xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 	if (timing->flags.INTERLACE == 1) {
52 		if (timing->v_front_porch < 2)
53 			timing->v_front_porch = 2;
54 	} else {
55 		if (timing->v_front_porch < 1)
56 			timing->v_front_porch = 1;
57 	}
58 }
59 
60 void optc1_program_global_sync(
61 		struct timing_generator *optc,
62 		int vready_offset,
63 		int vstartup_start,
64 		int vupdate_offset,
65 		int vupdate_width)
66 {
67 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
68 
69 	optc1->vready_offset = vready_offset;
70 	optc1->vstartup_start = vstartup_start;
71 	optc1->vupdate_offset = vupdate_offset;
72 	optc1->vupdate_width = vupdate_width;
73 
74 	if (optc1->vstartup_start == 0) {
75 		BREAK_TO_DEBUGGER();
76 		return;
77 	}
78 
79 	REG_SET(OTG_VSTARTUP_PARAM, 0,
80 		VSTARTUP_START, optc1->vstartup_start);
81 
82 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 			VUPDATE_OFFSET, optc1->vupdate_offset,
84 			VUPDATE_WIDTH, optc1->vupdate_width);
85 
86 	REG_SET(OTG_VREADY_PARAM, 0,
87 			VREADY_OFFSET, optc1->vready_offset);
88 }
89 
90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
93 
94 	REG_SET(OTG_STEREO_CONTROL, 0,
95 		OTG_STEREO_EN, 0);
96 
97 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 		OTG_3D_STRUCTURE_EN, 0,
99 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101 
102 void optc1_setup_vertical_interrupt0(
103 		struct timing_generator *optc,
104 		uint32_t start_line,
105 		uint32_t end_line)
106 {
107 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108 
109 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113 
114 void optc1_setup_vertical_interrupt1(
115 		struct timing_generator *optc,
116 		uint32_t start_line)
117 {
118 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
119 
120 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123 
124 void optc1_setup_vertical_interrupt2(
125 		struct timing_generator *optc,
126 		uint32_t start_line)
127 {
128 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
129 
130 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133 
134 /**
135  * program_timing_generator   used by mode timing set
136  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137  * Including SYNC. Call BIOS command table to program Timings.
138  */
139 void optc1_program_timing(
140 	struct timing_generator *optc,
141 	const struct dc_crtc_timing *dc_crtc_timing,
142 	int vready_offset,
143 	int vstartup_start,
144 	int vupdate_offset,
145 	int vupdate_width,
146 	const enum signal_type signal,
147 	bool use_vbios)
148 {
149 	struct dc_crtc_timing patched_crtc_timing;
150 	uint32_t asic_blank_end;
151 	uint32_t asic_blank_start;
152 	uint32_t v_total;
153 	uint32_t v_sync_end;
154 	uint32_t h_sync_polarity, v_sync_polarity;
155 	uint32_t start_point = 0;
156 	uint32_t field_num = 0;
157 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
158 
159 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
160 
161 	optc1->signal = signal;
162 	optc1->vready_offset = vready_offset;
163 	optc1->vstartup_start = vstartup_start;
164 	optc1->vupdate_offset = vupdate_offset;
165 	optc1->vupdate_width = vupdate_width;
166 	patched_crtc_timing = *dc_crtc_timing;
167 	apply_front_porch_workaround(&patched_crtc_timing);
168 	optc1->orginal_patched_timing = patched_crtc_timing;
169 
170 	/* Load horizontal timing */
171 
172 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
173 	REG_SET(OTG_H_TOTAL, 0,
174 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
175 
176 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
177 	REG_UPDATE_2(OTG_H_SYNC_A,
178 			OTG_H_SYNC_A_START, 0,
179 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
180 
181 	/* blank_start = line end - front porch */
182 	asic_blank_start = patched_crtc_timing.h_total -
183 			patched_crtc_timing.h_front_porch;
184 
185 	/* blank_end = blank_start - active */
186 	asic_blank_end = asic_blank_start -
187 			patched_crtc_timing.h_border_right -
188 			patched_crtc_timing.h_addressable -
189 			patched_crtc_timing.h_border_left;
190 
191 	REG_UPDATE_2(OTG_H_BLANK_START_END,
192 			OTG_H_BLANK_START, asic_blank_start,
193 			OTG_H_BLANK_END, asic_blank_end);
194 
195 	/* h_sync polarity */
