC_LOG_DC("Power down front end %d\n",
636 					pipe_ctx->pipe_idx);
637 }
638 
639 void dcn20_disable_pixel_data(struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank)
640 {
641 	dcn20_blank_pixel_data(dc, pipe_ctx, blank);
642 }
643 
644 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
645 		int opp_cnt)
646 {
647 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
648 	int flow_ctrl_cnt;
649 
650 	if (opp_cnt >= 2)
651 		hblank_halved = true;
652 
653 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
654 			stream->timing.h_border_left -
655 			stream->timing.h_border_right;
656 
657 	if (hblank_halved)
658 		flow_ctrl_cnt /= 2;
659 
660 	/* ODM combine 4:1 case */
661 	if (opp_cnt == 4)
662 		flow_ctrl_cnt /= 2;
663 
664 	return flow_ctrl_cnt;
665 }
666 
667 enum dc_status dcn20_enable_stream_timing(
668 		struct pipe_ctx *pipe_ctx,
669 		struct dc_state *context,
670 		struct dc *dc)
671 {
672 	struct dce_hwseq *hws = dc->hwseq;
673 	struct dc_stream_state *stream = pipe_ctx->stream;
674 	struct drr_params params = {0};
675 	unsigned int event_triggers = 0;
676 	struct pipe_ctx *odm_pipe;
677 	int opp_cnt = 1;
678 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
679 	bool interlace = stream->timing.flags.INTERLACE;
680 	int i;
681 	struct mpc_dwb_flow_control flow_control;
682 	struct mpc *mpc = dc->res_pool->mpc;
683 	bool rate_control_2x_pclk = (interlace || optc2_is_two_pixels_per_containter(&stream->timing));
684 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
685 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
686 
687 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
688 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
689 
690 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
691 			dc->res_pool->dccg,
692 			pipe_ctx->stream_res.tg->inst,
693 			k1_div, k2_div);
694 	}
695 	/* by upper caller loop, pipe0 is parent pipe and be called first.
696 	 * back end is set up by for pipe0. Other children pipe share back end
697 	 * with pipe 0. No program is needed.
698 	 */
699 	if (pipe_ctx->top_pipe != NULL)
700 		return DC_OK;
701 
702 	/* TODO check if timing_changed, disable stream if timing changed */
703 
704 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
705 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
706 		opp_cnt++;
707 	}
708 
709 	if (opp_cnt > 1)
710 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
711 				pipe_ctx->stream_res.tg,
712 				opp_inst, opp_cnt,
713 				&pipe_ctx->stream->timing);
714 
715 	/* HW program guide assume display already disable
716 	 * by unplug sequence. OTG assume stop.
717 	 */
718 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
719 
720 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
721 			pipe_ctx->clock_source,
722 			&pipe_ctx->stream_res.pix_clk_params,
723 			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
724 			&pipe_ctx->pll_settings)) {
725 		BREAK_TO_DEBUGGER();
726 		return DC_ERROR_UNEXPECTED;
727 	}
728 
729 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
730 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
731 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
732 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
733 		else
734 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
735 	}
736 
737 	if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
738 		dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
739 
740 	pipe_ctx->stream_res.tg->funcs->program_timing(
741 			pipe_ctx->stream_res.tg,
742 			&stream->timing,
743 			pipe_ctx->pipe_dlg_param.vready_offset,
744 			pipe_ctx->pipe_dlg_param.vstartup_start,
745 			pipe_ctx->pipe_dlg_param.vupdate_offset,
746 			pipe_ctx->pipe_dlg_param.vupdate_width,
747 			pipe_ctx->stream->signal,
748 			true);
749 
750 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
751 	flow_control.flow_ctrl_mode = 0;
752 	flow_control.flow_ctrl_cnt0 = 0x80;
753 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(stream, opp_cnt);
754 	if (mpc->funcs->set_out_rate_control) {
755 		for (i = 0; i < opp_cnt; ++i) {
756 			mpc->funcs->set_out_rate_control(
757 					mpc, opp_inst[i],
758 					true,
759 					rate_control_2x_pclk,
760 					&flow_control);
761 		}
762 	}
763 
764 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
765 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
766 				odm_pipe->stream_res.opp,
767 				true);
768 
769 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
770 			pipe_ctx->stream_res.opp,
771 			true);
772 
773 	hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
774 
775 	/* VTG is  within DCHUB command block. DCFCLK is always on */
776 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
777 		BREAK_TO_DEBUGGER();
778 		return DC_ERROR_UNEXPECTED;
779 	}
780 
781 	hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
782 
783 	params.vertical_total_min = stream->adjust.v_total_min;
784 	params.vertical_total_max = stream->adjust.v_total_max;
785 	params.vertical_total_mid = stream->adjust.v_total_mid;
786 	params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
787 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
788 		pipe_ctx->stream_res.tg->funcs->set_drr(
789 			pipe_ctx->stream_res.tg, &params);
790 
791 	// DRR should set trigger event to monitor surface update event
792 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
793 		event_triggers = 0x80;
794 	/* Event triggers and num frames initialized for DRR, but can be
795 	 * later updated for PSR use. Note DRR trigger events are generated
796 	 * regardless of whether num frames met.
797 	 */
798 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
799 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
800 				pipe_ctx->stream_res.tg, event_triggers, 2);
801 
802 	/* TODO program crtc source select for non-virtual signal*/
803 	/* TODO program FMT */
804 	/* TODO setup link_enc */
805 	/* TODO set stream attributes */
806 	/* TODO program audio */
807 	/* TODO enable stream if timing changed */
808 	/* TODO unblank stream if DP */
809 
810 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
811 		if (pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable)
812 			pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg);
813 	}
814 	return DC_OK;
815 }
816 
817 void dcn20_program_output_csc(struct dc *dc,
818 		struct pipe_ctx *pipe_ctx,
819 		enum dc_color_space colorspace,
820 		uint16_t *matrix,
821 		int opp_id)
822 {
823 	struct mpc *mpc = dc->res_pool->mpc;
824 	enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
825 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
826 
827 	if (mpc->funcs->power_on_mpc_mem_pwr)
828 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
829 
830 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
831 		if (mpc->funcs->set_output_csc != NULL)
832 			mpc->funcs->set_output_csc(mpc,
833 					opp_id,
834 					matrix,
835 					ocsc_mode);
836 	} else {
837 		if (mpc->funcs->set_ocsc_default != NULL)
838 			mpc->funcs->set_ocsc_default(mpc,
839 					opp_id,
840 					colorspace,
841 					ocsc_mode);
842 	}
843 }
844 
845 bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
846 				const struct dc_stream_state *stream)
847 {
848 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
849 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
850 	struct pwl_params *params = NULL;
851 	/*
852 	 * program OGAM only for the top pipe
853 	 * if there is a pipe split then fix diagnostic is required:
854 	 * how to pass OGAM parameter for stream.
855 	 * if programming for all pipes is required then remove condition
856 	 * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
857 	 */
858 	if (mpc->funcs->power_on_mpc_mem_pwr)
859 		mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
860 	if (pipe_ctx->top_pipe == NULL
861 			&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
862 		if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
863 			params = &stream->out_transfer_func->pwl;
864 		else if (pipe_ctx->stream->out_transfer_func->type ==
865 			TF_TYPE_DISTRIBUTED_POINTS &&
866 			cm_helper_translate_curve_to_hw_format(
867 			stream->out_transfer_func,
868 			&mpc->blender_params, false))
869 			params = &mpc->blender_params;
870 		/*
871 		 * there is no ROM
872 		 */
873 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
874 			BREAK_TO_DEBUGGER();
875 	}
876 	/*
877 	 * if above if is not executed then 'params' equal to 0 and set in bypass
878 	 */
879 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
880 
881 	return true;
882 }
883 
884 bool dcn20_set_blend_lut(
885 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
886 {
887 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
888 	bool result = true;
889 	struct pwl_params *blend_lut = NULL;
890 
891 	if (plane_state->blend_tf) {
892 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
893 			blend_lut = &plane_state->blend_tf->pwl;
894 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
895 			cm_helper_translate_curve_to_hw_format(
896 					plane_state->blend_tf,
897 					&dpp_base->regamma_params, false);
898 			blend_lut = &dpp_base->regamma_params;
899 		}
900 	}
901 	result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
902 
903 	return result;
904 }
905 
906 bool dcn20_set_shaper_3dlut(
907 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
908 {
909 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
910 	bool result = true;
911 	struct pwl_params *shaper_lut = NULL;
912 
913 	if (plane_state->in_shaper_func) {
914 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
915 			shaper_lut = &plane_state->in_shaper_func->pwl;
916 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
917 			cm_helper_translate_curve_to_hw_format(
918 					plane_state->in_shaper_func,
919 					&dpp_base->shaper_params, true);
920 			shaper_lut = &dpp_base->shaper_params;
921 		}
922 	}
923 
924 	result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
925 	if (plane_state->lut3d_func &&
926 		plane_state->lut3d_func->state.bits.initialized == 1)
927 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
928 								&plane_state->lut3d_func->lut_3d);
929 	else
930 		result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
931 
932 	return result;
933 }
934 
935 bool dcn20_set_input_transfer_func(struct dc *dc,
936 				struct pipe_ctx *pipe_ctx,
937 				const struct dc_plane_state *plane_state)
938 {
939 	struct dce_hwseq *hws = dc->hwseq;
940 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
941 	const struct dc_transfer_func *tf = NULL;
942 	bool result = true;
943 	bool use_degamma_ram = false;
944 
945 	if (dpp_base == NULL || plane_state == NULL)
946 		return false;
947 
948 	hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
949 	hws->funcs.set_blend_lut(pipe_ctx, plane_state);
950 
951 	if (plane_state->in_transfer_func)
952 		tf = plane_state->in_transfer_func;
953 
954 
955 	if (tf == NULL) {
956 		dpp_base->funcs->dpp_set_degamma(dpp_base,
957 				IPP_DEGAMMA_MODE_BYPASS);
958 		return true;
959 	}
960 
961 	if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
962 		use_degamma_ram = true;
963 
964 	if (use_degamma_ram == true) {
965 		if (tf->type == TF_TYPE_HWPWL)
966 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
967 					&tf->pwl);
968 		else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
969 			cm_helper_translate_curve_to_degamma_hw_format(tf,
970 					&dpp_base->degamma_params);
971 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
972 				&dpp_base->degamma_params);
973 		}
974 		return true;
975 	}
976 	/* handle here the optimized cases when de-gamma ROM could be used.
