1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "reg_helper.h" 28 #include "dcn10_optc.h" 29 #include "dc.h" 30 31 #define REG(reg)\ 32 optc1->tg_regs->reg 33 34 #define CTX \ 35 optc1->base.ctx 36 37 #undef FN 38 #define FN(reg_name, field_name) \ 39 optc1->tg_shift->field_name, optc1->tg_mask->field_name 40 41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100 42 43 /** 44 * apply_front_porch_workaround TODO FPGA still need? 45 * 46 * This is a workaround for a bug that has existed since R5xx and has not been 47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive. 48 */ 49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing) 50 { 51 if (timing->flags.INTERLACE == 1) { 52 if (timing->v_front_porch < 2) 53 timing->v_front_porch = 2; 54 } else { 55 if (timing->v_front_porch < 1) 56 timing->v_front_porch = 1; 57 } 58 } 59 60 void optc1_program_global_sync( 61 struct timing_generator *optc, 62 int vready_offset, 63 int vstartup_start, 64 int vupdate_offset, 65 int vupdate_width) 66 { 67 struct optc *optc1 = DCN10TG_FROM_TG(optc); 68 69 optc1->vready_offset = vready_offset; 70 optc1->vstartup_start = vstartup_start; 71 optc1->vupdate_offset = vupdate_offset; 72 optc1->vupdate_width = vupdate_width; 73 74 if (optc1->vstartup_start == 0) { 75 BREAK_TO_DEBUGGER(); 76 return; 77 } 78 79 REG_SET(OTG_VSTARTUP_PARAM, 0, 80 VSTARTUP_START, optc1->vstartup_start); 81 82 REG_SET_2(OTG_VUPDATE_PARAM, 0, 83 VUPDATE_OFFSET, optc1->vupdate_offset, 84 VUPDATE_WIDTH, optc1->vupdate_width); 85 86 REG_SET(OTG_VREADY_PARAM, 0, 87 VREADY_OFFSET, optc1->vready_offset); 88 } 89 90 static void optc1_disable_stereo(struct timing_generator *optc) 91 { 92 struct optc *optc1 = DCN10TG_FROM_TG(optc); 93 94 REG_SET(OTG_STEREO_CONTROL, 0, 95 OTG_STEREO_EN, 0); 96 97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0, 98 OTG_3D_STRUCTURE_EN, 0, 99 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0); 100 } 101 102 void optc1_setup_vertical_interrupt0( 103 struct timing_generator *optc, 104 uint32_t start_line, 105 uint32_t end_line) 106 { 107 struct optc *optc1 = DCN10TG_FROM_TG(optc); 108 109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0, 110 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line, 111 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line); 112 } 113 114 void optc1_setup_vertical_interrupt1( 115 struct timing_generator *optc, 116 uint32_t start_line) 117 { 118 struct optc *optc1 = DCN10TG_FROM_TG(optc); 119 120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0, 121 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line); 122 } 123 124 void optc1_setup_vertical_interrupt2( 125 struct timing_generator *optc, 126 uint32_t start_line) 127 { 128 struct optc *optc1 = DCN10TG_FROM_TG(optc); 129 130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0, 131 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line); 132 } 133 134 /** 135 * program_timing_generator used by mode timing set 136 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition. 137 * Including SYNC. Call BIOS command table to program Timings. 138 */ 139 void optc1_program_timing( 140 struct timing_generator *optc, 141 const struct dc_crtc_timing *dc_crtc_timing, 142 int vready_offset, 143 int vstartup_start, 144 int vupdate_offset, 145 int vupdate_width, 146 const enum signal_type signal, 147 bool use_vbios) 148 { 149 struct dc_crtc_timing patched_crtc_timing; 150 uint32_t asic_blank_end; 151 uint32_t asic_blank_start; 152 uint32_t v_total; 153 uint32_t v_sync_end; 154 uint32_t h_sync_polarity, v_sync_polarity; 155 uint32_t start_point = 0; 156 uint32_t field_num = 0; 157 enum h_timing_div_mode h_div = H_TIMING_NO_DIV; 158 159 struct optc *optc1 = DCN10TG_FROM_TG(optc); 160 161 optc1->signal = signal; 162 optc1->vready_offset = vready_offset; 163 optc1->vstartup_start = vstartup_start; 164 optc1->vupdate_offset = vupdate_offset; 165 optc1->vupdate_width = vupdate_width; 166 patched_crtc_timing = *dc_crtc_timing; 167 apply_front_porch_workaround(&patched_crtc_timing); 168 169 /* Load horizontal timing */ 170 171 /* CRTC_H_TOTAL = vesa.h_total - 1 */ 172 REG_SET(OTG_H_TOTAL, 0, 173 OTG_H_TOTAL, patched_crtc_timing.h_total - 1); 174 175 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */ 176 REG_UPDATE_2(OTG_H_SYNC_A, 177 OTG_H_SYNC_A_START, 0, 178 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width); 179 180 /* blank_start = line end - front porch */ 181 asic_blank_start = patched_crtc_timing.h_total - 182 patched_crtc_timing.h_front_porch; 183 184 /* blank_end = blank_start - active */ 185 asic_blank_end = asic_blank_start - 186 patched_crtc_timing.h_border_right - 187 patched_crtc_timing.h_addressable - 188 patched_crtc_timing.h_border_left; 189 190 REG_UPDATE_2(OTG_H_BLANK_START_END, 191 OTG_H_BLANK_START, asic_blank_start, 192 OTG_H_BLANK_END, asic_blank_end); 193 194 /* h_sync polarity */ 195 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ? 196 0 : 1; 197 198 REG_UPDATE(OTG_H_SYNC_A_CNTL, 199 OTG_H_SYNC_A_POL, h_sync_polarity); 200 201 v_total = patched_crtc_timing.v_total - 1; 202 203 REG_SET(OTG_V_TOTAL, 0, 204 OTG_V_TOTAL, v_total); 205 206 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and 207 * OTG_V_TOTAL_MIN are equal to V_TOTAL. 