1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "reg_helper.h" 28 #include "dcn10_optc.h" 29 #include "dc.h" 30 #include "dc_trace.h" 31 32 #define REG(reg)\ 33 optc1->tg_regs->reg 34 35 #define CTX \ 36 optc1->base.ctx 37 38 #undef FN 39 #define FN(reg_name, field_name) \ 40 optc1->tg_shift->field_name, optc1->tg_mask->field_name 41 42 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100 43 44 /** 45 * apply_front_porch_workaround() - This is a workaround for a bug that has 46 * existed since R5xx and has not been fixed 47 * keep Front porch at minimum 2 for Interlaced 48 * mode or 1 for progressive. 49 * 50 * @timing: Timing parameters used to configure DCN blocks. 51 */ 52 static void apply_front_porch_workaround(struct dc_crtc_timing *timing) 53 { 54 if (timing->flags.INTERLACE == 1) { 55 if (timing->v_front_porch < 2) 56 timing->v_front_porch = 2; 57 } else { 58 if (timing->v_front_porch < 1) 59 timing->v_front_porch = 1; 60 } 61 } 62 63 void optc1_program_global_sync( 64 struct timing_generator *optc, 65 int vready_offset, 66 int vstartup_start, 67 int vupdate_offset, 68 int vupdate_width) 69 { 70 struct optc *optc1 = DCN10TG_FROM_TG(optc); 71 72 optc1->vready_offset = vready_offset; 73 optc1->vstartup_start = vstartup_start; 74 optc1->vupdate_offset = vupdate_offset; 75 optc1->vupdate_width = vupdate_width; 76 77 if (optc1->vstartup_start == 0) { 78 BREAK_TO_DEBUGGER(); 79 return; 80 } 81 82 REG_SET(OTG_VSTARTUP_PARAM, 0, 83 VSTARTUP_START, optc1->vstartup_start); 84 85 REG_SET_2(OTG_VUPDATE_PARAM, 0, 86 VUPDATE_OFFSET, optc1->vupdate_offset, 87 VUPDATE_WIDTH, optc1->vupdate_width); 88 89 REG_SET(OTG_VREADY_PARAM, 0, 90 VREADY_OFFSET, optc1->vready_offset); 91 } 92 93 static void optc1_disable_stereo(struct timing_generator *optc) 94 { 95 struct optc *optc1 = DCN10TG_FROM_TG(optc); 96 97 REG_SET(OTG_STEREO_CONTROL, 0, 98 OTG_STEREO_EN, 0); 99 100 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0, 101 OTG_3D_STRUCTURE_EN, 0, 102 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0); 103 } 104 105 void optc1_setup_vertical_interrupt0( 106 struct timing_generator *optc, 107 uint32_t start_line, 108 uint32_t end_line) 109 { 110 struct optc *optc1 = DCN10TG_FROM_TG(optc); 111 112 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0, 113 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line, 114 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line); 115 } 116 117 void optc1_setup_vertical_interrupt1( 118 struct timing_generator *optc, 119 uint32_t start_line) 120 { 121 struct optc *optc1 = DCN10TG_FROM_TG(optc); 122 123 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0, 124 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line); 125 } 126 127 void optc1_setup_vertical_interrupt2( 128 struct timing_generator *optc, 129 uint32_t start_line) 130 { 131 struct optc *optc1 = DCN10TG_FROM_TG(optc); 132 133 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0, 134 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line); 135 } 136 137 /** 138 * optc1_program_timing() - used by mode timing set Program 139 * CRTC Timing Registers - OTG_H_*, 140 * OTG_V_*, Pixel repetition. 141 * Including SYNC. Call BIOS command table to program Timings. 142 * 143 * @optc: timing_generator instance. 144 * @dc_crtc_timing: Timing parameters used to configure DCN blocks. 145 * @vready_offset: Vready's starting position. 146 * @vstartup_start: Vstartup period. 147 * @vupdate_offset: Vupdate starting position. 148 * @vupdate_width: Vupdate duration. 149 * @signal: DC signal types. 150 * @use_vbios: to program timings from BIOS command table. 151 * 152 */ 153 void optc1_program_timing( 154 struct timing_generator *optc, 155 const struct dc_crtc_timing *dc_crtc_timing, 156 int vready_offset, 157 int vstartup_start, 158 int vupdate_offset, 159 int vupdate_width, 160 const enum signal_type signal, 161 bool use_vbios) 162 { 163 struct dc_crtc_timing patched_crtc_timing; 164 uint32_t asic_blank_end; 165 uint32_t asic_blank_start; 166 uint32_t v_total; 167 uint32_t v_sync_end; 168 uint32_t h_sync_polarity, v_sync_polarity; 169 uint32_t start_point = 0; 170 uint32_t field_num = 0; 171 enum h_timing_div_mode h_div = H_TIMING_NO_DIV; 172 173 struct optc *optc1 = DCN10TG_FROM_TG(optc); 174 175 optc1->signal = signal; 176 optc1->vready_offset = vready_offset; 177 optc1->vstartup_start = vstartup_start; 178 optc1->vupdate_offset = vupdate_offset; 179 optc1->vupdate_width = vupdate_width; 180 patched_crtc_timing = *dc_crtc_timing; 181 apply_front_porch_workaround(&patched_crtc_timing); 182 optc1->orginal_patched_timing = patched_crtc_timing; 183 184 /* Load horizontal timing */ 185 186 /* CRTC_H_TOTAL = vesa.h_total - 1 */ 187 REG_SET(OTG_H_TOTAL, 0, 188 OTG_H_TOTAL, patched_crtc_timing.h_total - 1); 189 190 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */ 191 REG_UPDATE_2(OTG_H_SYNC_A, 192 OTG_H_SYNC_A_START, 0, 193 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width); 194 195 /* blank_start = line end - front porch */ 196 asic_blank_start = patched_crtc_timing.h_total - 197 patched_crtc_timing.h_front_porch; 198 199 /* blank_end = blank_start - active */ 200 asic_blank_end = asic_blank_start - 201 patched_crtc_timing.h_border_right - 202 patched_crtc_timing.h_addressable - 203 patched_crtc_timing.h_border_left; 204 205 REG_UPDATE_2(OTG_H_BLANK_START_END, 206 OTG_H_BLANK_START, asic_blank_start, 207 OTG_H_BLANK_END, asic_blank_end); 208 209 /* h_sync polarity */ 210 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ? 211 0 : 1; 212 213 REG_UPDATE(OTG_H_SYNC_A_CNTL, 214 OTG_H_SYNC_A_POL, h_sync_polarity); 215 216 v_total = patched_crtc_timing.v_total - 1; 217 218 REG_SET(OTG_V_TOTAL, 0, 219 OTG_V_TOTAL, v_total); 220 221 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and 222 * OTG_V_TOTAL_MIN are equal to V_TOTAL. 