977 	 *
978 	 */
979 	if (tf->type == TF_TYPE_PREDEFINED) {
980 		switch (tf->tf) {
981 		case TRANSFER_FUNCTION_SRGB:
982 			dpp_base->funcs->dpp_set_degamma(dpp_base,
983 					IPP_DEGAMMA_MODE_HW_sRGB);
984 			break;
985 		case TRANSFER_FUNCTION_BT709:
986 			dpp_base->funcs->dpp_set_degamma(dpp_base,
987 					IPP_DEGAMMA_MODE_HW_xvYCC);
988 			break;
989 		case TRANSFER_FUNCTION_LINEAR:
990 			dpp_base->funcs->dpp_set_degamma(dpp_base,
991 					IPP_DEGAMMA_MODE_BYPASS);
992 			break;
993 		case TRANSFER_FUNCTION_PQ:
994 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
995 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
996 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
997 			result = true;
998 			break;
999 		default:
1000 			result = false;
1001 			break;
1002 		}
1003 	} else if (tf->type == TF_TYPE_BYPASS)
1004 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1005 				IPP_DEGAMMA_MODE_BYPASS);
1006 	else {
1007 		/*
1008 		 * if we are here, we did not handle correctly.
1009 		 * fix is required for this use case
1010 		 */
1011 		BREAK_TO_DEBUGGER();
1012 		dpp_base->funcs->dpp_set_degamma(dpp_base,
1013 				IPP_DEGAMMA_MODE_BYPASS);
1014 	}
1015 
1016 	return result;
1017 }
1018 
1019 void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1020 {
1021 	struct pipe_ctx *odm_pipe;
1022 	int opp_cnt = 1;
1023 	int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
1024 
1025 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1026 		opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
1027 		opp_cnt++;
1028 	}
1029 
1030 	if (opp_cnt > 1)
1031 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1032 				pipe_ctx->stream_res.tg,
1033 				opp_inst, opp_cnt,
1034 				&pipe_ctx->stream->timing);
1035 	else
1036 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1037 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1038 }
1039 
1040 void dcn20_blank_pixel_data(
1041 		struct dc *dc,
1042 		struct pipe_ctx *pipe_ctx,
1043 		bool blank)
1044 {
1045 	struct tg_color black_color = {0};
1046 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
1047 	struct dc_stream_state *stream = pipe_ctx->stream;
1048 	enum dc_color_space color_space = stream->output_color_space;
1049 	enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
1050 	enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1051 	struct pipe_ctx *odm_pipe;
1052 	int odm_cnt = 1;
1053 
1054 	int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
1055 	int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
1056 
1057 	if (stream->link->test_pattern_enabled)
1058 		return;
1059 
1060 	/* get opp dpg blank color */
1061 	color_space_to_black_color(dc, color_space, &black_color);
1062 
1063 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1064 		odm_cnt++;
1065 
1066 	width = width / odm_cnt;
1067 
1068 	if (blank) {
1069 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
1070 
1071 		if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
1072 			test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1073 			test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1074 		}
1075 	} else {
1076 		test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1077 	}
1078 
1079 	dc->hwss.set_disp_pattern_generator(dc,
1080 			pipe_ctx,
1081 			test_pattern,
1082 			test_pattern_color_space,
1083 			stream->timing.display_color_depth,
1084 			&black_color,
1085 			width,
1086 			height,
1087 			0);
1088 
1089 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1090 		dc->hwss.set_disp_pattern_generator(dc,
1091 				odm_pipe,
1092 				dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ?
1093 						CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern,
1094 				test_pattern_color_space,
1095 				stream->timing.display_color_depth,
1096 				&black_color,
1097 				width,
1098 				height,
1099 				0);
1100 	}
1101 
1102 	if (!blank && dc->debug.enable_single_display_2to1_odm_policy) {
1103 		/* when exiting dynamic ODM need to reinit DPG state for unused pipes */
1104 		struct pipe_ctx *old_odm_pipe = dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx].next_odm_pipe;
1105 
1106 		odm_pipe = pipe_ctx->next_odm_pipe;
1107 
1108 		while (old_odm_pipe) {
1109 			if (!odm_pipe || old_odm_pipe->pipe_idx != odm_pipe->pipe_idx)
1110 				dc->hwss.set_disp_pattern_generator(dc,
1111 						old_odm_pipe,
1112 						CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
1113 						CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1114 						COLOR_DEPTH_888,
1115 						NULL,
1116 						0,
1117 						0,
1118 						0);
1119 			old_odm_pipe = old_odm_pipe->next_odm_pipe;
1120 			if (odm_pipe)
1121 				odm_pipe = odm_pipe->next_odm_pipe;
1122 		}
1123 	}
1124 
1125 	if (!blank)
1126 		if (stream_res->abm) {
1127 			dc->hwss.set_pipe(pipe_ctx);
1128 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
1129 		}
1130 }
1131 
1132 
1133 static void dcn20_power_on_plane_resources(
1134 	struct dce_hwseq *hws,
1135 	struct pipe_ctx *pipe_ctx)
1136 {
1137 	DC_LOGGER_INIT(hws->ctx->logger);
1138 
1139 	if (hws->funcs.dpp_root_clock_control)
1140 		hws->funcs.dpp_root_clock_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1141 
1142 	if (REG(DC_IP_REQUEST_CNTL)) {
1143 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1144 				IP_REQUEST_EN, 1);
1145 
1146 		if (hws->funcs.dpp_pg_control)
1147 			hws->funcs.dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
1148 
1149 		if (hws->funcs.hubp_pg_control)
1150 			hws->funcs.hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
1151 
1152 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1153 				IP_REQUEST_EN, 0);
1154 		DC_LOG_DEBUG(
1155 				"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
1156 	}
1157 }
1158 
1159 static void dcn20_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx,
1160 			       struct dc_state *context)
1161 {
1162 	//if (dc->debug.sanity_checks) {
1163 	//	dcn10_verify_allow_pstate_change_high(dc);
1164 	//}
1165 	dcn20_power_on_plane_resources(dc->hwseq, pipe_ctx);
1166 
1167 	/* enable DCFCLK current DCHUB */
1168 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
1169 
1170 	/* initialize HUBP on power up */
1171 	pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
1172 
1173 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
1174 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1175 			pipe_ctx->stream_res.opp,
1176 			true);
1177 
1178 /* TODO: enable/disable in dm as per update type.
1179 	if (plane_state) {
1180 		DC_LOG_DC(dc->ctx->logger,
1181 				"Pipe:%d 0x%x: addr hi:0x%x, "
1182 				"addr low:0x%x, "
1183 				"src: %d, %d, %d,"
1184 				" %d; dst: %d, %d, %d, %d;\n",
1185 				pipe_ctx->pipe_idx,
1186 				plane_state,
1187 				plane_state->address.grph.addr.high_part,
1188 				plane_state->address.grph.addr.low_part,
1189 				plane_state->src_rect.x,
1190 				plane_state->src_rect.y,
1191 				plane_state->src_rect.width,
1192 				plane_state->src_rect.height,
1193 				plane_state->dst_rect.x,
1194 				plane_state->dst_rect.y,
1195 				plane_state->dst_rect.width,
1196 				plane_state->dst_rect.height);
1197 
1198 		DC_LOG_DC(dc->ctx->logger,
1199 				"Pipe %d: width, height, x, y         format:%d\n"
1200 				"viewport:%d, %d, %d, %d\n"
1201 				"recout:  %d, %d, %d, %d\n",
1202 				pipe_ctx->pipe_idx,
1203 				plane_state->format,
1204 				pipe_ctx->plane_res.scl_data.viewport.width,
1205 				pipe_ctx->plane_res.scl_data.viewport.height,
1206 				pipe_ctx->plane_res.scl_data.viewport.x,
1207 				pipe_ctx->plane_res.scl_data.viewport.y,
1208 				pipe_ctx->plane_res.scl_data.recout.width,
1209 				pipe_ctx->plane_res.scl_data.recout.height,
1210 				pipe_ctx->plane_res.scl_data.recout.x,
1211 				pipe_ctx->plane_res.scl_data.recout.y);
1212 		print_rq_dlg_ttu(dc, pipe_ctx);
1213 	}
1214 */
1215 	if (dc->vm_pa_config.valid) {
1216 		struct vm_system_aperture_param apt;
1217 
1218 		apt.sys_default.quad_part = 0;
1219 
1220 		apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
1221 		apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
1222 
1223 		// Program system aperture settings
1224 		pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
1225 	}
1226 
1227 	if (!pipe_ctx->top_pipe
1228 		&& pipe_ctx->plane_state
1229 		&& pipe_ctx->plane_state->flip_int_enabled
1230 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
1231 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
1232 
1233 //	if (dc->debug.sanity_checks) {
1234 //		dcn10_verify_allow_pstate_change_high(dc);
1235 //	}
1236 }
1237 
1238 void dcn20_pipe_control_lock(
1239 	struct dc *dc,
1240 	struct pipe_ctx *pipe,
1241 	bool lock)
1242 {
1243 	struct pipe_ctx *temp_pipe;
1244 	bool flip_immediate = false;
1245 
1246 	/* use TG master update lock to lock everything on the TG
1247 	 * therefore only top pipe need to lock
1248 	 */
1249 	if (!pipe || pipe->top_pipe)
1250 		return;
1251 
1252 	if (pipe->plane_state != NULL)
1253 		flip_immediate = pipe->plane_state->flip_immediate;
1254 
1255 	if  (pipe->stream_res.gsl_group > 0) {
1256 	    temp_pipe = pipe->bottom_pipe;
1257 	    while (!flip_immediate && temp_pipe) {
1258 		    if (temp_pipe->plane_state != NULL)
1259 			    flip_immediate = temp_pipe->plane_state->flip_immediate;
1260 		    temp_pipe = temp_pipe->bottom_pipe;
1261 	    }
1262 	}
1263 
1264 	if (flip_immediate && lock) {
1265 		const int TIMEOUT_FOR_FLIP_PENDING = 100000;
1266 		int i;
1267 
1268 		temp_pipe = pipe;
1269 		while (temp_pipe) {
1270 			if (temp_pipe->plane_state && temp_pipe->plane_state->flip_immediate) {
1271 				for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) {
1272 					if (!temp_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(temp_pipe->plane_res.hubp))
1273 						break;
1274 					udelay(1);
1275 				}
1276 
1277 				/* no reason it should take this long for immediate flips */
1278 				ASSERT(i != TIMEOUT_FOR_FLIP_PENDING);
1279 			}
1280 			temp_pipe = temp_pipe->bottom_pipe;
1281 		}
1282 	}
1283 
1284 	/* In flip immediate and pipe splitting case, we need to use GSL
1285 	 * for synchronization. Only do setup on locking and on flip type change.
