1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 	if (timing->flags.INTERLACE == 1) {
52 		if (timing->v_front_porch < 2)
53 			timing->v_front_porch = 2;
54 	} else {
55 		if (timing->v_front_porch < 1)
56 			timing->v_front_porch = 1;
57 	}
58 }
59 
60 void optc1_program_global_sync(
61 		struct timing_generator *optc,
62 		int vready_offset,
63 		int vstartup_start,
64 		int vupdate_offset,
65 		int vupdate_width)
66 {
67 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
68 
69 	optc1->vready_offset = vready_offset;
70 	optc1->vstartup_start = vstartup_start;
71 	optc1->vupdate_offset = vupdate_offset;
72 	optc1->vupdate_width = vupdate_width;
73 
74 	if (optc1->vstartup_start == 0) {
75 		BREAK_TO_DEBUGGER();
76 		return;
77 	}
78 
79 	REG_SET(OTG_VSTARTUP_PARAM, 0,
80 		VSTARTUP_START, optc1->vstartup_start);
81 
82 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 			VUPDATE_OFFSET, optc1->vupdate_offset,
84 			VUPDATE_WIDTH, optc1->vupdate_width);
85 
86 	REG_SET(OTG_VREADY_PARAM, 0,
87 			VREADY_OFFSET, optc1->vready_offset);
88 }
89 
90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
93 
94 	REG_SET(OTG_STEREO_CONTROL, 0,
95 		OTG_STEREO_EN, 0);
96 
97 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 		OTG_3D_STRUCTURE_EN, 0,
99 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101 
102 void optc1_setup_vertical_interrupt0(
103 		struct timing_generator *optc,
104 		uint32_t start_line,
105 		uint32_t end_line)
106 {
107 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108 
109 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113 
114 void optc1_setup_vertical_interrupt1(
115 		struct timing_generator *optc,
116 		uint32_t start_line)
117 {
118 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
119 
120 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123 
124 void optc1_setup_vertical_interrupt2(
125 		struct timing_generator *optc,
126 		uint32_t start_line)
127 {
128 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
129 
130 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133 
134 /**
135  * program_timing_generator   used by mode timing set
136  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137  * Including SYNC. Call BIOS command table to program Timings.
138  */
139 void optc1_program_timing(
140 	struct timing_generator *optc,
141 	const struct dc_crtc_timing *dc_crtc_timing,
142 	int vready_offset,
143 	int vstartup_start,
144 	int vupdate_offset,
145 	int vupdate_width,
146 	const enum signal_type signal,
147 	bool use_vbios)
148 {
149 	struct dc_crtc_timing patched_crtc_timing;
150 	uint32_t asic_blank_end;
151 	uint32_t asic_blank_start;
152 	uint32_t v_total;
153 	uint32_t v_sync_end;
154 	uint32_t h_sync_polarity, v_sync_polarity;
155 	uint32_t start_point = 0;
156 	uint32_t field_num = 0;
157 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
158 
159 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
160 
161 	optc1->signal = signal;
162 	optc1->vready_offset = vready_offset;
163 	optc1->vstartup_start = vstartup_start;
164 	optc1->vupdate_offset = vupdate_offset;
165 	optc1->vupdate_width = vupdate_width;
166 	patched_crtc_timing = *dc_crtc_timing;
167 	apply_front_porch_workaround(&patched_crtc_timing);
168 
169 	/* Load horizontal timing */
170 
171 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
172 	REG_SET(OTG_H_TOTAL, 0,
173 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
174 
175 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
176 	REG_UPDATE_2(OTG_H_SYNC_A,
177 			OTG_H_SYNC_A_START, 0,
178 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
179 
180 	/* blank_start = line end - front porch */
181 	asic_blank_start = patched_crtc_timing.h_total -
182 			patched_crtc_timing.h_front_porch;
183 
184 	/* blank_end = blank_start - active */
185 	asic_blank_end = asic_blank_start -
186 			patched_crtc_timing.h_border_right -
187 			patched_crtc_timing.h_addressable -
188 			patched_crtc_timing.h_border_left;
189 
190 	REG_UPDATE_2(OTG_H_BLANK_START_END,
191 			OTG_H_BLANK_START, asic_blank_start,
192 			OTG_H_BLANK_END, asic_blank_end);
193 
194 	/* h_sync polarity */
195 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
196 			0 : 1;
197 
198 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
199 			OTG_H_SYNC_A_POL, h_sync_polarity);
200 
201 	v_total = patched_crtc_timing.v_total - 1;
202 
203 	REG_SET(OTG_V_TOTAL, 0,
204 			OTG_V_TOTAL, v_total);
205 
206 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
207 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
208 	 */
209 	REG_SET(OTG_V_TOTAL_MAX, 0,
210 		OTG_V_TOTAL_MAX, v_total);
211 	REG_SET(OTG_V_TOTAL_MIN, 0,
212 		OTG_V_TOTAL_MIN, v_total);
213 
214 	/* v_sync_start = 0, v_sync_end = v_sync_width */
215 	v_sync_end = patched_crtc_timing.v_sync_width;