196 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
197 			0 : 1;
198 
199 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
200 			OTG_H_SYNC_A_POL, h_sync_polarity);
201 
202 	v_total = patched_crtc_timing.v_total - 1;
203 
204 	REG_SET(OTG_V_TOTAL, 0,
205 			OTG_V_TOTAL, v_total);
206 
207 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
208 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
209 	 */
210 	optc->funcs->set_vtotal_min_max(optc, v_total, v_total);
211 
212 	/* v_sync_start = 0, v_sync_end = v_sync_width */
213 	v_sync_end = patched_crtc_timing.v_sync_width;
214 
215 	REG_UPDATE_2(OTG_V_SYNC_A,
216 			OTG_V_SYNC_A_START, 0,
217 			OTG_V_SYNC_A_END, v_sync_end);
218 
219 	/* blank_start = frame end - front porch */
220 	asic_blank_start = patched_crtc_timing.v_total -
221 			patched_crtc_timing.v_front_porch;
222 
223 	/* blank_end = blank_start - active */
224 	asic_blank_end = asic_blank_start -
225 			patched_crtc_timing.v_border_bottom -
226 			patched_crtc_timing.v_addressable -
227 			patched_crtc_timing.v_border_top;
228 
229 	REG_UPDATE_2(OTG_V_BLANK_START_END,
230 			OTG_V_BLANK_START, asic_blank_start,
231 			OTG_V_BLANK_END, asic_blank_end);
232 
233 	/* v_sync polarity */
234 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
235 			0 : 1;
236 
237 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
238 		OTG_V_SYNC_A_POL, v_sync_polarity);
239 
240 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
241 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
242 			optc1->signal == SIGNAL_TYPE_EDP) {
243 		start_point = 1;
244 		if (patched_crtc_timing.flags.INTERLACE == 1)
245 			field_num = 1;
246 	}
247 
248 	/* Interlace */
249 	if (REG(OTG_INTERLACE_CONTROL)) {
250 		if (patched_crtc_timing.flags.INTERLACE == 1)
251 			REG_UPDATE(OTG_INTERLACE_CONTROL,
252 					OTG_INTERLACE_ENABLE, 1);
253 		else
254 			REG_UPDATE(OTG_INTERLACE_CONTROL,
255 					OTG_INTERLACE_ENABLE, 0);
256 	}
257 
258 	/* VTG enable set to 0 first VInit */
259 	REG_UPDATE(CONTROL,
260 			VTG0_ENABLE, 0);
261 
262 	/* original code is using VTG offset to address OTG reg, seems wrong */
263 	REG_UPDATE_2(OTG_CONTROL,
264 			OTG_START_POINT_CNTL, start_point,
265 			OTG_FIELD_NUMBER_CNTL, field_num);
266 
267 	optc->funcs->program_global_sync(optc,
268 			vready_offset,
269 			vstartup_start,
270 			vupdate_offset,
271 			vupdate_width);
272 
273 	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
274 
275 	/* TODO
276 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
277 	 * program_horz_count_by_2
278 	 * for DVI 30bpp mode, 0 otherwise
279 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
280 	 */
281 
282 	/* Enable stereo - only when we need to pack 3D frame. Other types
283 	 * of stereo handled in explicit call
284 	 */
285 
286 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
287 		h_div = H_TIMING_DIV_BY2;
288 
289 	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
290 		uint32_t data_fmt = 0;
291 
292 		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
293 			data_fmt = 1;
294 		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
295 			data_fmt = 2;
296 
297 		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
298 	}
299 
300 	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
301 		if (optc1->opp_count == 4)
302 			h_div = H_TIMING_DIV_BY4;
303 
304 		REG_UPDATE(OTG_H_TIMING_CNTL,
305 		OTG_H_TIMING_DIV_MODE, h_div);
306 	} else {
307 		REG_UPDATE(OTG_H_TIMING_CNTL,
308 		OTG_H_TIMING_DIV_BY2, h_div);
309 	}
310 }
311 
312 /**
313  * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters
314  *
315  * @optc: timing_generator struct used to extract the optc parameters
316  * @dc_crtc_timing: Timing parameters configured
317  * @program_fp2: Boolean value indicating if FP2 will be programmed or not
318  *
319  * OTG is responsible for generating the global sync signals, including
320  * vertical timing information for each HUBP in the dcfclk domain. Each VTG is
321  * associated with one OTG that provides HUBP with vertical timing information
322  * (i.e., there is 1:1 correspondence between OTG and VTG). This function is
323  * responsible for setting the OTG parameters to the VTG during the pipe
324  * programming.