223 */ 224 optc->funcs->set_vtotal_min_max(optc, v_total, v_total); 225 226 /* v_sync_start = 0, v_sync_end = v_sync_width */ 227 v_sync_end = patched_crtc_timing.v_sync_width; 228 229 REG_UPDATE_2(OTG_V_SYNC_A, 230 OTG_V_SYNC_A_START, 0, 231 OTG_V_SYNC_A_END, v_sync_end); 232 233 /* blank_start = frame end - front porch */ 234 asic_blank_start = patched_crtc_timing.v_total - 235 patched_crtc_timing.v_front_porch; 236 237 /* blank_end = blank_start - active */ 238 asic_blank_end = asic_blank_start - 239 patched_crtc_timing.v_border_bottom - 240 patched_crtc_timing.v_addressable - 241 patched_crtc_timing.v_border_top; 242 243 REG_UPDATE_2(OTG_V_BLANK_START_END, 244 OTG_V_BLANK_START, asic_blank_start, 245 OTG_V_BLANK_END, asic_blank_end); 246 247 /* v_sync polarity */ 248 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ? 249 0 : 1; 250 251 REG_UPDATE(OTG_V_SYNC_A_CNTL, 252 OTG_V_SYNC_A_POL, v_sync_polarity); 253 254 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT || 255 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST || 256 optc1->signal == SIGNAL_TYPE_EDP) { 257 start_point = 1; 258 if (patched_crtc_timing.flags.INTERLACE == 1) 259 field_num = 1; 260 } 261 262 /* Interlace */ 263 if (REG(OTG_INTERLACE_CONTROL)) { 264 if (patched_crtc_timing.flags.INTERLACE == 1) 265 REG_UPDATE(OTG_INTERLACE_CONTROL, 266 OTG_INTERLACE_ENABLE, 1); 267 else 268 REG_UPDATE(OTG_INTERLACE_CONTROL, 269 OTG_INTERLACE_ENABLE, 0); 270 } 271 272 /* VTG enable set to 0 first VInit */ 273 REG_UPDATE(CONTROL, 274 VTG0_ENABLE, 0); 275 276 /* original code is using VTG offset to address OTG reg, seems wrong */ 277 REG_UPDATE_2(OTG_CONTROL, 278 OTG_START_POINT_CNTL, start_point, 279 OTG_FIELD_NUMBER_CNTL, field_num); 280 281 optc->funcs->program_global_sync(optc, 282 vready_offset, 283 vstartup_start, 284 vupdate_offset, 285 vupdate_width); 286 287 optc->funcs->set_vtg_params(optc, dc_crtc_timing, true); 288 289 /* TODO 290 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1 291 * program_horz_count_by_2 292 * for DVI 30bpp mode, 0 otherwise 293 * program_horz_count_by_2(optc, &patched_crtc_timing); 294 */ 295 296 /* Enable stereo - only when we need to pack 3D frame. Other types 297 * of stereo handled in explicit call 298 */ 299 300 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2) 301 h_div = H_TIMING_DIV_BY2; 302 303 if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) { 304 uint32_t data_fmt = 0; 305 306 if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 307 data_fmt = 1; 308 else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) 309 data_fmt = 2; 310 311 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt); 312 } 313 314 if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) { 315 if (optc1->opp_count == 4) 316 h_div = H_TIMING_DIV_BY4; 317 318 REG_UPDATE(OTG_H_TIMING_CNTL, 319 OTG_H_TIMING_DIV_MODE, h_div); 320 } else { 321 REG_UPDATE(OTG_H_TIMING_CNTL, 322 OTG_H_TIMING_DIV_BY2, h_div); 323 } 324 } 325 326 /** 327 * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters 328 * 329 * @optc: timing_generator struct used to extract the optc parameters 330 * @dc_crtc_timing: Timing parameters configured 331 * @program_fp2: Boolean value indicating if FP2 will be programmed or not 332 * 333 * OTG is responsible for generating the global sync signals, including 334 * vertical timing information for each HUBP in the dcfclk domain. Each VTG is 335 * associated with one OTG that provides HUBP with vertical timing information 336 * (i.e., there is 1:1 correspondence between OTG and VTG). This function is 337 * responsible for setting the OTG parameters to the VTG during the pipe 338 * programming. 339 */ 340 void optc1_set_vtg_params(struct timing_generator *optc, 341 const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2) 342 { 343 struct dc_crtc_timing patched_crtc_timing; 344 uint32_t asic_blank_end; 345 uint32_t v_init; 346 uint32_t v_fp2 = 0; 347 int32_t vertical_line_start; 348 349 struct optc *optc1 = DCN10TG_FROM_TG(optc); 350 351 patched_crtc_timing = *dc_crtc_timing; 352 apply_front_porch_workaround(&patched_crtc_timing); 353 354 /* VCOUNT_INIT is the start of blank */ 355 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; 356 357 /* end of blank = v_init - active */ 358 asic_blank_end = v_init - 359 patched_crtc_timing.v_border_bottom - 360 patched_crtc_timing.v_addressable - 361 patched_crtc_timing.v_border_top; 362 363 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */ 364 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1; 365 if (vertical_line_start < 0) 366 v_fp2 = -vertical_line_start; 367 368 /* Interlace */ 369 if (REG(OTG_INTERLACE_CONTROL)) { 370 if (patched_crtc_timing.flags.INTERLACE == 1) { 371 v_init = v_init / 2; 372 if ((optc1->vstartup_start/2)*2 > asic_blank_end) 373 v_fp2 = v_fp2 / 2; 374 } 375 } 376 377 if (program_fp2) 378 REG_UPDATE_2(CONTROL, 379 VTG0_FP2, v_fp2, 380 VTG0_VCOUNT_INIT, v_init); 381 else 382 REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init); 383 } 384 385 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable) 386 { 387 struct optc *optc1 = DCN10TG_FROM_TG(optc); 388 389 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; 390 391 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 392 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable); 393 } 394 395 /** 396 * optc1_set_timing_double_buffer() - DRR double buffering control 397 * 398 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN, 399 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers. 400 * 401 * @optc: timing_generator instance. 402 * @enable: Enable DRR double buffering control if true, disable otherwise. 403 * 404 * Options: any time, start of frame, dp start of frame (range timing) 405 */ 406 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable) 407 { 408 struct optc *optc1 = DCN10TG_FROM_TG(optc); 409 uint32_t mode = enable ? 2 : 0; 410 411 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 412 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode); 413 } 414 415 /** 416 * optc1_unblank_crtc() - Call ASIC Control Object to UnBlank CRTC. 417 * 418 * @optc: timing_generator instance. 