208 */ 209 REG_SET(OTG_V_TOTAL_MAX, 0, 210 OTG_V_TOTAL_MAX, v_total); 211 REG_SET(OTG_V_TOTAL_MIN, 0, 212 OTG_V_TOTAL_MIN, v_total); 213 214 /* v_sync_start = 0, v_sync_end = v_sync_width */ 215 v_sync_end = patched_crtc_timing.v_sync_width; 216 217 REG_UPDATE_2(OTG_V_SYNC_A, 218 OTG_V_SYNC_A_START, 0, 219 OTG_V_SYNC_A_END, v_sync_end); 220 221 /* blank_start = frame end - front porch */ 222 asic_blank_start = patched_crtc_timing.v_total - 223 patched_crtc_timing.v_front_porch; 224 225 /* blank_end = blank_start - active */ 226 asic_blank_end = asic_blank_start - 227 patched_crtc_timing.v_border_bottom - 228 patched_crtc_timing.v_addressable - 229 patched_crtc_timing.v_border_top; 230 231 REG_UPDATE_2(OTG_V_BLANK_START_END, 232 OTG_V_BLANK_START, asic_blank_start, 233 OTG_V_BLANK_END, asic_blank_end); 234 235 /* v_sync polarity */ 236 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ? 237 0 : 1; 238 239 REG_UPDATE(OTG_V_SYNC_A_CNTL, 240 OTG_V_SYNC_A_POL, v_sync_polarity); 241 242 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT || 243 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST || 244 optc1->signal == SIGNAL_TYPE_EDP) { 245 start_point = 1; 246 if (patched_crtc_timing.flags.INTERLACE == 1) 247 field_num = 1; 248 } 249 250 /* Interlace */ 251 if (REG(OTG_INTERLACE_CONTROL)) { 252 if (patched_crtc_timing.flags.INTERLACE == 1) 253 REG_UPDATE(OTG_INTERLACE_CONTROL, 254 OTG_INTERLACE_ENABLE, 1); 255 else 256 REG_UPDATE(OTG_INTERLACE_CONTROL, 257 OTG_INTERLACE_ENABLE, 0); 258 } 259 260 /* VTG enable set to 0 first VInit */ 261 REG_UPDATE(CONTROL, 262 VTG0_ENABLE, 0); 263 264 /* original code is using VTG offset to address OTG reg, seems wrong */ 265 REG_UPDATE_2(OTG_CONTROL, 266 OTG_START_POINT_CNTL, start_point, 267 OTG_FIELD_NUMBER_CNTL, field_num); 268 269 optc->funcs->program_global_sync(optc, 270 vready_offset, 271 vstartup_start, 272 vupdate_offset, 273 vupdate_width); 274 275 optc->funcs->set_vtg_params(optc, dc_crtc_timing); 276 277 /* TODO 278 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1 279 * program_horz_count_by_2 280 * for DVI 30bpp mode, 0 otherwise 281 * program_horz_count_by_2(optc, &patched_crtc_timing); 282 */ 283 284 /* Enable stereo - only when we need to pack 3D frame. Other types 285 * of stereo handled in explicit call 286 */ 287 288 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2) 289 h_div = H_TIMING_DIV_BY2; 290 291 REG_UPDATE(OTG_H_TIMING_CNTL, 292 OTG_H_TIMING_DIV_BY2, h_div); 293 } 294 295 void optc1_set_vtg_params(struct timing_generator *optc, 296 const struct dc_crtc_timing *dc_crtc_timing) 297 { 298 struct dc_crtc_timing patched_crtc_timing; 299 uint32_t asic_blank_end; 300 uint32_t v_init; 301 uint32_t v_fp2 = 0; 302 int32_t vertical_line_start; 303 304 struct optc *optc1 = DCN10TG_FROM_TG(optc); 305 306 patched_crtc_timing = *dc_crtc_timing; 307 apply_front_porch_workaround(&patched_crtc_timing); 308 309 /* VCOUNT_INIT is the start of blank */ 310 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; 311 312 /* end of blank = v_init - active */ 313 asic_blank_end = v_init - 314 patched_crtc_timing.v_border_bottom - 315 patched_crtc_timing.v_addressable - 316 patched_crtc_timing.v_border_top; 317 318 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */ 319 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1; 320 if (vertical_line_start < 0) 321 v_fp2 = -vertical_line_start; 322 323 /* Interlace */ 324 if (REG(OTG_INTERLACE_CONTROL)) { 325 if (patched_crtc_timing.flags.INTERLACE == 1) { 326 v_init = v_init / 2; 327 if ((optc1->vstartup_start/2)*2 > asic_blank_end) 328 v_fp2 = v_fp2 / 2; 329 } 330 } 331 332 REG_UPDATE_2(CONTROL, 333 VTG0_FP2, v_fp2, 334 VTG0_VCOUNT_INIT, v_init); 335 } 336 337 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable) 338 { 339 struct optc *optc1 = DCN10TG_FROM_TG(optc); 340 341 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; 342 343 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 344 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable); 345 } 346 347 /** 348 * unblank_crtc 349 * Call ASIC Control Object to UnBlank CRTC. 350 */ 351 static void optc1_unblank_crtc(struct timing_generator *optc) 352 { 353 struct optc *optc1 = DCN10TG_FROM_TG(optc); 354 355 REG_UPDATE_2(OTG_BLANK_CONTROL, 356 OTG_BLANK_DATA_EN, 0, 357 OTG_BLANK_DE_MODE, 0); 358 359 /* W/A for automated testing 360 * Automated testing will fail underflow test as there 361 * sporadic underflows which occur during the optc blank 362 * sequence. As a w/a, clear underflow on unblank. 363 * This prevents the failure, but will not mask actual 364 * underflow that affect real use cases. 365 */ 366 optc1_clear_optc_underflow(optc); 367 } 368 369 /** 370 * blank_crtc 371 * Call ASIC Control Object to Blank CRTC. 372 */ 373 374 static void optc1_blank_crtc(struct timing_generator *optc) 375 { 376 struct optc *optc1 = DCN10TG_FROM_TG(optc); 377 378 REG_UPDATE_2(OTG_BLANK_CONTROL, 379 OTG_BLANK_DATA_EN, 1, 380 OTG_BLANK_DE_MODE, 0); 381 382 optc1_set_blank_data_double_buffer(optc, false); 383 } 384 385 void optc1_set_blank(struct timing_generator *optc, 386 bool enable_blanking) 387 { 388 if (enable_blanking) 389 optc1_blank_crtc(optc); 390 else 391 optc1_unblank_crtc(optc); 392 } 393 394 bool optc1_is_blanked(struct timing_generator *optc) 395 { 396 struct optc *optc1 = DCN10TG_FROM_TG(optc); 397 uint32_t blank_en; 398 uint32_t blank_state; 399 400 REG_GET_2(OTG_BLANK_CONTROL, 401 OTG_BLANK_DATA_EN, &blank_en, 402 OTG_CURRENT_BLANK_STATE, &blank_state); 403 404 return blank_en && blank_state; 405 } 406 407 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable) 408 { 409 struct optc *optc1 = DCN10TG_FROM_TG(optc); 410 411 if (enable) { 412 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, 413 OPTC_INPUT_CLK_EN, 1, 414 OPTC_INPUT_CLK_GATE_DIS, 1); 415 416 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL, 417 OPTC_INPUT_CLK_ON, 1, 418 1, 1000); 419 420 /* Enable clock */ 421 REG_UPDATE_2(OTG_CLOCK_CONTROL, 422 OTG_CLOCK_EN, 1, 423 OTG_CLOCK_GATE_DIS, 1); 424 REG_WAIT(OTG_CLOCK_CONTROL, 425 OTG_CLOCK_ON, 1, 426 1, 1000); 427 } else { 428 REG_UPDATE_2(OTG_CLOCK_CONTROL, 429 OTG_CLOCK_GATE_DIS, 0, 430 OTG_CLOCK_EN, 0); 431 432 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, 433 OPTC_INPUT_CLK_GATE_DIS, 0, 434 OPTC_INPUT_CLK_EN, 0); 435 } 436 } 437 438 /** 439 * Enable CRTC 440 * Enable CRTC - call ASIC Control Object to enable Timing generator. 