1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 	if (timing->flags.INTERLACE == 1) {
52 		if (timing->v_front_porch < 2)
53 			timing->v_front_porch = 2;
54 	} else {
55 		if (timing->v_front_porch < 1)
56 			timing->v_front_porch = 1;
57 	}
58 }
59 
60 void optc1_program_global_sync(
61 		struct timing_generator *optc,
62 		int vready_offset,
63 		int vstartup_start,
64 		int vupdate_offset,
65 		int vupdate_width)
66 {
67 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
68 
69 	optc1->vready_offset = vready_offset;
70 	optc1->vstartup_start = vstartup_start;
71 	optc1->vupdate_offset = vupdate_offset;
72 	optc1->vupdate_width = vupdate_width;
73 
74 	if (optc1->vstartup_start == 0) {
75 		BREAK_TO_DEBUGGER();
76 		return;
77 	}
78 
79 	REG_SET(OTG_VSTARTUP_PARAM, 0,
80 		VSTARTUP_START, optc1->vstartup_start);
81 
82 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 			VUPDATE_OFFSET, optc1->vupdate_offset,
84 			VUPDATE_WIDTH, optc1->vupdate_width);
85 
86 	REG_SET(OTG_VREADY_PARAM, 0,
87 			VREADY_OFFSET, optc1->vready_offset);
88 }
89 
90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
93 
94 	REG_SET(OTG_STEREO_CONTROL, 0,
95 		OTG_STEREO_EN, 0);
96 
97 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 		OTG_3D_STRUCTURE_EN, 0,
99 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101 
102 void optc1_setup_vertical_interrupt0(
103 		struct timing_generator *optc,
104 		uint32_t start_line,
105 		uint32_t end_line)
106 {
107 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108 
109 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113 
114 void optc1_setup_vertical_interrupt1(
115 		struct timing_generator *optc,
116 		uint32_t start_line)
117 {
118 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
119 
120 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123 
124 void optc1_setup_vertical_interrupt2(
125 		struct timing_generator *optc,
126 		uint32_t start_line)
127 {
128 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
129 
130 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133 
134 /**
135  * program_timing_generator   used by mode timing set
136  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137  * Including SYNC. Call BIOS command table to program Timings.
138  */
139 void optc1_program_timing(
140 	struct timing_generator *optc,
141 	const struct dc_crtc_timing *dc_crtc_timing,
142 	int vready_offset,
143 	int vstartup_start,
144 	int vupdate_offset,
145 	int vupdate_width,
146 	const enum signal_type signal,
147 	bool use_vbios)
148 {
149 	struct dc_crtc_timing patched_crtc_timing;
150 	uint32_t asic_blank_end;
151 	uint32_t asic_blank_start;
152 	uint32_t v_total;
153 	uint32_t v_sync_end;
154 	uint32_t h_sync_polarity, v_sync_polarity;
155 	uint32_t start_point = 0;
156 	uint32_t field_num = 0;
157 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
158 
159 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
160 
161 	optc1->signal = signal;
162 	optc1->vready_offset = vready_offset;
163 	optc1->vstartup_start = vstartup_start;
164 	optc1->vupdate_offset = vupdate_offset;
165 	optc1->vupdate_width = vupdate_width;
166 	patched_crtc_timing = *dc_crtc_timing;
167 	apply_front_porch_workaround(&patched_crtc_timing);
168 
169 	/* Load horizontal timing */
170 
171 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
172 	REG_SET(OTG_H_TOTAL, 0,
173 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
174 
175 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
176 	REG_UPDATE_2(OTG_H_SYNC_A,
177 			OTG_H_SYNC_A_START, 0,
178 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
179 
180 	/* blank_start = line end - front porch */
181 	asic_blank_start = patched_crtc_timing.h_total -
182 			patched_crtc_timing.h_front_porch;
183 
184 	/* blank_end = blank_start - active */
185 	asic_blank_end = asic_blank_start -
186 			patched_crtc_timing.h_border_right -
187 			patched_crtc_timing.h_addressable -
188 			patched_crtc_timing.h_border_left;
189 
190 	REG_UPDATE_2(OTG_H_BLANK_START_END,
191 			OTG_H_BLANK_START, asic_blank_start,
192 			OTG_H_BLANK_END, asic_blank_end);
193 
194 	/* h_sync polarity */
195 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
196 			0 : 1;
197 
198 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
199 			OTG_H_SYNC_A_POL, h_sync_polarity);
200 
201 	v_total = patched_crtc_timing.v_total - 1;
202 
203 	REG_SET(OTG_V_TOTAL, 0,
204 			OTG_V_TOTAL, v_total);
205 
206 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
207 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
208 	 */
209 	REG_SET(OTG_V_TOTAL_MAX, 0,
210 		OTG_V_TOTAL_MAX, v_total);
211 	REG_SET(OTG_V_TOTAL_MIN, 0,
212 		OTG_V_TOTAL_MIN, v_total);
213 
214 	/* v_sync_start = 0, v_sync_end = v_sync_width */
215 	v_sync_end = patched_crtc_timing.v_sync_width;
216 
217 	REG_UPDATE_2(OTG_V_SYNC_A,
218 			OTG_V_SYNC_A_START, 0,
219 			OTG_V_SYNC_A_END, v_sync_end);
220 
221 	/* blank_start = frame end - front porch */
222 	asic_blank_start = patched_crtc_timing.v_total -
223 			patched_crtc_timing.v_front_porch;
224 
225 	/* blank_end = blank_start - active */
226 	asic_blank_end = asic_blank_start -
227 			patched_crtc_timing.v_border_bottom -
228 			patched_crtc_timing.v_addressable -
229 			patched_crtc_timing.v_border_top;
230 
231 	REG_UPDATE_2(OTG_V_BLANK_START_END,
232 			OTG_V_BLANK_START, asic_blank_start,
233 			OTG_V_BLANK_END, asic_blank_end);
234 
235 	/* v_sync polarity */
236 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
237 			0 : 1;
238 
239 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
240 		OTG_V_SYNC_A_POL, v_sync_polarity);
241 
242 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
