xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 #include "dc_trace.h"
31 
32 #define REG(reg)\
33 	optc1->tg_regs->reg
34 
35 #define CTX \
36 	optc1->base.ctx
37 
38 #undef FN
39 #define FN(reg_name, field_name) \
40 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
41 
42 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
43 
44 /**
45 * apply_front_porch_workaround  TODO FPGA still need?
46 *
47 * This is a workaround for a bug that has existed since R5xx and has not been
48 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
49 */
50 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
51 {
52 	if (timing->flags.INTERLACE == 1) {
53 		if (timing->v_front_porch < 2)
54 			timing->v_front_porch = 2;
55 	} else {
56 		if (timing->v_front_porch < 1)
57 			timing->v_front_porch = 1;
58 	}
59 }
60 
61 void optc1_program_global_sync(
62 		struct timing_generator *optc,
63 		int vready_offset,
64 		int vstartup_start,
65 		int vupdate_offset,
66 		int vupdate_width)
67 {
68 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
69 
70 	optc1->vready_offset = vready_offset;
71 	optc1->vstartup_start = vstartup_start;
72 	optc1->vupdate_offset = vupdate_offset;
73 	optc1->vupdate_width = vupdate_width;
74 
75 	if (optc1->vstartup_start == 0) {
76 		BREAK_TO_DEBUGGER();
77 		return;
78 	}
79 
80 	REG_SET(OTG_VSTARTUP_PARAM, 0,
81 		VSTARTUP_START, optc1->vstartup_start);
82 
83 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
84 			VUPDATE_OFFSET, optc1->vupdate_offset,
85 			VUPDATE_WIDTH, optc1->vupdate_width);
86 
87 	REG_SET(OTG_VREADY_PARAM, 0,
88 			VREADY_OFFSET, optc1->vready_offset);
89 }
90 
91 static void optc1_disable_stereo(struct timing_generator *optc)
92 {
93 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
94 
95 	REG_SET(OTG_STEREO_CONTROL, 0,
96 		OTG_STEREO_EN, 0);
97 
98 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
99 		OTG_3D_STRUCTURE_EN, 0,
100 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
101 }
102 
103 void optc1_setup_vertical_interrupt0(
104 		struct timing_generator *optc,
105 		uint32_t start_line,
106 		uint32_t end_line)
107 {
108 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
109 
110 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
111 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
112 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
113 }
114 
115 void optc1_setup_vertical_interrupt1(
116 		struct timing_generator *optc,
117 		uint32_t start_line)
118 {
119 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
120 
121 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
122 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
123 }
124 
125 void optc1_setup_vertical_interrupt2(
126 		struct timing_generator *optc,
127 		uint32_t start_line)
128 {
129 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
130 
131 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
132 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
133 }
134 
135 /**
136  * program_timing_generator   used by mode timing set
137  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
138  * Including SYNC. Call BIOS command table to program Timings.
139  */
140 void optc1_program_timing(
141 	struct timing_generator *optc,
142 	const struct dc_crtc_timing *dc_crtc_timing,
143 	int vready_offset,
144 	int vstartup_start,
145 	int vupdate_offset,
146 	int vupdate_width,
147 	const enum signal_type signal,
148 	bool use_vbios)
149 {
150 	struct dc_crtc_timing patched_crtc_timing;
151 	uint32_t asic_blank_end;
152 	uint32_t asic_blank_start;
153 	uint32_t v_total;
154 	uint32_t v_sync_end;
155 	uint32_t h_sync_polarity, v_sync_polarity;
156 	uint32_t start_point = 0;
157 	uint32_t field_num = 0;
158 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
159 
160 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
161 
162 	optc1->signal = signal;
163 	optc1->vready_offset = vready_offset;
164 	optc1->vstartup_start = vstartup_start;
165 	optc1->vupdate_offset = vupdate_offset;
166 	optc1->vupdate_width = vupdate_width;
167 	patched_crtc_timing = *dc_crtc_timing;
168 	apply_front_porch_workaround(&patched_crtc_timing);
169 	optc1->orginal_patched_timing = patched_crtc_timing;
170 
171 	/* Load horizontal timing */
172 
173 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
174 	REG_SET(OTG_H_TOTAL, 0,
175 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
176 
177 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
178 	REG_UPDATE_2(OTG_H_SYNC_A,
179 			OTG_H_SYNC_A_START, 0,
180 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
181 
182 	/* blank_start = line end - front porch */
183 	asic_blank_start = patched_crtc_timing.h_total -
184 			patched_crtc_timing.h_front_porch;
185 
186 	/* blank_end = blank_start - active */
187 	asic_blank_end = asic_blank_start -
188 			patched_crtc_timing.h_border_right -
189 			patched_crtc_timing.h_addressable -
190 			patched_crtc_timing.h_border_left;
191 
192 	REG_UPDATE_2(OTG_H_BLANK_START_END,
193 			OTG_H_BLANK_START, asic_blank_start,
194 			OTG_H_BLANK_END, asic_blank_end);
195 
196 	/* h_sync polarity */
197 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
198 			0 : 1;
199 
200 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
201 			OTG_H_SYNC_A_POL, h_sync_polarity);
202 
203 	v_total = patched_crtc_timing.v_total - 1;
204 
205 	REG_SET(OTG_V_TOTAL, 0,
206 			OTG_V_TOTAL, v_total);
207 
208 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
209 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
210 	 */
211 	optc->funcs->set_vtotal_min_max(optc, v_total, v_total);
212 
213 	/* v_sync_start = 0, v_sync_end = v_sync_width */
214 	v_sync_end = patched_crtc_timing.v_sync_width;
215 
216 	REG_UPDATE_2(OTG_V_SYNC_A,
217 			OTG_V_SYNC_A_START, 0,
218 			OTG_V_SYNC_A_END, v_sync_end);
219 
220 	/* blank_start = frame end - front porch */
221 	asic_blank_start = patched_crtc_timing.v_total -
222 			patched_crtc_timing.v_front_porch;
223 
224 	/* blank_end = blank_start - active */
225 	asic_blank_end = asic_blank_start -
226 			patched_crtc_timing.v_border_bottom -