325  */
326 void optc1_set_vtg_params(struct timing_generator *optc,
327 		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
328 {
329 	struct dc_crtc_timing patched_crtc_timing;
330 	uint32_t asic_blank_end;
331 	uint32_t v_init;
332 	uint32_t v_fp2 = 0;
333 	int32_t vertical_line_start;
334 
335 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
336 
337 	patched_crtc_timing = *dc_crtc_timing;
338 	apply_front_porch_workaround(&patched_crtc_timing);
339 
340 	/* VCOUNT_INIT is the start of blank */
341 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
342 
343 	/* end of blank = v_init - active */
344 	asic_blank_end = v_init -
345 			patched_crtc_timing.v_border_bottom -
346 			patched_crtc_timing.v_addressable -
347 			patched_crtc_timing.v_border_top;
348 
349 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
350 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
351 	if (vertical_line_start < 0)
352 		v_fp2 = -vertical_line_start;
353 
354 	/* Interlace */
355 	if (REG(OTG_INTERLACE_CONTROL)) {
356 		if (patched_crtc_timing.flags.INTERLACE == 1) {
357 			v_init = v_init / 2;
358 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
359 				v_fp2 = v_fp2 / 2;
360 		}
361 	}
362 
363 	if (program_fp2)
364 		REG_UPDATE_2(CONTROL,
365 				VTG0_FP2, v_fp2,
366 				VTG0_VCOUNT_INIT, v_init);
367 	else
368 		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
369 }
370 
371 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
372 {
373 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
374 
375 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
376 
377 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
378 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
379 }
380 
381 /**
382  * optc1_set_timing_double_buffer() - DRR double buffering control
383  *
384  * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
385  * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
386  *
387  * Options: any time,  start of frame, dp start of frame (range timing)
388  */
389 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
390 {
391 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
392 	uint32_t mode = enable ? 2 : 0;
393 
394 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
395 		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
396 }
397 
398 /**
399  * unblank_crtc
400  * Call ASIC Control Object to UnBlank CRTC.
401  */
402 static void optc1_unblank_crtc(struct timing_generator *optc)
403 {
404 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
405 
406 	REG_UPDATE_2(OTG_BLANK_CONTROL,
407 			OTG_BLANK_DATA_EN, 0,
408 			OTG_BLANK_DE_MODE, 0);
409 
410 	/* W/A for automated testing
411 	 * Automated testing will fail underflow test as there
412 	 * sporadic underflows which occur during the optc blank
413 	 * sequence.  As a w/a, clear underflow on unblank.
414 	 * This prevents the failure, but will not mask actual
415 	 * underflow that affect real use cases.
416 	 */
417 	optc1_clear_optc_underflow(optc);
418 }
419 
420 /**
421  * blank_crtc
422  * Call ASIC Control Object to Blank CRTC.
423  */
424 
425 static void optc1_blank_crtc(struct timing_generator *optc)
426 {
427 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
428 
429 	REG_UPDATE_2(OTG_BLANK_CONTROL,
430 			OTG_BLANK_DATA_EN, 1,
431 			OTG_BLANK_DE_MODE, 0);
432 
433 	optc1_set_blank_data_double_buffer(optc, false);
434 }
435 
436 void optc1_set_blank(struct timing_generator *optc,
437 		bool enable_blanking)
438 {
439 	if (enable_blanking)
440 		optc1_blank_crtc(optc);
441 	else
442 		optc1_unblank_crtc(optc);
443 }
444 
445 bool optc1_is_blanked(struct timing_generator *optc)
446 {
447 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
448 	uint32_t blank_en;
449 	uint32_t blank_state;
450 
451 	REG_GET_2(OTG_BLANK_CONTROL,
452 			OTG_BLANK_DATA_EN, &blank_en,
453 			OTG_CURRENT_BLANK_STATE, &blank_state);
454 
455 	return blank_en && blank_state;
456 }
457 
458 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
459 {
460 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
461 
462 	if (enable) {
463 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
464 				OPTC_INPUT_CLK_EN, 1,
465 				OPTC_INPUT_CLK_GATE_DIS, 1);
466 
467 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
468 				OPTC_INPUT_CLK_ON, 1,
469 				1, 1000);
470 
471 		/* Enable clock */
472 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
473 				OTG_CLOCK_EN, 1,
474 				OTG_CLOCK_GATE_DIS, 1);
475 		REG_WAIT(OTG_CLOCK_CONTROL,
476 				OTG_CLOCK_ON, 1,
477 				1, 1000);
478 	} else  {
479 
480 		//last chance to clear underflow, otherwise, it will always there due to clock is off.
481 		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
482 			optc->funcs->clear_optc_underflow(optc);
483 
484 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
485 				OTG_CLOCK_GATE_DIS, 0,
486 				OTG_CLOCK_EN, 0);
487 
488 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
489 				OPTC_INPUT_CLK_GATE_DIS, 0,
490 				OPTC_INPUT_CLK_EN, 0);
491 	}
492 }
493 
494 /**
495  * Enable CRTC
496  * Enable CRTC - call ASIC Control Object to enable Timing generator.