243 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
244 			optc1->signal == SIGNAL_TYPE_EDP) {
245 		start_point = 1;
246 		if (patched_crtc_timing.flags.INTERLACE == 1)
247 			field_num = 1;
248 	}
249 
250 	/* Interlace */
251 	if (REG(OTG_INTERLACE_CONTROL)) {
252 		if (patched_crtc_timing.flags.INTERLACE == 1)
253 			REG_UPDATE(OTG_INTERLACE_CONTROL,
254 					OTG_INTERLACE_ENABLE, 1);
255 		else
256 			REG_UPDATE(OTG_INTERLACE_CONTROL,
257 					OTG_INTERLACE_ENABLE, 0);
258 	}
259 
260 	/* VTG enable set to 0 first VInit */
261 	REG_UPDATE(CONTROL,
262 			VTG0_ENABLE, 0);
263 
264 	/* original code is using VTG offset to address OTG reg, seems wrong */
265 	REG_UPDATE_2(OTG_CONTROL,
266 			OTG_START_POINT_CNTL, start_point,
267 			OTG_FIELD_NUMBER_CNTL, field_num);
268 
269 	optc->funcs->program_global_sync(optc,
270 			vready_offset,
271 			vstartup_start,
272 			vupdate_offset,
273 			vupdate_width);
274 
275 	optc->funcs->set_vtg_params(optc, dc_crtc_timing);
276 
277 	/* TODO
278 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
279 	 * program_horz_count_by_2
280 	 * for DVI 30bpp mode, 0 otherwise
281 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
282 	 */
283 
284 	/* Enable stereo - only when we need to pack 3D frame. Other types
285 	 * of stereo handled in explicit call
286 	 */
287 
288 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
289 		h_div = H_TIMING_DIV_BY2;
290 
291 	REG_UPDATE(OTG_H_TIMING_CNTL,
292 		OTG_H_TIMING_DIV_BY2, h_div);
293 }
294 
295 void optc1_set_vtg_params(struct timing_generator *optc,
296 		const struct dc_crtc_timing *dc_crtc_timing)
297 {
298 	struct dc_crtc_timing patched_crtc_timing;
299 	uint32_t asic_blank_end;
300 	uint32_t v_init;
301 	uint32_t v_fp2 = 0;
302 	int32_t vertical_line_start;
303 
304 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
305 
306 	patched_crtc_timing = *dc_crtc_timing;
307 	apply_front_porch_workaround(&patched_crtc_timing);
308 
309 	/* VCOUNT_INIT is the start of blank */
310 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
311 
312 	/* end of blank = v_init - active */
313 	asic_blank_end = v_init -
314 			patched_crtc_timing.v_border_bottom -
315 			patched_crtc_timing.v_addressable -
316 			patched_crtc_timing.v_border_top;
317 
318 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
319 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
320 	if (vertical_line_start < 0)
321 		v_fp2 = -vertical_line_start;
322 
323 	/* Interlace */
324 	if (REG(OTG_INTERLACE_CONTROL)) {
325 		if (patched_crtc_timing.flags.INTERLACE == 1) {
326 			v_init = v_init / 2;
327 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
328 				v_fp2 = v_fp2 / 2;
329 		}
330 	}
331 
332 	REG_UPDATE_2(CONTROL,
333 			VTG0_FP2, v_fp2,
334 			VTG0_VCOUNT_INIT, v_init);
335 }
336 
337 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
338 {
339 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
340 
341 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
342 
343 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
344 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
345 }
346 
347 /**
348  * unblank_crtc
349  * Call ASIC Control Object to UnBlank CRTC.
350  */
351 static void optc1_unblank_crtc(struct timing_generator *optc)
352 {
353 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
354 
355 	REG_UPDATE_2(OTG_BLANK_CONTROL,
356 			OTG_BLANK_DATA_EN, 0,
357 			OTG_BLANK_DE_MODE, 0);
358 
359 	/* W/A for automated testing
360 	 * Automated testing will fail underflow test as there
361 	 * sporadic underflows which occur during the optc blank
362 	 * sequence.  As a w/a, clear underflow on unblank.
363 	 * This prevents the failure, but will not mask actual
364 	 * underflow that affect real use cases.
365 	 */
366 	optc1_clear_optc_underflow(optc);
367 }
368 
369 /**
370  * blank_crtc
371  * Call ASIC Control Object to Blank CRTC.
372  */
373 
374 static void optc1_blank_crtc(struct timing_generator *optc)
375 {
376 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
377 
378 	REG_UPDATE_2(OTG_BLANK_CONTROL,
379 			OTG_BLANK_DATA_EN, 1,
380 			OTG_BLANK_DE_MODE, 0);
381 
382 	optc1_set_blank_data_double_buffer(optc, false);
383 }
384 
385 void optc1_set_blank(struct timing_generator *optc,
386 		bool enable_blanking)
387 {
388 	if (enable_blanking)
389 		optc1_blank_crtc(optc);
390 	else
391 		optc1_unblank_crtc(optc);
392 }
393 
394 bool optc1_is_blanked(struct timing_generator *optc)
395 {
396 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
397 	uint32_t blank_en;
398 	uint32_t blank_state;
399 
400 	REG_GET_2(OTG_BLANK_CONTROL,
401 			OTG_BLANK_DATA_EN, &blank_en,
402 			OTG_CURRENT_BLANK_STATE, &blank_state);
403 
404 	return blank_en && blank_state;
405 }
406 
407 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
408 {
409 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
410 
411 	if (enable) {
412 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
413 				OPTC_INPUT_CLK_EN, 1,
414 				OPTC_INPUT_CLK_GATE_DIS, 1);
415 
416 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
417 				OPTC_INPUT_CLK_ON, 1,
418 				1, 1000);
419 
420 		/* Enable clock */
421 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
422 				OTG_CLOCK_EN, 1,
423 				OTG_CLOCK_GATE_DIS, 1);
424 		REG_WAIT(OTG_CLOCK_CONTROL,
425 				OTG_CLOCK_ON, 1,
426 				1, 1000);
427 	} else  {
428 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
429 				OTG_CLOCK_GATE_DIS, 0,
430 				OTG_CLOCK_EN, 0);
431 
432 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
433 				OPTC_INPUT_CLK_GATE_DIS, 0,
434 				OPTC_INPUT_CLK_EN, 0);
435 	}
436 }
437 
438 /**
439  * Enable CRTC
440  * Enable CRTC - call ASIC Control Object to enable Timing generator.