419 */ 420 static void optc1_unblank_crtc(struct timing_generator *optc) 421 { 422 struct optc *optc1 = DCN10TG_FROM_TG(optc); 423 424 REG_UPDATE_2(OTG_BLANK_CONTROL, 425 OTG_BLANK_DATA_EN, 0, 426 OTG_BLANK_DE_MODE, 0); 427 428 /* W/A for automated testing 429 * Automated testing will fail underflow test as there 430 * sporadic underflows which occur during the optc blank 431 * sequence. As a w/a, clear underflow on unblank. 432 * This prevents the failure, but will not mask actual 433 * underflow that affect real use cases. 434 */ 435 optc1_clear_optc_underflow(optc); 436 } 437 438 /** 439 * optc1_blank_crtc() - Call ASIC Control Object to Blank CRTC. 440 * 441 * @optc: timing_generator instance. 442 */ 443 444 static void optc1_blank_crtc(struct timing_generator *optc) 445 { 446 struct optc *optc1 = DCN10TG_FROM_TG(optc); 447 448 REG_UPDATE_2(OTG_BLANK_CONTROL, 449 OTG_BLANK_DATA_EN, 1, 450 OTG_BLANK_DE_MODE, 0); 451 452 optc1_set_blank_data_double_buffer(optc, false); 453 } 454 455 void optc1_set_blank(struct timing_generator *optc, 456 bool enable_blanking) 457 { 458 if (enable_blanking) 459 optc1_blank_crtc(optc); 460 else 461 optc1_unblank_crtc(optc); 462 } 463 464 bool optc1_is_blanked(struct timing_generator *optc) 465 { 466 struct optc *optc1 = DCN10TG_FROM_TG(optc); 467 uint32_t blank_en; 468 uint32_t blank_state; 469 470 REG_GET_2(OTG_BLANK_CONTROL, 471 OTG_BLANK_DATA_EN, &blank_en, 472 OTG_CURRENT_BLANK_STATE, &blank_state); 473 474 return blank_en && blank_state; 475 } 476 477 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable) 478 { 479 struct optc *optc1 = DCN10TG_FROM_TG(optc); 480 481 if (enable) { 482 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, 483 OPTC_INPUT_CLK_EN, 1, 484 OPTC_INPUT_CLK_GATE_DIS, 1); 485 486 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL, 487 OPTC_INPUT_CLK_ON, 1, 488 1, 1000); 489 490 /* Enable clock */ 491 REG_UPDATE_2(OTG_CLOCK_CONTROL, 492 OTG_CLOCK_EN, 1, 493 OTG_CLOCK_GATE_DIS, 1); 494 REG_WAIT(OTG_CLOCK_CONTROL, 495 OTG_CLOCK_ON, 1, 496 1, 1000); 497 } else { 498 499 //last chance to clear underflow, otherwise, it will always there due to clock is off. 500 if (optc->funcs->is_optc_underflow_occurred(optc) == true) 501 optc->funcs->clear_optc_underflow(optc); 502 503 REG_UPDATE_2(OTG_CLOCK_CONTROL, 504 OTG_CLOCK_GATE_DIS, 0, 505 OTG_CLOCK_EN, 0); 506 507 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, 508 OPTC_INPUT_CLK_GATE_DIS, 0, 509 OPTC_INPUT_CLK_EN, 0); 510 } 511 } 512 513 /** 514 * optc1_enable_crtc() - Enable CRTC - call ASIC Control Object to enable Timing generator. 515 * 516 * @optc: timing_generator instance. 517 */ 518 static bool optc1_enable_crtc(struct timing_generator *optc) 519 { 520 /* TODO FPGA wait for answer 521 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE 522 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK 523 */ 524 struct optc *optc1 = DCN10TG_FROM_TG(optc); 525 526 /* opp instance for OTG. For DCN1.0, ODM is remoed. 527 * OPP and OPTC should 1:1 mapping 528 */ 529 REG_UPDATE(OPTC_DATA_SOURCE_SELECT, 530 OPTC_SRC_SEL, optc->inst); 531 532 /* VTG enable first is for HW workaround */ 533 REG_UPDATE(CONTROL, 534 VTG0_ENABLE, 1); 535 536 REG_SEQ_START(); 537 538 /* Enable CRTC */ 539 REG_UPDATE_2(OTG_CONTROL, 540 OTG_DISABLE_POINT_CNTL, 3, 541 OTG_MASTER_EN, 1); 542 543 REG_SEQ_SUBMIT(); 544 REG_SEQ_WAIT_DONE(); 545 546 return true; 547 } 548 549 /* disable_crtc - call ASIC Control Object to disable Timing generator. */ 550 bool optc1_disable_crtc(struct timing_generator *optc) 551 { 552 struct optc *optc1 = DCN10TG_FROM_TG(optc); 553 554 /* disable otg request until end of the first line 555 * in the vertical blank region 556 */ 557 REG_UPDATE_2(OTG_CONTROL, 558 OTG_DISABLE_POINT_CNTL, 3, 559 OTG_MASTER_EN, 0); 560 561 REG_UPDATE(CONTROL, 562 VTG0_ENABLE, 0); 563 564 /* CRTC disabled, so disable clock. */ 565 REG_WAIT(OTG_CLOCK_CONTROL, 566 OTG_BUSY, 0, 567 1, 100000); 568 569 return true; 570 } 571 572 573 void optc1_program_blank_color( 574 struct timing_generator *optc, 575 const struct tg_color *black_color) 576 { 577 struct optc *optc1 = DCN10TG_FROM_TG(optc); 578 579 REG_SET_3(OTG_BLACK_COLOR, 0, 580 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb, 581 OTG_BLACK_COLOR_G_Y, black_color->color_g_y, 582 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr); 583 } 584 585 bool optc1_validate_timing( 586 struct timing_generator *optc, 587 const struct dc_crtc_timing *timing) 588 { 589 uint32_t v_blank; 590 uint32_t h_blank; 591 uint32_t min_v_blank; 592 struct optc *optc1 = DCN10TG_FROM_TG(optc); 593 594 ASSERT(timing != NULL); 595 596 v_blank = (timing->v_total - timing->v_addressable - 597 timing->v_border_top - timing->v_border_bottom); 598 599 h_blank = (timing->h_total - timing->h_addressable - 600 timing->h_border_right - 601 timing->h_border_left); 602 603 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE && 604 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING && 605 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM && 606 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE && 607 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE && 608 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA) 609 return false; 610 611 /* Temporarily blocking interlacing mode until it's supported */ 612 if (timing->flags.INTERLACE == 1) 613 return false; 614 615 /* Check maximum number of pixels supported by Timing Generator 616 * (Currently will never fail, in order to fail needs display which 617 * needs more than 8192 horizontal and 618 * more than 8192 vertical total pixels) 619 */ 620 if (timing->h_total > optc1->max_h_total || 621 timing->v_total > optc1->max_v_total) 622 return false; 623 624 625 if (h_blank < optc1->min_h_blank) 626 return false; 627 628 if (timing->h_sync_width < optc1->min_h_sync_width || 629 timing->v_sync_width < optc1->min_v_sync_width) 630 return false; 631 632 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank; 633 634 if (v_blank < min_v_blank) 635 return false; 636 637 return true; 638 639 } 640 641 /* 642 * get_vblank_counter 643 * 644 * @brief 645 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which 646 * holds the counter of frames. 