1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
49 static void optc1_apply_front_porch_workaround(
50 	struct timing_generator *optc,
51 	struct dc_crtc_timing *timing)
52 {
53 	if (timing->flags.INTERLACE == 1) {
54 		if (timing->v_front_porch < 2)
55 			timing->v_front_porch = 2;
56 	} else {
57 		if (timing->v_front_porch < 1)
58 			timing->v_front_porch = 1;
59 	}
60 }
61 
62 void optc1_program_global_sync(
63 		struct timing_generator *optc)
64 {
65 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
66 
67 	if (optc->dlg_otg_param.vstartup_start == 0) {
68 		BREAK_TO_DEBUGGER();
69 		return;
70 	}
71 
72 	REG_SET(OTG_VSTARTUP_PARAM, 0,
73 		VSTARTUP_START, optc->dlg_otg_param.vstartup_start);
74 
75 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
76 			VUPDATE_OFFSET, optc->dlg_otg_param.vupdate_offset,
77 			VUPDATE_WIDTH, optc->dlg_otg_param.vupdate_width);
78 
79 	REG_SET(OTG_VREADY_PARAM, 0,
80 			VREADY_OFFSET, optc->dlg_otg_param.vready_offset);
81 }
82 
83 static void optc1_disable_stereo(struct timing_generator *optc)
84 {
85 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
86 
87 	REG_SET(OTG_STEREO_CONTROL, 0,
88 		OTG_STEREO_EN, 0);
89 
90 	REG_SET_3(OTG_3D_STRUCTURE_CONTROL, 0,
91 		OTG_3D_STRUCTURE_EN, 0,
92 		OTG_3D_STRUCTURE_V_UPDATE_MODE, 0,
93 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
94 }
95 
96 static uint32_t get_start_vline(struct timing_generator *optc, const struct dc_crtc_timing *dc_crtc_timing)
97 {
98 	struct dc_crtc_timing patched_crtc_timing;
99 	int vesa_sync_start;
100 	int asic_blank_end;
101 	int interlace_factor;
102 	int vertical_line_start;
103 
104 	patched_crtc_timing = *dc_crtc_timing;
105 	optc1_apply_front_porch_workaround(optc, &patched_crtc_timing);
106 
107 	vesa_sync_start = patched_crtc_timing.h_addressable +
108 			patched_crtc_timing.h_border_right +
109 			patched_crtc_timing.h_front_porch;
110 
111 	asic_blank_end = patched_crtc_timing.h_total -
112 			vesa_sync_start -
113 			patched_crtc_timing.h_border_left;
114 
115 	interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1;
116 
117 	vesa_sync_start = patched_crtc_timing.v_addressable +
118 			patched_crtc_timing.v_border_bottom +
119 			patched_crtc_timing.v_front_porch;
120 
121 	asic_blank_end = (patched_crtc_timing.v_total -
122 			vesa_sync_start -
123 			patched_crtc_timing.v_border_top)
124 			* interlace_factor;
125 
126 	vertical_line_start = asic_blank_end - optc->dlg_otg_param.vstartup_start + 1;
127 	if (vertical_line_start < 0) {
128 		ASSERT(0);
129 		vertical_line_start = 0;
130 	}
131 
132 	return vertical_line_start;
133 }
134 
135 void optc1_program_vline_interrupt(
136 		struct timing_generator *optc,
137 		const struct dc_crtc_timing *dc_crtc_timing,
138 		unsigned long long vsync_delta)
139 {
140 
141 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
142 
143 	unsigned long long req_delta_tens_of_usec = div64_u64((vsync_delta + 9999), 10000);
144 	unsigned long long pix_clk_hundreds_khz = div64_u64((dc_crtc_timing->pix_clk_khz + 99), 100);
145 	uint32_t req_delta_lines = (uint32_t) div64_u64(
146 			(req_delta_tens_of_usec * pix_clk_hundreds_khz + dc_crtc_timing->h_total - 1),
147 								dc_crtc_timing->h_total);
148 
149 	uint32_t vsync_line = get_start_vline(optc, dc_crtc_timing);
150 	uint32_t start_line = 0;
151 	uint32_t endLine = 0;
152 
153 	if (req_delta_lines != 0)
154 		req_delta_lines--;
155 
156 	if (req_delta_lines > vsync_line)
157 		start_line = dc_crtc_timing->v_total - (req_delta_lines - vsync_line) - 1;
158 	else
159 		start_line = vsync_line - req_delta_lines;
160 
161 	endLine = start_line + 2;
162 
163 	if (endLine >= dc_crtc_timing->v_total)
164 		endLine = 2;
165 
166 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
167 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
168 			OTG_VERTICAL_INTERRUPT0_LINE_END, endLine);
169 }
170 
171 /**
172  * program_timing_generator   used by mode timing set
173  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
174  * Including SYNC. Call BIOS command table to program Timings.