441 */ 442 static bool optc1_enable_crtc(struct timing_generator *optc) 443 { 444 /* TODO FPGA wait for answer 445 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE 446 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK 447 */ 448 struct optc *optc1 = DCN10TG_FROM_TG(optc); 449 450 /* opp instance for OTG. For DCN1.0, ODM is remoed. 451 * OPP and OPTC should 1:1 mapping 452 */ 453 REG_UPDATE(OPTC_DATA_SOURCE_SELECT, 454 OPTC_SRC_SEL, optc->inst); 455 456 /* VTG enable first is for HW workaround */ 457 REG_UPDATE(CONTROL, 458 VTG0_ENABLE, 1); 459 460 REG_SEQ_START(); 461 462 /* Enable CRTC */ 463 REG_UPDATE_2(OTG_CONTROL, 464 OTG_DISABLE_POINT_CNTL, 3, 465 OTG_MASTER_EN, 1); 466 467 REG_SEQ_SUBMIT(); 468 REG_SEQ_WAIT_DONE(); 469 470 return true; 471 } 472 473 /* disable_crtc - call ASIC Control Object to disable Timing generator. */ 474 bool optc1_disable_crtc(struct timing_generator *optc) 475 { 476 struct optc *optc1 = DCN10TG_FROM_TG(optc); 477 478 /* disable otg request until end of the first line 479 * in the vertical blank region 480 */ 481 REG_UPDATE_2(OTG_CONTROL, 482 OTG_DISABLE_POINT_CNTL, 3, 483 OTG_MASTER_EN, 0); 484 485 REG_UPDATE(CONTROL, 486 VTG0_ENABLE, 0); 487 488 /* CRTC disabled, so disable clock. */ 489 REG_WAIT(OTG_CLOCK_CONTROL, 490 OTG_BUSY, 0, 491 1, 100000); 492 493 return true; 494 } 495 496 497 void optc1_program_blank_color( 498 struct timing_generator *optc, 499 const struct tg_color *black_color) 500 { 501 struct optc *optc1 = DCN10TG_FROM_TG(optc); 502 503 REG_SET_3(OTG_BLACK_COLOR, 0, 504 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb, 505 OTG_BLACK_COLOR_G_Y, black_color->color_g_y, 506 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr); 507 } 508 509 bool optc1_validate_timing( 510 struct timing_generator *optc, 511 const struct dc_crtc_timing *timing) 512 { 513 uint32_t v_blank; 514 uint32_t h_blank; 515 uint32_t min_v_blank; 516 struct optc *optc1 = DCN10TG_FROM_TG(optc); 517 518 ASSERT(timing != NULL); 519 520 v_blank = (timing->v_total - timing->v_addressable - 521 timing->v_border_top - timing->v_border_bottom); 522 523 h_blank = (timing->h_total - timing->h_addressable - 524 timing->h_border_right - 525 timing->h_border_left); 526 527 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE && 528 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING && 529 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM && 530 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE && 531 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE && 532 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA) 533 return false; 534 535 /* Temporarily blocking interlacing mode until it's supported */ 536 if (timing->flags.INTERLACE == 1) 537 return false; 538 539 /* Check maximum number of pixels supported by Timing Generator 540 * (Currently will never fail, in order to fail needs display which 541 * needs more than 8192 horizontal and 542 * more than 8192 vertical total pixels) 543 */ 544 if (timing->h_total > optc1->max_h_total || 545 timing->v_total > optc1->max_v_total) 546 return false; 547 548 549 if (h_blank < optc1->min_h_blank) 550 return false; 551 552 if (timing->h_sync_width < optc1->min_h_sync_width || 553 timing->v_sync_width < optc1->min_v_sync_width) 554 return false; 555 556 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank; 557 558 if (v_blank < min_v_blank) 559 return false; 560 561 return true; 562 563 } 564 565 /* 566 * get_vblank_counter 567 * 568 * @brief 569 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which 570 * holds the counter of frames. 571 * 572 * @param 573 * struct timing_generator *optc - [in] timing generator which controls the 574 * desired CRTC 575 * 576 * @return 577 * Counter of frames, which should equal to number of vblanks. 578 */ 579 uint32_t optc1_get_vblank_counter(struct timing_generator *optc) 580 { 581 struct optc *optc1 = DCN10TG_FROM_TG(optc); 582 uint32_t frame_count; 583 584 REG_GET(OTG_STATUS_FRAME_COUNT, 585 OTG_FRAME_COUNT, &frame_count); 586 587 return frame_count; 588 } 589 590 void optc1_lock(struct timing_generator *optc) 591 { 592 struct optc *optc1 = DCN10TG_FROM_TG(optc); 593 uint32_t regval = 0; 594 595 regval = REG_READ(OTG_CONTROL); 596 597 /* otg is not running, do not need to be locked */ 598 if ((regval & 0x1) == 0x0) 599 return; 600 601 REG_SET(OTG_GLOBAL_CONTROL0, 0, 602 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); 603 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 604 OTG_MASTER_UPDATE_LOCK, 1); 605 606 /* Should be fast, status does not update on maximus */ 607 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) { 608 609 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 610 UPDATE_LOCK_STATUS, 1, 611 1, 10); 612 } 613 } 614 615 void optc1_unlock(struct timing_generator *optc) 616 { 617 struct optc *optc1 = DCN10TG_FROM_TG(optc); 618 619 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 620 OTG_MASTER_UPDATE_LOCK, 0); 621 } 622 623 void optc1_get_position(struct timing_generator *optc, 624 struct crtc_position *position) 625 { 626 struct optc *optc1 = DCN10TG_FROM_TG(optc); 627 628 REG_GET_2(OTG_STATUS_POSITION, 629 OTG_HORZ_COUNT, &position->horizontal_count, 630 OTG_VERT_COUNT, &position->vertical_count); 631 632 REG_GET(OTG_NOM_VERT_POSITION, 633 OTG_VERT_COUNT_NOM, &position->nominal_vcount); 634 } 635 636 bool optc1_is_counter_moving(struct timing_generator *optc) 637 { 638 struct crtc_position position1, position2; 639 640 optc->funcs->get_position(optc, &position1); 641 optc->funcs->get_position(optc, &position2); 642 643 if (position1.horizontal_count == position2.horizontal_count && 644 position1.vertical_count == position2.vertical_count) 645 return false; 646 else 647 return true; 648 } 649 650 bool optc1_did_triggered_reset_occur( 651 struct timing_generator *optc) 652 { 653 struct optc *optc1 = DCN10TG_FROM_TG(optc); 654 uint32_t occurred_force, occurred_vsync; 655 656 REG_GET(OTG_FORCE_COUNT_NOW_CNTL, 657 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force); 658 659 REG_GET(OTG_VERT_SYNC_CONTROL, 660 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync); 661 662 return occurred_vsync != 0 || occurred_force != 0; 663 } 664 665 void optc1_disable_reset_trigger(struct timing_generator *optc) 666 { 667 struct optc *optc1 = DCN10TG_FROM_TG(optc); 668 669 REG_WRITE(OTG_TRIGA_CNTL, 0); 670 671 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 672 OTG_FORCE_COUNT_NOW_CLEAR, 1); 673 674 REG_SET(OTG_VERT_SYNC_CONTROL, 0, 675 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1); 676 } 677 678 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst) 679 { 680 struct optc *optc1 = DCN10TG_FROM_TG(optc); 681 uint32_t falling_edge; 682 683 REG_GET(OTG_V_SYNC_A_CNTL, 684 OTG_V_SYNC_A_POL, &falling_edge); 685 686 if (falling_edge) 687 REG_SET_3(OTG_TRIGA_CNTL, 0, 688 /* vsync signal from selected OTG pipe based 689 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 690 */ 691 OTG_TRIGA_SOURCE_SELECT, 20, 692 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 693 /* always detect falling edge */ 694 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1); 695 else 696 REG_SET_3(OTG_TRIGA_CNTL, 0, 697 /* vsync signal from selected OTG pipe based 698 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 699 */ 700 OTG_TRIGA_SOURCE_SELECT, 20, 701 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 702 /* always detect rising edge */ 703 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1); 704 705 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 706 /* force H count to H_TOTAL and V count to V_TOTAL in 707 * progressive mode and V_TOTAL-1 in interlaced mode 708 */ 709 OTG_FORCE_COUNT_NOW_MODE, 2); 710 } 711 712 void optc1_enable_crtc_reset( 713 struct timing_generator *optc, 714 int source_tg_inst, 715 struct crtc_trigger_info *crtc_tp) 716 { 717 struct optc *optc1 = DCN10TG_FROM_TG(optc); 718 uint32_t falling_edge = 0; 719 uint32_t rising_edge = 0; 720 721 switch (crtc_tp->event) { 722 723 case CRTC_EVENT_VSYNC_RISING: 724 rising_edge = 1; 725 break; 726 727 case CRTC_EVENT_VSYNC_FALLING: 728 falling_edge = 1; 729 break; 730 } 731 732 REG_SET_4(OTG_TRIGA_CNTL, 0, 733 /* vsync signal from selected OTG pipe based 734 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 735 */ 736 OTG_TRIGA_SOURCE_SELECT, 20, 737 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 738 /* always detect falling edge */ 739 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge, 740 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge); 741 742 switch (crtc_tp->delay) { 743 case TRIGGER_DELAY_NEXT_LINE: 744 REG_SET(OTG_VERT_SYNC_CONTROL, 0, 745 OTG_AUTO_FORCE_VSYNC_MODE, 1); 746 break; 747 case TRIGGER_DELAY_NEXT_PIXEL: 748 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 749 /* force H count to H_TOTAL and V count to V_TOTAL in 750 * progressive mode and V_TOTAL-1 in interlaced mode 751 */ 752 OTG_FORCE_COUNT_NOW_MODE, 2); 753 break; 754 } 755 } 756 757 void optc1_wait_for_state(struct timing_generator *optc, 758 enum crtc_state state) 759 { 760 struct optc *optc1 = DCN10TG_FROM_TG(optc); 761 762 switch (state) { 763 case CRTC_STATE_VBLANK: 764 REG_WAIT(OTG_STATUS, 765 OTG_V_BLANK, 1, 766 1, 100000); /* 1 vupdate at 10hz */ 767 break; 768 769 case CRTC_STATE_VACTIVE: 770 REG_WAIT(OTG_STATUS, 771 OTG_V_ACTIVE_DISP, 1, 772 1, 100000); /* 1 vupdate at 10hz */ 773 break; 774 775 default: 776 break; 777 } 778 } 779 780 void optc1_set_early_control( 781 struct timing_generator *optc, 782 uint32_t early_cntl) 783 { 784 /* asic design change, do not need this control 785 * empty for share caller logic 786 */ 787 } 788 789 790 void optc1_set_static_screen_control( 791 struct timing_generator *optc, 792 uint32_t event_triggers, 793 uint32_t num_frames) 794 { 795 struct optc *optc1 = DCN10TG_FROM_TG(optc); 796 797 // By register spec, it only takes 8 bit value 798 if (num_frames > 0xFF) 799 num_frames = 0xFF; 800 801 /* Bit 8 is no longer applicable in RV for PSR case, 802 * set bit 8 to 0 if given 803 */ 804 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN) 805 != 0) 806 event_triggers = event_triggers & 807 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN; 808 809 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0, 810 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers, 811 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames); 812 } 813 814 void optc1_setup_manual_trigger(struct timing_generator *optc) 815 { 816 struct optc *optc1 = DCN10TG_FROM_TG(optc); 817 818 REG_SET(OTG_GLOBAL_CONTROL2, 0, 819 MANUAL_FLOW_CONTROL_SEL, optc->inst); 820 821 REG_SET_8(OTG_TRIGA_CNTL, 0, 822 OTG_TRIGA_SOURCE_SELECT, 22, 823 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, 824 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, 825 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, 826 OTG_TRIGA_POLARITY_SELECT, 0, 827 OTG_TRIGA_FREQUENCY_SELECT, 0, 828 OTG_TRIGA_DELAY, 0, 829 OTG_TRIGA_CLEAR, 1); 830 } 831 832 void optc1_program_manual_trigger(struct timing_generator *optc) 833 { 834 struct optc *optc1 = DCN10TG_FROM_TG(optc); 835 836 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, 837 MANUAL_FLOW_CONTROL, 1); 838 839 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, 840 MANUAL_FLOW_CONTROL, 0); 841 } 842 843 844 /** 845 ***************************************************************************** 846 * Function: set_drr 847 * 848 * @brief 849 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*. 