497  */
498 static bool optc1_enable_crtc(struct timing_generator *optc)
499 {
500 	/* TODO FPGA wait for answer
501 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
502 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
503 	 */
504 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
505 
506 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
507 	 * OPP and OPTC should 1:1 mapping
508 	 */
509 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
510 			OPTC_SRC_SEL, optc->inst);
511 
512 	/* VTG enable first is for HW workaround */
513 	REG_UPDATE(CONTROL,
514 			VTG0_ENABLE, 1);
515 
516 	REG_SEQ_START();
517 
518 	/* Enable CRTC */
519 	REG_UPDATE_2(OTG_CONTROL,
520 			OTG_DISABLE_POINT_CNTL, 3,
521 			OTG_MASTER_EN, 1);
522 
523 	REG_SEQ_SUBMIT();
524 	REG_SEQ_WAIT_DONE();
525 
526 	return true;
527 }
528 
529 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
530 bool optc1_disable_crtc(struct timing_generator *optc)
531 {
532 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
533 
534 	/* disable otg request until end of the first line
535 	 * in the vertical blank region
536 	 */
537 	REG_UPDATE_2(OTG_CONTROL,
538 			OTG_DISABLE_POINT_CNTL, 3,
539 			OTG_MASTER_EN, 0);
540 
541 	REG_UPDATE(CONTROL,
542 			VTG0_ENABLE, 0);
543 
544 	/* CRTC disabled, so disable  clock. */
545 	REG_WAIT(OTG_CLOCK_CONTROL,
546 			OTG_BUSY, 0,
547 			1, 100000);
548 
549 	return true;
550 }
551 
552 
553 void optc1_program_blank_color(
554 		struct timing_generator *optc,
555 		const struct tg_color *black_color)
556 {
557 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
558 
559 	REG_SET_3(OTG_BLACK_COLOR, 0,
560 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
561 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
562 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
563 }
564 
565 bool optc1_validate_timing(
566 	struct timing_generator *optc,
567 	const struct dc_crtc_timing *timing)
568 {
569 	uint32_t v_blank;
570 	uint32_t h_blank;
571 	uint32_t min_v_blank;
572 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
573 
574 	ASSERT(timing != NULL);
575 
576 	v_blank = (timing->v_total - timing->v_addressable -
577 					timing->v_border_top - timing->v_border_bottom);
578 
579 	h_blank = (timing->h_total - timing->h_addressable -
580 		timing->h_border_right -
581 		timing->h_border_left);
582 
583 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
584 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
585 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
586 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
587 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
588 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
589 		return false;
590 
591 	/* Temporarily blocking interlacing mode until it's supported */
592 	if (timing->flags.INTERLACE == 1)
593 		return false;
594 
595 	/* Check maximum number of pixels supported by Timing Generator
596 	 * (Currently will never fail, in order to fail needs display which
597 	 * needs more than 8192 horizontal and
598 	 * more than 8192 vertical total pixels)
599 	 */
600 	if (timing->h_total > optc1->max_h_total ||
601 		timing->v_total > optc1->max_v_total)
602 		return false;
603 
604 
605 	if (h_blank < optc1->min_h_blank)
606 		return false;
607 
608 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
609 		 timing->v_sync_width  < optc1->min_v_sync_width)
610 		return false;
611 
612 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
613 
614 	if (v_blank < min_v_blank)
615 		return false;
616 
617 	return true;
618 
619 }
620 
621 /*
622  * get_vblank_counter
623  *
624  * @brief
625  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
626  * holds the counter of frames.
627  *
628  * @param
629  * struct timing_generator *optc - [in] timing generator which controls the
630  * desired CRTC
631  *
632  * @return
633  * Counter of frames, which should equal to number of vblanks.