175  */
176 void optc1_program_timing(
177 	struct timing_generator *optc,
178 	const struct dc_crtc_timing *dc_crtc_timing,
179 	bool use_vbios)
180 {
181 	struct dc_crtc_timing patched_crtc_timing;
182 	uint32_t vesa_sync_start;
183 	uint32_t asic_blank_end;
184 	uint32_t asic_blank_start;
185 	uint32_t v_total;
186 	uint32_t v_sync_end;
187 	uint32_t v_init, v_fp2;
188 	uint32_t h_sync_polarity, v_sync_polarity;
189 	uint32_t interlace_factor;
190 	uint32_t start_point = 0;
191 	uint32_t field_num = 0;
192 	uint32_t h_div_2;
193 	int32_t vertical_line_start;
194 
195 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
196 
197 	patched_crtc_timing = *dc_crtc_timing;
198 	optc1_apply_front_porch_workaround(optc, &patched_crtc_timing);
199 
200 	/* Load horizontal timing */
201 
202 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
203 	REG_SET(OTG_H_TOTAL, 0,
204 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
205 
206 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
207 	REG_UPDATE_2(OTG_H_SYNC_A,
208 			OTG_H_SYNC_A_START, 0,
209 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
210 
211 	/* asic_h_blank_end = HsyncWidth + HbackPorch =
212 	 * vesa. usHorizontalTotal - vesa. usHorizontalSyncStart -
213 	 * vesa.h_left_border
214 	 */
215 	vesa_sync_start = patched_crtc_timing.h_addressable +
216 			patched_crtc_timing.h_border_right +
217 			patched_crtc_timing.h_front_porch;
218 
219 	asic_blank_end = patched_crtc_timing.h_total -
220 			vesa_sync_start -
221 			patched_crtc_timing.h_border_left;
222 
223 	/* h_blank_start = v_blank_end + v_active */
224 	asic_blank_start = asic_blank_end +
225 			patched_crtc_timing.h_border_left +
226 			patched_crtc_timing.h_addressable +
227 			patched_crtc_timing.h_border_right;
228 
229 	REG_UPDATE_2(OTG_H_BLANK_START_END,
230 			OTG_H_BLANK_START, asic_blank_start,
231 			OTG_H_BLANK_END, asic_blank_end);
232 
233 	/* h_sync polarity */
234 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
235 			0 : 1;
236 
237 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
238 			OTG_H_SYNC_A_POL, h_sync_polarity);
239 
240 	/* Load vertical timing */
241 
242 	/* CRTC_V_TOTAL = v_total - 1 */
243 	if (patched_crtc_timing.flags.INTERLACE) {
244 		interlace_factor = 2;
245 		v_total = 2 * patched_crtc_timing.v_total;
246 	} else {
247 		interlace_factor = 1;
248 		v_total = patched_crtc_timing.v_total - 1;
249 	}
250 	REG_SET(OTG_V_TOTAL, 0,
251 			OTG_V_TOTAL, v_total);
252 
253 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
254 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
255 	 */
256 	REG_SET(OTG_V_TOTAL_MAX, 0,
257 		OTG_V_TOTAL_MAX, v_total);
258 	REG_SET(OTG_V_TOTAL_MIN, 0,
259 		OTG_V_TOTAL_MIN, v_total);
260 
261 	/* v_sync_start = 0, v_sync_end = v_sync_width */
262 	v_sync_end = patched_crtc_timing.v_sync_width * interlace_factor;
263 
264 	REG_UPDATE_2(OTG_V_SYNC_A,
265 			OTG_V_SYNC_A_START, 0,
266 			OTG_V_SYNC_A_END, v_sync_end);
267 
268 	vesa_sync_start = patched_crtc_timing.v_addressable +
269 			patched_crtc_timing.v_border_bottom +
270 			patched_crtc_timing.v_front_porch;
271 
272 	asic_blank_end = (patched_crtc_timing.v_total -
273 			vesa_sync_start -
274 			patched_crtc_timing.v_border_top)
275 			* interlace_factor;
276 
277 	/* v_blank_start = v_blank_end + v_active */
278 	asic_blank_start = asic_blank_end +
279 			(patched_crtc_timing.v_border_top +
280 			patched_crtc_timing.v_addressable +
281 			patched_crtc_timing.v_border_bottom)
282 			* interlace_factor;
283 
284 	REG_UPDATE_2(OTG_V_BLANK_START_END,
285 			OTG_V_BLANK_START, asic_blank_start,
286 			OTG_V_BLANK_END, asic_blank_end);
287 
288 	/* Use OTG_VERTICAL_INTERRUPT2 replace VUPDATE interrupt,
289 	 * program the reg for interrupt postition.
290 	 */
291 	vertical_line_start = asic_blank_end - optc->dlg_otg_param.vstartup_start + 1;
292 	if (vertical_line_start < 0) {
293 		ASSERT(0);
294 		vertical_line_start = 0;
295 	}
296 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
297 			OTG_VERTICAL_INTERRUPT2_LINE_START, vertical_line_start);
298 
299 	/* v_sync polarity */
300 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
301 			0 : 1;
302 
303 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
304 			OTG_V_SYNC_A_POL, v_sync_polarity);
305 
306 	v_init = asic_blank_start;
307 	if (optc->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT ||
308 		optc->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
309 		optc->dlg_otg_param.signal == SIGNAL_TYPE_EDP) {
310 		start_point = 1;
311 		if (patched_crtc_timing.flags.INTERLACE == 1)
312 			field_num = 1;
313 	}
314 	v_fp2 = 0;
315 	if (optc->dlg_otg_param.vstartup_start > asic_blank_end)
316 		v_fp2 = optc->dlg_otg_param.vstartup_start > asic_blank_end;
317 
318 	/* Interlace */
319 	if (patched_crtc_timing.flags.INTERLACE == 1) {
320 		REG_UPDATE(OTG_INTERLACE_CONTROL,
321 				OTG_INTERLACE_ENABLE, 1);
322 		v_init = v_init / 2;
323 		if ((optc->dlg_otg_param.vstartup_start/2)*2 > asic_blank_end)
324 			v_fp2 = v_fp2 / 2;
325 	} else
326 		REG_UPDATE(OTG_INTERLACE_CONTROL,
327 				OTG_INTERLACE_ENABLE, 0);
328 
329 
330 	/* VTG enable set to 0 first VInit */
331 	REG_UPDATE(CONTROL,
332 			VTG0_ENABLE, 0);
333 
334 	REG_UPDATE_2(CONTROL,
335 			VTG0_FP2, v_fp2,
336 			VTG0_VCOUNT_INIT, v_init);
337 
338 	/* original code is using VTG offset to address OTG reg, seems wrong */
339 	REG_UPDATE_2(OTG_CONTROL,
340 			OTG_START_POINT_CNTL, start_point,
341 			OTG_FIELD_NUMBER_CNTL, field_num);
342 
343 	optc1_program_global_sync(optc);
344 
345 	/* TODO
346 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
347 	 * program_horz_count_by_2
348 	 * for DVI 30bpp mode, 0 otherwise
349 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
350 	 */
351 
352 	/* Enable stereo - only when we need to pack 3D frame. Other types
353 	 * of stereo handled in explicit call
354 	 */
355 	h_div_2 = (dc_crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) ?