227 			patched_crtc_timing.v_addressable -
228 			patched_crtc_timing.v_border_top;
229 
230 	REG_UPDATE_2(OTG_V_BLANK_START_END,
231 			OTG_V_BLANK_START, asic_blank_start,
232 			OTG_V_BLANK_END, asic_blank_end);
233 
234 	/* v_sync polarity */
235 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
236 			0 : 1;
237 
238 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
239 		OTG_V_SYNC_A_POL, v_sync_polarity);
240 
241 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
242 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
243 			optc1->signal == SIGNAL_TYPE_EDP) {
244 		start_point = 1;
245 		if (patched_crtc_timing.flags.INTERLACE == 1)
246 			field_num = 1;
247 	}
248 
249 	/* Interlace */
250 	if (REG(OTG_INTERLACE_CONTROL)) {
251 		if (patched_crtc_timing.flags.INTERLACE == 1)
252 			REG_UPDATE(OTG_INTERLACE_CONTROL,
253 					OTG_INTERLACE_ENABLE, 1);
254 		else
255 			REG_UPDATE(OTG_INTERLACE_CONTROL,
256 					OTG_INTERLACE_ENABLE, 0);
257 	}
258 
259 	/* VTG enable set to 0 first VInit */
260 	REG_UPDATE(CONTROL,
261 			VTG0_ENABLE, 0);
262 
263 	/* original code is using VTG offset to address OTG reg, seems wrong */
264 	REG_UPDATE_2(OTG_CONTROL,
265 			OTG_START_POINT_CNTL, start_point,
266 			OTG_FIELD_NUMBER_CNTL, field_num);
267 
268 	optc->funcs->program_global_sync(optc,
269 			vready_offset,
270 			vstartup_start,
271 			vupdate_offset,
272 			vupdate_width);
273 
274 	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
275 
276 	/* TODO
277 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
278 	 * program_horz_count_by_2
279 	 * for DVI 30bpp mode, 0 otherwise
280 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
281 	 */
282 
283 	/* Enable stereo - only when we need to pack 3D frame. Other types
284 	 * of stereo handled in explicit call
285 	 */
286 
287 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
288 		h_div = H_TIMING_DIV_BY2;
289 
290 	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
291 		uint32_t data_fmt = 0;
292 
293 		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
294 			data_fmt = 1;
295 		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
296 			data_fmt = 2;
297 
298 		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
299 	}
300 
301 	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
302 		if (optc1->opp_count == 4)
303 			h_div = H_TIMING_DIV_BY4;
304 
305 		REG_UPDATE(OTG_H_TIMING_CNTL,
306 		OTG_H_TIMING_DIV_MODE, h_div);
307 	} else {
308 		REG_UPDATE(OTG_H_TIMING_CNTL,
309 		OTG_H_TIMING_DIV_BY2, h_div);
310 	}
311 }
312 
313 /**
314  * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters
315  *
316  * @optc: timing_generator struct used to extract the optc parameters
317  * @dc_crtc_timing: Timing parameters configured
318  * @program_fp2: Boolean value indicating if FP2 will be programmed or not
319  *
320  * OTG is responsible for generating the global sync signals, including
321  * vertical timing information for each HUBP in the dcfclk domain. Each VTG is
322  * associated with one OTG that provides HUBP with vertical timing information
323  * (i.e., there is 1:1 correspondence between OTG and VTG). This function is
324  * responsible for setting the OTG parameters to the VTG during the pipe
325  * programming.
326  */
327 void optc1_set_vtg_params(struct timing_generator *optc,
328 		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
329 {
330 	struct dc_crtc_timing patched_crtc_timing;
331 	uint32_t asic_blank_end;
332 	uint32_t v_init;
333 	uint32_t v_fp2 = 0;
334 	int32_t vertical_line_start;
335 
336 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
337 
338 	patched_crtc_timing = *dc_crtc_timing;
339 	apply_front_porch_workaround(&patched_crtc_timing);
340 
341 	/* VCOUNT_INIT is the start of blank */
342 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
343 
344 	/* end of blank = v_init - active */
345 	asic_blank_end = v_init -
346 			patched_crtc_timing.v_border_bottom -
347 			patched_crtc_timing.v_addressable -
348 			patched_crtc_timing.v_border_top;
349 
350 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
351 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
352 	if (vertical_line_start < 0)
353 		v_fp2 = -vertical_line_start;
354 
355 	/* Interlace */
356 	if (REG(OTG_INTERLACE_CONTROL)) {
357 		if (patched_crtc_timing.flags.INTERLACE == 1) {
358 			v_init = v_init / 2;
359 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
360 				v_fp2 = v_fp2 / 2;
361 		}
362 	}
363 
364 	if (program_fp2)
365 		REG_UPDATE_2(CONTROL,
366 				VTG0_FP2, v_fp2,
367 				VTG0_VCOUNT_INIT, v_init);
368 	else
369 		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
370 }
371 
372 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
373 {
374 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
375 
376 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
377 
378 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
379 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
380 }
381 
382 /**
383  * optc1_set_timing_double_buffer() - DRR double buffering control
384  *
385  * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
386  * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
387  *
388  * Options: any time,  start of frame, dp start of frame (range timing)
389  */
390 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
391 {
392 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
393 	uint32_t mode = enable ? 2 : 0;
394 
395 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
396 		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
397 }
398 
399 /**
400  * unblank_crtc
401  * Call ASIC Control Object to UnBlank CRTC.
402  */
403 static void optc1_unblank_crtc(struct timing_generator *optc)
404 {
405 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
406 
407 	REG_UPDATE_2(OTG_BLANK_CONTROL,
408 			OTG_BLANK_DATA_EN, 0,
409 			OTG_BLANK_DE_MODE, 0);
410 
411 	/* W/A for automated testing
412 	 * Automated testing will fail underflow test as there
413 	 * sporadic underflows which occur during the optc blank
414 	 * sequence.  As a w/a, clear underflow on unblank.