441  */
442 static bool optc1_enable_crtc(struct timing_generator *optc)
443 {
444 	/* TODO FPGA wait for answer
445 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
446 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
447 	 */
448 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
449 
450 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
451 	 * OPP and OPTC should 1:1 mapping
452 	 */
453 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
454 			OPTC_SRC_SEL, optc->inst);
455 
456 	/* VTG enable first is for HW workaround */
457 	REG_UPDATE(CONTROL,
458 			VTG0_ENABLE, 1);
459 
460 	/* Enable CRTC */
461 	REG_UPDATE_2(OTG_CONTROL,
462 			OTG_DISABLE_POINT_CNTL, 3,
463 			OTG_MASTER_EN, 1);
464 
465 	return true;
466 }
467 
468 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
469 bool optc1_disable_crtc(struct timing_generator *optc)
470 {
471 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
472 
473 	/* disable otg request until end of the first line
474 	 * in the vertical blank region
475 	 */
476 	REG_UPDATE_2(OTG_CONTROL,
477 			OTG_DISABLE_POINT_CNTL, 3,
478 			OTG_MASTER_EN, 0);
479 
480 	REG_UPDATE(CONTROL,
481 			VTG0_ENABLE, 0);
482 
483 	/* CRTC disabled, so disable  clock. */
484 	REG_WAIT(OTG_CLOCK_CONTROL,
485 			OTG_BUSY, 0,
486 			1, 100000);
487 
488 	return true;
489 }
490 
491 
492 void optc1_program_blank_color(
493 		struct timing_generator *optc,
494 		const struct tg_color *black_color)
495 {
496 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
497 
498 	REG_SET_3(OTG_BLACK_COLOR, 0,
499 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
500 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
501 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
502 }
503 
504 bool optc1_validate_timing(
505 	struct timing_generator *optc,
506 	const struct dc_crtc_timing *timing)
507 {
508 	uint32_t v_blank;
509 	uint32_t h_blank;
510 	uint32_t min_v_blank;
511 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
512 
513 	ASSERT(timing != NULL);
514 
515 	v_blank = (timing->v_total - timing->v_addressable -
516 					timing->v_border_top - timing->v_border_bottom);
517 
518 	h_blank = (timing->h_total - timing->h_addressable -
519 		timing->h_border_right -
520 		timing->h_border_left);
521 
522 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
523 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
524 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
525 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
526 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
527 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
528 		return false;
529 
530 	/* Temporarily blocking interlacing mode until it's supported */
531 	if (timing->flags.INTERLACE == 1)
532 		return false;
533 
534 	/* Check maximum number of pixels supported by Timing Generator
535 	 * (Currently will never fail, in order to fail needs display which
536 	 * needs more than 8192 horizontal and
537 	 * more than 8192 vertical total pixels)
538 	 */
539 	if (timing->h_total > optc1->max_h_total ||
540 		timing->v_total > optc1->max_v_total)
541 		return false;
542 
543 
544 	if (h_blank < optc1->min_h_blank)
545 		return false;
546 
547 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
548 		 timing->v_sync_width  < optc1->min_v_sync_width)
549 		return false;
550 
551 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
552 
553 	if (v_blank < min_v_blank)
554 		return false;
555 
556 	return true;
557 
558 }
559 
560 /*
561  * get_vblank_counter
562  *
563  * @brief
564  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
565  * holds the counter of frames.
566  *
567  * @param
568  * struct timing_generator *optc - [in] timing generator which controls the
569  * desired CRTC
570  *
571  * @return
572  * Counter of frames, which should equal to number of vblanks.