356 			1 : 0;
357 
358 	REG_UPDATE(OTG_H_TIMING_CNTL,
359 			OTG_H_TIMING_DIV_BY2, h_div_2);
360 
361 }
362 
363 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
364 {
365 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
366 
367 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
368 
369 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
370 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
371 }
372 
373 /**
374  * unblank_crtc
375  * Call ASIC Control Object to UnBlank CRTC.
376  */
377 static void optc1_unblank_crtc(struct timing_generator *optc)
378 {
379 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
380 	uint32_t vertical_interrupt_enable = 0;
381 
382 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
383 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &vertical_interrupt_enable);
384 
385 	/* temporary work around for vertical interrupt, once vertical interrupt enabled,
386 	 * this check will be removed.
387 	 */
388 	if (vertical_interrupt_enable)
389 		optc1_set_blank_data_double_buffer(optc, true);
390 
391 	REG_UPDATE_2(OTG_BLANK_CONTROL,
392 			OTG_BLANK_DATA_EN, 0,
393 			OTG_BLANK_DE_MODE, 0);
394 }
395 
396 /**
397  * blank_crtc
398  * Call ASIC Control Object to Blank CRTC.
399  */
400 
401 static void optc1_blank_crtc(struct timing_generator *optc)
402 {
403 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
404 
405 	REG_UPDATE_2(OTG_BLANK_CONTROL,
406 			OTG_BLANK_DATA_EN, 1,
407 			OTG_BLANK_DE_MODE, 0);
408 
409 	optc1_set_blank_data_double_buffer(optc, false);
410 }
411 
412 void optc1_set_blank(struct timing_generator *optc,
413 		bool enable_blanking)
414 {
415 	if (enable_blanking)
416 		optc1_blank_crtc(optc);
417 	else
418 		optc1_unblank_crtc(optc);
419 }
420 
421 bool optc1_is_blanked(struct timing_generator *optc)
422 {
423 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
424 	uint32_t blank_en;
425 	uint32_t blank_state;
426 
427 	REG_GET_2(OTG_BLANK_CONTROL,
428 			OTG_BLANK_DATA_EN, &blank_en,
429 			OTG_CURRENT_BLANK_STATE, &blank_state);
430 
431 	return blank_en && blank_state;
432 }
433 
434 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
435 {
436 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
437 
438 	if (enable) {
439 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
440 				OPTC_INPUT_CLK_EN, 1,
441 				OPTC_INPUT_CLK_GATE_DIS, 1);
442 
443 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
444 				OPTC_INPUT_CLK_ON, 1,
445 				1, 1000);
446 
447 		/* Enable clock */
448 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
449 				OTG_CLOCK_EN, 1,
450 				OTG_CLOCK_GATE_DIS, 1);
451 		REG_WAIT(OTG_CLOCK_CONTROL,
452 				OTG_CLOCK_ON, 1,
453 				1, 1000);
454 	} else  {
455 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
456 				OTG_CLOCK_GATE_DIS, 0,
457 				OTG_CLOCK_EN, 0);
458 
459 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
460 				OPTC_INPUT_CLK_GATE_DIS, 0,
461 				OPTC_INPUT_CLK_EN, 0);
462 	}
463 }
464 
465 /**
466  * Enable CRTC
467  * Enable CRTC - call ASIC Control Object to enable Timing generator.