415 	 * This prevents the failure, but will not mask actual
416 	 * underflow that affect real use cases.
417 	 */
418 	optc1_clear_optc_underflow(optc);
419 }
420 
421 /**
422  * blank_crtc
423  * Call ASIC Control Object to Blank CRTC.
424  */
425 
426 static void optc1_blank_crtc(struct timing_generator *optc)
427 {
428 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
429 
430 	REG_UPDATE_2(OTG_BLANK_CONTROL,
431 			OTG_BLANK_DATA_EN, 1,
432 			OTG_BLANK_DE_MODE, 0);
433 
434 	optc1_set_blank_data_double_buffer(optc, false);
435 }
436 
437 void optc1_set_blank(struct timing_generator *optc,
438 		bool enable_blanking)
439 {
440 	if (enable_blanking)
441 		optc1_blank_crtc(optc);
442 	else
443 		optc1_unblank_crtc(optc);
444 }
445 
446 bool optc1_is_blanked(struct timing_generator *optc)
447 {
448 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
449 	uint32_t blank_en;
450 	uint32_t blank_state;
451 
452 	REG_GET_2(OTG_BLANK_CONTROL,
453 			OTG_BLANK_DATA_EN, &blank_en,
454 			OTG_CURRENT_BLANK_STATE, &blank_state);
455 
456 	return blank_en && blank_state;
457 }
458 
459 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
460 {
461 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
462 
463 	if (enable) {
464 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
465 				OPTC_INPUT_CLK_EN, 1,
466 				OPTC_INPUT_CLK_GATE_DIS, 1);
467 
468 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
469 				OPTC_INPUT_CLK_ON, 1,
470 				1, 1000);
471 
472 		/* Enable clock */
473 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
474 				OTG_CLOCK_EN, 1,
475 				OTG_CLOCK_GATE_DIS, 1);
476 		REG_WAIT(OTG_CLOCK_CONTROL,
477 				OTG_CLOCK_ON, 1,
478 				1, 1000);
479 	} else  {
480 
481 		//last chance to clear underflow, otherwise, it will always there due to clock is off.
482 		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
483 			optc->funcs->clear_optc_underflow(optc);
484 
485 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
486 				OTG_CLOCK_GATE_DIS, 0,
487 				OTG_CLOCK_EN, 0);
488 
489 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
490 				OPTC_INPUT_CLK_GATE_DIS, 0,
491 				OPTC_INPUT_CLK_EN, 0);
492 	}
493 }
494 
495 /**
496  * Enable CRTC
497  * Enable CRTC - call ASIC Control Object to enable Timing generator.
498  */
499 static bool optc1_enable_crtc(struct timing_generator *optc)
500 {
501 	/* TODO FPGA wait for answer
502 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
503 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
504 	 */
505 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
506 
507 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
508 	 * OPP and OPTC should 1:1 mapping
509 	 */
510 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
511 			OPTC_SRC_SEL, optc->inst);
512 
513 	/* VTG enable first is for HW workaround */
514 	REG_UPDATE(CONTROL,
515 			VTG0_ENABLE, 1);
516 
517 	REG_SEQ_START();
518 
519 	/* Enable CRTC */
520 	REG_UPDATE_2(OTG_CONTROL,
521 			OTG_DISABLE_POINT_CNTL, 3,
522 			OTG_MASTER_EN, 1);
523 
524 	REG_SEQ_SUBMIT();
525 	REG_SEQ_WAIT_DONE();
526 
527 	return true;
528 }
529 
530 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
531 bool optc1_disable_crtc(struct timing_generator *optc)
532 {
533 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
534 
535 	/* disable otg request until end of the first line
536 	 * in the vertical blank region
537 	 */
538 	REG_UPDATE_2(OTG_CONTROL,
539 			OTG_DISABLE_POINT_CNTL, 3,
540 			OTG_MASTER_EN, 0);
541 
542 	REG_UPDATE(CONTROL,
543 			VTG0_ENABLE, 0);
544 
545 	/* CRTC disabled, so disable  clock. */
546 	REG_WAIT(OTG_CLOCK_CONTROL,
547 			OTG_BUSY, 0,
548 			1, 100000);
549 
550 	return true;
551 }
552 
553 
554 void optc1_program_blank_color(
555 		struct timing_generator *optc,
556 		const struct tg_color *black_color)
557 {
558 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
559 
560 	REG_SET_3(OTG_BLACK_COLOR, 0,
561 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
562 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
563 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
564 }
565 
566 bool optc1_validate_timing(
567 	struct timing_generator *optc,
568 	const struct dc_crtc_timing *timing)
569 {
570 	uint32_t v_blank;
571 	uint32_t h_blank;
572 	uint32_t min_v_blank;
573 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
574 
575 	ASSERT(timing != NULL);
576 
577 	v_blank = (timing->v_total - timing->v_addressable -
578 					timing->v_border_top - timing->v_border_bottom);
579 
580 	h_blank = (timing->h_total - timing->h_addressable -
581 		timing->h_border_right -
582 		timing->h_border_left);
583 
584 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
585 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
586 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
587 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
588 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
589 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
590 		return false;
591 
592 	/* Temporarily blocking interlacing mode until it's supported */
593 	if (timing->flags.INTERLACE == 1)
594 		return false;
595 
596 	/* Check maximum number of pixels supported by Timing Generator
597 	 * (Currently will never fail, in order to fail needs display which
598 	 * needs more than 8192 horizontal and
599 	 * more than 8192 vertical total pixels)
600 	 */
601 	if (timing->h_total > optc1->max_h_total ||
602 		timing->v_total > optc1->max_v_total)
603 		return false;
604 
605 
606 	if (h_blank < optc1->min_h_blank)
607 		return false;
608 
609 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
610 		 timing->v_sync_width  < optc1->min_v_sync_width)
611 		return false;
612 
613 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
614 
615 	if (v_blank < min_v_blank)
616 		return false;
617 
618 	return true;
619 
620 }
621 
622 /*
623  * get_vblank_counter
624  *
625  * @brief
626  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
627  * holds the counter of frames.