850 * 851 ***************************************************************************** 852 */ 853 void optc1_set_drr( 854 struct timing_generator *optc, 855 const struct drr_params *params) 856 { 857 struct optc *optc1 = DCN10TG_FROM_TG(optc); 858 859 if (params != NULL && 860 params->vertical_total_max > 0 && 861 params->vertical_total_min > 0) { 862 863 if (params->vertical_total_mid != 0) { 864 865 REG_SET(OTG_V_TOTAL_MID, 0, 866 OTG_V_TOTAL_MID, params->vertical_total_mid - 1); 867 868 REG_UPDATE_2(OTG_V_TOTAL_CONTROL, 869 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1, 870 OTG_VTOTAL_MID_FRAME_NUM, 871 (uint8_t)params->vertical_total_mid_frame_num); 872 873 } 874 875 REG_SET(OTG_V_TOTAL_MAX, 0, 876 OTG_V_TOTAL_MAX, params->vertical_total_max - 1); 877 878 REG_SET(OTG_V_TOTAL_MIN, 0, 879 OTG_V_TOTAL_MIN, params->vertical_total_min - 1); 880 881 REG_UPDATE_5(OTG_V_TOTAL_CONTROL, 882 OTG_V_TOTAL_MIN_SEL, 1, 883 OTG_V_TOTAL_MAX_SEL, 1, 884 OTG_FORCE_LOCK_ON_EVENT, 0, 885 OTG_SET_V_TOTAL_MIN_MASK_EN, 0, 886 OTG_SET_V_TOTAL_MIN_MASK, 0); 887 888 // Setup manual flow control for EOF via TRIG_A 889 optc->funcs->setup_manual_trigger(optc); 890 891 } else { 892 REG_UPDATE_4(OTG_V_TOTAL_CONTROL, 893 OTG_SET_V_TOTAL_MIN_MASK, 0, 894 OTG_V_TOTAL_MIN_SEL, 0, 895 OTG_V_TOTAL_MAX_SEL, 0, 896 OTG_FORCE_LOCK_ON_EVENT, 0); 897 898 REG_SET(OTG_V_TOTAL_MIN, 0, 899 OTG_V_TOTAL_MIN, 0); 900 901 REG_SET(OTG_V_TOTAL_MAX, 0, 902 OTG_V_TOTAL_MAX, 0); 903 } 904 } 905 906 static void optc1_set_test_pattern( 907 struct timing_generator *optc, 908 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' 909 * because this is not DP-specific (which is probably somewhere in DP 910 * encoder) */ 911 enum controller_dp_test_pattern test_pattern, 912 enum dc_color_depth color_depth) 913 { 914 struct optc *optc1 = DCN10TG_FROM_TG(optc); 915 enum test_pattern_color_format bit_depth; 916 enum test_pattern_dyn_range dyn_range; 917 enum test_pattern_mode mode; 918 uint32_t pattern_mask; 919 uint32_t pattern_data; 920 /* color ramp generator mixes 16-bits color */ 921 uint32_t src_bpc = 16; 922 /* requested bpc */ 923 uint32_t dst_bpc; 924 uint32_t index; 925 /* RGB values of the color bars. 926 * Produce two RGB colors: RGB0 - white (all Fs) 927 * and RGB1 - black (all 0s) 928 * (three RGB components for two colors) 929 */ 930 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 931 0x0000, 0x0000}; 932 /* dest color (converted to the specified color format) */ 933 uint16_t dst_color[6]; 934 uint32_t inc_base; 935 936 /* translate to bit depth */ 937 switch (color_depth) { 938 case COLOR_DEPTH_666: 939 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; 940 break; 941 case COLOR_DEPTH_888: 942 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 943 break; 944 case COLOR_DEPTH_101010: 945 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; 946 break; 947 case COLOR_DEPTH_121212: 948 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; 949 break; 950 default: 951 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 952 break; 953 } 954 955 switch (test_pattern) { 956 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: 957 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: 958 { 959 dyn_range = (test_pattern == 960 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? 961 TEST_PATTERN_DYN_RANGE_CEA : 962 TEST_PATTERN_DYN_RANGE_VESA); 963 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; 964 965 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS, 966 OTG_TEST_PATTERN_VRES, 6, 967 OTG_TEST_PATTERN_HRES, 6); 968 969 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, 970 OTG_TEST_PATTERN_EN, 1, 971 OTG_TEST_PATTERN_MODE, mode, 972 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range, 973 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 974 } 975 break; 976 977 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: 978 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: 979 { 980 mode = (test_pattern == 981 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? 982 TEST_PATTERN_MODE_VERTICALBARS : 983 TEST_PATTERN_MODE_HORIZONTALBARS); 984 985 switch (bit_depth) { 986 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 987 dst_bpc = 6; 988 break; 989 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 990 dst_bpc = 8; 991 break; 992 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 993 dst_bpc = 10; 994 break; 995 default: 996 dst_bpc = 8; 997 break; 998 } 999 1000 /* adjust color to the required colorFormat */ 1001 for (index = 0; index < 6; index++) { 1002 /* dst = 2^dstBpc * src / 2^srcBpc = src >> 1003 * (srcBpc - dstBpc); 1004 */ 1005 dst_color[index] = 1006 src_color[index] >> (src_bpc - dst_bpc); 1007 /* CRTC_TEST_PATTERN_DATA has 16 bits, 1008 * lowest 6 are hardwired to ZERO 1009 * color bits should be left aligned aligned to MSB 1010 * XXXXXXXXXX000000 for 10 bit, 1011 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 1012 */ 1013 dst_color[index] <<= (16 - dst_bpc); 1014 } 1015 1016 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); 1017 1018 /* We have to write the mask before data, similar to pipeline. 