634  */
635 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
636 {
637 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
638 	uint32_t frame_count;
639 
640 	REG_GET(OTG_STATUS_FRAME_COUNT,
641 		OTG_FRAME_COUNT, &frame_count);
642 
643 	return frame_count;
644 }
645 
646 void optc1_lock(struct timing_generator *optc)
647 {
648 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
649 
650 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
651 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
652 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
653 			OTG_MASTER_UPDATE_LOCK, 1);
654 
655 	/* Should be fast, status does not update on maximus */
656 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
657 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
658 				UPDATE_LOCK_STATUS, 1,
659 				1, 10);
660 }
661 
662 void optc1_unlock(struct timing_generator *optc)
663 {
664 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
665 
666 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
667 			OTG_MASTER_UPDATE_LOCK, 0);
668 }
669 
670 void optc1_get_position(struct timing_generator *optc,
671 		struct crtc_position *position)
672 {
673 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
674 
675 	REG_GET_2(OTG_STATUS_POSITION,
676 			OTG_HORZ_COUNT, &position->horizontal_count,
677 			OTG_VERT_COUNT, &position->vertical_count);
678 
679 	REG_GET(OTG_NOM_VERT_POSITION,
680 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
681 }
682 
683 bool optc1_is_counter_moving(struct timing_generator *optc)
684 {
685 	struct crtc_position position1, position2;
686 
687 	optc->funcs->get_position(optc, &position1);
688 	optc->funcs->get_position(optc, &position2);
689 
690 	if (position1.horizontal_count == position2.horizontal_count &&
691 		position1.vertical_count == position2.vertical_count)
692 		return false;
693 	else
694 		return true;
695 }
696 
697 bool optc1_did_triggered_reset_occur(
698 	struct timing_generator *optc)
699 {
700 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
701 	uint32_t occurred_force, occurred_vsync;
702 
703 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
704 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
705 
706 	REG_GET(OTG_VERT_SYNC_CONTROL,
707 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
708 
709 	return occurred_vsync != 0 || occurred_force != 0;
710 }
711 
712 void optc1_disable_reset_trigger(struct timing_generator *optc)
713 {
714 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
715 
716 	REG_WRITE(OTG_TRIGA_CNTL, 0);
717 
718 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
719 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
720 
721 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
722 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
723 }
724 
725 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
726 {
727 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
728 	uint32_t falling_edge;
729 
730 	REG_GET(OTG_V_SYNC_A_CNTL,
731 			OTG_V_SYNC_A_POL, &falling_edge);
732 
733 	if (falling_edge)
734 		REG_SET_3(OTG_TRIGA_CNTL, 0,
735 				/* vsync signal from selected OTG pipe based
736 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
737 				 */
738 				OTG_TRIGA_SOURCE_SELECT, 20,
739 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
740 				/* always detect falling edge */
741 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
742 	else
743 		REG_SET_3(OTG_TRIGA_CNTL, 0,
744 				/* vsync signal from selected OTG pipe based
745 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
746 				 */
747 				OTG_TRIGA_SOURCE_SELECT, 20,
748 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
749 				/* always detect rising edge */
750 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
751 
752 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
753 			/* force H count to H_TOTAL and V count to V_TOTAL in
754 			 * progressive mode and V_TOTAL-1 in interlaced mode
755 			 */
756 			OTG_FORCE_COUNT_NOW_MODE, 2);
757 }
758 
759 void optc1_enable_crtc_reset(
760 		struct timing_generator *optc,
761 		int source_tg_inst,
762 		struct crtc_trigger_info *crtc_tp)
763 {
764 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
765 	uint32_t falling_edge = 0;
766 	uint32_t rising_edge = 0;
767 
768 	switch (crtc_tp->event) {
769 
770 	case CRTC_EVENT_VSYNC_RISING:
771 		rising_edge = 1;
772 		break;
773 
774 	case CRTC_EVENT_VSYNC_FALLING:
775 		falling_edge = 1;
776 		break;
777 	}
778 
779 	REG_SET_4(OTG_TRIGA_CNTL, 0,
780 		 /* vsync signal from selected OTG pipe based
781 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
782 		  */
783 		  OTG_TRIGA_SOURCE_SELECT, 20,
784 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
785 		  /* always detect falling edge */
786 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
787 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
788 
789 	switch (crtc_tp->delay) {
790 	case TRIGGER_DELAY_NEXT_LINE:
791 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
792 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
793 		break;
794 	case TRIGGER_DELAY_NEXT_PIXEL:
795 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
796 			/* force H count to H_TOTAL and V count to V_TOTAL in
797 			 * progressive mode and V_TOTAL-1 in interlaced mode