573  */
574 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
575 {
576 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
577 	uint32_t frame_count;
578 
579 	REG_GET(OTG_STATUS_FRAME_COUNT,
580 		OTG_FRAME_COUNT, &frame_count);
581 
582 	return frame_count;
583 }
584 
585 void optc1_lock(struct timing_generator *optc)
586 {
587 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
588 	uint32_t regval = 0;
589 
590 	regval = REG_READ(OTG_CONTROL);
591 
592 	/* otg is not running, do not need to be locked */
593 	if ((regval & 0x1) == 0x0)
594 		return;
595 
596 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
597 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
598 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
599 			OTG_MASTER_UPDATE_LOCK, 1);
600 
601 	/* Should be fast, status does not update on maximus */
602 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
603 
604 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
605 				UPDATE_LOCK_STATUS, 1,
606 				1, 10);
607 	}
608 }
609 
610 void optc1_unlock(struct timing_generator *optc)
611 {
612 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
613 
614 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
615 			OTG_MASTER_UPDATE_LOCK, 0);
616 }
617 
618 void optc1_get_position(struct timing_generator *optc,
619 		struct crtc_position *position)
620 {
621 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
622 
623 	REG_GET_2(OTG_STATUS_POSITION,
624 			OTG_HORZ_COUNT, &position->horizontal_count,
625 			OTG_VERT_COUNT, &position->vertical_count);
626 
627 	REG_GET(OTG_NOM_VERT_POSITION,
628 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
629 }
630 
631 bool optc1_is_counter_moving(struct timing_generator *optc)
632 {
633 	struct crtc_position position1, position2;
634 
635 	optc->funcs->get_position(optc, &position1);
636 	optc->funcs->get_position(optc, &position2);
637 
638 	if (position1.horizontal_count == position2.horizontal_count &&
639 		position1.vertical_count == position2.vertical_count)
640 		return false;
641 	else
642 		return true;
643 }
644 
645 bool optc1_did_triggered_reset_occur(
646 	struct timing_generator *optc)
647 {
648 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
649 	uint32_t occurred_force, occurred_vsync;
650 
651 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
652 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
653 
654 	REG_GET(OTG_VERT_SYNC_CONTROL,
655 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
656 
657 	return occurred_vsync != 0 || occurred_force != 0;
658 }
659 
660 void optc1_disable_reset_trigger(struct timing_generator *optc)
661 {
662 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
663 
664 	REG_WRITE(OTG_TRIGA_CNTL, 0);
665 
666 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
667 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
668 
669 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
670 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
671 }
672 
673 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
674 {
675 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
676 	uint32_t falling_edge;
677 
678 	REG_GET(OTG_V_SYNC_A_CNTL,
679 			OTG_V_SYNC_A_POL, &falling_edge);
680 
681 	if (falling_edge)
682 		REG_SET_3(OTG_TRIGA_CNTL, 0,
683 				/* vsync signal from selected OTG pipe based
684 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
685 				 */
686 				OTG_TRIGA_SOURCE_SELECT, 20,
687 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
688 				/* always detect falling edge */
689 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
690 	else
691 		REG_SET_3(OTG_TRIGA_CNTL, 0,
692 				/* vsync signal from selected OTG pipe based
693 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
694 				 */
695 				OTG_TRIGA_SOURCE_SELECT, 20,
696 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
697 				/* always detect rising edge */
698 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
699 
700 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
701 			/* force H count to H_TOTAL and V count to V_TOTAL in
702 			 * progressive mode and V_TOTAL-1 in interlaced mode
703 			 */
704 			OTG_FORCE_COUNT_NOW_MODE, 2);
705 }
706 
707 void optc1_enable_crtc_reset(
708 		struct timing_generator *optc,
709 		int source_tg_inst,
710 		struct crtc_trigger_info *crtc_tp)
711 {
712 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
713 	uint32_t falling_edge = 0;
714 	uint32_t rising_edge = 0;
715 
716 	switch (crtc_tp->event) {
717 
718 	case CRTC_EVENT_VSYNC_RISING:
719 		rising_edge = 1;
720 		break;
721 
722 	case CRTC_EVENT_VSYNC_FALLING:
723 		falling_edge = 1;
724 		break;
725 	}
726 
727 	REG_SET_4(OTG_TRIGA_CNTL, 0,
728 		 /* vsync signal from selected OTG pipe based
729 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
730 		  */
731 		  OTG_TRIGA_SOURCE_SELECT, 20,
732 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
733 		  /* always detect falling edge */
734 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
735 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
736 
737 	switch (crtc_tp->delay) {
738 	case TRIGGER_DELAY_NEXT_LINE:
739 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
740 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
741 		break;
742 	case TRIGGER_DELAY_NEXT_PIXEL:
743 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
744 			/* force H count to H_TOTAL and V count to V_TOTAL in
745 			 * progressive mode and V_TOTAL-1 in interlaced mode
746 			 */
747 			OTG_FORCE_COUNT_NOW_MODE, 2);
748 		break;
749 	}
750 }
751 
752 void optc1_wait_for_state(struct timing_generator *optc,
753 		enum crtc_state state)
754 {
755 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
756 
757 	switch (state) {
758 	case CRTC_STATE_VBLANK:
759 		REG_WAIT(OTG_STATUS,
760 				OTG_V_BLANK, 1,
761 				1, 100000); /* 1 vupdate at 10hz */
762 		break;
763 
764 	case CRTC_STATE_VACTIVE:
765 		REG_WAIT(OTG_STATUS,
766 				OTG_V_ACTIVE_DISP, 1,
767 				1, 100000); /* 1 vupdate at 10hz */
768 		break;
769 
770 	default:
771 		break;
772 	}
773 }
774 
775 void optc1_set_early_control(
776 	struct timing_generator *optc,
777 	uint32_t early_cntl)
778 {
779 	/* asic design change, do not need this control
780 	 * empty for share caller logic
781 	 */
782 }
783 
784 
785 void optc1_set_static_screen_control(
786 	struct timing_generator *optc,
787 	uint32_t value)
788 {
789 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
790 
791 	/* Bit 8 is no longer applicable in RV for PSR case,
792 	 * set bit 8 to 0 if given
793 	 */
794 	if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
795 			!= 0)
796 		value = value &
797 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
798 
799 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