647 * 648 * @param 649 * struct timing_generator *optc - [in] timing generator which controls the 650 * desired CRTC 651 * 652 * @return 653 * Counter of frames, which should equal to number of vblanks. 654 */ 655 uint32_t optc1_get_vblank_counter(struct timing_generator *optc) 656 { 657 struct optc *optc1 = DCN10TG_FROM_TG(optc); 658 uint32_t frame_count; 659 660 REG_GET(OTG_STATUS_FRAME_COUNT, 661 OTG_FRAME_COUNT, &frame_count); 662 663 return frame_count; 664 } 665 666 void optc1_lock(struct timing_generator *optc) 667 { 668 struct optc *optc1 = DCN10TG_FROM_TG(optc); 669 670 REG_SET(OTG_GLOBAL_CONTROL0, 0, 671 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); 672 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 673 OTG_MASTER_UPDATE_LOCK, 1); 674 675 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 676 UPDATE_LOCK_STATUS, 1, 677 1, 10); 678 679 TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, true); 680 } 681 682 void optc1_unlock(struct timing_generator *optc) 683 { 684 struct optc *optc1 = DCN10TG_FROM_TG(optc); 685 686 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 687 OTG_MASTER_UPDATE_LOCK, 0); 688 689 TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, false); 690 } 691 692 void optc1_get_position(struct timing_generator *optc, 693 struct crtc_position *position) 694 { 695 struct optc *optc1 = DCN10TG_FROM_TG(optc); 696 697 REG_GET_2(OTG_STATUS_POSITION, 698 OTG_HORZ_COUNT, &position->horizontal_count, 699 OTG_VERT_COUNT, &position->vertical_count); 700 701 REG_GET(OTG_NOM_VERT_POSITION, 702 OTG_VERT_COUNT_NOM, &position->nominal_vcount); 703 } 704 705 bool optc1_is_counter_moving(struct timing_generator *optc) 706 { 707 struct crtc_position position1, position2; 708 709 optc->funcs->get_position(optc, &position1); 710 optc->funcs->get_position(optc, &position2); 711 712 if (position1.horizontal_count == position2.horizontal_count && 713 position1.vertical_count == position2.vertical_count) 714 return false; 715 else 716 return true; 717 } 718 719 bool optc1_did_triggered_reset_occur( 720 struct timing_generator *optc) 721 { 722 struct optc *optc1 = DCN10TG_FROM_TG(optc); 723 uint32_t occurred_force, occurred_vsync; 724 725 REG_GET(OTG_FORCE_COUNT_NOW_CNTL, 726 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force); 727 728 REG_GET(OTG_VERT_SYNC_CONTROL, 729 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync); 730 731 return occurred_vsync != 0 || occurred_force != 0; 732 } 733 734 void optc1_disable_reset_trigger(struct timing_generator *optc) 735 { 736 struct optc *optc1 = DCN10TG_FROM_TG(optc); 737 738 REG_WRITE(OTG_TRIGA_CNTL, 0); 739 740 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 741 OTG_FORCE_COUNT_NOW_CLEAR, 1); 742 743 REG_SET(OTG_VERT_SYNC_CONTROL, 0, 744 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1); 745 } 746 747 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst) 748 { 749 struct optc *optc1 = DCN10TG_FROM_TG(optc); 750 uint32_t falling_edge; 751 752 REG_GET(OTG_V_SYNC_A_CNTL, 753 OTG_V_SYNC_A_POL, &falling_edge); 754 755 if (falling_edge) 756 REG_SET_3(OTG_TRIGA_CNTL, 0, 757 /* vsync signal from selected OTG pipe based 758 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 759 */ 760 OTG_TRIGA_SOURCE_SELECT, 20, 761 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 762 /* always detect falling edge */ 763 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1); 764 else 765 REG_SET_3(OTG_TRIGA_CNTL, 0, 766 /* vsync signal from selected OTG pipe based 767 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 768 */ 769 OTG_TRIGA_SOURCE_SELECT, 20, 770 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 771 /* always detect rising edge */ 772 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1); 773 774 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 775 /* force H count to H_TOTAL and V count to V_TOTAL in 776 * progressive mode and V_TOTAL-1 in interlaced mode 777 */ 778 OTG_FORCE_COUNT_NOW_MODE, 2); 779 } 780 781 void optc1_enable_crtc_reset( 782 struct timing_generator *optc, 783 int source_tg_inst, 784 struct crtc_trigger_info *crtc_tp) 785 { 786 struct optc *optc1 = DCN10TG_FROM_TG(optc); 787 uint32_t falling_edge = 0; 788 uint32_t rising_edge = 0; 789 790 switch (crtc_tp->event) { 791 792 case CRTC_EVENT_VSYNC_RISING: 793 rising_edge = 1; 794 break; 795 796 case CRTC_EVENT_VSYNC_FALLING: 797 falling_edge = 1; 798 break; 799 } 800 801 REG_SET_4(OTG_TRIGA_CNTL, 0, 802 /* vsync signal from selected OTG pipe based 803 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 804 */ 805 OTG_TRIGA_SOURCE_SELECT, 20, 806 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 807 /* always detect falling edge */ 808 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge, 809 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge); 810 811 switch (crtc_tp->delay) { 812 case TRIGGER_DELAY_NEXT_LINE: 813 REG_SET(OTG_VERT_SYNC_CONTROL, 0, 814 OTG_AUTO_FORCE_VSYNC_MODE, 1); 815 break; 816 case TRIGGER_DELAY_NEXT_PIXEL: 817 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 818 /* force H count to H_TOTAL and V count to V_TOTAL in 819 * progressive mode and V_TOTAL-1 in interlaced mode 820 */ 821 OTG_FORCE_COUNT_NOW_MODE, 2); 822 break; 823 } 824 } 825 826 void optc1_wait_for_state(struct timing_generator *optc, 827 enum crtc_state state) 828 { 829 struct optc *optc1 = DCN10TG_FROM_TG(optc); 830 831 switch (state) { 832 case CRTC_STATE_VBLANK: 833 REG_WAIT(OTG_STATUS, 834 OTG_V_BLANK, 1, 835 1, 100000); /* 1 vupdate at 10hz */ 836 break; 837 838 case CRTC_STATE_VACTIVE: 839 REG_WAIT(OTG_STATUS, 840 OTG_V_ACTIVE_DISP, 1, 841 1, 100000); /* 1 vupdate at 10hz */ 842 break; 843 844 default: 845 break; 846 } 847 } 848 849 void optc1_set_early_control( 850 struct timing_generator *optc, 851 uint32_t early_cntl) 852 { 853 /* asic design change, do not need this control 854 * empty for share caller logic 855 */ 856 } 857 858 859 void optc1_set_static_screen_control( 860 struct timing_generator *optc, 861 uint32_t event_triggers, 862 uint32_t num_frames) 863 { 864 struct optc *optc1 = DCN10TG_FROM_TG(optc); 865 866 // By register spec, it only takes 8 bit value 867 if (num_frames > 0xFF) 868 num_frames = 0xFF; 869 870 /* Bit 8 is no longer applicable in RV for PSR case, 871 * set bit 8 to 0 if given 872 */ 873 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN) 874 != 0) 875 event_triggers = event_triggers & 876 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN; 877 878 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0, 879 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers, 880 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames); 881 } 882 883 static void optc1_setup_manual_trigger(struct timing_generator *optc) 884 { 885 struct optc *optc1 = DCN10TG_FROM_TG(optc); 886 887 REG_SET(OTG_GLOBAL_CONTROL2, 0, 888 MANUAL_FLOW_CONTROL_SEL, optc->inst); 889 890 REG_SET_8(OTG_TRIGA_CNTL, 0, 891 OTG_TRIGA_SOURCE_SELECT, 22, 892 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, 893 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, 894 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, 895 OTG_TRIGA_POLARITY_SELECT, 0, 896 OTG_TRIGA_FREQUENCY_SELECT, 0, 897 OTG_TRIGA_DELAY, 0, 898 OTG_TRIGA_CLEAR, 1); 899 } 900 901 static void optc1_program_manual_trigger(struct timing_generator *optc) 902 { 903 struct optc *optc1 = DCN10TG_FROM_TG(optc); 904 905 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, 906 MANUAL_FLOW_CONTROL, 1); 907 908 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, 909 MANUAL_FLOW_CONTROL, 0); 910 } 911 912 /** 913 * optc1_set_drr() - Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*. 914 * 915 * @optc: timing_generator instance. 916 * @params: parameters used for Dynamic Refresh Rate. 917 */ 918 void optc1_set_drr( 919 struct timing_generator *optc, 920 const struct drr_params *params) 921 { 922 struct optc *optc1 = DCN10TG_FROM_TG(optc); 923 924 if (params != NULL && 925 params->vertical_total_max > 0 && 926 params->vertical_total_min > 0) { 927 928 if (params->vertical_total_mid != 0) { 929 930 REG_SET(OTG_V_TOTAL_MID, 0, 931 OTG_V_TOTAL_MID, params->vertical_total_mid - 1); 932 933 REG_UPDATE_2(OTG_V_TOTAL_CONTROL, 934 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1, 935 OTG_VTOTAL_MID_FRAME_NUM, 936 (uint8_t)params->vertical_total_mid_frame_num); 937 938 } 939 940 optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1); 941 942 REG_UPDATE_5(OTG_V_TOTAL_CONTROL, 943 OTG_V_TOTAL_MIN_SEL, 1, 944 OTG_V_TOTAL_MAX_SEL, 1, 945 OTG_FORCE_LOCK_ON_EVENT, 0, 946 OTG_SET_V_TOTAL_MIN_MASK_EN, 0, 947 OTG_SET_V_TOTAL_MIN_MASK, 0); 948 } 949 950 // Setup manual flow control for EOF via TRIG_A 951 optc->funcs->setup_manual_trigger(optc); 952 } 953 954 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max) 955 { 956 struct optc *optc1 = DCN10TG_FROM_TG(optc); 957 958 REG_SET(OTG_V_TOTAL_MAX, 0, 959 OTG_V_TOTAL_MAX, vtotal_max); 960 961 REG_SET(OTG_V_TOTAL_MIN, 0, 962 OTG_V_TOTAL_MIN, vtotal_min); 963 } 964 965 static void optc1_set_test_pattern( 966 struct timing_generator *optc, 967 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' 968 * because this is not DP-specific (which is probably somewhere in DP 969 * encoder) */ 970 enum controller_dp_test_pattern test_pattern, 971 enum dc_color_depth color_depth) 972 { 973 struct optc *optc1 = DCN10TG_FROM_TG(optc); 974 enum test_pattern_color_format bit_depth; 975 enum test_pattern_dyn_range dyn_range; 976 enum test_pattern_mode mode; 977 uint32_t pattern_mask; 978 uint32_t pattern_data; 979 /* color ramp generator mixes 16-bits color */ 980 uint32_t src_bpc = 16; 981 /* requested bpc */ 982 uint32_t dst_bpc; 983 uint32_t index; 984 /* RGB values of the color bars. 985 * Produce two RGB colors: RGB0 - white (all Fs) 986 * and RGB1 - black (all 0s) 987 * (three RGB components for two colors) 988 */ 989 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 990 0x0000, 0x0000}; 991 /* dest color (converted to the specified color format) */ 992 uint16_t dst_color[6]; 993 uint32_t inc_base; 994 995 /* translate to bit depth */ 996 switch (color_depth) { 997 case COLOR_DEPTH_666: 998 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; 999 break; 1000 case COLOR_DEPTH_888: 1001 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 1002 break; 1003 case COLOR_DEPTH_101010: 1004 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; 1005 break; 1006 case COLOR_DEPTH_121212: 1007 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; 1008 break; 1009 default: 1010 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 1011 break; 1012 } 1013 1014 switch (test_pattern) { 1015 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: 1016 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: 1017 { 1018 dyn_range = (test_pattern == 1019 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? 1020 TEST_PATTERN_DYN_RANGE_CEA : 1021 TEST_PATTERN_DYN_RANGE_VESA); 1022 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; 1023 1024 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS, 1025 OTG_TEST_PATTERN_VRES, 6, 1026 OTG_TEST_PATTERN_HRES, 6); 1027 1028 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, 1029 OTG_TEST_PATTERN_EN, 1, 1030 OTG_TEST_PATTERN_MODE, mode, 1031 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range, 1032 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1033 } 1034 break; 1035 1036 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: 1037 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: 1038 { 1039 mode = (test_pattern == 1040 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? 1041 TEST_PATTERN_MODE_VERTICALBARS : 1042 TEST_PATTERN_MODE_HORIZONTALBARS); 1043 1044 switch (bit_depth) { 1045 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1046 dst_bpc = 6; 1047 break; 1048 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1049 dst_bpc = 8; 1050 break; 1051 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1052 dst_bpc = 10; 1053 break; 1054 default: 1055 dst_bpc = 8; 1056 break; 1057 } 1058 1059 /* adjust color to the required colorFormat */ 1060 for (index = 0; index < 6; index++) { 1061 /* dst = 2^dstBpc * src / 2^srcBpc = src >> 1062 * (srcBpc - dstBpc); 1063 */ 1064 dst_color[index] = 1065 src_color[index] >> (src_bpc - dst_bpc); 1066 /* CRTC_TEST_PATTERN_DATA has 16 bits, 1067 * lowest 6 are hardwired to ZERO 1068 * color bits should be left aligned to MSB 1069 * XXXXXXXXXX000000 for 10 bit, 1070 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 1071 */ 1072 dst_color[index] <<= (16 - dst_bpc); 1073 } 1074 1075 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); 1076 1077 /* We have to write the mask before data, similar to pipeline. 