798 			 */
799 			OTG_FORCE_COUNT_NOW_MODE, 2);
800 		break;
801 	}
802 }
803 
804 void optc1_wait_for_state(struct timing_generator *optc,
805 		enum crtc_state state)
806 {
807 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
808 
809 	switch (state) {
810 	case CRTC_STATE_VBLANK:
811 		REG_WAIT(OTG_STATUS,
812 				OTG_V_BLANK, 1,
813 				1, 100000); /* 1 vupdate at 10hz */
814 		break;
815 
816 	case CRTC_STATE_VACTIVE:
817 		REG_WAIT(OTG_STATUS,
818 				OTG_V_ACTIVE_DISP, 1,
819 				1, 100000); /* 1 vupdate at 10hz */
820 		break;
821 
822 	default:
823 		break;
824 	}
825 }
826 
827 void optc1_set_early_control(
828 	struct timing_generator *optc,
829 	uint32_t early_cntl)
830 {
831 	/* asic design change, do not need this control
832 	 * empty for share caller logic
833 	 */
834 }
835 
836 
837 void optc1_set_static_screen_control(
838 	struct timing_generator *optc,
839 	uint32_t event_triggers,
840 	uint32_t num_frames)
841 {
842 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
843 
844 	// By register spec, it only takes 8 bit value
845 	if (num_frames > 0xFF)
846 		num_frames = 0xFF;
847 
848 	/* Bit 8 is no longer applicable in RV for PSR case,
849 	 * set bit 8 to 0 if given
850 	 */
851 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
852 			!= 0)
853 		event_triggers = event_triggers &
854 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
855 
856 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
857 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
858 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
859 }
860 
861 static void optc1_setup_manual_trigger(struct timing_generator *optc)
862 {
863 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
864 
865 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
866 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
867 
868 	REG_SET_8(OTG_TRIGA_CNTL, 0,
869 			OTG_TRIGA_SOURCE_SELECT, 22,
870 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
871 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
872 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
873 			OTG_TRIGA_POLARITY_SELECT, 0,
874 			OTG_TRIGA_FREQUENCY_SELECT, 0,
875 			OTG_TRIGA_DELAY, 0,
876 			OTG_TRIGA_CLEAR, 1);
877 }
878 
879 static void optc1_program_manual_trigger(struct timing_generator *optc)
880 {
881 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
882 
883 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
884 			MANUAL_FLOW_CONTROL, 1);
885 
886 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
887 			MANUAL_FLOW_CONTROL, 0);
888 }
889 
890 
891 /**
892  *****************************************************************************
893  *  Function: set_drr
894  *
895  *  @brief
896  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
897  *
898  *****************************************************************************
899  */
900 void optc1_set_drr(
901 	struct timing_generator *optc,
902 	const struct drr_params *params)
903 {
904 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
905 
906 	if (params != NULL &&
907 		params->vertical_total_max > 0 &&
908 		params->vertical_total_min > 0) {
909 
910 		if (params->vertical_total_mid != 0) {
911 
912 			REG_SET(OTG_V_TOTAL_MID, 0,
913 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
914 
915 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
916 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
917 					OTG_VTOTAL_MID_FRAME_NUM,
918 					(uint8_t)params->vertical_total_mid_frame_num);
919 
920 		}
921 
922 		optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
923 
924 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
925 				OTG_V_TOTAL_MIN_SEL, 1,
926 				OTG_V_TOTAL_MAX_SEL, 1,
927 				OTG_FORCE_LOCK_ON_EVENT, 0,
928 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
929 				OTG_SET_V_TOTAL_MIN_MASK, 0);
930 
931 		// Setup manual flow control for EOF via TRIG_A
932 		optc->funcs->setup_manual_trigger(optc);
933 
934 	} else {
935 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
936 				OTG_SET_V_TOTAL_MIN_MASK, 0,
937 				OTG_V_TOTAL_MIN_SEL, 0,
938 				OTG_V_TOTAL_MAX_SEL, 0,
939 				OTG_FORCE_LOCK_ON_EVENT, 0);
940 
941 		optc->funcs->set_vtotal_min_max(optc, 0, 0);
942 	}
943 }
944 
945 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
946 {
947 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
948 
949 	REG_SET(OTG_V_TOTAL_MAX, 0,
950 		OTG_V_TOTAL_MAX, vtotal_max);
951 
952 	REG_SET(OTG_V_TOTAL_MIN, 0,
953 		OTG_V_TOTAL_MIN, vtotal_min);
954 }
955 
956 static void optc1_set_test_pattern(
957 	struct timing_generator *optc,
958 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
959 	 * because this is not DP-specific (which is probably somewhere in DP
960 	 * encoder) */
961 	enum controller_dp_test_pattern test_pattern,
962 	enum dc_color_depth color_depth)
963 {
964 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
965 	enum test_pattern_color_format bit_depth;
966 	enum test_pattern_dyn_range dyn_range;
967 	enum test_pattern_mode mode;
968 	uint32_t pattern_mask;
969 	uint32_t pattern_data;
970 	/* color ramp generator mixes 16-bits color */
971 	uint32_t src_bpc = 16;
972 	/* requested bpc */
973 	uint32_t dst_bpc;
974 	uint32_t index;
975 	/* RGB values of the color bars.