800 			OTG_STATIC_SCREEN_EVENT_MASK, value,
801 			OTG_STATIC_SCREEN_FRAME_COUNT, 2);
802 }
803 
804 void optc1_setup_manual_trigger(struct timing_generator *optc)
805 {
806 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
807 
808 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
809 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
810 
811 	REG_SET_8(OTG_TRIGA_CNTL, 0,
812 			OTG_TRIGA_SOURCE_SELECT, 22,
813 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
814 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
815 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
816 			OTG_TRIGA_POLARITY_SELECT, 0,
817 			OTG_TRIGA_FREQUENCY_SELECT, 0,
818 			OTG_TRIGA_DELAY, 0,
819 			OTG_TRIGA_CLEAR, 1);
820 }
821 
822 void optc1_program_manual_trigger(struct timing_generator *optc)
823 {
824 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
825 
826 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
827 			MANUAL_FLOW_CONTROL, 1);
828 
829 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
830 			MANUAL_FLOW_CONTROL, 0);
831 }
832 
833 
834 /**
835  *****************************************************************************
836  *  Function: set_drr
837  *
838  *  @brief
839  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
840  *
841  *****************************************************************************
842  */
843 void optc1_set_drr(
844 	struct timing_generator *optc,
845 	const struct drr_params *params)
846 {
847 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
848 
849 	if (params != NULL &&
850 		params->vertical_total_max > 0 &&
851 		params->vertical_total_min > 0) {
852 
853 		if (params->vertical_total_mid != 0) {
854 
855 			REG_SET(OTG_V_TOTAL_MID, 0,
856 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
857 
858 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
859 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
860 					OTG_VTOTAL_MID_FRAME_NUM,
861 					(uint8_t)params->vertical_total_mid_frame_num);
862 
863 		}
864 
865 		REG_SET(OTG_V_TOTAL_MAX, 0,
866 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
867 
868 		REG_SET(OTG_V_TOTAL_MIN, 0,
869 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
870 
871 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
872 				OTG_V_TOTAL_MIN_SEL, 1,
873 				OTG_V_TOTAL_MAX_SEL, 1,
874 				OTG_FORCE_LOCK_ON_EVENT, 0,
875 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
876 				OTG_SET_V_TOTAL_MIN_MASK, 0);
877 
878 		// Setup manual flow control for EOF via TRIG_A
879 		optc->funcs->setup_manual_trigger(optc);
880 
881 	} else {
882 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
883 				OTG_SET_V_TOTAL_MIN_MASK, 0,
884 				OTG_V_TOTAL_MIN_SEL, 0,
885 				OTG_V_TOTAL_MAX_SEL, 0,
886 				OTG_FORCE_LOCK_ON_EVENT, 0);
887 
888 		REG_SET(OTG_V_TOTAL_MIN, 0,
889 			OTG_V_TOTAL_MIN, 0);
890 
891 		REG_SET(OTG_V_TOTAL_MAX, 0,
892 			OTG_V_TOTAL_MAX, 0);
893 	}
894 }
895 
896 static void optc1_set_test_pattern(
897 	struct timing_generator *optc,
898 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
899 	 * because this is not DP-specific (which is probably somewhere in DP
900 	 * encoder) */
901 	enum controller_dp_test_pattern test_pattern,
902 	enum dc_color_depth color_depth)
903 {
904 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
905 	enum test_pattern_color_format bit_depth;
906 	enum test_pattern_dyn_range dyn_range;
907 	enum test_pattern_mode mode;
908 	uint32_t pattern_mask;
909 	uint32_t pattern_data;
910 	/* color ramp generator mixes 16-bits color */
911 	uint32_t src_bpc = 16;
912 	/* requested bpc */
913 	uint32_t dst_bpc;
914 	uint32_t index;
915 	/* RGB values of the color bars.
916 	 * Produce two RGB colors: RGB0 - white (all Fs)
917 	 * and RGB1 - black (all 0s)
918 	 * (three RGB components for two colors)
919 	 */
920 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
921 						0x0000, 0x0000};
922 	/* dest color (converted to the specified color format) */
923 	uint16_t dst_color[6];
924 	uint32_t inc_base;
925 
926 	/* translate to bit depth */
927 	switch (color_depth) {
928 	case COLOR_DEPTH_666:
929 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
930 	break;
931 	case COLOR_DEPTH_888:
932 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
933 	break;
934 	case COLOR_DEPTH_101010:
935 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
936 	break;
937 	case COLOR_DEPTH_121212:
938 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
939 	break;
940 	default:
941 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
942 	break;
943 	}
944 
945 	switch (test_pattern) {
946 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
947 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
948 	{
949 		dyn_range = (test_pattern ==
950 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
951 				TEST_PATTERN_DYN_RANGE_CEA :
952 				TEST_PATTERN_DYN_RANGE_VESA);
953 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
954 
955 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
956 				OTG_TEST_PATTERN_VRES, 6,
957 				OTG_TEST_PATTERN_HRES, 6);
958 
959 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
960 				OTG_TEST_PATTERN_EN, 1,
961 				OTG_TEST_PATTERN_MODE, mode,
962 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
963 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
964 	}
965 	break;
966 
967 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
968 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
969 	{
970 		mode = (test_pattern ==
971 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
972 			TEST_PATTERN_MODE_VERTICALBARS :
973 			TEST_PATTERN_MODE_HORIZONTALBARS);
974 
975 		switch (bit_depth) {
976 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
977 			dst_bpc = 6;
978 		break;
979 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
980 			dst_bpc = 8;
981 		break;
982 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
983 			dst_bpc = 10;
984 		break;
985 		default:
986 			dst_bpc = 8;
987 		break;
988 		}
989 
990 		/* adjust color to the required colorFormat */
991 		for (index = 0; index < 6; index++) {
992 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
993 			 * (srcBpc - dstBpc);
994 			 */
995 			dst_color[index] =
996 				src_color[index] >> (src_bpc - dst_bpc);
997 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
998 		 * lowest 6 are hardwired to ZERO
999 		 * color bits should be left aligned aligned to MSB
1000 		 * XXXXXXXXXX000000 for 10 bit,
1001 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1002 		 */
1003 			dst_color[index] <<= (16 - dst_bpc);
1004 		}
1005 
1006 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1007 
1008 		/* We have to write the mask before data, similar to pipeline.