216 
217 	REG_UPDATE_2(OTG_V_SYNC_A,
218 			OTG_V_SYNC_A_START, 0,
219 			OTG_V_SYNC_A_END, v_sync_end);
220 
221 	/* blank_start = frame end - front porch */
222 	asic_blank_start = patched_crtc_timing.v_total -
223 			patched_crtc_timing.v_front_porch;
224 
225 	/* blank_end = blank_start - active */
226 	asic_blank_end = asic_blank_start -
227 			patched_crtc_timing.v_border_bottom -
228 			patched_crtc_timing.v_addressable -
229 			patched_crtc_timing.v_border_top;
230 
231 	REG_UPDATE_2(OTG_V_BLANK_START_END,
232 			OTG_V_BLANK_START, asic_blank_start,
233 			OTG_V_BLANK_END, asic_blank_end);
234 
235 	/* v_sync polarity */
236 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
237 			0 : 1;
238 
239 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
240 		OTG_V_SYNC_A_POL, v_sync_polarity);
241 
242 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
243 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
244 			optc1->signal == SIGNAL_TYPE_EDP) {
245 		start_point = 1;
246 		if (patched_crtc_timing.flags.INTERLACE == 1)
247 			field_num = 1;
248 	}
249 
250 	/* Interlace */
251 	if (REG(OTG_INTERLACE_CONTROL)) {
252 		if (patched_crtc_timing.flags.INTERLACE == 1)
253 			REG_UPDATE(OTG_INTERLACE_CONTROL,
254 					OTG_INTERLACE_ENABLE, 1);
255 		else
256 			REG_UPDATE(OTG_INTERLACE_CONTROL,
257 					OTG_INTERLACE_ENABLE, 0);
258 	}
259 
260 	/* VTG enable set to 0 first VInit */
261 	REG_UPDATE(CONTROL,
262 			VTG0_ENABLE, 0);
263 
264 	/* original code is using VTG offset to address OTG reg, seems wrong */
265 	REG_UPDATE_2(OTG_CONTROL,
266 			OTG_START_POINT_CNTL, start_point,
267 			OTG_FIELD_NUMBER_CNTL, field_num);
268 
269 	optc->funcs->program_global_sync(optc,
270 			vready_offset,
271 			vstartup_start,
272 			vupdate_offset,
273 			vupdate_width);
274 
275 	optc->funcs->set_vtg_params(optc, dc_crtc_timing);
276 
277 	/* TODO
278 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
279 	 * program_horz_count_by_2
280 	 * for DVI 30bpp mode, 0 otherwise
281 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
282 	 */
283 
284 	/* Enable stereo - only when we need to pack 3D frame. Other types
285 	 * of stereo handled in explicit call
286 	 */
287 
288 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
289 		h_div = H_TIMING_DIV_BY2;
290 
291 	REG_UPDATE(OTG_H_TIMING_CNTL,
292 		OTG_H_TIMING_DIV_BY2, h_div);
293 }
294 
295 void optc1_set_vtg_params(struct timing_generator *optc,
296 		const struct dc_crtc_timing *dc_crtc_timing)
297 {
298 	struct dc_crtc_timing patched_crtc_timing;
299 	uint32_t asic_blank_end;
300 	uint32_t v_init;
301 	uint32_t v_fp2 = 0;
302 	int32_t vertical_line_start;
303 
304 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
305 
306 	patched_crtc_timing = *dc_crtc_timing;
307 	apply_front_porch_workaround(&patched_crtc_timing);
308 
309 	/* VCOUNT_INIT is the start of blank */
310 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
311 
312 	/* end of blank = v_init - active */
313 	asic_blank_end = v_init -
314 			patched_crtc_timing.v_border_bottom -
315 			patched_crtc_timing.v_addressable -
316 			patched_crtc_timing.v_border_top;
317 
318 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
319 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
320 	if (vertical_line_start < 0)
321 		v_fp2 = -vertical_line_start;
322 
323 	/* Interlace */
324 	if (REG(OTG_INTERLACE_CONTROL)) {
325 		if (patched_crtc_timing.flags.INTERLACE == 1) {
326 			v_init = v_init / 2;
327 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
328 				v_fp2 = v_fp2 / 2;
329 		}
330 	}
331 
332 	REG_UPDATE_2(CONTROL,
333 			VTG0_FP2, v_fp2,
334 			VTG0_VCOUNT_INIT, v_init);
335 }
336 
337 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
338 {
339 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
340 
341 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
342 
343 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
344 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
345 }
346 
347 /**
348  * unblank_crtc
349  * Call ASIC Control Object to UnBlank CRTC.
350  */
351 static void optc1_unblank_crtc(struct timing_generator *optc)
352 {
353 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
354 
355 	REG_UPDATE_2(OTG_BLANK_CONTROL,
356 			OTG_BLANK_DATA_EN, 0,
357 			OTG_BLANK_DE_MODE, 0);
358 
359 	/* W/A for automated testing
360 	 * Automated testing will fail underflow test as there
361 	 * sporadic underflows which occur during the optc blank
362 	 * sequence.  As a w/a, clear underflow on unblank.
363 	 * This prevents the failure, but will not mask actual
364 	 * underflow that affect real use cases.
365 	 */
366 	optc1_clear_optc_underflow(optc);
367 }
368 
369 /**
370  * blank_crtc
371  * Call ASIC Control Object to Blank CRTC.