1078 * For example, for 8 bpc, if we want RGB0 to be magenta, 1079 * and RGB1 to be cyan, 1080 * we need to make 7 writes: 1081 * MASK DATA 1082 * 000001 00000000 00000000 set mask to R0 1083 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 1084 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 1085 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 1086 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 1087 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 1088 * 100000 11111111 00000000 B1 255, 0xFF00 1089 * 1090 * we will make a loop of 6 in which we prepare the mask, 1091 * then write, then prepare the color for next write. 1092 * first iteration will write mask only, 1093 * but each next iteration color prepared in 1094 * previous iteration will be written within new mask, 1095 * the last component will written separately, 1096 * mask is not changing between 6th and 7th write 1097 * and color will be prepared by last iteration 1098 */ 1099 1100 /* write color, color values mask in CRTC_TEST_PATTERN_MASK 1101 * is B1, G1, R1, B0, G0, R0 1102 */ 1103 pattern_data = 0; 1104 for (index = 0; index < 6; index++) { 1105 /* prepare color mask, first write PATTERN_DATA 1106 * will have all zeros 1107 */ 1108 pattern_mask = (1 << index); 1109 1110 /* write color component */ 1111 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, 1112 OTG_TEST_PATTERN_MASK, pattern_mask, 1113 OTG_TEST_PATTERN_DATA, pattern_data); 1114 1115 /* prepare next color component, 1116 * will be written in the next iteration 1117 */ 1118 pattern_data = dst_color[index]; 1119 } 1120 /* write last color component, 1121 * it's been already prepared in the loop 1122 */ 1123 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, 1124 OTG_TEST_PATTERN_MASK, pattern_mask, 1125 OTG_TEST_PATTERN_DATA, pattern_data); 1126 1127 /* enable test pattern */ 1128 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, 1129 OTG_TEST_PATTERN_EN, 1, 1130 OTG_TEST_PATTERN_MODE, mode, 1131 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, 1132 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1133 } 1134 break; 1135 1136 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: 1137 { 1138 mode = (bit_depth == 1139 TEST_PATTERN_COLOR_FORMAT_BPC_10 ? 1140 TEST_PATTERN_MODE_DUALRAMP_RGB : 1141 TEST_PATTERN_MODE_SINGLERAMP_RGB); 1142 1143 switch (bit_depth) { 1144 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1145 dst_bpc = 6; 1146 break; 1147 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1148 dst_bpc = 8; 1149 break; 1150 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1151 dst_bpc = 10; 1152 break; 1153 default: 1154 dst_bpc = 8; 1155 break; 1156 } 1157 1158 /* increment for the first ramp for one color gradation 1159 * 1 gradation for 6-bit color is 2^10 1160 * gradations in 16-bit color 1161 */ 1162 inc_base = (src_bpc - dst_bpc); 1163 1164 switch (bit_depth) { 1165 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1166 { 1167 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1168 OTG_TEST_PATTERN_INC0, inc_base, 1169 OTG_TEST_PATTERN_INC1, 0, 1170 OTG_TEST_PATTERN_HRES, 6, 1171 OTG_TEST_PATTERN_VRES, 6, 1172 OTG_TEST_PATTERN_RAMP0_OFFSET, 0); 1173 } 1174 break; 1175 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1176 { 1177 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1178 OTG_TEST_PATTERN_INC0, inc_base, 1179 OTG_TEST_PATTERN_INC1, 0, 1180 OTG_TEST_PATTERN_HRES, 8, 1181 OTG_TEST_PATTERN_VRES, 6, 1182 OTG_TEST_PATTERN_RAMP0_OFFSET, 0); 1183 } 1184 break; 1185 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1186 { 1187 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1188 OTG_TEST_PATTERN_INC0, inc_base, 1189 OTG_TEST_PATTERN_INC1, inc_base + 2, 1190 OTG_TEST_PATTERN_HRES, 8, 1191 OTG_TEST_PATTERN_VRES, 5, 1192 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6); 1193 } 1194 break; 1195 default: 1196 break; 1197 } 1198 1199 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); 1200 1201 /* enable test pattern */ 1202 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); 1203 1204 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0, 1205 OTG_TEST_PATTERN_EN, 1, 1206 OTG_TEST_PATTERN_MODE, mode, 1207 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, 1208 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1209 } 1210 break; 1211 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: 1212 { 1213 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); 1214 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); 1215 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); 1216 } 1217 break; 1218 default: 1219 break; 1220 1221 } 1222 } 1223 1224 void optc1_get_crtc_scanoutpos( 1225 struct timing_generator *optc, 1226 uint32_t *v_blank_start, 1227 uint32_t *v_blank_end, 1228 uint32_t *h_position, 1229 uint32_t *v_position) 1230 { 1231 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1232 struct crtc_position position; 1233 1234 REG_GET_2(OTG_V_BLANK_START_END, 1235 OTG_V_BLANK_START, v_blank_start, 1236 OTG_V_BLANK_END, v_blank_end); 1237 1238 optc1_get_position(optc, &position); 1239 1240 *h_position = position.horizontal_count; 1241 *v_position = position.vertical_count; 1242 } 1243 1244 static void optc1_enable_stereo(struct timing_generator *optc, 1245 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) 1246 { 1247 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1248 1249 if (flags) { 1250 uint32_t stereo_en; 1251 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0; 1252 1253 if (flags->PROGRAM_STEREO) 1254 REG_UPDATE_3(OTG_STEREO_CONTROL, 1255 OTG_STEREO_EN, stereo_en, 1256 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0, 