1286 	 */
1287 	if (lock && (pipe->bottom_pipe != NULL || !flip_immediate))
1288 		if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
1289 		    (!flip_immediate && pipe->stream_res.gsl_group > 0))
1290 			dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
1291 
1292 	if (pipe->plane_state != NULL)
1293 		flip_immediate = pipe->plane_state->flip_immediate;
1294 
1295 	temp_pipe = pipe->bottom_pipe;
1296 	while (flip_immediate && temp_pipe) {
1297 	    if (temp_pipe->plane_state != NULL)
1298 		flip_immediate = temp_pipe->plane_state->flip_immediate;
1299 	    temp_pipe = temp_pipe->bottom_pipe;
1300 	}
1301 
1302 	if (!lock && pipe->stream_res.gsl_group > 0 && pipe->plane_state &&
1303 		!flip_immediate)
1304 	    dcn20_setup_gsl_group_as_lock(dc, pipe, false);
1305 
1306 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1307 		union dmub_hw_lock_flags hw_locks = { 0 };
1308 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1309 
1310 		hw_locks.bits.lock_pipe = 1;
1311 		inst_flags.otg_inst =  pipe->stream_res.tg->inst;
1312 
1313 		if (pipe->plane_state != NULL)
1314 			hw_locks.bits.triple_buffer_lock = pipe->plane_state->triplebuffer_flips;
1315 
1316 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1317 					lock,
1318 					&hw_locks,
1319 					&inst_flags);
1320 	} else if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
1321 		if (lock)
1322 			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
1323 		else
1324 			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
1325 	} else {
1326 		if (lock)
1327 			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1328 		else
1329 			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1330 	}
1331 }
1332 
1333 static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe)
1334 {
1335 	new_pipe->update_flags.raw = 0;
1336 
1337 	/* If non-phantom pipe is being transitioned to a phantom pipe,
1338 	 * set disable and return immediately. This is because the pipe
1339 	 * that was previously in use must be fully disabled before we
1340 	 * can "enable" it as a phantom pipe (since the OTG will certainly
1341 	 * be different). The post_unlock sequence will set the correct
1342 	 * update flags to enable the phantom pipe.
1343 	 */
1344 	if (old_pipe->plane_state && !old_pipe->plane_state->is_phantom &&
1345 			new_pipe->plane_state && new_pipe->plane_state->is_phantom) {
1346 		new_pipe->update_flags.bits.disable = 1;
1347 		return;
1348 	}
1349 
1350 	/* Exit on unchanged, unused pipe */
1351 	if (!old_pipe->plane_state && !new_pipe->plane_state)
1352 		return;
1353 	/* Detect pipe enable/disable */
1354 	if (!old_pipe->plane_state && new_pipe->plane_state) {
1355 		new_pipe->update_flags.bits.enable = 1;
1356 		new_pipe->update_flags.bits.mpcc = 1;
1357 		new_pipe->update_flags.bits.dppclk = 1;
1358 		new_pipe->update_flags.bits.hubp_interdependent = 1;
1359 		new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1360 		new_pipe->update_flags.bits.gamut_remap = 1;
1361 		new_pipe->update_flags.bits.scaler = 1;
1362 		new_pipe->update_flags.bits.viewport = 1;
1363 		new_pipe->update_flags.bits.det_size = 1;
1364 		if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1365 			new_pipe->update_flags.bits.odm = 1;
1366 			new_pipe->update_flags.bits.global_sync = 1;
1367 		}
1368 		return;
1369 	}
1370 
1371 	/* For SubVP we need to unconditionally enable because any phantom pipes are
1372 	 * always removed then newly added for every full updates whenever SubVP is in use.
1373 	 * The remove-add sequence of the phantom pipe always results in the pipe
1374 	 * being blanked in enable_stream_timing (DPG).
1375 	 */
1376 	if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1377 		new_pipe->update_flags.bits.enable = 1;
1378 
1379 	/* Phantom pipes are effectively disabled, if the pipe was previously phantom
1380 	 * we have to enable
1381 	 */
1382 	if (old_pipe->plane_state && old_pipe->plane_state->is_phantom &&
1383 			new_pipe->plane_state && !new_pipe->plane_state->is_phantom)
1384 		new_pipe->update_flags.bits.enable = 1;
1385 
1386 	if (old_pipe->plane_state && !new_pipe->plane_state) {
1387 		new_pipe->update_flags.bits.disable = 1;
1388 		return;
1389 	}
1390 
1391 	/* Detect plane change */
1392 	if (old_pipe->plane_state != new_pipe->plane_state) {
1393 		new_pipe->update_flags.bits.plane_changed = true;
1394 	}
1395 
1396 	/* Detect top pipe only changes */
1397 	if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
1398 		/* Detect odm changes */
1399 		if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe
1400 			&& old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx)
1401 				|| (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe)
1402 				|| (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe)
1403 				|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1404 			new_pipe->update_flags.bits.odm = 1;
1405 
1406 		/* Detect global sync changes */
1407 		if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset
1408 				|| old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start
1409 				|| old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset
1410 				|| old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width)
1411 			new_pipe->update_flags.bits.global_sync = 1;
1412 	}
1413 
1414 	if (old_pipe->det_buffer_size_kb != new_pipe->det_buffer_size_kb)
1415 		new_pipe->update_flags.bits.det_size = 1;
1416 
1417 	/*
1418 	 * Detect opp / tg change, only set on change, not on enable
1419 	 * Assume mpcc inst = pipe index, if not this code needs to be updated
1420 	 * since mpcc is what is affected by these. In fact all of our sequence
1421 	 * makes this assumption at the moment with how hubp reset is matched to
1422 	 * same index mpcc reset.
1423 	 */
1424 	if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1425 		new_pipe->update_flags.bits.opp_changed = 1;
1426 	if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
1427 		new_pipe->update_flags.bits.tg_changed = 1;
1428 
1429 	/*
1430 	 * Detect mpcc blending changes, only dpp inst and opp matter here,
1431 	 * mpccs getting removed/inserted update connected ones during their own
1432 	 * programming
1433 	 */
1434 	if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
1435 			|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
1436 		new_pipe->update_flags.bits.mpcc = 1;
1437 
1438 	/* Detect dppclk change */
1439 	if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
1440 		new_pipe->update_flags.bits.dppclk = 1;
1441 
1442 	/* Check for scl update */
1443 	if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
1444 			new_pipe->update_flags.bits.scaler = 1;
1445 	/* Check for vp update */
1446 	if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
1447 			|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
1448 				&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
1449 		new_pipe->update_flags.bits.viewport = 1;
1450 
1451 	/* Detect dlg/ttu/rq updates */
1452 	{
1453 		struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs;
1454 		struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs;
1455 		struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs;
1456 		struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs;
1457 
1458 		/* Detect pipe interdependent updates */
1459 		if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch ||
1460 				old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch ||
1461 				old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c ||
1462 				old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank ||
1463 				old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank ||
1464 				old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip ||
1465 				old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip ||
1466 				old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l ||
1467 				old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c ||
1468 				old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l ||
1469 				old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l ||
1470 				old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c ||
1471 				old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l ||
1472 				old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c ||
1473 				old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 ||
1474 				old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 ||
1475 				old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank ||
1476 				old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) {
1477 			old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch;
1478 			old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch;
1479 			old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c;
1480 			old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank;
1481 			old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank;
1482 			old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip;
1483 			old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip;
1484 			old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l;
1485 			old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c;
1486 			old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l;
1487 			old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l;
1488 			old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c;
1489 			old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l;
1490 			old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c;
1491 			old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0;
1492 			old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1;
1493 			old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank;
1494 			old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip;
1495 			new_pipe->update_flags.bits.hubp_interdependent = 1;
1496 		}
1497 		/* Detect any other updates to ttu/rq/dlg */
1498 		if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) ||
1499 				memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) ||
1500 				memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs)))
1501 			new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1502 	}
1503 }
1504 
1505 static void dcn20_update_dchubp_dpp(
1506 	struct dc *dc,
1507 	struct pipe_ctx *pipe_ctx,
1508 	struct dc_state *context)
1509 {
1510 	struct dce_hwseq *hws = dc->hwseq;
1511 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1512 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1513 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1514 	struct dccg *dccg = dc->res_pool->dccg;
1515 	bool viewport_changed = false;
1516 