628  *
629  * @param
630  * struct timing_generator *optc - [in] timing generator which controls the
631  * desired CRTC
632  *
633  * @return
634  * Counter of frames, which should equal to number of vblanks.
635  */
636 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
637 {
638 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
639 	uint32_t frame_count;
640 
641 	REG_GET(OTG_STATUS_FRAME_COUNT,
642 		OTG_FRAME_COUNT, &frame_count);
643 
644 	return frame_count;
645 }
646 
647 void optc1_lock(struct timing_generator *optc)
648 {
649 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
650 
651 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
652 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
653 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
654 			OTG_MASTER_UPDATE_LOCK, 1);
655 
656 	/* Should be fast, status does not update on maximus */
657 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
658 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
659 				UPDATE_LOCK_STATUS, 1,
660 				1, 10);
661 
662 	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, true);
663 }
664 
665 void optc1_unlock(struct timing_generator *optc)
666 {
667 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
668 
669 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
670 			OTG_MASTER_UPDATE_LOCK, 0);
671 
672 	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, false);
673 }
674 
675 void optc1_get_position(struct timing_generator *optc,
676 		struct crtc_position *position)
677 {
678 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
679 
680 	REG_GET_2(OTG_STATUS_POSITION,
681 			OTG_HORZ_COUNT, &position->horizontal_count,
682 			OTG_VERT_COUNT, &position->vertical_count);
683 
684 	REG_GET(OTG_NOM_VERT_POSITION,
685 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
686 }
687 
688 bool optc1_is_counter_moving(struct timing_generator *optc)
689 {
690 	struct crtc_position position1, position2;
691 
692 	optc->funcs->get_position(optc, &position1);
693 	optc->funcs->get_position(optc, &position2);
694 
695 	if (position1.horizontal_count == position2.horizontal_count &&
696 		position1.vertical_count == position2.vertical_count)
697 		return false;
698 	else
699 		return true;
700 }
701 
702 bool optc1_did_triggered_reset_occur(
703 	struct timing_generator *optc)
704 {
705 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
706 	uint32_t occurred_force, occurred_vsync;
707 
708 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
709 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
710 
711 	REG_GET(OTG_VERT_SYNC_CONTROL,
712 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
713 
714 	return occurred_vsync != 0 || occurred_force != 0;
715 }
716 
717 void optc1_disable_reset_trigger(struct timing_generator *optc)
718 {
719 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
720 
721 	REG_WRITE(OTG_TRIGA_CNTL, 0);
722 
723 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
724 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
725 
726 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
727 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
728 }
729 
730 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
731 {
732 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
733 	uint32_t falling_edge;
734 
735 	REG_GET(OTG_V_SYNC_A_CNTL,
736 			OTG_V_SYNC_A_POL, &falling_edge);
737 
738 	if (falling_edge)
739 		REG_SET_3(OTG_TRIGA_CNTL, 0,
740 				/* vsync signal from selected OTG pipe based
741 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
742 				 */
743 				OTG_TRIGA_SOURCE_SELECT, 20,
744 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
745 				/* always detect falling edge */
746 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
747 	else
748 		REG_SET_3(OTG_TRIGA_CNTL, 0,
749 				/* vsync signal from selected OTG pipe based
750 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
751 				 */
752 				OTG_TRIGA_SOURCE_SELECT, 20,
753 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
754 				/* always detect rising edge */
755 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
756 
757 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
758 			/* force H count to H_TOTAL and V count to V_TOTAL in
759 			 * progressive mode and V_TOTAL-1 in interlaced mode
760 			 */
761 			OTG_FORCE_COUNT_NOW_MODE, 2);
762 }
763 
764 void optc1_enable_crtc_reset(
765 		struct timing_generator *optc,
766 		int source_tg_inst,
767 		struct crtc_trigger_info *crtc_tp)
768 {
769 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
770 	uint32_t falling_edge = 0;
771 	uint32_t rising_edge = 0;
772 
773 	switch (crtc_tp->event) {
774 
775 	case CRTC_EVENT_VSYNC_RISING:
776 		rising_edge = 1;
777 		break;
778 
779 	case CRTC_EVENT_VSYNC_FALLING:
780 		falling_edge = 1;
781 		break;
782 	}
783 
784 	REG_SET_4(OTG_TRIGA_CNTL, 0,
785 		 /* vsync signal from selected OTG pipe based
786 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
787 		  */
788 		  OTG_TRIGA_SOURCE_SELECT, 20,
789 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
790 		  /* always detect falling edge */
791 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
792 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
793 
794 	switch (crtc_tp->delay) {
795 	case TRIGGER_DELAY_NEXT_LINE:
796 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
797 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
798 		break;
799 	case TRIGGER_DELAY_NEXT_PIXEL:
800 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
801 			/* force H count to H_TOTAL and V count to V_TOTAL in
802 			 * progressive mode and V_TOTAL-1 in interlaced mode
803 			 */
804 			OTG_FORCE_COUNT_NOW_MODE, 2);
805 		break;
806 	}
807 }
808 
809 void optc1_wait_for_state(struct timing_generator *optc,
810 		enum crtc_state state)
811 {
812 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
813 
814 	switch (state) {
815 	case CRTC_STATE_VBLANK:
816 		REG_WAIT(OTG_STATUS,
817 				OTG_V_BLANK, 1,
818 				1, 100000); /* 1 vupdate at 10hz */
819 		break;
820 
821 	case CRTC_STATE_VACTIVE:
822 		REG_WAIT(OTG_STATUS,
823 				OTG_V_ACTIVE_DISP, 1,
824 				1, 100000); /* 1 vupdate at 10hz */
825 		break;
826 
827 	default:
828 		break;
829 	}
830 }
831 
832 void optc1_set_early_control(
833 	struct timing_generator *optc,
834 	uint32_t early_cntl)
835 {
836 	/* asic design change, do not need this control
837 	 * empty for share caller logic
838 	 */
839 }
840 
841 
842 void optc1_set_static_screen_control(
843 	struct timing_generator *optc,
844 	uint32_t event_triggers,
845 	uint32_t num_frames)
846 {
847 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
848 
849 	// By register spec, it only takes 8 bit value
850 	if (num_frames > 0xFF)
851 		num_frames = 0xFF;
852 
853 	/* Bit 8 is no longer applicable in RV for PSR case,
854 	 * set bit 8 to 0 if given
855 	 */
856 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
857 			!= 0)
858 		event_triggers = event_triggers &