1019 * For example, for 8 bpc, if we want RGB0 to be magenta, 1020 * and RGB1 to be cyan, 1021 * we need to make 7 writes: 1022 * MASK DATA 1023 * 000001 00000000 00000000 set mask to R0 1024 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 1025 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 1026 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 1027 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 1028 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 1029 * 100000 11111111 00000000 B1 255, 0xFF00 1030 * 1031 * we will make a loop of 6 in which we prepare the mask, 1032 * then write, then prepare the color for next write. 1033 * first iteration will write mask only, 1034 * but each next iteration color prepared in 1035 * previous iteration will be written within new mask, 1036 * the last component will written separately, 1037 * mask is not changing between 6th and 7th write 1038 * and color will be prepared by last iteration 1039 */ 1040 1041 /* write color, color values mask in CRTC_TEST_PATTERN_MASK 1042 * is B1, G1, R1, B0, G0, R0 1043 */ 1044 pattern_data = 0; 1045 for (index = 0; index < 6; index++) { 1046 /* prepare color mask, first write PATTERN_DATA 1047 * will have all zeros 1048 */ 1049 pattern_mask = (1 << index); 1050 1051 /* write color component */ 1052 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, 1053 OTG_TEST_PATTERN_MASK, pattern_mask, 1054 OTG_TEST_PATTERN_DATA, pattern_data); 1055 1056 /* prepare next color component, 1057 * will be written in the next iteration 1058 */ 1059 pattern_data = dst_color[index]; 1060 } 1061 /* write last color component, 1062 * it's been already prepared in the loop 1063 */ 1064 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, 1065 OTG_TEST_PATTERN_MASK, pattern_mask, 1066 OTG_TEST_PATTERN_DATA, pattern_data); 1067 1068 /* enable test pattern */ 1069 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, 1070 OTG_TEST_PATTERN_EN, 1, 1071 OTG_TEST_PATTERN_MODE, mode, 1072 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, 1073 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1074 } 1075 break; 1076 1077 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: 1078 { 1079 mode = (bit_depth == 1080 TEST_PATTERN_COLOR_FORMAT_BPC_10 ? 1081 TEST_PATTERN_MODE_DUALRAMP_RGB : 1082 TEST_PATTERN_MODE_SINGLERAMP_RGB); 1083 1084 switch (bit_depth) { 1085 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1086 dst_bpc = 6; 1087 break; 1088 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1089 dst_bpc = 8; 1090 break; 1091 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1092 dst_bpc = 10; 1093 break; 1094 default: 1095 dst_bpc = 8; 1096 break; 1097 } 1098 1099 /* increment for the first ramp for one color gradation 1100 * 1 gradation for 6-bit color is 2^10 1101 * gradations in 16-bit color 1102 */ 1103 inc_base = (src_bpc - dst_bpc); 1104 1105 switch (bit_depth) { 1106 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1107 { 1108 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1109 OTG_TEST_PATTERN_INC0, inc_base, 1110 OTG_TEST_PATTERN_INC1, 0, 1111 OTG_TEST_PATTERN_HRES, 6, 1112 OTG_TEST_PATTERN_VRES, 6, 1113 OTG_TEST_PATTERN_RAMP0_OFFSET, 0); 1114 } 1115 break; 1116 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1117 { 1118 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1119 OTG_TEST_PATTERN_INC0, inc_base, 1120 OTG_TEST_PATTERN_INC1, 0, 1121 OTG_TEST_PATTERN_HRES, 8, 1122 OTG_TEST_PATTERN_VRES, 6, 1123 OTG_TEST_PATTERN_RAMP0_OFFSET, 0); 1124 } 1125 break; 1126 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1127 { 1128 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1129 OTG_TEST_PATTERN_INC0, inc_base, 1130 OTG_TEST_PATTERN_INC1, inc_base + 2, 1131 OTG_TEST_PATTERN_HRES, 8, 1132 OTG_TEST_PATTERN_VRES, 5, 1133 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6); 1134 } 1135 break; 1136 default: 1137 break; 1138 } 1139 1140 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); 1141 1142 /* enable test pattern */ 1143 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); 1144 1145 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0, 1146 OTG_TEST_PATTERN_EN, 1, 1147 OTG_TEST_PATTERN_MODE, mode, 1148 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, 1149 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1150 } 1151 break; 1152 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: 1153 { 1154 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); 1155 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); 1156 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); 1157 } 1158 break; 1159 default: 1160 break; 1161 1162 } 1163 } 1164 1165 void optc1_get_crtc_scanoutpos( 1166 struct timing_generator *optc, 1167 uint32_t *v_blank_start, 1168 uint32_t *v_blank_end, 1169 uint32_t *h_position, 1170 uint32_t *v_position) 1171 { 1172 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1173 struct crtc_position position; 1174 1175 REG_GET_2(OTG_V_BLANK_START_END, 1176 OTG_V_BLANK_START, v_blank_start, 1177 OTG_V_BLANK_END, v_blank_end); 1178 1179 optc1_get_position(optc, &position); 1180 1181 *h_position = position.horizontal_count; 1182 *v_position = position.vertical_count; 1183 } 1184 1185 static void optc1_enable_stereo(struct