468  */
469 static bool optc1_enable_crtc(struct timing_generator *optc)
470 {
471 	/* TODO FPGA wait for answer
472 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
473 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
474 	 */
475 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
476 
477 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
478 	 * OPP and OPTC should 1:1 mapping
479 	 */
480 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
481 			OPTC_SRC_SEL, optc->inst);
482 
483 	/* VTG enable first is for HW workaround */
484 	REG_UPDATE(CONTROL,
485 			VTG0_ENABLE, 1);
486 
487 	/* Enable CRTC */
488 	REG_UPDATE_2(OTG_CONTROL,
489 			OTG_DISABLE_POINT_CNTL, 3,
490 			OTG_MASTER_EN, 1);
491 
492 	return true;
493 }
494 
495 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
496 bool optc1_disable_crtc(struct timing_generator *optc)
497 {
498 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
499 
500 	/* disable otg request until end of the first line
501 	 * in the vertical blank region
502 	 */
503 	REG_UPDATE_2(OTG_CONTROL,
504 			OTG_DISABLE_POINT_CNTL, 3,
505 			OTG_MASTER_EN, 0);
506 
507 	REG_UPDATE(CONTROL,
508 			VTG0_ENABLE, 0);
509 
510 	/* CRTC disabled, so disable  clock. */
511 	REG_WAIT(OTG_CLOCK_CONTROL,
512 			OTG_BUSY, 0,
513 			1, 100000);
514 
515 	return true;
516 }
517 
518 
519 void optc1_program_blank_color(
520 		struct timing_generator *optc,
521 		const struct tg_color *black_color)
522 {
523 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
524 
525 	REG_SET_3(OTG_BLACK_COLOR, 0,
526 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
527 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
528 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
529 }
530 
531 bool optc1_validate_timing(
532 	struct timing_generator *optc,
533 	const struct dc_crtc_timing *timing)
534 {
535 	uint32_t interlace_factor;
536 	uint32_t v_blank;
537 	uint32_t h_blank;
538 	uint32_t min_v_blank;
539 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
540 
541 	ASSERT(timing != NULL);
542 
543 	interlace_factor = timing->flags.INTERLACE ? 2 : 1;
544 	v_blank = (timing->v_total - timing->v_addressable -
545 					timing->v_border_top - timing->v_border_bottom) *
546 					interlace_factor;
547 
548 	h_blank = (timing->h_total - timing->h_addressable -
549 		timing->h_border_right -
550 		timing->h_border_left);
551 
552 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
553 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
554 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
555 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
556 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
557 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
558 		return false;
559 
560 	/* Temporarily blocking interlacing mode until it's supported */
561 	if (timing->flags.INTERLACE == 1)
562 		return false;
563 
564 	/* Check maximum number of pixels supported by Timing Generator
565 	 * (Currently will never fail, in order to fail needs display which
566 	 * needs more than 8192 horizontal and
567 	 * more than 8192 vertical total pixels)
568 	 */
569 	if (timing->h_total > optc1->max_h_total ||
570 		timing->v_total > optc1->max_v_total)
571 		return false;
572 
573 
574 	if (h_blank < optc1->min_h_blank)
575 		return false;
576 
577 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
578 		 timing->v_sync_width  < optc1->min_v_sync_width)
579 		return false;
580 
581 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
582 
583 	if (v_blank < min_v_blank)
584 		return false;
585 
586 	return true;
587 
588 }
589 
590 /*
591  * get_vblank_counter
592  *
593  * @brief
594  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
595  * holds the counter of frames.
596  *
597  * @param
598  * struct timing_generator *optc - [in] timing generator which controls the
599  * desired CRTC
600  *
601  * @return
602  * Counter of frames, which should equal to number of vblanks.
603  */
604 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
605 {
606 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
607 	uint32_t frame_count;
608 
609 	REG_GET(OTG_STATUS_FRAME_COUNT,
610 		OTG_FRAME_COUNT, &frame_count);
611 
612 	return frame_count;
613 }
614 
615 void optc1_lock(struct timing_generator *optc)
616 {
617 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
618 
619 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
620 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
621 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
622 			OTG_MASTER_UPDATE_LOCK, 1);
623 
624 	/* Should be fast, status does not update on maximus */
625 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
626 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
627 				UPDATE_LOCK_STATUS, 1,
628 				1, 10);
629 }
630 
631 void optc1_unlock(struct timing_generator *optc)
632 {
633 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
634 
635 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
636 			OTG_MASTER_UPDATE_LOCK, 0);
637 }
638 
639 void optc1_get_position(struct timing_generator *optc,
640 		struct crtc_position *position)
641 {
642 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
643 
644 	REG_GET_2(OTG_STATUS_POSITION,
645 			OTG_HORZ_COUNT, &position->horizontal_count,
646 			OTG_VERT_COUNT, &position->vertical_count);
647 
648 	REG_GET(OTG_NOM_VERT_POSITION,
649 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
650 }
651 
652 bool optc1_is_counter_moving(struct timing_generator *optc)
653 {
654 	struct crtc_position position1, position2;
655 
656 	optc->funcs->get_position(optc, &position1);
657 	optc->funcs->get_position(optc, &position2);
658 
659 	if (position1.horizontal_count == position2.horizontal_count &&
660 		position1.vertical_count == position2.vertical_count)
661 		return false;
662 	else
663 		return true;
664 }
665 
666 bool optc1_did_triggered_reset_occur(
667 	struct timing_generator *optc)
668 {
669 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
670 	uint32_t occurred_force, occurred_vsync;
671 
672 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
673 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
674 
675 	REG_GET(OTG_VERT_SYNC_CONTROL,
676 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
677 
678 	return occurred_vsync != 0 || occurred_force != 0;
679 }
680 
681 void optc1_disable_reset_trigger(struct timing_generator *optc)