859 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
860 
861 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
862 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
863 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
864 }
865 
866 static void optc1_setup_manual_trigger(struct timing_generator *optc)
867 {
868 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
869 
870 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
871 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
872 
873 	REG_SET_8(OTG_TRIGA_CNTL, 0,
874 			OTG_TRIGA_SOURCE_SELECT, 22,
875 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
876 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
877 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
878 			OTG_TRIGA_POLARITY_SELECT, 0,
879 			OTG_TRIGA_FREQUENCY_SELECT, 0,
880 			OTG_TRIGA_DELAY, 0,
881 			OTG_TRIGA_CLEAR, 1);
882 }
883 
884 static void optc1_program_manual_trigger(struct timing_generator *optc)
885 {
886 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
887 
888 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
889 			MANUAL_FLOW_CONTROL, 1);
890 
891 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
892 			MANUAL_FLOW_CONTROL, 0);
893 }
894 
895 
896 /**
897  *****************************************************************************
898  *  Function: set_drr
899  *
900  *  @brief
901  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
902  *
903  *****************************************************************************
904  */
905 void optc1_set_drr(
906 	struct timing_generator *optc,
907 	const struct drr_params *params)
908 {
909 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
910 
911 	if (params != NULL &&
912 		params->vertical_total_max > 0 &&
913 		params->vertical_total_min > 0) {
914 
915 		if (params->vertical_total_mid != 0) {
916 
917 			REG_SET(OTG_V_TOTAL_MID, 0,
918 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
919 
920 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
921 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
922 					OTG_VTOTAL_MID_FRAME_NUM,
923 					(uint8_t)params->vertical_total_mid_frame_num);
924 
925 		}
926 
927 		optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
928 
929 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
930 				OTG_V_TOTAL_MIN_SEL, 1,
931 				OTG_V_TOTAL_MAX_SEL, 1,
932 				OTG_FORCE_LOCK_ON_EVENT, 0,
933 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
934 				OTG_SET_V_TOTAL_MIN_MASK, 0);
935 
936 		// Setup manual flow control for EOF via TRIG_A
937 		optc->funcs->setup_manual_trigger(optc);
938 
939 	} else {
940 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
941 				OTG_SET_V_TOTAL_MIN_MASK, 0,
942 				OTG_V_TOTAL_MIN_SEL, 0,
943 				OTG_V_TOTAL_MAX_SEL, 0,
944 				OTG_FORCE_LOCK_ON_EVENT, 0);
945 
946 		optc->funcs->set_vtotal_min_max(optc, 0, 0);
947 	}
948 }
949 
950 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
951 {
952 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
953 
954 	REG_SET(OTG_V_TOTAL_MAX, 0,
955 		OTG_V_TOTAL_MAX, vtotal_max);
956 
957 	REG_SET(OTG_V_TOTAL_MIN, 0,
958 		OTG_V_TOTAL_MIN, vtotal_min);
959 }
960 
961 static void optc1_set_test_pattern(
962 	struct timing_generator *optc,
963 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
964 	 * because this is not DP-specific (which is probably somewhere in DP
965 	 * encoder) */
966 	enum controller_dp_test_pattern test_pattern,
967 	enum dc_color_depth color_depth)
968 {
969 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
970 	enum test_pattern_color_format bit_depth;
971 	enum test_pattern_dyn_range dyn_range;
972 	enum test_pattern_mode mode;
973 	uint32_t pattern_mask;
974 	uint32_t pattern_data;
975 	/* color ramp generator mixes 16-bits color */
976 	uint32_t src_bpc = 16;
977 	/* requested bpc */
978 	uint32_t dst_bpc;
979 	uint32_t index;
980 	/* RGB values of the color bars.
981 	 * Produce two RGB colors: RGB0 - white (all Fs)
982 	 * and RGB1 - black (all 0s)
983 	 * (three RGB components for two colors)
984 	 */
985 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
986 						0x0000, 0x0000};
987 	/* dest color (converted to the specified color format) */
988 	uint16_t dst_color[6];
989 	uint32_t inc_base;
990 
991 	/* translate to bit depth */
992 	switch (color_depth) {
993 	case COLOR_DEPTH_666:
994 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
995 	break;
996 	case COLOR_DEPTH_888:
997 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
998 	break;
999 	case COLOR_DEPTH_101010:
1000 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1001 	break;
1002 	case COLOR_DEPTH_121212:
1003 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1004 	break;
1005 	default:
1006 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1007 	break;
1008 	}
1009 
1010 	switch (test_pattern) {
1011 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1012 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1013 	{
1014 		dyn_range = (test_pattern ==
1015 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1016 				TEST_PATTERN_DYN_RANGE_CEA :
1017 				TEST_PATTERN_DYN_RANGE_VESA);
1018 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1019 
1020 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1021 				OTG_TEST_PATTERN_VRES, 6,
1022 				OTG_TEST_PATTERN_HRES, 6);
1023 
1024 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1025 				OTG_TEST_PATTERN_EN, 1,
1026 				OTG_TEST_PATTERN_MODE, mode,
1027 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1028 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1029 	}
1030 	break;
1031 
1032 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1033 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1034 	{
1035 		mode = (test_pattern ==
1036 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1037 			TEST_PATTERN_MODE_VERTICALBARS :
1038 			TEST_PATTERN_MODE_HORIZONTALBARS);
1039 
1040 		switch (bit_depth) {
1041 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1042 			dst_bpc = 6;
1043 		break;
1044 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1045 			dst_bpc = 8;
1046 		break;
1047 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1048 			dst_bpc = 10;
1049 		break;
1050 		default:
1051 			dst_bpc = 8;
1052 		break;
1053 		}
1054 
1055 		/* adjust color to the required colorFormat */
1056 		for (index = 0; index < 6; index++) {
1057 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1058 			 * (srcBpc - dstBpc);
1059 			 */
1060 			dst_color[index] =
1061 				src_color[index] >> (src_bpc - dst_bpc);
1062 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1063 		 * lowest 6 are hardwired to ZERO
1064 		 * color bits should be left aligned to MSB
1065 		 * XXXXXXXXXX000000 for 10 bit,
1066 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1067 		 */
1068 			dst_color[index] <<= (16 - dst_bpc);
1069 		}
1070 
1071 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1072 
1073 		/* We have to write the mask before data, similar to pipeline.