372  */
373 
374 static void optc1_blank_crtc(struct timing_generator *optc)
375 {
376 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
377 
378 	REG_UPDATE_2(OTG_BLANK_CONTROL,
379 			OTG_BLANK_DATA_EN, 1,
380 			OTG_BLANK_DE_MODE, 0);
381 
382 	optc1_set_blank_data_double_buffer(optc, false);
383 }
384 
385 void optc1_set_blank(struct timing_generator *optc,
386 		bool enable_blanking)
387 {
388 	if (enable_blanking)
389 		optc1_blank_crtc(optc);
390 	else
391 		optc1_unblank_crtc(optc);
392 }
393 
394 bool optc1_is_blanked(struct timing_generator *optc)
395 {
396 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
397 	uint32_t blank_en;
398 	uint32_t blank_state;
399 
400 	REG_GET_2(OTG_BLANK_CONTROL,
401 			OTG_BLANK_DATA_EN, &blank_en,
402 			OTG_CURRENT_BLANK_STATE, &blank_state);
403 
404 	return blank_en && blank_state;
405 }
406 
407 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
408 {
409 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
410 
411 	if (enable) {
412 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
413 				OPTC_INPUT_CLK_EN, 1,
414 				OPTC_INPUT_CLK_GATE_DIS, 1);
415 
416 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
417 				OPTC_INPUT_CLK_ON, 1,
418 				1, 1000);
419 
420 		/* Enable clock */
421 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
422 				OTG_CLOCK_EN, 1,
423 				OTG_CLOCK_GATE_DIS, 1);
424 		REG_WAIT(OTG_CLOCK_CONTROL,
425 				OTG_CLOCK_ON, 1,
426 				1, 1000);
427 	} else  {
428 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
429 				OTG_CLOCK_GATE_DIS, 0,
430 				OTG_CLOCK_EN, 0);
431 
432 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
433 				OPTC_INPUT_CLK_GATE_DIS, 0,
434 				OPTC_INPUT_CLK_EN, 0);
435 	}
436 }
437 
438 /**
439  * Enable CRTC
440  * Enable CRTC - call ASIC Control Object to enable Timing generator.
441  */
442 static bool optc1_enable_crtc(struct timing_generator *optc)
443 {
444 	/* TODO FPGA wait for answer
445 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
446 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
447 	 */
448 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
449 
450 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
451 	 * OPP and OPTC should 1:1 mapping
452 	 */
453 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
454 			OPTC_SRC_SEL, optc->inst);
455 
456 	/* VTG enable first is for HW workaround */
457 	REG_UPDATE(CONTROL,
458 			VTG0_ENABLE, 1);
459 
460 	REG_SEQ_START();
461 
462 	/* Enable CRTC */
463 	REG_UPDATE_2(OTG_CONTROL,
464 			OTG_DISABLE_POINT_CNTL, 3,
465 			OTG_MASTER_EN, 1);
466 
467 	REG_SEQ_SUBMIT();
468 	REG_SEQ_WAIT_DONE();
469 
470 	return true;
471 }
472 
473 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
474 bool optc1_disable_crtc(struct timing_generator *optc)
475 {
476 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
477 
478 	/* disable otg request until end of the first line
479 	 * in the vertical blank region
480 	 */
481 	REG_UPDATE_2(OTG_CONTROL,
482 			OTG_DISABLE_POINT_CNTL, 3,
483 			OTG_MASTER_EN, 0);
484 
485 	REG_UPDATE(CONTROL,
486 			VTG0_ENABLE, 0);
487 
488 	/* CRTC disabled, so disable  clock. */
489 	REG_WAIT(OTG_CLOCK_CONTROL,
490 			OTG_BUSY, 0,
491 			1, 100000);
492 
493 	return true;
494 }
495 
496 
497 void optc1_program_blank_color(
498 		struct timing_generator *optc,
499 		const struct tg_color *black_color)
500 {
501 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
502 
503 	REG_SET_3(OTG_BLACK_COLOR, 0,
504 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
505 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
506 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
507 }
508 
509 bool optc1_validate_timing(
510 	struct timing_generator *optc,
511 	const struct dc_crtc_timing *timing)
512 {
513 	uint32_t v_blank;
514 	uint32_t h_blank;
515 	uint32_t min_v_blank;
516 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
517 
518 	ASSERT(timing != NULL);
519 
520 	v_blank = (timing->v_total - timing->v_addressable -
521 					timing->v_border_top - timing->v_border_bottom);
522 
523 	h_blank = (timing->h_total - timing->h_addressable -
524 		timing->h_border_right -
525 		timing->h_border_left);
526 
527 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
528 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
529 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
530 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
531 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
532 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
533 		return false;
534 
535 	/* Temporarily blocking interlacing mode until it's supported */
536 	if (timing->flags.INTERLACE == 1)
537 		return false;
538 
539 	/* Check maximum number of pixels supported by Timing Generator
540 	 * (Currently will never fail, in order to fail needs display which
541 	 * needs more than 8192 horizontal and
542 	 * more than 8192 vertical total pixels)
543 	 */
544 	if (timing->h_total > optc1->max_h_total ||
545 		timing->v_total > optc1->max_v_total)
546 		return false;
547 
548 
549 	if (h_blank < optc1->min_h_blank)
550 		return false;
551 
552 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
553 		 timing->v_sync_width  < optc1->min_v_sync_width)
554 		return false;
555 
556 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
557 
558 	if (v_blank < min_v_blank)
559 		return false;
560 
561 	return true;
562 
563 }
564 
565 /*
566  * get_vblank_counter
567  *
568  * @brief
569  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
570  * holds the counter of frames.
571  *
572  * @param
573  * struct timing_generator *optc - [in] timing generator which controls the
574  * desired CRTC
575  *
576  * @return
577  * Counter of frames, which should equal to number of vblanks.