1257 OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); 1258 1259 if (flags->PROGRAM_POLARITY) 1260 REG_UPDATE(OTG_STEREO_CONTROL, 1261 OTG_STEREO_EYE_FLAG_POLARITY, 1262 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); 1263 1264 if (flags->DISABLE_STEREO_DP_SYNC) 1265 REG_UPDATE(OTG_STEREO_CONTROL, 1266 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1); 1267 1268 if (flags->PROGRAM_STEREO) 1269 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL, 1270 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED, 1271 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED); 1272 1273 } 1274 } 1275 1276 void optc1_program_stereo(struct timing_generator *optc, 1277 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) 1278 { 1279 if (flags->PROGRAM_STEREO) 1280 optc1_enable_stereo(optc, timing, flags); 1281 else 1282 optc1_disable_stereo(optc); 1283 } 1284 1285 1286 bool optc1_is_stereo_left_eye(struct timing_generator *optc) 1287 { 1288 bool ret = false; 1289 uint32_t left_eye = 0; 1290 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1291 1292 REG_GET(OTG_STEREO_STATUS, 1293 OTG_STEREO_CURRENT_EYE, &left_eye); 1294 if (left_eye == 1) 1295 ret = true; 1296 else 1297 ret = false; 1298 1299 return ret; 1300 } 1301 1302 bool optc1_get_hw_timing(struct timing_generator *tg, 1303 struct dc_crtc_timing *hw_crtc_timing) 1304 { 1305 struct dcn_otg_state s = {0}; 1306 1307 if (tg == NULL || hw_crtc_timing == NULL) 1308 return false; 1309 1310 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s); 1311 1312 hw_crtc_timing->h_total = s.h_total + 1; 1313 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end); 1314 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start; 1315 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start; 1316 1317 hw_crtc_timing->v_total = s.v_total + 1; 1318 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end); 1319 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start; 1320 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start; 1321 1322 return true; 1323 } 1324 1325 1326 void optc1_read_otg_state(struct optc *optc1, 1327 struct dcn_otg_state *s) 1328 { 1329 REG_GET(OTG_CONTROL, 1330 OTG_MASTER_EN, &s->otg_enabled); 1331 1332 REG_GET_2(OTG_V_BLANK_START_END, 1333 OTG_V_BLANK_START, &s->v_blank_start, 1334 OTG_V_BLANK_END, &s->v_blank_end); 1335 1336 REG_GET(OTG_V_SYNC_A_CNTL, 1337 OTG_V_SYNC_A_POL, &s->v_sync_a_pol); 1338 1339 REG_GET(OTG_V_TOTAL, 1340 OTG_V_TOTAL, &s->v_total); 1341 1342 REG_GET(OTG_V_TOTAL_MAX, 1343 OTG_V_TOTAL_MAX, &s->v_total_max); 1344 1345 REG_GET(OTG_V_TOTAL_MIN, 1346 OTG_V_TOTAL_MIN, &s->v_total_min); 1347 1348 REG_GET(OTG_V_TOTAL_CONTROL, 1349 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel); 1350 1351 REG_GET(OTG_V_TOTAL_CONTROL, 1352 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel); 1353 1354 REG_GET_2(OTG_V_SYNC_A, 1355 OTG_V_SYNC_A_START, &s->v_sync_a_start, 1356 OTG_V_SYNC_A_END, &s->v_sync_a_end); 1357 1358 REG_GET_2(OTG_H_BLANK_START_END, 1359 OTG_H_BLANK_START, &s->h_blank_start, 1360 OTG_H_BLANK_END, &s->h_blank_end); 1361 1362 REG_GET_2(OTG_H_SYNC_A, 1363 OTG_H_SYNC_A_START, &s->h_sync_a_start, 1364 OTG_H_SYNC_A_END, &s->h_sync_a_end); 1365 1366 REG_GET(OTG_H_SYNC_A_CNTL, 1367 OTG_H_SYNC_A_POL, &s->h_sync_a_pol); 1368 1369 REG_GET(OTG_H_TOTAL, 1370 OTG_H_TOTAL, &s->h_total); 1371 1372 REG_GET(OPTC_INPUT_GLOBAL_CONTROL, 1373 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status); 1374 1375 REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL, 1376 OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en); 1377 1378 REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION, 1379 OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line); 1380 1381 REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL, 1382 OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en); 1383 1384 REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION, 1385 OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line); 1386 } 1387 1388 bool optc1_get_otg_active_size(struct timing_generator *optc, 1389 uint32_t *otg_active_width, 1390 uint32_t *otg_active_height) 1391 { 1392 uint32_t otg_enabled; 1393 uint32_t v_blank_start; 1394 uint32_t v_blank_end; 1395 uint32_t h_blank_start; 1396 uint32_t h_blank_end; 1397 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1398 1399 1400 REG_GET(OTG_CONTROL, 1401 OTG_MASTER_EN, &otg_enabled); 1402 1403 if (otg_enabled == 0) 1404 return false; 1405 1406 REG_GET_2(OTG_V_BLANK_START_END, 1407 OTG_V_BLANK_START, &v_blank_start, 1408 OTG_V_BLANK_END, &v_blank_end); 1409 1410 REG_GET_2(OTG_H_BLANK_START_END, 1411 OTG_H_BLANK_START, &h_blank_start, 1412 OTG_H_BLANK_END, &h_blank_end); 1413 1414 *otg_active_width = v_blank_start - v_blank_end; 1415 *otg_active_height = h_blank_start - h_blank_end; 1416 return true; 1417 } 1418 1419 void optc1_clear_optc_underflow(struct timing_generator *optc) 1420 { 1421 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1422 1423 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1); 1424 } 1425 1426 void optc1_tg_init(struct timing_generator *optc) 1427 { 1428 optc1_set_blank_data_double_buffer(optc, true); 1429 optc1_set_timing_double_buffer(optc, true); 1430 optc1_clear_optc_underflow(optc); 1431 } 1432 1433 bool optc1_is_tg_enabled(struct timing_generator *optc) 1434 { 1435 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1436 uint32_t otg_enabled = 0; 1437 1438 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled); 1439 1440 return (otg_enabled != 0); 1441 1442 } 1443 1444 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc) 1445 { 1446 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1447 uint32_t underflow_occurred = 0; 1448 1449 REG_GET(OPTC_INPUT_GLOBAL_CONTROL, 1450 OPTC_UNDERFLOW_OCCURRED_STATUS, 1451 &underflow_occurred); 1452 1453 return (underflow_occurred == 1); 1454 } 1455 1456 bool optc1_configure_crc(struct timing_generator *optc, 1457 const struct crc_params *params) 1458 { 1459 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1460 1461 /* Cannot configure crc