1074 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1075 		 * and RGB1 to be cyan,
1076 		 * we need to make 7 writes:
1077 		 * MASK   DATA
1078 		 * 000001 00000000 00000000                     set mask to R0
1079 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1080 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1081 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1082 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1083 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1084 		 * 100000 11111111 00000000     B1 255, 0xFF00
1085 		 *
1086 		 * we will make a loop of 6 in which we prepare the mask,
1087 		 * then write, then prepare the color for next write.
1088 		 * first iteration will write mask only,
1089 		 * but each next iteration color prepared in
1090 		 * previous iteration will be written within new mask,
1091 		 * the last component will written separately,
1092 		 * mask is not changing between 6th and 7th write
1093 		 * and color will be prepared by last iteration
1094 		 */
1095 
1096 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1097 		 * is B1, G1, R1, B0, G0, R0
1098 		 */
1099 		pattern_data = 0;
1100 		for (index = 0; index < 6; index++) {
1101 			/* prepare color mask, first write PATTERN_DATA
1102 			 * will have all zeros
1103 			 */
1104 			pattern_mask = (1 << index);
1105 
1106 			/* write color component */
1107 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1108 					OTG_TEST_PATTERN_MASK, pattern_mask,
1109 					OTG_TEST_PATTERN_DATA, pattern_data);
1110 
1111 			/* prepare next color component,
1112 			 * will be written in the next iteration
1113 			 */
1114 			pattern_data = dst_color[index];
1115 		}
1116 		/* write last color component,
1117 		 * it's been already prepared in the loop
1118 		 */
1119 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1120 				OTG_TEST_PATTERN_MASK, pattern_mask,
1121 				OTG_TEST_PATTERN_DATA, pattern_data);
1122 
1123 		/* enable test pattern */
1124 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1125 				OTG_TEST_PATTERN_EN, 1,
1126 				OTG_TEST_PATTERN_MODE, mode,
1127 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1128 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1129 	}
1130 	break;
1131 
1132 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1133 	{
1134 		mode = (bit_depth ==
1135 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1136 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1137 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1138 
1139 		switch (bit_depth) {
1140 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1141 			dst_bpc = 6;
1142 		break;
1143 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1144 			dst_bpc = 8;
1145 		break;
1146 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1147 			dst_bpc = 10;
1148 		break;
1149 		default:
1150 			dst_bpc = 8;
1151 		break;
1152 		}
1153 
1154 		/* increment for the first ramp for one color gradation
1155 		 * 1 gradation for 6-bit color is 2^10
1156 		 * gradations in 16-bit color
1157 		 */
1158 		inc_base = (src_bpc - dst_bpc);
1159 
1160 		switch (bit_depth) {
1161 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1162 		{
1163 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1164 					OTG_TEST_PATTERN_INC0, inc_base,
1165 					OTG_TEST_PATTERN_INC1, 0,
1166 					OTG_TEST_PATTERN_HRES, 6,
1167 					OTG_TEST_PATTERN_VRES, 6,
1168 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1169 		}
1170 		break;
1171 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1172 		{
1173 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1174 					OTG_TEST_PATTERN_INC0, inc_base,
1175 					OTG_TEST_PATTERN_INC1, 0,
1176 					OTG_TEST_PATTERN_HRES, 8,
1177 					OTG_TEST_PATTERN_VRES, 6,
1178 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1179 		}
1180 		break;
1181 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1182 		{
1183 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1184 					OTG_TEST_PATTERN_INC0, inc_base,
1185 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1186 					OTG_TEST_PATTERN_HRES, 8,
1187 					OTG_TEST_PATTERN_VRES, 5,
1188 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1189 		}
1190 		break;
1191 		default:
1192 		break;
1193 		}
1194 
1195 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1196 
1197 		/* enable test pattern */
1198 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1199 
1200 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1201 				OTG_TEST_PATTERN_EN, 1,
1202 				OTG_TEST_PATTERN_MODE, mode,
1203 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1204 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1205 	}
1206 	break;
1207 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1208 	{
1209 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1210 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1211 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1212 	}
1213 	break;
1214 	default:
1215 		break;
1216 
1217 	}
1218 }
1219 
1220 void optc1_get_crtc_scanoutpos(
1221 	struct timing_generator *optc,
1222 	uint32_t *v_blank_start,
1223 	uint32_t *v_blank_end,
1224 	uint32_t *h_position,
1225 	uint32_t *v_position)
1226 {
1227 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1228 	struct crtc_position position;
1229 
1230 	REG_GET_2(OTG_V_BLANK_START_END,
1231 			OTG_V_BLANK_START, v_blank_start,
1232 			OTG_V_BLANK_END, v_blank_end);
1233 
1234 	optc1_get_position(optc, &position);
1235 
1236 	*h_position = position.horizontal_count;
1237 	*v_position = position.vertical_count;
1238 }
1239 
1240 static void optc1_enable_stereo(struct timing_generator *optc,
1241 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1242 {
1243 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1244 
1245 	if (flags) {
1246 		uint32_t stereo_en;
1247 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1248 
1249 		if (flags->PROGRAM_STEREO)
1250 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1251 				OTG_STEREO_EN, stereo_en,
1252 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1253 				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1254 
1255 		if (flags->PROGRAM_POLARITY)
1256 			REG_UPDATE(OTG_STEREO_CONTROL,
1257 				OTG_STEREO_EYE_FLAG_POLARITY,
1258 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1259 
1260 		if (flags->DISABLE_STEREO_DP_SYNC)
1261 			REG_UPDATE(OTG_STEREO_CONTROL,
1262 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1263 
1264 		if (flags->PROGRAM_STEREO)
1265 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1266 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1267 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1268 
1269 	}
1270 }
1271 
1272 void optc1_program_stereo(struct timing_generator *optc,
1273 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1274 {
1275 	if (flags->PROGRAM_STEREO)
1276 		optc1_enable_stereo(optc, timing, flags);
1277 	else