578  */
579 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
580 {
581 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
582 	uint32_t frame_count;
583 
584 	REG_GET(OTG_STATUS_FRAME_COUNT,
585 		OTG_FRAME_COUNT, &frame_count);
586 
587 	return frame_count;
588 }
589 
590 void optc1_lock(struct timing_generator *optc)
591 {
592 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
593 	uint32_t regval = 0;
594 
595 	regval = REG_READ(OTG_CONTROL);
596 
597 	/* otg is not running, do not need to be locked */
598 	if ((regval & 0x1) == 0x0)
599 		return;
600 
601 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
602 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
603 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
604 			OTG_MASTER_UPDATE_LOCK, 1);
605 
606 	/* Should be fast, status does not update on maximus */
607 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
608 
609 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
610 				UPDATE_LOCK_STATUS, 1,
611 				1, 10);
612 	}
613 }
614 
615 void optc1_unlock(struct timing_generator *optc)
616 {
617 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
618 
619 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
620 			OTG_MASTER_UPDATE_LOCK, 0);
621 }
622 
623 void optc1_get_position(struct timing_generator *optc,
624 		struct crtc_position *position)
625 {
626 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
627 
628 	REG_GET_2(OTG_STATUS_POSITION,
629 			OTG_HORZ_COUNT, &position->horizontal_count,
630 			OTG_VERT_COUNT, &position->vertical_count);
631 
632 	REG_GET(OTG_NOM_VERT_POSITION,
633 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
634 }
635 
636 bool optc1_is_counter_moving(struct timing_generator *optc)
637 {
638 	struct crtc_position position1, position2;
639 
640 	optc->funcs->get_position(optc, &position1);
641 	optc->funcs->get_position(optc, &position2);
642 
643 	if (position1.horizontal_count == position2.horizontal_count &&
644 		position1.vertical_count == position2.vertical_count)
645 		return false;
646 	else
647 		return true;
648 }
649 
650 bool optc1_did_triggered_reset_occur(
651 	struct timing_generator *optc)
652 {
653 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
654 	uint32_t occurred_force, occurred_vsync;
655 
656 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
657 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
658 
659 	REG_GET(OTG_VERT_SYNC_CONTROL,
660 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
661 
662 	return occurred_vsync != 0 || occurred_force != 0;
663 }
664 
665 void optc1_disable_reset_trigger(struct timing_generator *optc)
666 {
667 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
668 
669 	REG_WRITE(OTG_TRIGA_CNTL, 0);
670 
671 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
672 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
673 
674 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
675 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
676 }
677 
678 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
679 {
680 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
681 	uint32_t falling_edge;
682 
683 	REG_GET(OTG_V_SYNC_A_CNTL,
684 			OTG_V_SYNC_A_POL, &falling_edge);
685 
686 	if (falling_edge)
687 		REG_SET_3(OTG_TRIGA_CNTL, 0,
688 				/* vsync signal from selected OTG pipe based
689 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
690 				 */
691 				OTG_TRIGA_SOURCE_SELECT, 20,
692 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
693 				/* always detect falling edge */
694 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
695 	else
696 		REG_SET_3(OTG_TRIGA_CNTL, 0,
697 				/* vsync signal from selected OTG pipe based
698 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
699 				 */
700 				OTG_TRIGA_SOURCE_SELECT, 20,
701 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
702 				/* always detect rising edge */
703 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
704 
705 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
706 			/* force H count to H_TOTAL and V count to V_TOTAL in
707 			 * progressive mode and V_TOTAL-1 in interlaced mode
708 			 */
709 			OTG_FORCE_COUNT_NOW_MODE, 2);
710 }
711 
712 void optc1_enable_crtc_reset(
713 		struct timing_generator *optc,
714 		int source_tg_inst,
715 		struct crtc_trigger_info *crtc_tp)
716 {
717 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
718 	uint32_t falling_edge = 0;
719 	uint32_t rising_edge = 0;
720 
721 	switch (crtc_tp->event) {
722 
723 	case CRTC_EVENT_VSYNC_RISING:
724 		rising_edge = 1;
725 		break;
726 
727 	case CRTC_EVENT_VSYNC_FALLING:
728 		falling_edge = 1;
729 		break;
730 	}
731 
732 	REG_SET_4(OTG_TRIGA_CNTL, 0,
733 		 /* vsync signal from selected OTG pipe based
734 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
735 		  */
736 		  OTG_TRIGA_SOURCE_SELECT, 20,
737 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
738 		  /* always detect falling edge */
739 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
740 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
741 
742 	switch (crtc_tp->delay) {
743 	case TRIGGER_DELAY_NEXT_LINE:
744 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
745 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
746 		break;
747 	case TRIGGER_DELAY_NEXT_PIXEL:
748 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
749 			/* force H count to H_TOTAL and V count to V_TOTAL in
750 			 * progressive mode and V_TOTAL-1 in interlaced mode
751 			 */
752 			OTG_FORCE_COUNT_NOW_MODE, 2);
753 		break;
754 	}
755 }
756 
757 void optc1_wait_for_state(struct timing_generator *optc,
758 		enum crtc_state state)
759 {
760 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
761 
762 	switch (state) {
763 	case CRTC_STATE_VBLANK:
764 		REG_WAIT(OTG_STATUS,
765 				OTG_V_BLANK, 1,
766 				1, 100000); /* 1 vupdate at 10hz */
767 		break;
768 
769 	case CRTC_STATE_VACTIVE:
770 		REG_WAIT(OTG_STATUS,
771 				OTG_V_ACTIVE_DISP, 1,
772 				1, 100000); /* 1 vupdate at 10hz */
773 		break;
774 
775 	default:
776 		break;
777 	}
778 }
779 
780 void optc1_set_early_control(
781 	struct timing_generator *optc,
782 	uint32_t early_cntl)
783 {
784 	/* asic design change, do not need this control
785 	 * empty for share caller logic
786 	 */
787 }
788 
789 
790 void optc1_set_static_screen_control(
791 	struct timing_generator *optc,
792 	uint32_t event_triggers,
793 	uint32_t num_frames)
794 {
795 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
796 
797 	// By register spec, it only takes 8 bit value
798 	if (num_frames > 0xFF)
799 		num_frames = 0xFF;
800 
801 	/* Bit 8 is no longer applicable in RV for PSR case,
802 	 * set bit 8 to 0 if given
803 	 */
804 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
805 			!= 0)
806 		event_triggers = event_triggers &
807 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