682 {
683 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
684 
685 	REG_WRITE(OTG_TRIGA_CNTL, 0);
686 
687 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
688 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
689 
690 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
691 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
692 }
693 
694 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
695 {
696 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
697 	uint32_t falling_edge;
698 
699 	REG_GET(OTG_V_SYNC_A_CNTL,
700 			OTG_V_SYNC_A_POL, &falling_edge);
701 
702 	if (falling_edge)
703 		REG_SET_3(OTG_TRIGA_CNTL, 0,
704 				/* vsync signal from selected OTG pipe based
705 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
706 				 */
707 				OTG_TRIGA_SOURCE_SELECT, 20,
708 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
709 				/* always detect falling edge */
710 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
711 	else
712 		REG_SET_3(OTG_TRIGA_CNTL, 0,
713 				/* vsync signal from selected OTG pipe based
714 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
715 				 */
716 				OTG_TRIGA_SOURCE_SELECT, 20,
717 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
718 				/* always detect rising edge */
719 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
720 
721 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
722 			/* force H count to H_TOTAL and V count to V_TOTAL in
723 			 * progressive mode and V_TOTAL-1 in interlaced mode
724 			 */
725 			OTG_FORCE_COUNT_NOW_MODE, 2);
726 }
727 
728 void optc1_enable_crtc_reset(
729 		struct timing_generator *optc,
730 		int source_tg_inst,
731 		struct crtc_trigger_info *crtc_tp)
732 {
733 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
734 	uint32_t falling_edge = 0;
735 	uint32_t rising_edge = 0;
736 
737 	switch (crtc_tp->event) {
738 
739 	case CRTC_EVENT_VSYNC_RISING:
740 		rising_edge = 1;
741 		break;
742 
743 	case CRTC_EVENT_VSYNC_FALLING:
744 		falling_edge = 1;
745 		break;
746 	}
747 
748 	REG_SET_4(OTG_TRIGA_CNTL, 0,
749 		 /* vsync signal from selected OTG pipe based
750 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
751 		  */
752 		  OTG_TRIGA_SOURCE_SELECT, 20,
753 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
754 		  /* always detect falling edge */
755 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
756 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
757 
758 	switch (crtc_tp->delay) {
759 	case TRIGGER_DELAY_NEXT_LINE:
760 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
761 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
762 		break;
763 	case TRIGGER_DELAY_NEXT_PIXEL:
764 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
765 			/* force H count to H_TOTAL and V count to V_TOTAL in
766 			 * progressive mode and V_TOTAL-1 in interlaced mode
767 			 */
768 			OTG_FORCE_COUNT_NOW_MODE, 2);
769 		break;
770 	}
771 }
772 
773 void optc1_wait_for_state(struct timing_generator *optc,
774 		enum crtc_state state)
775 {
776 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
777 
778 	switch (state) {
779 	case CRTC_STATE_VBLANK:
780 		REG_WAIT(OTG_STATUS,
781 				OTG_V_BLANK, 1,
782 				1, 100000); /* 1 vupdate at 10hz */
783 		break;
784 
785 	case CRTC_STATE_VACTIVE:
786 		REG_WAIT(OTG_STATUS,
787 				OTG_V_ACTIVE_DISP, 1,
788 				1, 100000); /* 1 vupdate at 10hz */
789 		break;
790 
791 	default:
792 		break;
793 	}
794 }
795 
796 void optc1_set_early_control(
797 	struct timing_generator *optc,
798 	uint32_t early_cntl)
799 {
800 	/* asic design change, do not need this control
801 	 * empty for share caller logic
802 	 */
803 }
804 
805 
806 void optc1_set_static_screen_control(
807 	struct timing_generator *optc,
808 	uint32_t value)
809 {
810 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
811 
812 	/* Bit 8 is no longer applicable in RV for PSR case,
813 	 * set bit 8 to 0 if given
814 	 */
815 	if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
816 			!= 0)
817 		value = value &
818 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
819 
820 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
821 			OTG_STATIC_SCREEN_EVENT_MASK, value,
822 			OTG_STATIC_SCREEN_FRAME_COUNT, 2);
823 }
824 
825 
826 /**
827  *****************************************************************************
828  *  Function: set_drr
829  *
830  *  @brief
831  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
832  *
833  *****************************************************************************
834  */
835 void optc1_set_drr(
836 	struct timing_generator *optc,
837 	const struct drr_params *params)
838 {
839 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
840 
841 	if (params != NULL &&
842 		params->vertical_total_max > 0 &&
843 		params->vertical_total_min > 0) {
844 
845 		REG_SET(OTG_V_TOTAL_MAX, 0,
846 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
847 
848 		REG_SET(OTG_V_TOTAL_MIN, 0,
849 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
850 
851 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
852 				OTG_V_TOTAL_MIN_SEL, 1,
853 				OTG_V_TOTAL_MAX_SEL, 1,
854 				OTG_FORCE_LOCK_ON_EVENT, 0,
855 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
856 				OTG_SET_V_TOTAL_MIN_MASK, 0);
857 	} else {
858 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
859 				OTG_SET_V_TOTAL_MIN_MASK, 0,
860 				OTG_V_TOTAL_MIN_SEL, 0,
861 				OTG_V_TOTAL_MAX_SEL, 0,
862 				OTG_FORCE_LOCK_ON_EVENT, 0);
863 
864 		REG_SET(OTG_V_TOTAL_MIN, 0,
865 			OTG_V_TOTAL_MIN, 0);
866 
867 		REG_SET(OTG_V_TOTAL_MAX, 0,
868 			OTG_V_TOTAL_MAX, 0);
869 	}
870 }
871 
872 static void optc1_set_test_pattern(
873 	struct timing_generator *optc,
874 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
875 	 * because this is not DP-specific (which is probably somewhere in DP
876 	 * encoder) */
877 	enum controller_dp_test_pattern test_pattern,
878 	enum dc_color_depth color_depth)
879 {
880 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
881 	enum test_pattern_color_format bit_depth;
882 	enum test_pattern_dyn_range dyn_range;
883 	enum test_pattern_mode mode;
884 	uint32_t pattern_mask;
885 	uint32_t pattern_data;
886 	/* color ramp generator mixes 16-bits color */
887 	uint32_t src_bpc = 16;
888 	/* requested bpc */
889 	uint32_t dst_bpc;
890 	uint32_t index;
891 	/* RGB values of the color bars.