timing_generator *optc, 1186 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) 1187 { 1188 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1189 1190 if (flags) { 1191 uint32_t stereo_en; 1192 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0; 1193 1194 if (flags->PROGRAM_STEREO) 1195 REG_UPDATE_3(OTG_STEREO_CONTROL, 1196 OTG_STEREO_EN, stereo_en, 1197 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0, 1198 OTG_STEREO_SYNC_OUTPUT_POLARITY, 0); 1199 1200 if (flags->PROGRAM_POLARITY) 1201 REG_UPDATE(OTG_STEREO_CONTROL, 1202 OTG_STEREO_EYE_FLAG_POLARITY, 1203 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); 1204 1205 if (flags->DISABLE_STEREO_DP_SYNC) 1206 REG_UPDATE(OTG_STEREO_CONTROL, 1207 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1); 1208 1209 if (flags->PROGRAM_STEREO) 1210 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL, 1211 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED, 1212 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED); 1213 1214 } 1215 } 1216 1217 void optc1_program_stereo(struct timing_generator *optc, 1218 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) 1219 { 1220 if (flags->PROGRAM_STEREO) 1221 optc1_enable_stereo(optc, timing, flags); 1222 else 1223 optc1_disable_stereo(optc); 1224 } 1225 1226 1227 bool optc1_is_stereo_left_eye(struct timing_generator *optc) 1228 { 1229 bool ret = false; 1230 uint32_t left_eye = 0; 1231 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1232 1233 REG_GET(OTG_STEREO_STATUS, 1234 OTG_STEREO_CURRENT_EYE, &left_eye); 1235 if (left_eye == 1) 1236 ret = true; 1237 else 1238 ret = false; 1239 1240 return ret; 1241 } 1242 1243 bool optc1_get_hw_timing(struct timing_generator *tg, 1244 struct dc_crtc_timing *hw_crtc_timing) 1245 { 1246 struct dcn_otg_state s = {0}; 1247 1248 if (tg == NULL || hw_crtc_timing == NULL) 1249 return false; 1250 1251 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s); 1252 1253 hw_crtc_timing->h_total = s.h_total + 1; 1254 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end); 1255 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start; 1256 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start; 1257 1258 hw_crtc_timing->v_total = s.v_total + 1; 1259 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end); 1260 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start; 1261 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start; 1262 1263 return true; 1264 } 1265 1266 1267 void optc1_read_otg_state(struct optc *optc1, 1268 struct dcn_otg_state *s) 1269 { 1270 REG_GET(OTG_CONTROL, 1271 OTG_MASTER_EN, &s->otg_enabled); 1272 1273 REG_GET_2(OTG_V_BLANK_START_END, 1274 OTG_V_BLANK_START, &s->v_blank_start, 1275 OTG_V_BLANK_END, &s->v_blank_end); 1276 1277 REG_GET(OTG_V_SYNC_A_CNTL, 1278 OTG_V_SYNC_A_POL, &s->v_sync_a_pol); 1279 1280 REG_GET(OTG_V_TOTAL, 1281 OTG_V_TOTAL, &s->v_total); 1282 1283 REG_GET(OTG_V_TOTAL_MAX, 1284 OTG_V_TOTAL_MAX, &s->v_total_max); 1285 1286 REG_GET(OTG_V_TOTAL_MIN, 1287 OTG_V_TOTAL_MIN, &s->v_total_min); 1288 1289 REG_GET(OTG_V_TOTAL_CONTROL, 1290 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel); 1291 1292 REG_GET(OTG_V_TOTAL_CONTROL, 1293 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel); 1294 1295 REG_GET_2(OTG_V_SYNC_A, 1296 OTG_V_SYNC_A_START, &s->v_sync_a_start, 1297 OTG_V_SYNC_A_END, &s->v_sync_a_end); 1298 1299 REG_GET_2(OTG_H_BLANK_START_END, 1300 OTG_H_BLANK_START, &s->h_blank_start, 1301 OTG_H_BLANK_END, &s->h_blank_end); 1302 1303 REG_GET_2(OTG_H_SYNC_A, 1304 OTG_H_SYNC_A_START, &s->h_sync_a_start, 1305 OTG_H_SYNC_A_END, &s->h_sync_a_end); 1306 1307 REG_GET(OTG_H_SYNC_A_CNTL, 1308 OTG_H_SYNC_A_POL, &s->h_sync_a_pol); 1309 1310 REG_GET(OTG_H_TOTAL, 1311 OTG_H_TOTAL, &s->h_total); 1312 1313 REG_GET(OPTC_INPUT_GLOBAL_CONTROL, 1314 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status); 1315 } 1316 1317 bool optc1_get_otg_active_size(struct timing_generator *optc, 1318 uint32_t *otg_active_width, 1319 uint32_t *otg_active_height) 1320 { 1321 uint32_t otg_enabled; 1322 uint32_t v_blank_start; 1323 uint32_t v_blank_end; 1324 uint32_t h_blank_start; 1325 uint32_t h_blank_end; 1326 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1327 1328 1329 REG_GET(OTG_CONTROL, 1330 OTG_MASTER_EN, &otg_enabled); 1331 1332 if (otg_enabled == 0) 1333 return false; 1334 1335 REG_GET_2(OTG_V_BLANK_START_END, 1336 OTG_V_BLANK_START, &v_blank_start, 1337 OTG_V_BLANK_END, &v_blank_end); 1338 1339 REG_GET_2(OTG_H_BLANK_START_END, 1340 OTG_H_BLANK_START, &h_blank_start, 1341 OTG_H_BLANK_END, &h_blank_end); 1342 1343 *otg_active_width = v_blank_start - v_blank_end; 1344 *otg_active_height = h_blank_start - h_blank_end; 1345 return true; 1346 } 1347 1348 void optc1_clear_optc_underflow(struct timing_generator *optc) 1349 { 1350 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1351 1352 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1); 1353 } 1354 1355 void optc1_tg_init(struct timing_generator *optc) 1356 { 1357 optc1_set_blank_data_double_buffer(optc, true); 1358 optc1_clear_optc_underflow(optc); 1359 } 1360 1361 bool optc1_is_tg_enabled(struct timing_generator *optc) 1362 { 1363 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1364 uint32_t otg_enabled = 0; 1365 1366 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled); 1367 1368 return (otg_enabled != 0); 1369 1370 } 1371 1372 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc) 1373 { 1374 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1375 uint32_t underflow_occurred = 0; 1376 1377 REG_GET(OPTC_INPUT_GLOBAL_CONTROL, 