808 
809 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
810 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
811 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
812 }
813 
814 void optc1_setup_manual_trigger(struct timing_generator *optc)
815 {
816 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
817 
818 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
819 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
820 
821 	REG_SET_8(OTG_TRIGA_CNTL, 0,
822 			OTG_TRIGA_SOURCE_SELECT, 22,
823 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
824 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
825 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
826 			OTG_TRIGA_POLARITY_SELECT, 0,
827 			OTG_TRIGA_FREQUENCY_SELECT, 0,
828 			OTG_TRIGA_DELAY, 0,
829 			OTG_TRIGA_CLEAR, 1);
830 }
831 
832 void optc1_program_manual_trigger(struct timing_generator *optc)
833 {
834 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
835 
836 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
837 			MANUAL_FLOW_CONTROL, 1);
838 
839 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
840 			MANUAL_FLOW_CONTROL, 0);
841 }
842 
843 
844 /**
845  *****************************************************************************
846  *  Function: set_drr
847  *
848  *  @brief
849  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
850  *
851  *****************************************************************************
852  */
853 void optc1_set_drr(
854 	struct timing_generator *optc,
855 	const struct drr_params *params)
856 {
857 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
858 
859 	if (params != NULL &&
860 		params->vertical_total_max > 0 &&
861 		params->vertical_total_min > 0) {
862 
863 		if (params->vertical_total_mid != 0) {
864 
865 			REG_SET(OTG_V_TOTAL_MID, 0,
866 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
867 
868 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
869 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
870 					OTG_VTOTAL_MID_FRAME_NUM,
871 					(uint8_t)params->vertical_total_mid_frame_num);
872 
873 		}
874 
875 		REG_SET(OTG_V_TOTAL_MAX, 0,
876 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
877 
878 		REG_SET(OTG_V_TOTAL_MIN, 0,
879 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
880 
881 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
882 				OTG_V_TOTAL_MIN_SEL, 1,
883 				OTG_V_TOTAL_MAX_SEL, 1,
884 				OTG_FORCE_LOCK_ON_EVENT, 0,
885 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
886 				OTG_SET_V_TOTAL_MIN_MASK, 0);
887 
888 		// Setup manual flow control for EOF via TRIG_A
889 		optc->funcs->setup_manual_trigger(optc);
890 
891 	} else {
892 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
893 				OTG_SET_V_TOTAL_MIN_MASK, 0,
894 				OTG_V_TOTAL_MIN_SEL, 0,
895 				OTG_V_TOTAL_MAX_SEL, 0,
896 				OTG_FORCE_LOCK_ON_EVENT, 0);
897 
898 		REG_SET(OTG_V_TOTAL_MIN, 0,
899 			OTG_V_TOTAL_MIN, 0);
900 
901 		REG_SET(OTG_V_TOTAL_MAX, 0,
902 			OTG_V_TOTAL_MAX, 0);
903 	}
904 }
905 
906 static void optc1_set_test_pattern(
907 	struct timing_generator *optc,
908 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
909 	 * because this is not DP-specific (which is probably somewhere in DP
910 	 * encoder) */
911 	enum controller_dp_test_pattern test_pattern,
912 	enum dc_color_depth color_depth)
913 {
914 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
915 	enum test_pattern_color_format bit_depth;
916 	enum test_pattern_dyn_range dyn_range;
917 	enum test_pattern_mode mode;
918 	uint32_t pattern_mask;
919 	uint32_t pattern_data;
920 	/* color ramp generator mixes 16-bits color */
921 	uint32_t src_bpc = 16;
922 	/* requested bpc */
923 	uint32_t dst_bpc;
924 	uint32_t index;
925 	/* RGB values of the color bars.
926 	 * Produce two RGB colors: RGB0 - white (all Fs)
927 	 * and RGB1 - black (all 0s)
928 	 * (three RGB components for two colors)
929 	 */
930 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
931 						0x0000, 0x0000};
932 	/* dest color (converted to the specified color format) */
933 	uint16_t dst_color[6];
934 	uint32_t inc_base;
935 
936 	/* translate to bit depth */
937 	switch (color_depth) {
938 	case COLOR_DEPTH_666:
939 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
940 	break;
941 	case COLOR_DEPTH_888:
942 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
943 	break;
944 	case COLOR_DEPTH_101010:
945 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
946 	break;
947 	case COLOR_DEPTH_121212:
948 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
949 	break;
950 	default:
951 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
952 	break;
953 	}
954 
955 	switch (test_pattern) {
956 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
957 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
958 	{
959 		dyn_range = (test_pattern ==
960 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
961 				TEST_PATTERN_DYN_RANGE_CEA :
962 				TEST_PATTERN_DYN_RANGE_VESA);
963 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
964 
965 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
966 				OTG_TEST_PATTERN_VRES, 6,
967 				OTG_TEST_PATTERN_HRES, 6);
968 
969 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
970 				OTG_TEST_PATTERN_EN, 1,
971 				OTG_TEST_PATTERN_MODE, mode,
972 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
973 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
974 	}
975 	break;
976 
977 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
978 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
979 	{
980 		mode = (test_pattern ==
981 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
982 			TEST_PATTERN_MODE_VERTICALBARS :
983 			TEST_PATTERN_MODE_HORIZONTALBARS);
984 
985 		switch (bit_depth) {
986 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
987 			dst_bpc = 6;
988 		break;
989 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
990 			dst_bpc = 8;
991 		break;
992 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
993 			dst_bpc = 10;
994 		break;
995 		default:
996 			dst_bpc = 8;
997 		break;
998 		}
999 
1000 		/* adjust color to the required colorFormat */
1001 		for (index = 0; index < 6; index++) {
1002 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1003 			 * (srcBpc - dstBpc);
1004 			 */
1005 			dst_color[index] =
1006 				src_color[index] >> (src_bpc - dst_bpc);
1007 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1008 		 * lowest 6 are hardwired to ZERO
1009 		 * color bits should be left aligned aligned to MSB
1010 		 * XXXXXXXXXX000000 for 10 bit,
1011 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1012 		 */
1013 			dst_color[index] <<= (16 - dst_bpc);
1014 		}
1015 
1016 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1017 
1018 		/* We have to write the mask before data, similar to pipeline.