892 	 * Produce two RGB colors: RGB0 - white (all Fs)
893 	 * and RGB1 - black (all 0s)
894 	 * (three RGB components for two colors)
895 	 */
896 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
897 						0x0000, 0x0000};
898 	/* dest color (converted to the specified color format) */
899 	uint16_t dst_color[6];
900 	uint32_t inc_base;
901 
902 	/* translate to bit depth */
903 	switch (color_depth) {
904 	case COLOR_DEPTH_666:
905 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
906 	break;
907 	case COLOR_DEPTH_888:
908 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
909 	break;
910 	case COLOR_DEPTH_101010:
911 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
912 	break;
913 	case COLOR_DEPTH_121212:
914 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
915 	break;
916 	default:
917 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
918 	break;
919 	}
920 
921 	switch (test_pattern) {
922 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
923 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
924 	{
925 		dyn_range = (test_pattern ==
926 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
927 				TEST_PATTERN_DYN_RANGE_CEA :
928 				TEST_PATTERN_DYN_RANGE_VESA);
929 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
930 
931 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
932 				OTG_TEST_PATTERN_VRES, 6,
933 				OTG_TEST_PATTERN_HRES, 6);
934 
935 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
936 				OTG_TEST_PATTERN_EN, 1,
937 				OTG_TEST_PATTERN_MODE, mode,
938 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
939 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
940 	}
941 	break;
942 
943 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
944 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
945 	{
946 		mode = (test_pattern ==
947 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
948 			TEST_PATTERN_MODE_VERTICALBARS :
949 			TEST_PATTERN_MODE_HORIZONTALBARS);
950 
951 		switch (bit_depth) {
952 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
953 			dst_bpc = 6;
954 		break;
955 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
956 			dst_bpc = 8;
957 		break;
958 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
959 			dst_bpc = 10;
960 		break;
961 		default:
962 			dst_bpc = 8;
963 		break;
964 		}
965 
966 		/* adjust color to the required colorFormat */
967 		for (index = 0; index < 6; index++) {
968 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
969 			 * (srcBpc - dstBpc);
970 			 */
971 			dst_color[index] =
972 				src_color[index] >> (src_bpc - dst_bpc);
973 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
974 		 * lowest 6 are hardwired to ZERO
975 		 * color bits should be left aligned aligned to MSB
976 		 * XXXXXXXXXX000000 for 10 bit,
977 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
978 		 */
979 			dst_color[index] <<= (16 - dst_bpc);
980 		}
981 
982 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
983 
984 		/* We have to write the mask before data, similar to pipeline.
985 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
986 		 * and RGB1 to be cyan,
987 		 * we need to make 7 writes:
988 		 * MASK   DATA
989 		 * 000001 00000000 00000000                     set mask to R0
990 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
991 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
992 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
993 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
994 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
995 		 * 100000 11111111 00000000     B1 255, 0xFF00
996 		 *
997 		 * we will make a loop of 6 in which we prepare the mask,
998 		 * then write, then prepare the color for next write.
999 		 * first iteration will write mask only,
1000 		 * but each next iteration color prepared in
1001 		 * previous iteration will be written within new mask,
1002 		 * the last component will written separately,
1003 		 * mask is not changing between 6th and 7th write
1004 		 * and color will be prepared by last iteration
1005 		 */
1006 
1007 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1008 		 * is B1, G1, R1, B0, G0, R0
1009 		 */
1010 		pattern_data = 0;
1011 		for (index = 0; index < 6; index++) {
1012 			/* prepare color mask, first write PATTERN_DATA
1013 			 * will have all zeros
1014 			 */
1015 			pattern_mask = (1 << index);
1016 
1017 			/* write color component */
1018 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1019 					OTG_TEST_PATTERN_MASK, pattern_mask,
1020 					OTG_TEST_PATTERN_DATA, pattern_data);
1021 
1022 			/* prepare next color component,
1023 			 * will be written in the next iteration
1024 			 */
1025 			pattern_data = dst_color[index];
1026 		}
1027 		/* write last color component,
1028 		 * it's been already prepared in the loop
1029 		 */
1030 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1031 				OTG_TEST_PATTERN_MASK, pattern_mask,
1032 				OTG_TEST_PATTERN_DATA, pattern_data);
1033 
1034 		/* enable test pattern */
1035 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1036 				OTG_TEST_PATTERN_EN, 1,
1037 				OTG_TEST_PATTERN_MODE, mode,
1038 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1039 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1040 	}
1041 	break;
1042 
1043 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1044 	{
1045 		mode = (bit_depth ==
1046 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1047 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1048 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1049 
1050 		switch (bit_depth) {
1051 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1052 			dst_bpc = 6;
1053 		break;
1054 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1055 			dst_bpc = 8;
1056 		break;
1057 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1058 			dst_bpc = 10;
1059 		break;
1060 		default:
1061 			dst_bpc = 8;
1062 		break;
1063 		}
1064 
1065 		/* increment for the first ramp for one color gradation
1066 		 * 1 gradation for 6-bit color is 2^10
1067 		 * gradations in 16-bit color
1068 		 */
1069 		inc_base = (src_bpc - dst_bpc);