1378 OPTC_UNDERFLOW_OCCURRED_STATUS, 1379 &underflow_occurred); 1380 1381 return (underflow_occurred == 1); 1382 } 1383 1384 bool optc1_configure_crc(struct timing_generator *optc, 1385 const struct crc_params *params) 1386 { 1387 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1388 1389 /* Cannot configure crc on a CRTC that is disabled */ 1390 if (!optc1_is_tg_enabled(optc)) 1391 return false; 1392 1393 REG_WRITE(OTG_CRC_CNTL, 0); 1394 1395 if (!params->enable) 1396 return true; 1397 1398 /* Program frame boundaries */ 1399 /* Window A x axis start and end. */ 1400 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL, 1401 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start, 1402 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end); 1403 1404 /* Window A y axis start and end. */ 1405 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL, 1406 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start, 1407 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end); 1408 1409 /* Window B x axis start and end. */ 1410 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL, 1411 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start, 1412 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end); 1413 1414 /* Window B y axis start and end. */ 1415 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL, 1416 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start, 1417 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end); 1418 1419 /* Set crc mode and selection, and enable. Only using CRC0*/ 1420 REG_UPDATE_3(OTG_CRC_CNTL, 1421 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0, 1422 OTG_CRC0_SELECT, params->selection, 1423 OTG_CRC_EN, 1); 1424 1425 return true; 1426 } 1427 1428 bool optc1_get_crc(struct timing_generator *optc, 1429 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) 1430 { 1431 uint32_t field = 0; 1432 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1433 1434 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field); 1435 1436 /* Early return if CRC is not enabled for this CRTC */ 1437 if (!field) 1438 return false; 1439 1440 REG_GET_2(OTG_CRC0_DATA_RG, 1441 CRC0_R_CR, r_cr, 1442 CRC0_G_Y, g_y); 1443 1444 REG_GET(OTG_CRC0_DATA_B, 1445 CRC0_B_CB, b_cb); 1446 1447 return true; 1448 } 1449 1450 static const struct timing_generator_funcs dcn10_tg_funcs = { 1451 .validate_timing = optc1_validate_timing, 1452 .program_timing = optc1_program_timing, 1453 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, 1454 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, 1455 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, 1456 .program_global_sync = optc1_program_global_sync, 1457 .enable_crtc = optc1_enable_crtc, 1458 .disable_crtc = optc1_disable_crtc, 1459 /* used by enable_timing_synchronization. Not need for FPGA */ 1460 .is_counter_moving = optc1_is_counter_moving, 1461 .get_position = optc1_get_position, 1462 .get_frame_count = optc1_get_vblank_counter, 1463 .get_scanoutpos = optc1_get_crtc_scanoutpos, 1464 .get_otg_active_size = optc1_get_otg_active_size, 1465 .set_early_control = optc1_set_early_control, 1466 /* used by enable_timing_synchronization. Not need for FPGA */ 1467 .wait_for_state = optc1_wait_for_state, 1468 .set_blank = optc1_set_blank, 1469 .is_blanked = optc1_is_blanked, 1470 .set_blank_color = optc1_program_blank_color, 1471 .did_triggered_reset_occur = optc1_did_triggered_reset_occur, 1472 .enable_reset_trigger = optc1_enable_reset_trigger, 1473 .enable_crtc_reset = optc1_enable_crtc_reset, 1474 .disable_reset_trigger = optc1_disable_reset_trigger, 1475 .lock = optc1_lock, 1476 .unlock = optc1_unlock, 1477 .enable_optc_clock = optc1_enable_optc_clock, 1478 .set_drr = optc1_set_drr, 1479 .set_static_screen_control = optc1_set_static_screen_control, 1480 .set_test_pattern = optc1_set_test_pattern, 1481 .program_stereo = optc1_program_stereo, 1482 .is_stereo_left_eye = optc1_is_stereo_left_eye, 1483 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, 1484 .tg_init = optc1_tg_init, 1485 .is_tg_enabled = optc1_is_tg_enabled, 1486 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, 1487 .clear_optc_underflow = optc1_clear_optc_underflow, 1488 .get_crc = optc1_get_crc, 1489 .configure_crc = optc1_configure_crc, 1490 .set_vtg_params = optc1_set_vtg_params, 1491 .program_manual_trigger = optc1_program_manual_trigger, 1492 .setup_manual_trigger = optc1_setup_manual_trigger, 1493 .get_hw_timing = optc1_get_hw_timing, 1494 }; 1495 1496 void dcn10_timing_generator_init(struct optc *optc1) 1497 { 1498 optc1->base.funcs = &dcn10_tg_funcs; 1499 1500 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; 1501 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; 1502 1503 optc1->min_h_blank = 32; 1504 optc1->min_v_blank = 3; 1505 optc1->min_v_blank_interlace = 5; 1506 optc1->min_h_sync_width = 8; 1507 optc1->min_v_sync_width = 1; 1508 } 1509 1510 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this: 1511 * 1512 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as 1513 * containter rate. 1514 * 1515 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be 1516 * halved to maintain the correct pixel rate. 1517 * 1518 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied 1519 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well. 1520 * 1521 */ 1522 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) 1523 { 1524 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420; 1525 1526 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422 1527 && !timing->dsc_cfg.ycbcr422_simple); 1528 return two_pix; 1529 } 1530 1531