976 	 * Produce two RGB colors: RGB0 - white (all Fs)
977 	 * and RGB1 - black (all 0s)
978 	 * (three RGB components for two colors)
979 	 */
980 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
981 						0x0000, 0x0000};
982 	/* dest color (converted to the specified color format) */
983 	uint16_t dst_color[6];
984 	uint32_t inc_base;
985 
986 	/* translate to bit depth */
987 	switch (color_depth) {
988 	case COLOR_DEPTH_666:
989 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
990 	break;
991 	case COLOR_DEPTH_888:
992 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
993 	break;
994 	case COLOR_DEPTH_101010:
995 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
996 	break;
997 	case COLOR_DEPTH_121212:
998 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
999 	break;
1000 	default:
1001 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1002 	break;
1003 	}
1004 
1005 	switch (test_pattern) {
1006 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1007 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1008 	{
1009 		dyn_range = (test_pattern ==
1010 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1011 				TEST_PATTERN_DYN_RANGE_CEA :
1012 				TEST_PATTERN_DYN_RANGE_VESA);
1013 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1014 
1015 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1016 				OTG_TEST_PATTERN_VRES, 6,
1017 				OTG_TEST_PATTERN_HRES, 6);
1018 
1019 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1020 				OTG_TEST_PATTERN_EN, 1,
1021 				OTG_TEST_PATTERN_MODE, mode,
1022 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1023 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1024 	}
1025 	break;
1026 
1027 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1028 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1029 	{
1030 		mode = (test_pattern ==
1031 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1032 			TEST_PATTERN_MODE_VERTICALBARS :
1033 			TEST_PATTERN_MODE_HORIZONTALBARS);
1034 
1035 		switch (bit_depth) {
1036 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1037 			dst_bpc = 6;
1038 		break;
1039 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1040 			dst_bpc = 8;
1041 		break;
1042 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1043 			dst_bpc = 10;
1044 		break;
1045 		default:
1046 			dst_bpc = 8;
1047 		break;
1048 		}
1049 
1050 		/* adjust color to the required colorFormat */
1051 		for (index = 0; index < 6; index++) {
1052 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1053 			 * (srcBpc - dstBpc);
1054 			 */
1055 			dst_color[index] =
1056 				src_color[index] >> (src_bpc - dst_bpc);
1057 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1058 		 * lowest 6 are hardwired to ZERO
1059 		 * color bits should be left aligned to MSB
1060 		 * XXXXXXXXXX000000 for 10 bit,
1061 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1062 		 */
1063 			dst_color[index] <<= (16 - dst_bpc);
1064 		}
1065 
1066 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1067 
1068 		/* We have to write the mask before data, similar to pipeline.
1069 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1070 		 * and RGB1 to be cyan,
1071 		 * we need to make 7 writes:
1072 		 * MASK   DATA
1073 		 * 000001 00000000 00000000                     set mask to R0
1074 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1075 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1076 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1077 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1078 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1079 		 * 100000 11111111 00000000     B1 255, 0xFF00
1080 		 *
1081 		 * we will make a loop of 6 in which we prepare the mask,
1082 		 * then write, then prepare the color for next write.
1083 		 * first iteration will write mask only,
1084 		 * but each next iteration color prepared in
1085 		 * previous iteration will be written within new mask,
1086 		 * the last component will written separately,
1087 		 * mask is not changing between 6th and 7th write
1088 		 * and color will be prepared by last iteration
1089 		 */
1090 
1091 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1092 		 * is B1, G1, R1, B0, G0, R0
1093 		 */
1094 		pattern_data = 0;
1095 		for (index = 0; index < 6; index++) {
1096 			/* prepare color mask, first write PATTERN_DATA
1097 			 * will have all zeros
1098 			 */
1099 			pattern_mask = (1 << index);
1100 
1101 			/* write color component */
1102 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1103 					OTG_TEST_PATTERN_MASK, pattern_mask,
1104 					OTG_TEST_PATTERN_DATA, pattern_data);
1105 
1106 			/* prepare next color component,
1107 			 * will be written in the next iteration
1108 			 */
1109 			pattern_data = dst_color[index];
1110 		}
1111 		/* write last color component,
1112 		 * it's been already prepared in the loop
1113 		 */
1114 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1115 				OTG_TEST_PATTERN_MASK, pattern_mask,
1116 				OTG_TEST_PATTERN_DATA, pattern_data);
1117 
1118 		/* enable test pattern */
1119 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1120 				OTG_TEST_PATTERN_EN, 1,
1121 				OTG_TEST_PATTERN_MODE, mode,
1122 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1123 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1124 	}
1125 	break;
1126 
1127 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1128 	{
1129 		mode = (bit_depth ==
1130 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1131 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1132 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1133 
1134 		switch (bit_depth) {
1135 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1136 			dst_bpc = 6;
1137 		break;
1138 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1139 			dst_bpc = 8;
1140 		break;