1278 		optc1_disable_stereo(optc);
1279 }
1280 
1281 
1282 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1283 {
1284 	bool ret = false;
1285 	uint32_t left_eye = 0;
1286 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1287 
1288 	REG_GET(OTG_STEREO_STATUS,
1289 		OTG_STEREO_CURRENT_EYE, &left_eye);
1290 	if (left_eye == 1)
1291 		ret = true;
1292 	else
1293 		ret = false;
1294 
1295 	return ret;
1296 }
1297 
1298 bool optc1_get_hw_timing(struct timing_generator *tg,
1299 		struct dc_crtc_timing *hw_crtc_timing)
1300 {
1301 	struct dcn_otg_state s = {0};
1302 
1303 	if (tg == NULL || hw_crtc_timing == NULL)
1304 		return false;
1305 
1306 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1307 
1308 	hw_crtc_timing->h_total = s.h_total + 1;
1309 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1310 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1311 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1312 
1313 	hw_crtc_timing->v_total = s.v_total + 1;
1314 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1315 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1316 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1317 
1318 	return true;
1319 }
1320 
1321 
1322 void optc1_read_otg_state(struct optc *optc1,
1323 		struct dcn_otg_state *s)
1324 {
1325 	REG_GET(OTG_CONTROL,
1326 			OTG_MASTER_EN, &s->otg_enabled);
1327 
1328 	REG_GET_2(OTG_V_BLANK_START_END,
1329 			OTG_V_BLANK_START, &s->v_blank_start,
1330 			OTG_V_BLANK_END, &s->v_blank_end);
1331 
1332 	REG_GET(OTG_V_SYNC_A_CNTL,
1333 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1334 
1335 	REG_GET(OTG_V_TOTAL,
1336 			OTG_V_TOTAL, &s->v_total);
1337 
1338 	REG_GET(OTG_V_TOTAL_MAX,
1339 			OTG_V_TOTAL_MAX, &s->v_total_max);
1340 
1341 	REG_GET(OTG_V_TOTAL_MIN,
1342 			OTG_V_TOTAL_MIN, &s->v_total_min);
1343 
1344 	REG_GET(OTG_V_TOTAL_CONTROL,
1345 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1346 
1347 	REG_GET(OTG_V_TOTAL_CONTROL,
1348 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1349 
1350 	REG_GET_2(OTG_V_SYNC_A,
1351 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1352 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1353 
1354 	REG_GET_2(OTG_H_BLANK_START_END,
1355 			OTG_H_BLANK_START, &s->h_blank_start,
1356 			OTG_H_BLANK_END, &s->h_blank_end);
1357 
1358 	REG_GET_2(OTG_H_SYNC_A,
1359 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1360 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1361 
1362 	REG_GET(OTG_H_SYNC_A_CNTL,
1363 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1364 
1365 	REG_GET(OTG_H_TOTAL,
1366 			OTG_H_TOTAL, &s->h_total);
1367 
1368 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1369 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1370 
1371 	REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL,
1372 			OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en);
1373 
1374 	REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION,
1375 				OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line);
1376 
1377 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1378 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1379 
1380 	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1381 			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1382 }
1383 
1384 bool optc1_get_otg_active_size(struct timing_generator *optc,
1385 		uint32_t *otg_active_width,
1386 		uint32_t *otg_active_height)
1387 {
1388 	uint32_t otg_enabled;
1389 	uint32_t v_blank_start;
1390 	uint32_t v_blank_end;
1391 	uint32_t h_blank_start;
1392 	uint32_t h_blank_end;
1393 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1394 
1395 
1396 	REG_GET(OTG_CONTROL,
1397 			OTG_MASTER_EN, &otg_enabled);
1398 
1399 	if (otg_enabled == 0)
1400 		return false;
1401 
1402 	REG_GET_2(OTG_V_BLANK_START_END,
1403 			OTG_V_BLANK_START, &v_blank_start,
1404 			OTG_V_BLANK_END, &v_blank_end);
1405 
1406 	REG_GET_2(OTG_H_BLANK_START_END,
1407 			OTG_H_BLANK_START, &h_blank_start,
1408 			OTG_H_BLANK_END, &h_blank_end);
1409 
1410 	*otg_active_width = v_blank_start - v_blank_end;
1411 	*otg_active_height = h_blank_start - h_blank_end;
1412 	return true;
1413 }
1414 
1415 void optc1_clear_optc_underflow(struct timing_generator *optc)
1416 {
1417 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1418 
1419 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1420 }
1421 
1422 void optc1_tg_init(struct timing_generator *optc)
1423 {
1424 	optc1_set_blank_data_double_buffer(optc, true);
1425 	optc1_set_timing_double_buffer(optc, true);
1426 	optc1_clear_optc_underflow(optc);
1427 }
1428 
1429 bool optc1_is_tg_enabled(struct timing_generator *optc)
1430 {
1431 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1432 	uint32_t otg_enabled = 0;
1433 
1434 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1435 
1436 	return (otg_enabled != 0);
1437 
1438 }
1439 
1440 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1441 {
1442 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1443 	uint32_t underflow_occurred = 0;
1444 
1445 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1446 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1447 			&underflow_occurred);
1448 
1449 	return (underflow_occurred == 1);
1450 }
1451 
1452 bool optc1_configure_crc(struct timing_generator *optc,
1453 			  const struct crc_params *params)
1454 {
1455 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1456 
1457 	/* Cannot configure crc on a CRTC that is disabled */
1458 	if (!optc1_is_tg_enabled(optc))
1459 		return false;
1460 
1461 	REG_WRITE(OTG_CRC_CNTL, 0);
1462 
1463 	if (!params->enable)
1464 		return true;
1465 
1466 	/* Program frame boundaries */
1467 	/* Window A x axis start and end. */
1468 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1469 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1470 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1471 
1472 	/* Window A y axis start and end. */
1473 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1474 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1475 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1476 
1477 	/* Window B x axis start and end. */
1478 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1479 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1480 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1481 
1482 	/* Window B y axis start and end. */
1483 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1484 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1485 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1486 
1487 	/* Set crc mode and selection, and enable. Only using CRC0*/
1488 	REG_UPDATE_3(OTG_CRC_CNTL,
1489 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1490 			OTG_CRC0_SELECT, params->selection,
1491 			OTG_CRC_EN, 1);
1492 
1493 	return true;
1494 }
1495 
1496 /**
1497  * optc1_get_crc - Capture CRC result per component
1498  *
1499  * @optc: timing_generator instance.