1517 	if (pipe_ctx->update_flags.bits.dppclk)
1518 		dpp->funcs->dpp_dppclk_control(dpp, false, true);
1519 
1520 	if (pipe_ctx->update_flags.bits.enable)
1521 		dccg->funcs->update_dpp_dto(dccg, dpp->inst, pipe_ctx->plane_res.bw.dppclk_khz);
1522 
1523 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
1524 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
1525 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
1526 	 */
1527 	if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) {
1528 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
1529 
1530 		hubp->funcs->hubp_setup(
1531 			hubp,
1532 			&pipe_ctx->dlg_regs,
1533 			&pipe_ctx->ttu_regs,
1534 			&pipe_ctx->rq_regs,
1535 			&pipe_ctx->pipe_dlg_param);
1536 
1537 		if (hubp->funcs->set_unbounded_requesting)
1538 			hubp->funcs->set_unbounded_requesting(hubp, pipe_ctx->unbounded_req);
1539 	}
1540 	if (pipe_ctx->update_flags.bits.hubp_interdependent)
1541 		hubp->funcs->hubp_setup_interdependent(
1542 			hubp,
1543 			&pipe_ctx->dlg_regs,
1544 			&pipe_ctx->ttu_regs);
1545 
1546 	if (pipe_ctx->update_flags.bits.enable ||
1547 			pipe_ctx->update_flags.bits.plane_changed ||
1548 			plane_state->update_flags.bits.bpp_change ||
1549 			plane_state->update_flags.bits.input_csc_change ||
1550 			plane_state->update_flags.bits.color_space_change ||
1551 			plane_state->update_flags.bits.coeff_reduction_change) {
1552 		struct dc_bias_and_scale bns_params = {0};
1553 
1554 		// program the input csc
1555 		dpp->funcs->dpp_setup(dpp,
1556 				plane_state->format,
1557 				EXPANSION_MODE_ZERO,
1558 				plane_state->input_csc_color_matrix,
1559 				plane_state->color_space,
1560 				NULL);
1561 
1562 		if (dpp->funcs->dpp_program_bias_and_scale) {
1563 			//TODO :for CNVC set scale and bias registers if necessary
1564 			build_prescale_params(&bns_params, plane_state);
1565 			dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
1566 		}
1567 	}
1568 
1569 	if (pipe_ctx->update_flags.bits.mpcc
1570 			|| pipe_ctx->update_flags.bits.plane_changed
1571 			|| plane_state->update_flags.bits.global_alpha_change
1572 			|| plane_state->update_flags.bits.per_pixel_alpha_change) {
1573 		// MPCC inst is equal to pipe index in practice
1574 		int mpcc_inst = hubp->inst;
1575 		int opp_inst;
1576 		int opp_count = dc->res_pool->pipe_count;
1577 
1578 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
1579 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
1580 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
1581 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
1582 				break;
1583 			}
1584 		}
1585 		hws->funcs.update_mpcc(dc, pipe_ctx);
1586 	}
1587 
1588 	if (pipe_ctx->update_flags.bits.scaler ||
1589 			plane_state->update_flags.bits.scaling_change ||
1590 			plane_state->update_flags.bits.position_change ||
1591 			plane_state->update_flags.bits.per_pixel_alpha_change ||
1592 			pipe_ctx->stream->update_flags.bits.scaling) {
1593 		pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha;
1594 		ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_36BPP);
1595 		/* scaler configuration */
1596 		pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
1597 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
1598 	}
1599 
1600 	if (pipe_ctx->update_flags.bits.viewport ||
1601 			(context == dc->current_state && plane_state->update_flags.bits.position_change) ||
1602 			(context == dc->current_state && plane_state->update_flags.bits.scaling_change) ||
1603 			(context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) {
1604 
1605 		hubp->funcs->mem_program_viewport(
1606 			hubp,
1607 			&pipe_ctx->plane_res.scl_data.viewport,
1608 			&pipe_ctx->plane_res.scl_data.viewport_c);
1609 		viewport_changed = true;
1610 	}
1611 
1612 	/* Any updates are handled in dc interface, just need to apply existing for plane enable */
1613 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed ||
1614 			pipe_ctx->update_flags.bits.scaler || viewport_changed == true) &&
1615 			pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
1616 		dc->hwss.set_cursor_position(pipe_ctx);
1617 		dc->hwss.set_cursor_attribute(pipe_ctx);
1618 
1619 		if (dc->hwss.set_cursor_sdr_white_level)
1620 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
1621 	}
1622 
1623 	/* Any updates are handled in dc interface, just need
1624 	 * to apply existing for plane enable / opp change */
1625 	if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed
1626 			|| pipe_ctx->update_flags.bits.plane_changed
1627 			|| pipe_ctx->stream->update_flags.bits.gamut_remap
1628 			|| pipe_ctx->stream->update_flags.bits.out_csc) {
1629 		/* dpp/cm gamut remap*/
1630 		dc->hwss.program_gamut_remap(pipe_ctx);
1631 
1632 		/*call the dcn2 method which uses mpc csc*/
1633 		dc->hwss.program_output_csc(dc,
1634 				pipe_ctx,
1635 				pipe_ctx->stream->output_color_space,
1636 				pipe_ctx->stream->csc_color_matrix.matrix,
1637 				hubp->opp_id);
1638 	}
1639 
1640 	if (pipe_ctx->update_flags.bits.enable ||
1641 			pipe_ctx->update_flags.bits.plane_changed ||
1642 			pipe_ctx->update_flags.bits.opp_changed ||
1643 			plane_state->update_flags.bits.pixel_format_change ||
1644 			plane_state->update_flags.bits.horizontal_mirror_change ||
1645 			plane_state->update_flags.bits.rotation_change ||
1646 			plane_state->update_flags.bits.swizzle_change ||
1647 			plane_state->update_flags.bits.dcc_change ||
1648 			plane_state->update_flags.bits.bpp_change ||
1649 			plane_state->update_flags.bits.scaling_change ||
1650 			plane_state->update_flags.bits.plane_size_change) {
1651 		struct plane_size size = plane_state->plane_size;
1652 
1653 		size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
1654 		hubp->funcs->hubp_program_surface_config(
1655 			hubp,
1656 			plane_state->format,
1657 			&plane_state->tiling_info,
1658 			&size,
1659 			plane_state->rotation,
1660 			&plane_state->dcc,
1661 			plane_state->horizontal_mirror,
1662 			0);
1663 		hubp->power_gated = false;
1664 	}
1665 
1666 	if (pipe_ctx->update_flags.bits.enable ||
1667 		pipe_ctx->update_flags.bits.plane_changed ||
1668 		plane_state->update_flags.bits.addr_update)
1669 		hws->funcs.update_plane_addr(dc, pipe_ctx);
1670 
1671 	if (pipe_ctx->update_flags.bits.enable)
1672 		hubp->funcs->set_blank(hubp, false);
1673 	/* If the stream paired with this plane is phantom, the plane is also phantom */
1674 	if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM
1675 			&& hubp->funcs->phantom_hubp_post_enable)
1676 		hubp->funcs->phantom_hubp_post_enable(hubp);
1677 }
1678 
1679 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
1680 {
1681 	struct pipe_ctx *other_pipe;
1682 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
1683 
1684 	/* Always use the largest vready_offset of all connected pipes */
1685 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
1686 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1687 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1688 	}
1689 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
1690 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1691 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1692 	}
1693 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
1694 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1695 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1696 	}
1697 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
1698 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
1699 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
1700 	}
1701 
1702 	return vready_offset;
1703 }
1704 
1705 static void dcn20_program_pipe(
1706 		struct dc *dc,
1707 		struct pipe_ctx *pipe_ctx,
1708 		struct dc_state *context)
1709 {
1710 	struct dce_hwseq *hws = dc->hwseq;
1711 	/* Only need to unblank on top pipe */
1712 
1713 	if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level)
1714 			&& !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe)
1715 		hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible);
1716 
1717 	/* Only update TG on top pipe */
1718 	if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe
1719 			&& !pipe_ctx->prev_odm_pipe) {
1720 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
1721 				pipe_ctx->stream_res.tg,
1722 				calculate_vready_offset_for_group(pipe_ctx),
1723 				pipe_ctx->pipe_dlg_param.vstartup_start,
1724 				pipe_ctx->pipe_dlg_param.vupdate_offset,
1725 				pipe_ctx->pipe_dlg_param.vupdate_width);
1726 
1727 		if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM)
1728 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
1729 
1730 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
1731 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
1732 
1733 		if (hws->funcs.setup_vupdate_interrupt)
1734 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1735 	}
1736 
1737 	if (pipe_ctx->update_flags.bits.odm)
1738 		hws->funcs.update_odm(dc, context, pipe_ctx);
1739 
1740 	if (pipe_ctx->update_flags.bits.enable) {
1741 		dcn20_enable_plane(dc, pipe_ctx, context);
1742 		if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes)
1743 			dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub);
1744 	}
1745 
1746 	if (dc->res_pool->hubbub->funcs->program_det_size && pipe_ctx->update_flags.bits.det_size)
1747 		dc->res_pool->hubbub->funcs->program_det_size(
1748 			dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->det_buffer_size_kb);
1749 
1750 	if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw)
1751 		dcn20_update_dchubp_dpp(dc, pipe_ctx, context);
1752 
1753 	if (pipe_ctx->update_flags.bits.enable
1754 			|| pipe_ctx->plane_state->update_flags.bits.hdr_mult)
1755 		hws->funcs.set_hdr_multiplier(pipe_ctx);
1756 
1757 	if (pipe_ctx->update_flags.bits.enable ||
1758 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
1759 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
1760 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
1761 
1762 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
1763 	 * only do gamma programming for powering on, internal memcmp to avoid
1764 	 * updating on slave planes
1765 	 */
1766 	if (pipe_ctx->update_flags.bits.enable ||
1767 			pipe_ctx->update_flags.bits.plane_changed ||
1768 			pipe_ctx->stream->update_flags.bits.out_tf ||
1769 			pipe_ctx->plane_state->update_flags.bits.output_tf_change)
1770 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
1771 
1772 	/* If the pipe has been enabled or has a different opp, we
1773 	 * should reprogram the fmt. This deals with cases where
1774 	 * interation between mpc and odm combine on different streams
1775 	 * causes a different pipe to be chosen to odm combine with.