1070 
1071 		switch (bit_depth) {
1072 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1073 		{
1074 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1075 					OTG_TEST_PATTERN_INC0, inc_base,
1076 					OTG_TEST_PATTERN_INC1, 0,
1077 					OTG_TEST_PATTERN_HRES, 6,
1078 					OTG_TEST_PATTERN_VRES, 6,
1079 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1080 		}
1081 		break;
1082 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1083 		{
1084 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1085 					OTG_TEST_PATTERN_INC0, inc_base,
1086 					OTG_TEST_PATTERN_INC1, 0,
1087 					OTG_TEST_PATTERN_HRES, 8,
1088 					OTG_TEST_PATTERN_VRES, 6,
1089 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1090 		}
1091 		break;
1092 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1093 		{
1094 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1095 					OTG_TEST_PATTERN_INC0, inc_base,
1096 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1097 					OTG_TEST_PATTERN_HRES, 8,
1098 					OTG_TEST_PATTERN_VRES, 5,
1099 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1100 		}
1101 		break;
1102 		default:
1103 		break;
1104 		}
1105 
1106 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1107 
1108 		/* enable test pattern */
1109 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1110 
1111 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1112 				OTG_TEST_PATTERN_EN, 1,
1113 				OTG_TEST_PATTERN_MODE, mode,
1114 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1115 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1116 	}
1117 	break;
1118 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1119 	{
1120 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1121 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1122 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1123 	}
1124 	break;
1125 	default:
1126 		break;
1127 
1128 	}
1129 }
1130 
1131 void optc1_get_crtc_scanoutpos(
1132 	struct timing_generator *optc,
1133 	uint32_t *v_blank_start,
1134 	uint32_t *v_blank_end,
1135 	uint32_t *h_position,
1136 	uint32_t *v_position)
1137 {
1138 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1139 	struct crtc_position position;
1140 
1141 	REG_GET_2(OTG_V_BLANK_START_END,
1142 			OTG_V_BLANK_START, v_blank_start,
1143 			OTG_V_BLANK_END, v_blank_end);
1144 
1145 	optc1_get_position(optc, &position);
1146 
1147 	*h_position = position.horizontal_count;
1148 	*v_position = position.vertical_count;
1149 }
1150 
1151 static void optc1_enable_stereo(struct timing_generator *optc,
1152 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1153 {
1154 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1155 
1156 	if (flags) {
1157 		uint32_t stereo_en;
1158 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1159 
1160 		if (flags->PROGRAM_STEREO)
1161 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1162 				OTG_STEREO_EN, stereo_en,
1163 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1164 				OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1165 
1166 		if (flags->PROGRAM_POLARITY)
1167 			REG_UPDATE(OTG_STEREO_CONTROL,
1168 				OTG_STEREO_EYE_FLAG_POLARITY,
1169 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1170 
1171 		if (flags->DISABLE_STEREO_DP_SYNC)
1172 			REG_UPDATE(OTG_STEREO_CONTROL,
1173 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1174 
1175 		if (flags->PROGRAM_STEREO)
1176 			REG_UPDATE_3(OTG_3D_STRUCTURE_CONTROL,
1177 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1178 				OTG_3D_STRUCTURE_V_UPDATE_MODE, flags->FRAME_PACKED,
1179 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1180 
1181 	}
1182 }
1183 
1184 void optc1_program_stereo(struct timing_generator *optc,
1185 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1186 {
1187 	if (flags->PROGRAM_STEREO)
1188 		optc1_enable_stereo(optc, timing, flags);
1189 	else
1190 		optc1_disable_stereo(optc);
1191 }
1192 
1193 
1194 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1195 {
1196 	bool ret = false;
1197 	uint32_t left_eye = 0;
1198 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1199 
1200 	REG_GET(OTG_STEREO_STATUS,
1201 		OTG_STEREO_CURRENT_EYE, &left_eye);
1202 	if (left_eye == 1)
1203 		ret = true;
1204 	else
1205 		ret = false;
1206 
1207 	return ret;
1208 }
1209 
1210 void optc1_read_otg_state(struct optc *optc1,
1211 		struct dcn_otg_state *s)
1212 {
1213 	REG_GET(OTG_CONTROL,
1214 			OTG_MASTER_EN, &s->otg_enabled);
1215 
1216 	REG_GET_2(OTG_V_BLANK_START_END,
1217 			OTG_V_BLANK_START, &s->v_blank_start,
1218 			OTG_V_BLANK_END, &s->v_blank_end);
1219 
1220 	REG_GET(OTG_V_SYNC_A_CNTL,
1221 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1222 
1223 	REG_GET(OTG_V_TOTAL,
1224 			OTG_V_TOTAL, &s->v_total);
1225 
1226 	REG_GET(OTG_V_TOTAL_MAX,
1227 			OTG_V_TOTAL_MAX, &s->v_total_max);
1228 
1229 	REG_GET(OTG_V_TOTAL_MIN,
1230 			OTG_V_TOTAL_MIN, &s->v_total_min);
1231 
1232 	REG_GET(OTG_V_TOTAL_CONTROL,
1233 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1234 
1235 	REG_GET(OTG_V_TOTAL_CONTROL,
1236 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1237 
1238 	REG_GET_2(OTG_V_SYNC_A,
1239 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1240 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1241 
1242 	REG_GET_2(OTG_H_BLANK_START_END,
1243 			OTG_H_BLANK_START, &s->h_blank_start,
1244 			OTG_H_BLANK_END, &s->h_blank_end);
1245 
1246 	REG_GET_2(OTG_H_SYNC_A,
1247 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1248 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1249 
1250 	REG_GET(OTG_H_SYNC_A_CNTL,
1251 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1252 
1253 	REG_GET(OTG_H_TOTAL,
1254 			OTG_H_TOTAL, &s->h_total);
1255 
1256 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1257 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1258 }
1259 
1260 bool optc1_get_otg_active_size(struct timing_generator *optc,
1261 		uint32_t *otg_active_width,
1262 		uint32_t *otg_active_height)
1263 {
1264 	uint32_t otg_enabled;
1265 	uint32_t v_blank_start;
1266 	uint32_t v_blank_end;
1267 	uint32_t h_blank_start;
1268 	uint32_t h_blank_end;