1500  * @r_cr: 16-bit primary CRC signature for red data.
1501  * @g_y: 16-bit primary CRC signature for green data.
1502  * @b_cb: 16-bit primary CRC signature for blue data.
1503  *
1504  * This function reads the CRC signature from the OPTC registers. Notice that
1505  * we have three registers to keep the CRC result per color component (RGB).
1506  *
1507  * Returns:
1508  * If CRC is disabled, return false; otherwise, return true, and the CRC
1509  * results in the parameters.
1510  */
1511 bool optc1_get_crc(struct timing_generator *optc,
1512 		   uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1513 {
1514 	uint32_t field = 0;
1515 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1516 
1517 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1518 
1519 	/* Early return if CRC is not enabled for this CRTC */
1520 	if (!field)
1521 		return false;
1522 
1523 	/* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */
1524 	REG_GET_2(OTG_CRC0_DATA_RG,
1525 		  CRC0_R_CR, r_cr,
1526 		  CRC0_G_Y, g_y);
1527 
1528 	/* OTG_CRC0_DATA_B has the CRC16 results for the blue component */
1529 	REG_GET(OTG_CRC0_DATA_B,
1530 		CRC0_B_CB, b_cb);
1531 
1532 	return true;
1533 }
1534 
1535 static const struct timing_generator_funcs dcn10_tg_funcs = {
1536 		.validate_timing = optc1_validate_timing,
1537 		.program_timing = optc1_program_timing,
1538 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1539 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1540 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1541 		.program_global_sync = optc1_program_global_sync,
1542 		.enable_crtc = optc1_enable_crtc,
1543 		.disable_crtc = optc1_disable_crtc,
1544 		/* used by enable_timing_synchronization. Not need for FPGA */
1545 		.is_counter_moving = optc1_is_counter_moving,
1546 		.get_position = optc1_get_position,
1547 		.get_frame_count = optc1_get_vblank_counter,
1548 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1549 		.get_otg_active_size = optc1_get_otg_active_size,
1550 		.set_early_control = optc1_set_early_control,
1551 		/* used by enable_timing_synchronization. Not need for FPGA */
1552 		.wait_for_state = optc1_wait_for_state,
1553 		.set_blank = optc1_set_blank,
1554 		.is_blanked = optc1_is_blanked,
1555 		.set_blank_color = optc1_program_blank_color,
1556 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1557 		.enable_reset_trigger = optc1_enable_reset_trigger,
1558 		.enable_crtc_reset = optc1_enable_crtc_reset,
1559 		.disable_reset_trigger = optc1_disable_reset_trigger,
1560 		.lock = optc1_lock,
1561 		.unlock = optc1_unlock,
1562 		.enable_optc_clock = optc1_enable_optc_clock,
1563 		.set_drr = optc1_set_drr,
1564 		.get_last_used_drr_vtotal = NULL,
1565 		.set_vtotal_min_max = optc1_set_vtotal_min_max,
1566 		.set_static_screen_control = optc1_set_static_screen_control,
1567 		.set_test_pattern = optc1_set_test_pattern,
1568 		.program_stereo = optc1_program_stereo,
1569 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1570 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1571 		.tg_init = optc1_tg_init,
1572 		.is_tg_enabled = optc1_is_tg_enabled,
1573 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1574 		.clear_optc_underflow = optc1_clear_optc_underflow,
1575 		.get_crc = optc1_get_crc,
1576 		.configure_crc = optc1_configure_crc,
1577 		.set_vtg_params = optc1_set_vtg_params,
1578 		.program_manual_trigger = optc1_program_manual_trigger,
1579 		.setup_manual_trigger = optc1_setup_manual_trigger,
1580 		.get_hw_timing = optc1_get_hw_timing,
1581 };
1582 
1583 void dcn10_timing_generator_init(struct optc *optc1)
1584 {
1585 	optc1->base.funcs = &dcn10_tg_funcs;
1586 
1587 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1588 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1589 
1590 	optc1->min_h_blank = 32;
1591 	optc1->min_v_blank = 3;
1592 	optc1->min_v_blank_interlace = 5;
1593 	optc1->min_h_sync_width = 4;
1594 	optc1->min_v_sync_width = 1;
1595 }
1596 
1597 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1598  *
1599  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1600  *   containter rate.
1601  *
1602  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1603  *   halved to maintain the correct pixel rate.
1604  *
1605  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1606  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1607  *
1608  */
1609 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1610 {
1611 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1612 
1613 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1614 			&& !timing->dsc_cfg.ycbcr422_simple);
1615 	return two_pix;
1616 }
1617 
1618