1776 	 */
1777 	if (pipe_ctx->update_flags.bits.enable
1778 	    || pipe_ctx->update_flags.bits.opp_changed) {
1779 
1780 		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1781 			pipe_ctx->stream_res.opp,
1782 			COLOR_SPACE_YCBCR601,
1783 			pipe_ctx->stream->timing.display_color_depth,
1784 			pipe_ctx->stream->signal);
1785 
1786 		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1787 			pipe_ctx->stream_res.opp,
1788 			&pipe_ctx->stream->bit_depth_params,
1789 			&pipe_ctx->stream->clamping);
1790 	}
1791 
1792 	/* Set ABM pipe after other pipe configurations done */
1793 	if (pipe_ctx->plane_state->visible) {
1794 		if (pipe_ctx->stream_res.abm) {
1795 			dc->hwss.set_pipe(pipe_ctx);
1796 			pipe_ctx->stream_res.abm->funcs->set_abm_level(pipe_ctx->stream_res.abm,
1797 				pipe_ctx->stream->abm_level);
1798 		}
1799 	}
1800 }
1801 
1802 void dcn20_program_front_end_for_ctx(
1803 		struct dc *dc,
1804 		struct dc_state *context)
1805 {
1806 	int i;
1807 	struct dce_hwseq *hws = dc->hwseq;
1808 	DC_LOGGER_INIT(dc->ctx->logger);
1809 
1810 	/* Carry over GSL groups in case the context is changing. */
1811 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1812 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1813 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1814 
1815 		if (pipe_ctx->stream == old_pipe_ctx->stream)
1816 			pipe_ctx->stream_res.gsl_group = old_pipe_ctx->stream_res.gsl_group;
1817 	}
1818 
1819 	if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
1820 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1821 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1822 
1823 			if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) {
1824 				ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
1825 				/*turn off triple buffer for full update*/
1826 				dc->hwss.program_triplebuffer(
1827 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
1828 			}
1829 		}
1830 	}
1831 
1832 	/* Set pipe update flags and lock pipes */
1833 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1834 		dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i],
1835 				&context->res_ctx.pipe_ctx[i]);
1836 
1837 	/* When disabling phantom pipes, turn on phantom OTG first (so we can get double
1838 	 * buffer updates properly)
1839 	 */
1840 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1841 		struct dc_stream_state *stream = dc->current_state->res_ctx.pipe_ctx[i].stream;
1842 
1843 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && stream &&
1844 			dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1845 			struct timing_generator *tg = dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg;
1846 
1847 			if (tg->funcs->enable_crtc)
1848 				tg->funcs->enable_crtc(tg);
1849 		}
1850 	}
1851 	/* OTG blank before disabling all front ends */
1852 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1853 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1854 				&& !context->res_ctx.pipe_ctx[i].top_pipe
1855 				&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
1856 				&& context->res_ctx.pipe_ctx[i].stream)
1857 			hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);
1858 
1859 
1860 	/* Disconnect mpcc */
1861 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1862 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
1863 				|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
1864 			struct hubbub *hubbub = dc->res_pool->hubbub;
1865 
1866 			/* Phantom pipe DET should be 0, but if a pipe in use is being transitioned to phantom
1867 			 * then we want to do the programming here (effectively it's being disabled). If we do
1868 			 * the programming later the DET won't be updated until the OTG for the phantom pipe is
1869 			 * turned on (i.e. in an MCLK switch) which can come in too late and cause issues with
1870 			 * DET allocation.
1871 			 */
1872 			if (hubbub->funcs->program_det_size && (context->res_ctx.pipe_ctx[i].update_flags.bits.disable ||
1873 					(context->res_ctx.pipe_ctx[i].plane_state && context->res_ctx.pipe_ctx[i].plane_state->is_phantom)))
1874 				hubbub->funcs->program_det_size(hubbub, dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0);
1875 			hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1876 			DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
1877 		}
1878 
1879 	/*
1880 	 * Program all updated pipes, order matters for mpcc setup. Start with
1881 	 * top pipe and program all pipes that follow in order
1882 	 */
1883 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1884 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1885 
1886 		if (pipe->plane_state && !pipe->top_pipe) {
1887 			while (pipe) {
1888 				if (hws->funcs.program_pipe)
1889 					hws->funcs.program_pipe(dc, pipe, context);
1890 				else {
1891 					/* Don't program phantom pipes in the regular front end programming sequence.
1892 					 * There is an MPO transition case where a pipe being used by a video plane is
1893 					 * transitioned directly to be a phantom pipe when closing the MPO video. However
1894 					 * the phantom pipe will program a new HUBP_VTG_SEL (update takes place right away),
1895 					 * but the MPO still exists until the double buffered update of the main pipe so we
1896 					 * will get a frame of underflow if the phantom pipe is programmed here.
1897 					 */
1898 					if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM)
1899 						dcn20_program_pipe(dc, pipe, context);
1900 				}
1901 
1902 				pipe = pipe->bottom_pipe;
1903 			}
1904 		}
1905 		/* Program secondary blending tree and writeback pipes */
1906 		pipe = &context->res_ctx.pipe_ctx[i];
1907 		if (!pipe->top_pipe && !pipe->prev_odm_pipe
1908 				&& pipe->stream && pipe->stream->num_wb_info > 0
1909 				&& (pipe->update_flags.raw || (pipe->plane_state && pipe->plane_state->update_flags.raw)
1910 					|| pipe->stream->update_flags.raw)
1911 				&& hws->funcs.program_all_writeback_pipes_in_tree)
1912 			hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);
1913 
1914 		/* Avoid underflow by check of pipe line read when adding 2nd plane. */
1915 		if (hws->wa.wait_hubpret_read_start_during_mpo_transition &&
1916 			!pipe->top_pipe &&
1917 			pipe->stream &&
1918 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start &&
1919 			dc->current_state->stream_status[0].plane_count == 1 &&
1920 			context->stream_status[0].plane_count > 1) {
1921 			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start(pipe->plane_res.hubp);
1922 		}
1923 
1924 		/* when dynamic ODM is active, pipes must be reconfigured when all planes are
1925 		 * disabled, as some transitions will leave software and hardware state
1926 		 * mismatched.
1927 		 */
1928 		if (dc->debug.enable_single_display_2to1_odm_policy &&
1929 			pipe->stream &&
1930 			pipe->update_flags.bits.disable &&
1931 			!pipe->prev_odm_pipe &&
1932 			hws->funcs.update_odm)
1933 			hws->funcs.update_odm(dc, context, pipe);
1934 	}
1935 }
1936 
1937 void dcn20_post_unlock_program_front_end(
1938 		struct dc *dc,
1939 		struct dc_state *context)
1940 {
1941 	int i;
1942 	const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100;
1943 	struct dce_hwseq *hwseq = dc->hwseq;
1944 
1945 	DC_LOGGER_INIT(dc->ctx->logger);
1946 
1947 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1948 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
1949 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
1950 
1951 	/*
1952 	 * If we are enabling a pipe, we need to wait for pending clear as this is a critical
1953 	 * part of the enable operation otherwise, DM may request an immediate flip which
1954 	 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
1955 	 * is unsupported on DCN.
1956 	 */
1957 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1958 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1959 		// Don't check flip pending on phantom pipes
1960 		if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable &&
1961 				pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1962 			struct hubp *hubp = pipe->plane_res.hubp;
1963 			int j = 0;
1964 
1965 			for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_MS*1000
1966 					&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
1967 				udelay(1);
1968 		}
1969 	}
1970 
1971 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1972 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1973 
1974 		if (pipe->plane_state && !pipe->top_pipe) {
1975 			/* Program phantom pipe here to prevent a frame of underflow in the MPO transition
1976 			 * case (if a pipe being used for a video plane transitions to a phantom pipe, it
1977 			 * can underflow due to HUBP_VTG_SEL programming if done in the regular front end
1978 			 * programming sequence).
1979 			 */
1980 			while (pipe) {
1981 				if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1982 					/* When turning on the phantom pipe we want to run through the
1983 					 * entire enable sequence, so apply all the "enable" flags.
1984 					 */
1985 					if (dc->hwss.apply_update_flags_for_phantom)
1986 						dc->hwss.apply_update_flags_for_phantom(pipe);
1987 					if (dc->hwss.update_phantom_vp_position)
1988 						dc->hwss.update_phantom_vp_position(dc, context, pipe);
1989 					dcn20_program_pipe(dc, pipe, context);
1990 				}
1991 				pipe = pipe->bottom_pipe;
1992 			}
1993 		}
1994 	}
1995 
1996 	/* P-State support transitions:
1997 	 * Natural -> FPO: 		P-State disabled in prepare, force disallow anytime is safe
1998 	 * FPO -> Natural: 		Unforce anytime after FW disable is safe (P-State will assert naturally)
1999 	 * Unsupported -> FPO:	P-State enabled in optimize, force disallow anytime is safe
2000 	 * FPO -> Unsupported:	P-State disabled in prepare, unforce disallow anytime is safe
2001 	 * FPO <-> SubVP:		Force disallow is maintained on the FPO / SubVP pipes
2002 	 */
2003 	if (hwseq && hwseq->funcs.update_force_pstate)
2004 		dc->hwseq->funcs.update_force_pstate(dc, context);
2005 
2006 	/* Only program the MALL registers after all the main and phantom pipes
2007 	 * are done programming.