1009 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1010 		 * and RGB1 to be cyan,
1011 		 * we need to make 7 writes:
1012 		 * MASK   DATA
1013 		 * 000001 00000000 00000000                     set mask to R0
1014 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1015 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1016 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1017 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1018 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1019 		 * 100000 11111111 00000000     B1 255, 0xFF00
1020 		 *
1021 		 * we will make a loop of 6 in which we prepare the mask,
1022 		 * then write, then prepare the color for next write.
1023 		 * first iteration will write mask only,
1024 		 * but each next iteration color prepared in
1025 		 * previous iteration will be written within new mask,
1026 		 * the last component will written separately,
1027 		 * mask is not changing between 6th and 7th write
1028 		 * and color will be prepared by last iteration
1029 		 */
1030 
1031 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1032 		 * is B1, G1, R1, B0, G0, R0
1033 		 */
1034 		pattern_data = 0;
1035 		for (index = 0; index < 6; index++) {
1036 			/* prepare color mask, first write PATTERN_DATA
1037 			 * will have all zeros
1038 			 */
1039 			pattern_mask = (1 << index);
1040 
1041 			/* write color component */
1042 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1043 					OTG_TEST_PATTERN_MASK, pattern_mask,
1044 					OTG_TEST_PATTERN_DATA, pattern_data);
1045 
1046 			/* prepare next color component,
1047 			 * will be written in the next iteration
1048 			 */
1049 			pattern_data = dst_color[index];
1050 		}
1051 		/* write last color component,
1052 		 * it's been already prepared in the loop
1053 		 */
1054 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1055 				OTG_TEST_PATTERN_MASK, pattern_mask,
1056 				OTG_TEST_PATTERN_DATA, pattern_data);
1057 
1058 		/* enable test pattern */
1059 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1060 				OTG_TEST_PATTERN_EN, 1,
1061 				OTG_TEST_PATTERN_MODE, mode,
1062 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1063 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1064 	}
1065 	break;
1066 
1067 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1068 	{
1069 		mode = (bit_depth ==
1070 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1071 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1072 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1073 
1074 		switch (bit_depth) {
1075 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1076 			dst_bpc = 6;
1077 		break;
1078 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1079 			dst_bpc = 8;
1080 		break;
1081 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1082 			dst_bpc = 10;
1083 		break;
1084 		default:
1085 			dst_bpc = 8;
1086 		break;
1087 		}
1088 
1089 		/* increment for the first ramp for one color gradation
1090 		 * 1 gradation for 6-bit color is 2^10
1091 		 * gradations in 16-bit color
1092 		 */
1093 		inc_base = (src_bpc - dst_bpc);
1094 
1095 		switch (bit_depth) {
1096 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1097 		{
1098 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1099 					OTG_TEST_PATTERN_INC0, inc_base,
1100 					OTG_TEST_PATTERN_INC1, 0,
1101 					OTG_TEST_PATTERN_HRES, 6,
1102 					OTG_TEST_PATTERN_VRES, 6,
1103 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1104 		}
1105 		break;
1106 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1107 		{
1108 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1109 					OTG_TEST_PATTERN_INC0, inc_base,
1110 					OTG_TEST_PATTERN_INC1, 0,
1111 					OTG_TEST_PATTERN_HRES, 8,
1112 					OTG_TEST_PATTERN_VRES, 6,
1113 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1114 		}
1115 		break;
1116 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1117 		{
1118 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1119 					OTG_TEST_PATTERN_INC0, inc_base,
1120 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1121 					OTG_TEST_PATTERN_HRES, 8,
1122 					OTG_TEST_PATTERN_VRES, 5,
1123 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1124 		}
1125 		break;
1126 		default:
1127 		break;
1128 		}
1129 
1130 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1131 
1132 		/* enable test pattern */
1133 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1134 
1135 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1136 				OTG_TEST_PATTERN_EN, 1,
1137 				OTG_TEST_PATTERN_MODE, mode,
1138 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1139 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1140 	}
1141 	break;
1142 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1143 	{
1144 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1145 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1146 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1147 	}
1148 	break;
1149 	default:
1150 		break;
1151 
1152 	}
1153 }
1154 
1155 void optc1_get_crtc_scanoutpos(
1156 	struct timing_generator *optc,
1157 	uint32_t *v_blank_start,
1158 	uint32_t *v_blank_end,
1159 	uint32_t *h_position,
1160 	uint32_t *v_position)
1161 {
1162 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1163 	struct crtc_position position;
1164 
1165 	REG_GET_2(OTG_V_BLANK_START_END,
1166 			OTG_V_BLANK_START, v_blank_start,
1167 			OTG_V_BLANK_END, v_blank_end);
1168 
1169 	optc1_get_position(optc, &position);
1170 
1171 	*h_position = position.horizontal_count;
1172 	*v_position = position.vertical_count;
1173 }
1174 
1175 static void optc1_enable_stereo(struct timing_generator *optc,
1176 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1177 {
1178 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1179 
1180 	if (flags) {
1181 		uint32_t stereo_en;
1182 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1183 
1184 		if (flags->PROGRAM_STEREO)
1185 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1186 				OTG_STEREO_EN, stereo_en,
1187 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1188 				OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1189 