1019 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1020 		 * and RGB1 to be cyan,
1021 		 * we need to make 7 writes:
1022 		 * MASK   DATA
1023 		 * 000001 00000000 00000000                     set mask to R0
1024 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1025 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1026 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1027 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1028 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1029 		 * 100000 11111111 00000000     B1 255, 0xFF00
1030 		 *
1031 		 * we will make a loop of 6 in which we prepare the mask,
1032 		 * then write, then prepare the color for next write.
1033 		 * first iteration will write mask only,
1034 		 * but each next iteration color prepared in
1035 		 * previous iteration will be written within new mask,
1036 		 * the last component will written separately,
1037 		 * mask is not changing between 6th and 7th write
1038 		 * and color will be prepared by last iteration
1039 		 */
1040 
1041 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1042 		 * is B1, G1, R1, B0, G0, R0
1043 		 */
1044 		pattern_data = 0;
1045 		for (index = 0; index < 6; index++) {
1046 			/* prepare color mask, first write PATTERN_DATA
1047 			 * will have all zeros
1048 			 */
1049 			pattern_mask = (1 << index);
1050 
1051 			/* write color component */
1052 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1053 					OTG_TEST_PATTERN_MASK, pattern_mask,
1054 					OTG_TEST_PATTERN_DATA, pattern_data);
1055 
1056 			/* prepare next color component,
1057 			 * will be written in the next iteration
1058 			 */
1059 			pattern_data = dst_color[index];
1060 		}
1061 		/* write last color component,
1062 		 * it's been already prepared in the loop
1063 		 */
1064 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1065 				OTG_TEST_PATTERN_MASK, pattern_mask,
1066 				OTG_TEST_PATTERN_DATA, pattern_data);
1067 
1068 		/* enable test pattern */
1069 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1070 				OTG_TEST_PATTERN_EN, 1,
1071 				OTG_TEST_PATTERN_MODE, mode,
1072 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1073 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1074 	}
1075 	break;
1076 
1077 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1078 	{
1079 		mode = (bit_depth ==
1080 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1081 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1082 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1083 
1084 		switch (bit_depth) {
1085 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1086 			dst_bpc = 6;
1087 		break;
1088 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1089 			dst_bpc = 8;
1090 		break;
1091 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1092 			dst_bpc = 10;
1093 		break;
1094 		default:
1095 			dst_bpc = 8;
1096 		break;
1097 		}
1098 
1099 		/* increment for the first ramp for one color gradation
1100 		 * 1 gradation for 6-bit color is 2^10
1101 		 * gradations in 16-bit color
1102 		 */
1103 		inc_base = (src_bpc - dst_bpc);
1104 
1105 		switch (bit_depth) {
1106 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1107 		{
1108 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1109 					OTG_TEST_PATTERN_INC0, inc_base,
1110 					OTG_TEST_PATTERN_INC1, 0,
1111 					OTG_TEST_PATTERN_HRES, 6,
1112 					OTG_TEST_PATTERN_VRES, 6,
1113 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1114 		}
1115 		break;
1116 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1117 		{
1118 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1119 					OTG_TEST_PATTERN_INC0, inc_base,
1120 					OTG_TEST_PATTERN_INC1, 0,
1121 					OTG_TEST_PATTERN_HRES, 8,
1122 					OTG_TEST_PATTERN_VRES, 6,
1123 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1124 		}
1125 		break;
1126 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1127 		{
1128 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1129 					OTG_TEST_PATTERN_INC0, inc_base,
1130 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1131 					OTG_TEST_PATTERN_HRES, 8,
1132 					OTG_TEST_PATTERN_VRES, 5,
1133 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1134 		}
1135 		break;
1136 		default:
1137 		break;
1138 		}
1139 
1140 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1141 
1142 		/* enable test pattern */
1143 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1144 
1145 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1146 				OTG_TEST_PATTERN_EN, 1,
1147 				OTG_TEST_PATTERN_MODE, mode,
1148 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1149 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1150 	}
1151 	break;
1152 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1153 	{
1154 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1155 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1156 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1157 	}
1158 	break;
1159 	default:
1160 		break;
1161 
1162 	}
1163 }
1164 
1165 void optc1_get_crtc_scanoutpos(
1166 	struct timing_generator *optc,
1167 	uint32_t *v_blank_start,
1168 	uint32_t *v_blank_end,
1169 	uint32_t *h_position,
1170 	uint32_t *v_position)
1171 {
1172 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1173 	struct crtc_position position;
1174 
1175 	REG_GET_2(OTG_V_BLANK_START_END,
1176 			OTG_V_BLANK_START, v_blank_start,
1177 			OTG_V_BLANK_END, v_blank_end);
1178 
1179 	optc1_get_position(optc, &position);
1180 
1181 	*h_position = position.horizontal_count;
1182 	*v_position = position.vertical_count;
1183 }
1184 
1185 static void optc1_enable_stereo(struct timing_generator *optc,
1186 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1187 {