1269 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1270 
1271 
1272 	REG_GET(OTG_CONTROL,
1273 			OTG_MASTER_EN, &otg_enabled);
1274 
1275 	if (otg_enabled == 0)
1276 		return false;
1277 
1278 	REG_GET_2(OTG_V_BLANK_START_END,
1279 			OTG_V_BLANK_START, &v_blank_start,
1280 			OTG_V_BLANK_END, &v_blank_end);
1281 
1282 	REG_GET_2(OTG_H_BLANK_START_END,
1283 			OTG_H_BLANK_START, &h_blank_start,
1284 			OTG_H_BLANK_END, &h_blank_end);
1285 
1286 	*otg_active_width = v_blank_start - v_blank_end;
1287 	*otg_active_height = h_blank_start - h_blank_end;
1288 	return true;
1289 }
1290 
1291 void optc1_clear_optc_underflow(struct timing_generator *optc)
1292 {
1293 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1294 
1295 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1296 }
1297 
1298 void optc1_tg_init(struct timing_generator *optc)
1299 {
1300 	optc1_set_blank_data_double_buffer(optc, true);
1301 	optc1_clear_optc_underflow(optc);
1302 }
1303 
1304 bool optc1_is_tg_enabled(struct timing_generator *optc)
1305 {
1306 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1307 	uint32_t otg_enabled = 0;
1308 
1309 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1310 
1311 	return (otg_enabled != 0);
1312 
1313 }
1314 
1315 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1316 {
1317 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1318 	uint32_t underflow_occurred = 0;
1319 
1320 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1321 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1322 			&underflow_occurred);
1323 
1324 	return (underflow_occurred == 1);
1325 }
1326 
1327 bool optc1_configure_crc(struct timing_generator *optc,
1328 			  const struct crc_params *params)
1329 {
1330 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1331 
1332 	/* Cannot configure crc on a CRTC that is disabled */
1333 	if (!optc1_is_tg_enabled(optc))
1334 		return false;
1335 
1336 	REG_WRITE(OTG_CRC_CNTL, 0);
1337 
1338 	if (!params->enable)
1339 		return true;
1340 
1341 	/* Program frame boundaries */
1342 	/* Window A x axis start and end. */
1343 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1344 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1345 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1346 
1347 	/* Window A y axis start and end. */
1348 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1349 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1350 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1351 
1352 	/* Window B x axis start and end. */
1353 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1354 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1355 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1356 
1357 	/* Window B y axis start and end. */
1358 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1359 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1360 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1361 
1362 	/* Set crc mode and selection, and enable. Only using CRC0*/
1363 	REG_UPDATE_3(OTG_CRC_CNTL,
1364 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1365 			OTG_CRC0_SELECT, params->selection,
1366 			OTG_CRC_EN, 1);
1367 
1368 	return true;
1369 }
1370 
1371 bool optc1_get_crc(struct timing_generator *optc,
1372 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1373 {
1374 	uint32_t field = 0;
1375 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1376 
1377 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1378 
1379 	/* Early return if CRC is not enabled for this CRTC */
1380 	if (!field)
1381 		return false;
1382 
1383 	REG_GET_2(OTG_CRC0_DATA_RG,
1384 			CRC0_R_CR, r_cr,
1385 			CRC0_G_Y, g_y);
1386 
1387 	REG_GET(OTG_CRC0_DATA_B,
1388 			CRC0_B_CB, b_cb);
1389 
1390 	return true;
1391 }
1392 
1393 static const struct timing_generator_funcs dcn10_tg_funcs = {
1394 		.validate_timing = optc1_validate_timing,
1395 		.program_timing = optc1_program_timing,
1396 		.program_vline_interrupt = optc1_program_vline_interrupt,
1397 		.program_global_sync = optc1_program_global_sync,
1398 		.enable_crtc = optc1_enable_crtc,
1399 		.disable_crtc = optc1_disable_crtc,
1400 		/* used by enable_timing_synchronization. Not need for FPGA */
1401 		.is_counter_moving = optc1_is_counter_moving,
1402 		.get_position = optc1_get_position,
1403 		.get_frame_count = optc1_get_vblank_counter,
1404 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1405 		.get_otg_active_size = optc1_get_otg_active_size,
1406 		.set_early_control = optc1_set_early_control,
1407 		/* used by enable_timing_synchronization. Not need for FPGA */
1408 		.wait_for_state = optc1_wait_for_state,
1409 		.set_blank = optc1_set_blank,
1410 		.is_blanked = optc1_is_blanked,
1411 		.set_blank_color = optc1_program_blank_color,
1412 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1413 		.enable_reset_trigger = optc1_enable_reset_trigger,
1414 		.enable_crtc_reset = optc1_enable_crtc_reset,
1415 		.disable_reset_trigger = optc1_disable_reset_trigger,
1416 		.lock = optc1_lock,
1417 		.unlock = optc1_unlock,
1418 		.enable_optc_clock = optc1_enable_optc_clock,
1419 		.set_drr = optc1_set_drr,
1420 		.set_static_screen_control = optc1_set_static_screen_control,
1421 		.set_test_pattern = optc1_set_test_pattern,
1422 		.program_stereo = optc1_program_stereo,
1423 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1424 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1425 		.tg_init = optc1_tg_init,
1426 		.is_tg_enabled = optc1_is_tg_enabled,
1427 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1428 		.clear_optc_underflow = optc1_clear_optc_underflow,
1429 		.get_crc = optc1_get_crc,
1430 		.configure_crc = optc1_configure_crc,
1431 };
1432 
1433 void dcn10_timing_generator_init(struct optc *optc1)
1434 {
1435 	optc1->base.funcs = &dcn10_tg_funcs;
1436 
1437 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1438 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1439 
1440 	optc1->min_h_blank = 32;
1441 	optc1->min_v_blank = 3;
1442 	optc1->min_v_blank_interlace = 5;
1443 	optc1->min_h_sync_width = 8;
1444 	optc1->min_v_sync_width = 1;
1445 }
1446