1190 		if (flags->PROGRAM_POLARITY)
1191 			REG_UPDATE(OTG_STEREO_CONTROL,
1192 				OTG_STEREO_EYE_FLAG_POLARITY,
1193 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1194 
1195 		if (flags->DISABLE_STEREO_DP_SYNC)
1196 			REG_UPDATE(OTG_STEREO_CONTROL,
1197 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1198 
1199 		if (flags->PROGRAM_STEREO)
1200 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1201 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1202 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1203 
1204 	}
1205 }
1206 
1207 void optc1_program_stereo(struct timing_generator *optc,
1208 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1209 {
1210 	if (flags->PROGRAM_STEREO)
1211 		optc1_enable_stereo(optc, timing, flags);
1212 	else
1213 		optc1_disable_stereo(optc);
1214 }
1215 
1216 
1217 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1218 {
1219 	bool ret = false;
1220 	uint32_t left_eye = 0;
1221 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1222 
1223 	REG_GET(OTG_STEREO_STATUS,
1224 		OTG_STEREO_CURRENT_EYE, &left_eye);
1225 	if (left_eye == 1)
1226 		ret = true;
1227 	else
1228 		ret = false;
1229 
1230 	return ret;
1231 }
1232 
1233 bool optc1_is_matching_timing(struct timing_generator *tg,
1234 		const struct dc_crtc_timing *otg_timing)
1235 {
1236 	struct dc_crtc_timing hw_crtc_timing = {0};
1237 	struct dcn_otg_state s = {0};
1238 
1239 	if (tg == NULL || otg_timing == NULL)
1240 		return false;
1241 
1242 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1243 
1244 	hw_crtc_timing.h_total = s.h_total + 1;
1245 	hw_crtc_timing.h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1246 	hw_crtc_timing.h_front_porch = s.h_total + 1 - s.h_blank_start;
1247 	hw_crtc_timing.h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1248 
1249 	hw_crtc_timing.v_total = s.v_total + 1;
1250 	hw_crtc_timing.v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1251 	hw_crtc_timing.v_front_porch = s.v_total + 1 - s.v_blank_start;
1252 	hw_crtc_timing.v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1253 
1254 	if (otg_timing->h_total != hw_crtc_timing.h_total)
1255 		return false;
1256 
1257 	if (otg_timing->h_border_left != hw_crtc_timing.h_border_left)
1258 		return false;
1259 
1260 	if (otg_timing->h_addressable != hw_crtc_timing.h_addressable)
1261 		return false;
1262 
1263 	if (otg_timing->h_border_right != hw_crtc_timing.h_border_right)
1264 		return false;
1265 
1266 	if (otg_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1267 		return false;
1268 
1269 	if (otg_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1270 		return false;
1271 
1272 	if (otg_timing->v_total != hw_crtc_timing.v_total)
1273 		return false;
1274 
1275 	if (otg_timing->v_border_top != hw_crtc_timing.v_border_top)
1276 		return false;
1277 
1278 	if (otg_timing->v_addressable != hw_crtc_timing.v_addressable)
1279 		return false;
1280 
1281 	if (otg_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1282 		return false;
1283 
1284 	if (otg_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1285 		return false;
1286 
1287 	return true;
1288 }
1289 
1290 
1291 void optc1_read_otg_state(struct optc *optc1,
1292 		struct dcn_otg_state *s)
1293 {
1294 	REG_GET(OTG_CONTROL,
1295 			OTG_MASTER_EN, &s->otg_enabled);
1296 
1297 	REG_GET_2(OTG_V_BLANK_START_END,
1298 			OTG_V_BLANK_START, &s->v_blank_start,
1299 			OTG_V_BLANK_END, &s->v_blank_end);
1300 
1301 	REG_GET(OTG_V_SYNC_A_CNTL,
1302 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1303 
1304 	REG_GET(OTG_V_TOTAL,
1305 			OTG_V_TOTAL, &s->v_total);
1306 
1307 	REG_GET(OTG_V_TOTAL_MAX,
1308 			OTG_V_TOTAL_MAX, &s->v_total_max);
1309 
1310 	REG_GET(OTG_V_TOTAL_MIN,
1311 			OTG_V_TOTAL_MIN, &s->v_total_min);
1312 
1313 	REG_GET(OTG_V_TOTAL_CONTROL,
1314 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1315 
1316 	REG_GET(OTG_V_TOTAL_CONTROL,
1317 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1318 
1319 	REG_GET_2(OTG_V_SYNC_A,
1320 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1321 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1322 
1323 	REG_GET_2(OTG_H_BLANK_START_END,
1324 			OTG_H_BLANK_START, &s->h_blank_start,
1325 			OTG_H_BLANK_END, &s->h_blank_end);
1326 
1327 	REG_GET_2(OTG_H_SYNC_A,
1328 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1329 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1330 
1331 	REG_GET(OTG_H_SYNC_A_CNTL,
1332 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1333 
1334 	REG_GET(OTG_H_TOTAL,
1335 			OTG_H_TOTAL, &s->h_total);
1336 
1337 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1338 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1339 }
1340 
1341 bool optc1_get_otg_active_size(struct timing_generator *optc,
1342 		uint32_t *otg_active_width,
1343 		uint32_t *otg_active_height)
1344 {
1345 	uint32_t otg_enabled;
1346 	uint32_t v_blank_start;
1347 	uint32_t v_blank_end;
1348 	uint32_t h_blank_start;
1349 	uint32_t h_blank_end;
1350 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1351 
1352 
1353 	REG_GET(OTG_CONTROL,
1354 			OTG_MASTER_EN, &otg_enabled);
1355 
1356 	if (otg_enabled == 0)
1357 		return false;
1358 
1359 	REG_GET_2(OTG_V_BLANK_START_END,
1360 			OTG_V_BLANK_START, &v_blank_start,
1361 			OTG_V_BLANK_END, &v_blank_end);
1362 
1363 	REG_GET_2(OTG_H_BLANK_START_END,
1364 			OTG_H_BLANK_START, &h_blank_start,
1365 			OTG_H_BLANK_END, &h_blank_end);
1366 
1367 	*otg_active_width = v_blank_start - v_blank_end;
1368 	*otg_active_height = h_blank_start - h_blank_end;
1369 	return true;
1370 }
1371 
1372 void optc1_clear_optc_underflow(struct timing_generator *optc)
1373 {
1374 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1375 
1376 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1377 }
1378 
1379 void optc1_tg_init(struct timing_generator *optc)
1380 {
1381 	optc1_set_blank_data_double_buffer(optc, true);
1382 	optc1_clear_optc_underflow(optc);
1383 }
1384 
1385 bool optc1_is_tg_enabled(struct timing_generator *optc)
1386 {
1387 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1388 	uint32_t otg_enabled = 0;
1389 