1188 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1189 
1190 	if (flags) {
1191 		uint32_t stereo_en;
1192 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1193 
1194 		if (flags->PROGRAM_STEREO)
1195 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1196 				OTG_STEREO_EN, stereo_en,
1197 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1198 				OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1199 
1200 		if (flags->PROGRAM_POLARITY)
1201 			REG_UPDATE(OTG_STEREO_CONTROL,
1202 				OTG_STEREO_EYE_FLAG_POLARITY,
1203 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1204 
1205 		if (flags->DISABLE_STEREO_DP_SYNC)
1206 			REG_UPDATE(OTG_STEREO_CONTROL,
1207 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1208 
1209 		if (flags->PROGRAM_STEREO)
1210 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1211 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1212 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1213 
1214 	}
1215 }
1216 
1217 void optc1_program_stereo(struct timing_generator *optc,
1218 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1219 {
1220 	if (flags->PROGRAM_STEREO)
1221 		optc1_enable_stereo(optc, timing, flags);
1222 	else
1223 		optc1_disable_stereo(optc);
1224 }
1225 
1226 
1227 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1228 {
1229 	bool ret = false;
1230 	uint32_t left_eye = 0;
1231 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1232 
1233 	REG_GET(OTG_STEREO_STATUS,
1234 		OTG_STEREO_CURRENT_EYE, &left_eye);
1235 	if (left_eye == 1)
1236 		ret = true;
1237 	else
1238 		ret = false;
1239 
1240 	return ret;
1241 }
1242 
1243 bool optc1_get_hw_timing(struct timing_generator *tg,
1244 		struct dc_crtc_timing *hw_crtc_timing)
1245 {
1246 	struct dcn_otg_state s = {0};
1247 
1248 	if (tg == NULL || hw_crtc_timing == NULL)
1249 		return false;
1250 
1251 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1252 
1253 	hw_crtc_timing->h_total = s.h_total + 1;
1254 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1255 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1256 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1257 
1258 	hw_crtc_timing->v_total = s.v_total + 1;
1259 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1260 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1261 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1262 
1263 	return true;
1264 }
1265 
1266 
1267 void optc1_read_otg_state(struct optc *optc1,
1268 		struct dcn_otg_state *s)
1269 {
1270 	REG_GET(OTG_CONTROL,
1271 			OTG_MASTER_EN, &s->otg_enabled);
1272 
1273 	REG_GET_2(OTG_V_BLANK_START_END,
1274 			OTG_V_BLANK_START, &s->v_blank_start,
1275 			OTG_V_BLANK_END, &s->v_blank_end);
1276 
1277 	REG_GET(OTG_V_SYNC_A_CNTL,
1278 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1279 
1280 	REG_GET(OTG_V_TOTAL,
1281 			OTG_V_TOTAL, &s->v_total);
1282 
1283 	REG_GET(OTG_V_TOTAL_MAX,
1284 			OTG_V_TOTAL_MAX, &s->v_total_max);
1285 
1286 	REG_GET(OTG_V_TOTAL_MIN,
1287 			OTG_V_TOTAL_MIN, &s->v_total_min);
1288 
1289 	REG_GET(OTG_V_TOTAL_CONTROL,
1290 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1291 
1292 	REG_GET(OTG_V_TOTAL_CONTROL,
1293 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1294 
1295 	REG_GET_2(OTG_V_SYNC_A,
1296 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1297 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1298 
1299 	REG_GET_2(OTG_H_BLANK_START_END,
1300 			OTG_H_BLANK_START, &s->h_blank_start,
1301 			OTG_H_BLANK_END, &s->h_blank_end);
1302 
1303 	REG_GET_2(OTG_H_SYNC_A,
1304 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1305 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1306 
1307 	REG_GET(OTG_H_SYNC_A_CNTL,
1308 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1309 
1310 	REG_GET(OTG_H_TOTAL,
1311 			OTG_H_TOTAL, &s->h_total);
1312 
1313 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1314 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1315 }
1316 
1317 bool optc1_get_otg_active_size(struct timing_generator *optc,
1318 		uint32_t *otg_active_width,
1319 		uint32_t *otg_active_height)
1320 {
1321 	uint32_t otg_enabled;
1322 	uint32_t v_blank_start;
1323 	uint32_t v_blank_end;
1324 	uint32_t h_blank_start;
1325 	uint32_t h_blank_end;
1326 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1327 
1328 
1329 	REG_GET(OTG_CONTROL,
1330 			OTG_MASTER_EN, &otg_enabled);
1331 
1332 	if (otg_enabled == 0)
1333 		return false;
1334 
1335 	REG_GET_2(OTG_V_BLANK_START_END,
1336 			OTG_V_BLANK_START, &v_blank_start,
1337 			OTG_V_BLANK_END, &v_blank_end);
1338 
1339 	REG_GET_2(OTG_H_BLANK_START_END,
1340 			OTG_H_BLANK_START, &h_blank_start,
1341 			OTG_H_BLANK_END, &h_blank_end);
1342 
1343 	*otg_active_width = v_blank_start - v_blank_end;
1344 	*otg_active_height = h_blank_start - h_blank_end;
1345 	return true;
1346 }
1347 
1348 void optc1_clear_optc_underflow(struct timing_generator *optc)
1349 {
1350 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1351 
1352 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1353 }
1354 
1355 void optc1_tg_init(struct timing_generator *optc)
1356 {
1357 	optc1_set_blank_data_double_buffer(optc, true);
1358 	optc1_clear_optc_underflow(optc);
1359 }
1360 
1361 bool optc1_is_tg_enabled(struct timing_generator *optc)
1362 {
1363 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1364 	uint32_t otg_enabled = 0;
1365 
1366 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1367 
1368 	return (otg_enabled != 0);
1369 
1370 }
1371 
1372 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1373 {
1374 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1375 	uint32_t underflow_occurred = 0;
1376 