2008 	 */
2009 	if (hwseq->funcs.program_mall_pipe_config)
2010 		hwseq->funcs.program_mall_pipe_config(dc, context);
2011 
2012 	/* WA to apply WM setting*/
2013 	if (hwseq->wa.DEGVIDCN21)
2014 		dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);
2015 
2016 
2017 	/* WA for stutter underflow during MPO transitions when adding 2nd plane */
2018 	if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {
2019 
2020 		if (dc->current_state->stream_status[0].plane_count == 1 &&
2021 				context->stream_status[0].plane_count > 1) {
2022 
2023 			struct timing_generator *tg = dc->res_pool->timing_generators[0];
2024 
2025 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);
2026 
2027 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
2028 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg);
2029 		}
2030 	}
2031 }
2032 
2033 void dcn20_prepare_bandwidth(
2034 		struct dc *dc,
2035 		struct dc_state *context)
2036 {
2037 	struct hubbub *hubbub = dc->res_pool->hubbub;
2038 	unsigned int compbuf_size_kb = 0;
2039 	unsigned int cache_wm_a = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns;
2040 	unsigned int i;
2041 
2042 	dc->clk_mgr->funcs->update_clocks(
2043 			dc->clk_mgr,
2044 			context,
2045 			false);
2046 
2047 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2048 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2049 
2050 		// At optimize don't restore the original watermark value
2051 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2052 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2053 			break;
2054 		}
2055 	}
2056 
2057 	/* program dchubbub watermarks:
2058 	 * For assigning wm_optimized_required, use |= operator since we don't want
2059 	 * to clear the value if the optimize has not happened yet
2060 	 */
2061 	dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub,
2062 					&context->bw_ctx.bw.dcn.watermarks,
2063 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2064 					false);
2065 
2066 	// Restore the real watermark so we can commit the value to DMCUB
2067 	// DMCUB uses the "original" watermark value in SubVP MCLK switch
2068 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = cache_wm_a;
2069 
2070 	/* decrease compbuf size */
2071 	if (hubbub->funcs->program_compbuf_size) {
2072 		if (context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes) {
2073 			compbuf_size_kb = context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes;
2074 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.dml.ip.min_comp_buffer_size_kbytes);
2075 		} else {
2076 			compbuf_size_kb = context->bw_ctx.bw.dcn.compbuf_size_kb;
2077 			dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.bw.dcn.compbuf_size_kb);
2078 		}
2079 
2080 		hubbub->funcs->program_compbuf_size(hubbub, compbuf_size_kb, false);
2081 	}
2082 }
2083 
2084 void dcn20_optimize_bandwidth(
2085 		struct dc *dc,
2086 		struct dc_state *context)
2087 {
2088 	struct hubbub *hubbub = dc->res_pool->hubbub;
2089 	int i;
2090 
2091 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2092 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2093 
2094 		// At optimize don't need  to restore the original watermark value
2095 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
2096 			context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2097 			break;
2098 		}
2099 	}
2100 
2101 	/* program dchubbub watermarks */
2102 	hubbub->funcs->program_watermarks(hubbub,
2103 					&context->bw_ctx.bw.dcn.watermarks,
2104 					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2105 					true);
2106 
2107 	if (dc->clk_mgr->dc_mode_softmax_enabled)
2108 		if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
2109 				context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
2110 			dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk);
2111 
2112 	/* increase compbuf size */
2113 	if (hubbub->funcs->program_compbuf_size)
2114 		hubbub->funcs->program_compbuf_size(hubbub, context->bw_ctx.bw.dcn.compbuf_size_kb, true);
2115 
2116 	dc->clk_mgr->funcs->update_clocks(
2117 			dc->clk_mgr,
2118 			context,
2119 			true);
2120 	if (dc_extended_blank_supported(dc) && context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) {
2121 		for (i = 0; i < dc->res_pool->pipe_count; ++i) {
2122 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2123 
2124 			if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank
2125 				&& pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max
2126 				&& pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total)
2127 					pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp,
2128 						pipe_ctx->dlg_regs.optimized_min_dst_y_next_start);
2129 		}
2130 	}
2131 }
2132 
2133 bool dcn20_update_bandwidth(
2134 		struct dc *dc,
2135 		struct dc_state *context)
2136 {
2137 	int i;
2138 	struct dce_hwseq *hws = dc->hwseq;
2139 
2140 	/* recalculate DML parameters */
2141 	if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
2142 		return false;
2143 
2144 	/* apply updated bandwidth parameters */
2145 	dc->hwss.prepare_bandwidth(dc, context);
2146 
2147 	/* update hubp configs for all pipes */
2148 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2149 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2150 
2151 		if (pipe_ctx->plane_state == NULL)
2152 			continue;
2153 
2154 		if (pipe_ctx->top_pipe == NULL) {
2155 			bool blank = !is_pipe_tree_visible(pipe_ctx);
2156 
2157 			pipe_ctx->stream_res.tg->funcs->program_global_sync(
2158 					pipe_ctx->stream_res.tg,
2159 					calculate_vready_offset_for_group(pipe_ctx),
2160 					pipe_ctx->pipe_dlg_param.vstartup_start,
2161 					pipe_ctx->pipe_dlg_param.vupdate_offset,
2162 					pipe_ctx->pipe_dlg_param.vupdate_width);
2163 
2164 			pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2165 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false);
2166 
2167 			if (pipe_ctx->prev_odm_pipe == NULL)
2168 				hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2169 
2170 			if (hws->funcs.setup_vupdate_interrupt)
2171 				hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2172 		}
2173 
2174 		pipe_ctx->plane_res.hubp->funcs->hubp_setup(
2175 				pipe_ctx->plane_res.hubp,
2176 					&pipe_ctx->dlg_regs,
2177 					&pipe_ctx->ttu_regs,
2178 					&pipe_ctx->rq_regs,
2179 					&pipe_ctx->pipe_dlg_param);
2180 	}
2181 
2182 	return true;
2183 }
2184 
2185 void dcn20_enable_writeback(
2186 		struct dc *dc,
2187 		struct dc_writeback_info *wb_info,
2188 		struct dc_state *context)
2189 {
2190 	struct dwbc *dwb;
2191 	struct mcif_wb *mcif_wb;
2192 	struct timing_generator *optc;
2193 
2194 	ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
2195 	ASSERT(wb_info->wb_enabled);
2196 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
2197 	mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
2198 
2199 	/* set the OPTC source mux */
2200 	optc = dc->res_pool->timing_generators[dwb->otg_inst];
2201 	optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
2202 	/* set MCIF_WB buffer and arbitration configuration */
2203 	mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
2204 	mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
2205 	/* Enable MCIF_WB */
2206 	mcif_wb->funcs->enable_mcif(mcif_wb);
2207 	/* Enable DWB */
2208 	dwb->funcs->enable(dwb, &wb_info->dwb_params);
2209 	/* TODO: add sequence to enable/disable warmup */
2210 }
2211 
2212 void dcn20_disable_writeback(
2213 		struct dc *dc,
2214 		unsigned int dwb_pipe_inst)
2215 {
2216 	struct dwbc *dwb;
2217 	struct mcif_wb *mcif_wb;
2218 
2219 	ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
2220 	dwb = dc->res_pool->dwbc[dwb_pipe_inst];
2221 	mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
2222 
2223 	dwb->funcs->disable(dwb);
2224 	mcif_wb->funcs->disable_mcif(mcif_wb);
2225 }
2226 
2227 bool dcn20_wait_for_blank_complete(
2228 		struct output_pixel_processor *opp)
2229 {
2230 	int counter;
2231 
2232 	for (counter = 0; counter < 1000; counter++) {
2233 		if (opp->funcs->dpg_is_blanked(opp))
2234 			break;
2235 
2236 		udelay(100);
2237 	}
2238 
2239 	if (counter == 1000) {
2240 		dm_error("DC: failed to blank crtc!\n");
2241 		return false;
2242 	}
2243 
2244 	return true;
2245 }
2246 
2247 bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
2248 {
2249 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2250 
2251 	if (!hubp)
2252 		return false;
2253 	return hubp->funcs->dmdata_status_done(hubp);
2254 }
2255 
2256 void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2257 {
2258 	struct dce_hwseq *hws = dc->hwseq;
2259 
2260 	if (pipe_ctx->stream_res.dsc) {
2261 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2262 
2263 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
2264 		while (odm_pipe) {
2265 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
2266 			odm_pipe = odm_pipe->next_odm_pipe;
2267 		}
2268 	}
2269 }
2270 
2271 void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
2272 {
2273 	struct dce_hwseq *hws = dc->hwseq;
2274 
2275 	if (pipe_ctx->stream_res.dsc) {
2276 		struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2277 
2278 		hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
2279 		while (odm_pipe) {
2280 			hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
2281 			odm_pipe = odm_pipe->next_odm_pipe;
2282 		}
2283 	}
2284 }
2285 
2286 void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
2287 {
2288 	struct dc_dmdata_attributes attr = { 0 };
2289 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2290 
2291 	attr.dmdata_mode = DMDATA_HW_MODE;
2292 	attr.dmdata_size =
2293 		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
2294 	attr.address.quad_part =
2295 			pipe_ctx->stream->dmdata_address.quad_part;
2296 	attr.dmdata_dl_delta = 0;
2297 	attr.dmdata_qos_mode = 0;
2298 	attr.dmdata_qos_level = 0;
2299 	attr.dmdata_repeat = 1; /* always repeat */
2300 	attr.dmdata_updated = 1;
2301 	attr.dmdata_sw_data = NULL;
2302 
2303 	hubp->funcs->dmdata_set_attributes(hubp, &attr);
2304 }
2305 
2306 void dcn20_init_vm_ctx(
2307 		struct dce_hwseq *hws,
2308 		struct dc *dc,
2309 		struct dc_virtual_addr_space_config *va_config,
2310 		int vmid)
2311 {
2312 	struct dcn_hubbub_virt_addr_config config;
2313 
2314 	if (vmid == 0) {
2315 		ASSERT(0); /* VMID cannot be 0 for vm context */
2316 		return;
2317 	}
2318 
2319 	config.page_table_start_addr = va_config->page_table_start_addr;
2320 	config.page_table_end_addr = va_config->page_table_end_addr;
2321 	config.page_table_block_size = va_config->page_table_block_size_in_bytes;
2322 	config.page_table_depth = va_config->page_table_depth;
2323 	config.page_table_base_addr = va_config->page_table_base_addr;
2324 
2325 	dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
2326 }
2327 
2328 int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
2329 {
2330 	struct dcn_hubbub_phys_addr_config config;
2331 
2332 	config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
2333 	config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
2334 	config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
2335 	config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
2336 	config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
2337 	config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
2338 	config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
2339 	config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
2340 	config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
2341 	config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
2342 
2343 	return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
2344 }
2345 
2346 static bool patch_address_for_sbs_tb_stereo(
2347 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
2348 {
2349 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2350 	bool sec_split = pipe_ctx->top_pipe &&
2351 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
2352 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2353 			(pipe_ctx->stream->timing.timing_3d_format ==
2354 			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
2355 			pipe_ctx->stream->timing.timing_3d_format ==
2356 			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
2357 		*addr = plane_state->address.grph_stereo.left_addr;
2358 		plane_state->address.grph_stereo.left_addr =
2359 				plane_state->address.grph_stereo.right_addr;
2360 		return true;
2361 	}
2362 
2363 	if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
2364 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
2365 		plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
2366 		plane_state->address.grph_stereo.right_addr =
2367 				plane_state->address.grph_stereo.left_addr;
2368 		plane_state->address.grph_stereo.right_meta_addr =
2369 				plane_state->address.grph_stereo.left_meta_addr;
2370 	}
2371 	return false;
2372 }
2373 
2374 void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
2375 {
2376 	bool addr_patched = false;
2377 	PHYSICAL_ADDRESS_LOC addr;
2378 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2379 
2380 	if (plane_state == NULL)
2381 		return;
2382 
2383 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
2384 
2385 	// Call Helper to track VMID use
2386 	vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
2387 
2388 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
2389 			pipe_ctx->plane_res.hubp,
2390 			&plane_state->address,
2391 			plane_state->flip_immediate);
2392 
2393 	plane_state->status.requested_address = plane_state->address;
2394 
2395 	if (plane_state->flip_immediate)
2396 		plane_state->status.current_address = plane_state->address;
2397 
2398 	if (addr_patched)
2399 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
2400 }
2401 
2402 void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
2403 		struct dc_link_settings *link_settings)
2404 {
2405 	struct encoder_unblank_param params = {0};
2406 	struct dc_stream_state *stream = pipe_ctx->stream;
2407 	struct dc_link *link = stream->link;
2408 	struct dce_hwseq *hws = link->dc->hwseq;
2409 	struct pipe_ctx *odm_pipe;
2410 
2411 	params.opp_cnt = 1;
2412 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
2413 		params.opp_cnt++;
2414 	}
2415 	/* only 3 items below are used by unblank */
2416 	params.timing = pipe_ctx->stream->timing;
2417 
2418 	params.link_settings.link_rate = link_settings->link_rate;
2419 
2420 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2421 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
2422 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
2423 				pipe_ctx->stream_res.hpo_dp_stream_enc,
2424 				pipe_ctx->stream_res.tg->inst);
2425 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
2426 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
2427 			params.timing.pix_clk_100hz /= 2;
2428 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
2429 				pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
2430 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
2431 	}
2432 
2433 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
2434 		hws->funcs.edp_backlight_control(link, true);
2435 	}
2436 }
2437 
2438 void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
2439 {
2440 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2441 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
2442 
2443 	if (start_line < 0)
2444 		start_line = 0;
2445 
2446 	if (tg->funcs->setup_vertical_interrupt2)
2447 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
2448 }
2449 
2450 static void dcn20_reset_back_end_for_pipe(
2451 		struct dc *dc,
2452 		struct pipe_ctx *pipe_ctx,
2453 		struct dc_state *context)
2454 {
2455 	int i;
2456 	struct dc_link *link = pipe_ctx->stream->link;
2457 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2458 
2459 	DC_LOGGER_INIT(dc->ctx->logger);
2460 	if (pipe_ctx->stream_res.stream_enc == NULL) {
2461 		pipe_ctx->stream = NULL;
2462 		return;
2463 	}
2464 
2465 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2466 		/* DPMS may already disable or */
2467 		/* dpms_off status is incorrect due to fastboot
2468 		 * feature. When system resume from S4 with second
2469 		 * screen only, the dpms_off would be true but
2470 		 * VBIOS lit up eDP, so check link status too.