1390 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1391 
1392 	return (otg_enabled != 0);
1393 
1394 }
1395 
1396 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1397 {
1398 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1399 	uint32_t underflow_occurred = 0;
1400 
1401 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1402 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1403 			&underflow_occurred);
1404 
1405 	return (underflow_occurred == 1);
1406 }
1407 
1408 bool optc1_configure_crc(struct timing_generator *optc,
1409 			  const struct crc_params *params)
1410 {
1411 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1412 
1413 	/* Cannot configure crc on a CRTC that is disabled */
1414 	if (!optc1_is_tg_enabled(optc))
1415 		return false;
1416 
1417 	REG_WRITE(OTG_CRC_CNTL, 0);
1418 
1419 	if (!params->enable)
1420 		return true;
1421 
1422 	/* Program frame boundaries */
1423 	/* Window A x axis start and end. */
1424 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1425 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1426 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1427 
1428 	/* Window A y axis start and end. */
1429 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1430 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1431 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1432 
1433 	/* Window B x axis start and end. */
1434 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1435 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1436 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1437 
1438 	/* Window B y axis start and end. */
1439 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1440 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1441 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1442 
1443 	/* Set crc mode and selection, and enable. Only using CRC0*/
1444 	REG_UPDATE_3(OTG_CRC_CNTL,
1445 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1446 			OTG_CRC0_SELECT, params->selection,
1447 			OTG_CRC_EN, 1);
1448 
1449 	return true;
1450 }
1451 
1452 bool optc1_get_crc(struct timing_generator *optc,
1453 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1454 {
1455 	uint32_t field = 0;
1456 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1457 
1458 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1459 
1460 	/* Early return if CRC is not enabled for this CRTC */
1461 	if (!field)
1462 		return false;
1463 
1464 	REG_GET_2(OTG_CRC0_DATA_RG,
1465 			CRC0_R_CR, r_cr,
1466 			CRC0_G_Y, g_y);
1467 
1468 	REG_GET(OTG_CRC0_DATA_B,
1469 			CRC0_B_CB, b_cb);
1470 
1471 	return true;
1472 }
1473 
1474 static const struct timing_generator_funcs dcn10_tg_funcs = {
1475 		.validate_timing = optc1_validate_timing,
1476 		.program_timing = optc1_program_timing,
1477 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1478 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1479 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1480 		.program_global_sync = optc1_program_global_sync,
1481 		.enable_crtc = optc1_enable_crtc,
1482 		.disable_crtc = optc1_disable_crtc,
1483 		/* used by enable_timing_synchronization. Not need for FPGA */
1484 		.is_counter_moving = optc1_is_counter_moving,
1485 		.get_position = optc1_get_position,
1486 		.get_frame_count = optc1_get_vblank_counter,
1487 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1488 		.get_otg_active_size = optc1_get_otg_active_size,
1489 		.is_matching_timing = optc1_is_matching_timing,
1490 		.set_early_control = optc1_set_early_control,
1491 		/* used by enable_timing_synchronization. Not need for FPGA */
1492 		.wait_for_state = optc1_wait_for_state,
1493 		.set_blank = optc1_set_blank,
1494 		.is_blanked = optc1_is_blanked,
1495 		.set_blank_color = optc1_program_blank_color,
1496 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1497 		.enable_reset_trigger = optc1_enable_reset_trigger,
1498 		.enable_crtc_reset = optc1_enable_crtc_reset,
1499 		.disable_reset_trigger = optc1_disable_reset_trigger,
1500 		.lock = optc1_lock,
1501 		.unlock = optc1_unlock,
1502 		.enable_optc_clock = optc1_enable_optc_clock,
1503 		.set_drr = optc1_set_drr,
1504 		.set_static_screen_control = optc1_set_static_screen_control,
1505 		.set_test_pattern = optc1_set_test_pattern,
1506 		.program_stereo = optc1_program_stereo,
1507 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1508 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1509 		.tg_init = optc1_tg_init,
1510 		.is_tg_enabled = optc1_is_tg_enabled,
1511 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1512 		.clear_optc_underflow = optc1_clear_optc_underflow,
1513 		.get_crc = optc1_get_crc,
1514 		.configure_crc = optc1_configure_crc,
1515 		.set_vtg_params = optc1_set_vtg_params,
1516 		.program_manual_trigger = optc1_program_manual_trigger,
1517 		.setup_manual_trigger = optc1_setup_manual_trigger
1518 };
1519 
1520 void dcn10_timing_generator_init(struct optc *optc1)
1521 {
1522 	optc1->base.funcs = &dcn10_tg_funcs;
1523 
1524 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1525 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1526 
1527 	optc1->min_h_blank = 32;
1528 	optc1->min_v_blank = 3;
1529 	optc1->min_v_blank_interlace = 5;
1530 	optc1->min_h_sync_width = 8;
1531 	optc1->min_v_sync_width = 1;
1532 }
1533 
1534 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
1535 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1536  *
1537  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1538  *   containter rate.
1539  *
1540  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1541  *   halved to maintain the correct pixel rate.
1542  *
1543  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1544  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1545  *
1546  */
1547 #endif
1548 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1549 {
1550 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1551 
1552 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
1553 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1554 			&& !timing->dsc_cfg.ycbcr422_simple);
1555 #endif
1556 	return two_pix;
1557 }
1558 
1559