on a CRTC that is disabled */ 1462 if (!optc1_is_tg_enabled(optc)) 1463 return false; 1464 1465 REG_WRITE(OTG_CRC_CNTL, 0); 1466 1467 if (!params->enable) 1468 return true; 1469 1470 /* Program frame boundaries */ 1471 /* Window A x axis start and end. */ 1472 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL, 1473 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start, 1474 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end); 1475 1476 /* Window A y axis start and end. */ 1477 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL, 1478 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start, 1479 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end); 1480 1481 /* Window B x axis start and end. */ 1482 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL, 1483 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start, 1484 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end); 1485 1486 /* Window B y axis start and end. */ 1487 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL, 1488 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start, 1489 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end); 1490 1491 /* Set crc mode and selection, and enable. Only using CRC0*/ 1492 REG_UPDATE_3(OTG_CRC_CNTL, 1493 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0, 1494 OTG_CRC0_SELECT, params->selection, 1495 OTG_CRC_EN, 1); 1496 1497 return true; 1498 } 1499 1500 /** 1501 * optc1_get_crc - Capture CRC result per component 1502 * 1503 * @optc: timing_generator instance. 1504 * @r_cr: 16-bit primary CRC signature for red data. 1505 * @g_y: 16-bit primary CRC signature for green data. 1506 * @b_cb: 16-bit primary CRC signature for blue data. 1507 * 1508 * This function reads the CRC signature from the OPTC registers. Notice that 1509 * we have three registers to keep the CRC result per color component (RGB). 1510 * 1511 * Returns: 1512 * If CRC is disabled, return false; otherwise, return true, and the CRC 1513 * results in the parameters. 1514 */ 1515 bool optc1_get_crc(struct timing_generator *optc, 1516 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) 1517 { 1518 uint32_t field = 0; 1519 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1520 1521 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field); 1522 1523 /* Early return if CRC is not enabled for this CRTC */ 1524 if (!field) 1525 return false; 1526 1527 /* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */ 1528 REG_GET_2(OTG_CRC0_DATA_RG, 1529 CRC0_R_CR, r_cr, 1530 CRC0_G_Y, g_y); 1531 1532 /* OTG_CRC0_DATA_B has the CRC16 results for the blue component */ 1533 REG_GET(OTG_CRC0_DATA_B, 1534 CRC0_B_CB, b_cb); 1535 1536 return true; 1537 } 1538 1539 static const struct timing_generator_funcs dcn10_tg_funcs = { 1540 .validate_timing = optc1_validate_timing, 1541 .program_timing = optc1_program_timing, 1542 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, 1543 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, 1544 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, 1545 .program_global_sync = optc1_program_global_sync, 1546 .enable_crtc = optc1_enable_crtc, 1547 .disable_crtc = optc1_disable_crtc, 1548 /* used by enable_timing_synchronization. Not need for FPGA */ 1549 .is_counter_moving = optc1_is_counter_moving, 1550 .get_position = optc1_get_position, 1551 .get_frame_count = optc1_get_vblank_counter, 1552 .get_scanoutpos = optc1_get_crtc_scanoutpos, 1553 .get_otg_active_size = optc1_get_otg_active_size, 1554 .set_early_control = optc1_set_early_control, 1555 /* used by enable_timing_synchronization. Not need for FPGA */ 1556 .wait_for_state = optc1_wait_for_state, 1557 .set_blank = optc1_set_blank, 1558 .is_blanked = optc1_is_blanked, 1559 .set_blank_color = optc1_program_blank_color, 1560 .did_triggered_reset_occur = optc1_did_triggered_reset_occur, 1561 .enable_reset_trigger = optc1_enable_reset_trigger, 1562 .enable_crtc_reset = optc1_enable_crtc_reset, 1563 .disable_reset_trigger = optc1_disable_reset_trigger, 1564 .lock = optc1_lock, 1565 .unlock = optc1_unlock, 1566 .enable_optc_clock = optc1_enable_optc_clock, 1567 .set_drr = optc1_set_drr, 1568 .get_last_used_drr_vtotal = NULL, 1569 .set_vtotal_min_max = optc1_set_vtotal_min_max, 1570 .set_static_screen_control = optc1_set_static_screen_control, 1571 .set_test_pattern = optc1_set_test_pattern, 1572 .program_stereo = optc1_program_stereo, 1573 .is_stereo_left_eye = optc1_is_stereo_left_eye, 1574 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, 1575 .tg_init = optc1_tg_init, 1576 .is_tg_enabled = optc1_is_tg_enabled, 1577 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, 1578 .clear_optc_underflow = optc1_clear_optc_underflow, 1579 .get_crc = optc1_get_crc, 1580 .configure_crc = optc1_configure_crc, 1581 .set_vtg_params = optc1_set_vtg_params, 1582 .program_manual_trigger = optc1_program_manual_trigger, 1583 .setup_manual_trigger = optc1_setup_manual_trigger, 1584 .get_hw_timing = optc1_get_hw_timing, 1585 }; 1586 1587 void dcn10_timing_generator_init(struct optc *optc1) 1588 { 1589 optc1->base.funcs = &dcn10_tg_funcs; 1590 1591 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; 1592 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; 1593 1594 optc1->min_h_blank = 32; 1595 optc1->min_v_blank = 3; 1596 optc1->min_v_blank_interlace = 5; 1597 optc1->min_h_sync_width = 4; 1598 optc1->min_v_sync_width = 1; 1599 } 1600 1601 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this: 1602 * 1603 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as 1604 * containter rate. 1605 * 1606 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be 1607 * halved to maintain the correct pixel rate. 1608 * 1609 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied 1610 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well. 1611 * 1612 */ 1613 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) 1614 { 1615 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420; 1616 1617 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422 1618 && !timing->dsc_cfg.ycbcr422_simple); 1619 return two_pix; 1620 } 1621 1622