1377 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1378 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1379 			&underflow_occurred);
1380 
1381 	return (underflow_occurred == 1);
1382 }
1383 
1384 bool optc1_configure_crc(struct timing_generator *optc,
1385 			  const struct crc_params *params)
1386 {
1387 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1388 
1389 	/* Cannot configure crc on a CRTC that is disabled */
1390 	if (!optc1_is_tg_enabled(optc))
1391 		return false;
1392 
1393 	REG_WRITE(OTG_CRC_CNTL, 0);
1394 
1395 	if (!params->enable)
1396 		return true;
1397 
1398 	/* Program frame boundaries */
1399 	/* Window A x axis start and end. */
1400 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1401 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1402 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1403 
1404 	/* Window A y axis start and end. */
1405 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1406 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1407 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1408 
1409 	/* Window B x axis start and end. */
1410 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1411 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1412 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1413 
1414 	/* Window B y axis start and end. */
1415 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1416 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1417 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1418 
1419 	/* Set crc mode and selection, and enable. Only using CRC0*/
1420 	REG_UPDATE_3(OTG_CRC_CNTL,
1421 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1422 			OTG_CRC0_SELECT, params->selection,
1423 			OTG_CRC_EN, 1);
1424 
1425 	return true;
1426 }
1427 
1428 bool optc1_get_crc(struct timing_generator *optc,
1429 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1430 {
1431 	uint32_t field = 0;
1432 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1433 
1434 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1435 
1436 	/* Early return if CRC is not enabled for this CRTC */
1437 	if (!field)
1438 		return false;
1439 
1440 	REG_GET_2(OTG_CRC0_DATA_RG,
1441 			CRC0_R_CR, r_cr,
1442 			CRC0_G_Y, g_y);
1443 
1444 	REG_GET(OTG_CRC0_DATA_B,
1445 			CRC0_B_CB, b_cb);
1446 
1447 	return true;
1448 }
1449 
1450 static const struct timing_generator_funcs dcn10_tg_funcs = {
1451 		.validate_timing = optc1_validate_timing,
1452 		.program_timing = optc1_program_timing,
1453 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1454 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1455 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1456 		.program_global_sync = optc1_program_global_sync,
1457 		.enable_crtc = optc1_enable_crtc,
1458 		.disable_crtc = optc1_disable_crtc,
1459 		/* used by enable_timing_synchronization. Not need for FPGA */
1460 		.is_counter_moving = optc1_is_counter_moving,
1461 		.get_position = optc1_get_position,
1462 		.get_frame_count = optc1_get_vblank_counter,
1463 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1464 		.get_otg_active_size = optc1_get_otg_active_size,
1465 		.set_early_control = optc1_set_early_control,
1466 		/* used by enable_timing_synchronization. Not need for FPGA */
1467 		.wait_for_state = optc1_wait_for_state,
1468 		.set_blank = optc1_set_blank,
1469 		.is_blanked = optc1_is_blanked,
1470 		.set_blank_color = optc1_program_blank_color,
1471 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1472 		.enable_reset_trigger = optc1_enable_reset_trigger,
1473 		.enable_crtc_reset = optc1_enable_crtc_reset,
1474 		.disable_reset_trigger = optc1_disable_reset_trigger,
1475 		.lock = optc1_lock,
1476 		.unlock = optc1_unlock,
1477 		.enable_optc_clock = optc1_enable_optc_clock,
1478 		.set_drr = optc1_set_drr,
1479 		.set_static_screen_control = optc1_set_static_screen_control,
1480 		.set_test_pattern = optc1_set_test_pattern,
1481 		.program_stereo = optc1_program_stereo,
1482 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1483 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1484 		.tg_init = optc1_tg_init,
1485 		.is_tg_enabled = optc1_is_tg_enabled,
1486 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1487 		.clear_optc_underflow = optc1_clear_optc_underflow,
1488 		.get_crc = optc1_get_crc,
1489 		.configure_crc = optc1_configure_crc,
1490 		.set_vtg_params = optc1_set_vtg_params,
1491 		.program_manual_trigger = optc1_program_manual_trigger,
1492 		.setup_manual_trigger = optc1_setup_manual_trigger,
1493 		.get_hw_timing = optc1_get_hw_timing,
1494 };
1495 
1496 void dcn10_timing_generator_init(struct optc *optc1)
1497 {
1498 	optc1->base.funcs = &dcn10_tg_funcs;
1499 
1500 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1501 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1502 
1503 	optc1->min_h_blank = 32;
1504 	optc1->min_v_blank = 3;
1505 	optc1->min_v_blank_interlace = 5;
1506 	optc1->min_h_sync_width = 8;
1507 	optc1->min_v_sync_width = 1;
1508 }
1509 
1510 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1511  *
1512  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1513  *   containter rate.
1514  *
1515  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1516  *   halved to maintain the correct pixel rate.
1517  *
1518  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1519  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1520  *
1521  */
1522 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1523 {
1524 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1525 
1526 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1527 			&& !timing->dsc_cfg.ycbcr422_simple);
1528 	return two_pix;
1529 }
1530 
1531