2471 		 */
2472 		if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
2473 			dc->link_srv->set_dpms_off(pipe_ctx);
2474 		else if (pipe_ctx->stream_res.audio)
2475 			dc->hwss.disable_audio_stream(pipe_ctx);
2476 
2477 		/* free acquired resources */
2478 		if (pipe_ctx->stream_res.audio) {
2479 			/*disable az_endpoint*/
2480 			pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2481 
2482 			/*free audio*/
2483 			if (dc->caps.dynamic_audio == true) {
2484 				/*we have to dynamic arbitrate the audio endpoints*/
2485 				/*we free the resource, need reset is_audio_acquired*/
2486 				update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2487 						pipe_ctx->stream_res.audio, false);
2488 				pipe_ctx->stream_res.audio = NULL;
2489 			}
2490 		}
2491 	}
2492 	else if (pipe_ctx->stream_res.dsc) {
2493 		dc->link_srv->set_dsc_enable(pipe_ctx, false);
2494 	}
2495 
2496 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
2497 	 * back end share by all pipes and will be disable only when disable
2498 	 * parent pipe.
2499 	 */
2500 	if (pipe_ctx->top_pipe == NULL) {
2501 
2502 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2503 
2504 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
2505 
2506 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
2507 		if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
2508 			pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
2509 					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
2510 
2511 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
2512 			pipe_ctx->stream_res.tg->funcs->set_drr(
2513 					pipe_ctx->stream_res.tg, NULL);
2514 		/* TODO - convert symclk_ref_cnts for otg to a bit map to solve
2515 		 * the case where the same symclk is shared across multiple otg
2516 		 * instances
2517 		 */
2518 		link->phy_state.symclk_ref_cnts.otg = 0;
2519 		if (link->phy_state.symclk_state == SYMCLK_ON_TX_OFF) {
2520 			link_hwss->disable_link_output(link,
2521 					&pipe_ctx->link_res, pipe_ctx->stream->signal);
2522 			link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
2523 		}
2524 	}
2525 
2526 	for (i = 0; i < dc->res_pool->pipe_count; i++)
2527 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
2528 			break;
2529 
2530 	if (i == dc->res_pool->pipe_count)
2531 		return;
2532 
2533 	pipe_ctx->stream = NULL;
2534 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
2535 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
2536 }
2537 
2538 void dcn20_reset_hw_ctx_wrap(
2539 		struct dc *dc,
2540 		struct dc_state *context)
2541 {
2542 	int i;
2543 	struct dce_hwseq *hws = dc->hwseq;
2544 
2545 	/* Reset Back End*/
2546 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
2547 		struct pipe_ctx *pipe_ctx_old =
2548 			&dc->current_state->res_ctx.pipe_ctx[i];
2549 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2550 
2551 		if (!pipe_ctx_old->stream)
2552 			continue;
2553 
2554 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
2555 			continue;
2556 
2557 		if (!pipe_ctx->stream ||
2558 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2559 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2560 
2561 			dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
2562 			if (hws->funcs.enable_stream_gating)
2563 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
2564 			if (old_clk)
2565 				old_clk->funcs->cs_power_down(old_clk);
2566 		}
2567 	}
2568 }
2569 
2570 void dcn20_update_visual_confirm_color(struct dc *dc, struct pipe_ctx *pipe_ctx, struct tg_color *color, int mpcc_id)
2571 {
2572 	struct mpc *mpc = dc->res_pool->mpc;
2573 
2574 	// input to MPCC is always RGB, by default leave black_color at 0
2575 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
2576 		get_hdr_visual_confirm_color(pipe_ctx, color);
2577 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
2578 		get_surface_visual_confirm_color(pipe_ctx, color);
2579 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
2580 		get_mpctree_visual_confirm_color(pipe_ctx, color);
2581 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
2582 		get_surface_tile_visual_confirm_color(pipe_ctx, color);
2583 	else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
2584 		get_subvp_visual_confirm_color(dc, pipe_ctx, color);
2585 
2586 	if (mpc->funcs->set_bg_color) {
2587 		memcpy(&pipe_ctx->plane_state->visual_confirm_color, color, sizeof(struct tg_color));
2588 		mpc->funcs->set_bg_color(mpc, color, mpcc_id);
2589 	}
2590 }
2591 
2592 void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2593 {
2594 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2595 	struct mpcc_blnd_cfg blnd_cfg = {0};
2596 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
2597 	int mpcc_id;
2598 	struct mpcc *new_mpcc;
2599 	struct mpc *mpc = dc->res_pool->mpc;
2600 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2601 
2602 	blnd_cfg.overlap_only = false;
2603 	blnd_cfg.global_gain = 0xff;
2604 
2605 	if (per_pixel_alpha) {
2606 		blnd_cfg.pre_multiplied_alpha = pipe_ctx->plane_state->pre_multiplied_alpha;
2607 		if (pipe_ctx->plane_state->global_alpha) {
2608 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2609 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2610 		} else {
2611 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2612 		}
2613 	} else {
2614 		blnd_cfg.pre_multiplied_alpha = false;
2615 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2616 	}
2617 
2618 	if (pipe_ctx->plane_state->global_alpha)
2619 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2620 	else
2621 		blnd_cfg.global_alpha = 0xff;
2622 
2623 	blnd_cfg.background_color_bpc = 4;
2624 	blnd_cfg.bottom_gain_mode = 0;
2625 	blnd_cfg.top_gain = 0x1f000;
2626 	blnd_cfg.bottom_inside_gain = 0x1f000;
2627 	blnd_cfg.bottom_outside_gain = 0x1f000;
2628 
2629 	if (pipe_ctx->plane_state->format
2630 			== SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA)
2631 		blnd_cfg.pre_multiplied_alpha = false;
2632 
2633 	/*
2634 	 * TODO: remove hack
2635 	 * Note: currently there is a bug in init_hw such that
2636 	 * on resume from hibernate, BIOS sets up MPCC0, and
2637 	 * we do mpcc_remove but the mpcc cannot go to idle
2638 	 * after remove. This cause us to pick mpcc1 here,
2639 	 * which causes a pstate hang for yet unknown reason.
2640 	 */
2641 	mpcc_id = hubp->inst;
2642 
2643 	/* If there is no full update, don't need to touch MPC tree*/
2644 	if (!pipe_ctx->plane_state->update_flags.bits.full_update &&
2645 		!pipe_ctx->update_flags.bits.mpcc) {
2646 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2647 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
2648 		return;
2649 	}
2650 
2651 	/* check if this MPCC is already being used */
2652 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2653 	/* remove MPCC if being used */
2654 	if (new_mpcc != NULL)
2655 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2656 	else
2657 		if (dc->debug.sanity_checks)
2658 			mpc->funcs->assert_mpcc_idle_before_connect(
2659 					dc->res_pool->mpc, mpcc_id);
2660 
2661 	/* Call MPC to insert new plane */
2662 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2663 			mpc_tree_params,
2664 			&blnd_cfg,
2665 			NULL,
2666 			NULL,
2667 			hubp->inst,
2668 			mpcc_id);
2669 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
2670 
2671 	ASSERT(new_mpcc != NULL);
2672 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2673 	hubp->mpcc_id = mpcc_id;
2674 }
2675 
2676 static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link)
2677 {
2678 	switch (link->link_enc->transmitter) {
2679 	case TRANSMITTER_UNIPHY_A:
2680 		return PHYD32CLKA;
2681 	case TRANSMITTER_UNIPHY_B:
2682 		return PHYD32CLKB;
2683 	case TRANSMITTER_UNIPHY_C:
2684 		return PHYD32CLKC;
2685 	case TRANSMITTER_UNIPHY_D:
2686 		return PHYD32CLKD;
2687 	case TRANSMITTER_UNIPHY_E:
2688 		return PHYD32CLKE;
2689 	default:
2690 		return PHYD32CLKA;
2691 	}
2692 }
2693 
2694 static int get_odm_segment_count(struct pipe_ctx *pipe_ctx)
2695 {
2696 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2697 	int count = 1;
2698 
2699 	while (odm_pipe != NULL) {
2700 		count++;
2701 		odm_pipe = odm_pipe->next_odm_pipe;
2702 	}
2703 
2704 	return count;
2705 }
2706 
2707 void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
2708 {
2709 	enum dc_lane_count lane_count =
2710 		pipe_ctx->stream->link->cur_link_settings.lane_count;
2711 
2712 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
2713 	struct dc_link *link = pipe_ctx->stream->link;
2714 
2715 	uint32_t active_total_with_borders;
2716 	uint32_t early_control = 0;
2717 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
2718 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
2719 	struct dc *dc = pipe_ctx->stream->ctx->dc;
2720 	struct dtbclk_dto_params dto_params = {0};
2721 	struct dccg *dccg = dc->res_pool->dccg;
2722 	enum phyd32clk_clock_source phyd32clk;
2723 	int dp_hpo_inst;
2724 	struct dce_hwseq *hws = dc->hwseq;
2725 	unsigned int k1_div = PIXEL_RATE_DIV_NA;
2726 	unsigned int k2_div = PIXEL_RATE_DIV_NA;
2727 
2728 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2729 		if (dc->hwseq->funcs.setup_hpo_hw_control)
2730 			dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, true);
2731 	}
2732 
2733 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
2734 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
2735 		dccg->funcs->set_dpstreamclk(dccg, DTBCLK0, tg->inst, dp_hpo_inst);
2736 
2737 		phyd32clk = get_phyd32clk_src(link);
2738 		dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk);
2739 
2740 		dto_params.otg_inst = tg->inst;
2741 		dto_params.pixclk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10;
2742 		dto_params.num_odm_segments = get_odm_segment_count(pipe_ctx);
2743 		dto_params.timing = &pipe_ctx->stream->timing;
2744 		dto_params.ref_dtbclk_khz = dc->clk_mgr->funcs->get_dtb_ref_clk_frequency(dc->clk_mgr);
2745 		dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
2746 	}
2747 
2748 	if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) {
2749 		hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div);
2750 
2751 		dc->res_pool->dccg->funcs->set_pixel_rate_div(
2752 			dc->res_pool->dccg,
2753 			pipe_ctx->stream_res.tg->inst,
2754 			k1_div, k2_div);
2755 	}
2756 
2757 	link_hwss->setup_stream_encoder(pipe_ctx);
2758 
2759 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
2760 		if (dc->hwss.program_dmdata_engine)
2761 			dc->hwss.program_dmdata_engine(pipe_ctx);
2762 	}
2763 
2764 	dc->hwss.update_info_frame(pipe_ctx);
2765 
2766 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
2767 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
2768 
2769 	/* enable early control to avoid corruption on DP monitor*/
2770 	active_total_with_borders =
2771 			timing->h_addressable
2772 				+ timing->h_border_left
2773 				+ timing->h_border_right;
2774 
2775 	if (lane_count != 0)
2776 		early_control = active_total_with_borders % lane_count;
2777 
2778 	if (early_control == 0)
2779 		early_control = lane_count;
2780 
2781 	tg->funcs->set_early_control(tg, early_control);
2782 
2783 	if (dc->hwseq->funcs.set_pixels_per_cycle)
2784 		dc->hwseq->funcs.set_pixels_per_cycle(pipe_ctx);
2785 }
2786 
2787 void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
2788 {
2789 	struct dc_stream_state    *stream     = pipe_ctx->stream;
2790 	struct hubp               *hubp       = pipe_ctx->plane_res.hubp;
2791 	bool                       enable     = false;
2792 	struct stream_encoder     *stream_enc = pipe_ctx->stream_res.stream_enc;
2793 	enum dynamic_metadata_mode mode       = dc_is_dp_signal(stream->signal)
2794 							? dmdata_dp
2795 							: dmdata_hdmi;
2796 
2797 	/* if using dynamic meta, don't set up generic infopackets */
2798 	if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
2799 		pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
2800 		enable = true;
2801 	}
2802 
2803 	if (!hubp)
2804 		return;
2805 
2806 	if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
2807 		return;
2808 
2809 	stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
2810 						hubp->inst, mode);
2811 }
2812 
2813 void dcn20_fpga_init_hw(struct dc *dc)
2814 {
2815 	int i, j;
2816 	struct dce_hwseq *hws = dc->hwseq;
2817 	struct resource_pool *res_pool = dc->res_pool;
2818 	struct dc_state  *context = dc->current_state;
2819 
2820 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
2821 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
2822 
2823 	// Initialize the dccg
2824 	if (res_pool->dccg->funcs->dccg_init)
2825 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
2826 
2827 	//Enable ability to power gate / don't force power on permanently
2828 	hws->funcs.enable_power_gating_plane(hws, true);
2829 
2830 	// Specific to FPGA dccg and registers
2831 	REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
2832 	REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
2833 
2834 	hws->funcs.dccg_init(hws);
2835 
2836 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
2837 	REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
2838 	if (REG(REFCLK_CNTL))
2839 		REG_WRITE(REFCLK_CNTL, 0);
2840 	//
2841 
2842 
2843 	/* Blank pixel data with OPP DPG */
2844 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2845 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2846 
2847 		if (tg->funcs->is_tg_enabled(tg))
2848 			dcn20_init_blank(dc, tg);
2849 	}
2850 
2851 	for (i = 0; i < res_pool->timing_generator_count; i++) {
2852 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2853 
2854 		if (tg->funcs->is_tg_enabled(tg))
2855 			tg->funcs->lock(tg);
2856 	}
2857 
2858 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2859 		struct dpp *dpp = res_pool->dpps[i];
2860 
2861 		dpp->funcs->dpp_reset(dpp);
2862 	}
2863 
2864 	/* Reset all MPCC muxes */
2865 	res_pool->mpc->funcs->mpc_init(res_pool->mpc);
2866 
2867 	/* initialize OPP mpc_tree parameter */
2868 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
2869 		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
2870 		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2871 		for (j = 0; j < MAX_PIPES; j++)
2872 			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
2873 	}
2874 
2875 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2876 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2877 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2878 		struct hubp *hubp = dc->res_pool->hubps[i];
2879 		struct dpp *dpp = dc->res_pool->dpps[i];
2880 
2881 		pipe_ctx->stream_res.tg = tg;
2882 		pipe_ctx->pipe_idx = i;
2883 
2884 		pipe_ctx->plane_res.hubp = hubp;
2885 		pipe_ctx->plane_res.dpp = dpp;
2886 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
2887 		hubp->mpcc_id = dpp->inst;
2888 		hubp->opp_id = OPP_ID_INVALID;
2889 		hubp->power_gated = false;
2890 		pipe_ctx->stream_res.opp = NULL;
2891 
2892 		hubp->funcs->hubp_init(hubp);
2893 
2894 		//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
2895 		//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
2896 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
2897 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
2898 		/*to do*/
2899 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
2900 	}
2901 
2902 	/* initialize DWB pointer to MCIF_WB */
2903 	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
2904 		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
2905 
2906 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2907 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2908 
2909 		if (tg->funcs->is_tg_enabled(tg))
2910 			tg->funcs->unlock(tg);
2911 	}
2912 
2913 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2914 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2915 
2916 		dc->hwss.disable_plane(dc, pipe_ctx);
2917 
2918 		pipe_ctx->stream_res.tg = NULL;
2919 		pipe_ctx->plane_res.hubp = NULL;
2920 	}
2921 
2922 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
2923 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2924 
2925 		tg->funcs->tg_init(tg);
2926 	}
2927 
2928 	if (dc->res_pool->hubbub->funcs->init_crb)
2929 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
2930 }
2931 #ifndef TRIM_FSFT
2932 bool dcn20_optimize_timing_for_fsft(struct dc *dc,
2933 		struct dc_crtc_timing *timing,
2934 		unsigned int max_input_rate_in_khz)
2935 {
2936 	unsigned int old_v_front_porch;
2937 	unsigned int old_v_total;
2938 	unsigned int max_input_rate_in_100hz;
2939 	unsigned long long new_v_total;
2940 
2941 	max_input_rate_in_100hz = max_input_rate_in_khz * 10;
2942 	if (max_input_rate_in_100hz < timing->pix_clk_100hz)
2943 		return false;
2944 
2945 	old_v_total = timing->v_total;
2946 	old_v_front_porch = timing->v_front_porch;
2947 
2948 	timing->fast_transport_output_rate_100hz = timing->pix_clk_100hz;
2949 	timing->pix_clk_100hz = max_input_rate_in_100hz;
2950 
2951 	new_v_total = div_u64((unsigned long long)old_v_total * max_input_rate_in_100hz, timing->pix_clk_100hz);
2952 
2953 	timing->v_total = new_v_total;
2954 	timing->v_front_porch = old_v_front_porch + (timing->v_total - old_v_total);
2955 	return true;
2956 }
2957 #endif
2958 
2959 void dcn20_set_disp_pattern_generator(const struct dc *dc,
2960 		struct pipe_ctx *pipe_ctx,
2961 		enum controller_dp_test_pattern test_pattern,
2962 		enum controller_dp_color_space color_space,
2963 		enum dc_color_depth color_depth,
2964 		const struct tg_color *solid_color,
2965 		int width, int height, int offset)
2966 {
2967 	pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern,
2968 			color_space, color_depth, solid_color, width, height, offset);
2969 }
2970