1141 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1142 			dst_bpc = 10;
1143 		break;
1144 		default:
1145 			dst_bpc = 8;
1146 		break;
1147 		}
1148 
1149 		/* increment for the first ramp for one color gradation
1150 		 * 1 gradation for 6-bit color is 2^10
1151 		 * gradations in 16-bit color
1152 		 */
1153 		inc_base = (src_bpc - dst_bpc);
1154 
1155 		switch (bit_depth) {
1156 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1157 		{
1158 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1159 					OTG_TEST_PATTERN_INC0, inc_base,
1160 					OTG_TEST_PATTERN_INC1, 0,
1161 					OTG_TEST_PATTERN_HRES, 6,
1162 					OTG_TEST_PATTERN_VRES, 6,
1163 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1164 		}
1165 		break;
1166 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1167 		{
1168 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1169 					OTG_TEST_PATTERN_INC0, inc_base,
1170 					OTG_TEST_PATTERN_INC1, 0,
1171 					OTG_TEST_PATTERN_HRES, 8,
1172 					OTG_TEST_PATTERN_VRES, 6,
1173 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1174 		}
1175 		break;
1176 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1177 		{
1178 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1179 					OTG_TEST_PATTERN_INC0, inc_base,
1180 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1181 					OTG_TEST_PATTERN_HRES, 8,
1182 					OTG_TEST_PATTERN_VRES, 5,
1183 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1184 		}
1185 		break;
1186 		default:
1187 		break;
1188 		}
1189 
1190 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1191 
1192 		/* enable test pattern */
1193 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1194 
1195 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1196 				OTG_TEST_PATTERN_EN, 1,
1197 				OTG_TEST_PATTERN_MODE, mode,
1198 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1199 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1200 	}
1201 	break;
1202 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1203 	{
1204 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1205 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1206 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1207 	}
1208 	break;
1209 	default:
1210 		break;
1211 
1212 	}
1213 }
1214 
1215 void optc1_get_crtc_scanoutpos(
1216 	struct timing_generator *optc,
1217 	uint32_t *v_blank_start,
1218 	uint32_t *v_blank_end,
1219 	uint32_t *h_position,
1220 	uint32_t *v_position)
1221 {
1222 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1223 	struct crtc_position position;
1224 
1225 	REG_GET_2(OTG_V_BLANK_START_END,
1226 			OTG_V_BLANK_START, v_blank_start,
1227 			OTG_V_BLANK_END, v_blank_end);
1228 
1229 	optc1_get_position(optc, &position);
1230 
1231 	*h_position = position.horizontal_count;
1232 	*v_position = position.vertical_count;
1233 }
1234 
1235 static void optc1_enable_stereo(struct timing_generator *optc,
1236 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1237 {
1238 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1239 
1240 	if (flags) {
1241 		uint32_t stereo_en;
1242 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1243 
1244 		if (flags->PROGRAM_STEREO)
1245 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1246 				OTG_STEREO_EN, stereo_en,
1247 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1248 				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1249 
1250 		if (flags->PROGRAM_POLARITY)
1251 			REG_UPDATE(OTG_STEREO_CONTROL,
1252 				OTG_STEREO_EYE_FLAG_POLARITY,
1253 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1254 
1255 		if (flags->DISABLE_STEREO_DP_SYNC)
1256 			REG_UPDATE(OTG_STEREO_CONTROL,
1257 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1258 
1259 		if (flags->PROGRAM_STEREO)
1260 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1261 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1262 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1263 
1264 	}
1265 }
1266 
1267 void optc1_program_stereo(struct timing_generator *optc,
1268 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1269 {
1270 	if (flags->PROGRAM_STEREO)
1271 		optc1_enable_stereo(optc, timing, flags);
1272 	else
1273 		optc1_disable_stereo(optc);
1274 }
1275 
1276 
1277 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1278 {
1279 	bool ret = false;
1280 	uint32_t left_eye = 0;
1281 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1282 
1283 	REG_GET(OTG_STEREO_STATUS,
1284 		OTG_STEREO_CURRENT_EYE, &left_eye);
1285 	if (left_eye == 1)
1286 		ret = true;
1287 	else
1288 		ret = false;
1289 
1290 	return ret;
1291 }
1292 
1293 bool optc1_get_hw_timing(struct timing_generator *tg,
1294 		struct dc_crtc_timing *hw_crtc_timing)
1295 {
1296 	struct dcn_otg_state s = {0};
1297 
1298 	if (tg == NULL || hw_crtc_timing == NULL)
1299 		return false;
1300 
1301 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1302 
1303 	hw_crtc_timing->h_total = s.h_total + 1;
1304 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1305 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1306 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1307 
1308 	hw_crtc_timing->v_total = s.v_total + 1;
1309 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1310 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1311 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1312 
1313 	return true;
1314 }
1315 
1316 
1317 void optc1_read_otg_state(struct optc *optc1,
1318 		struct dcn_otg_state *s)
1319 {
1320 	REG_GET(OTG_CONTROL,
1321 			OTG_MASTER_EN, &s->otg_enabled);
1322 
1323 	REG_GET_2(OTG_V_BLANK_START_END,
1324 			OTG_V_BLANK_START, &s->v_blank_start,
1325 			OTG_V_BLANK_END, &s->v_blank_end);
1326 
1327 	REG_GET(OTG_V_SYNC_A_CNTL,
1328 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1329 
1330 	REG_GET(OTG_V_TOTAL,
1331 			OTG_V_TOTAL, &s->v_total);
1332 
1333 	REG_GET(OTG_V_TOTAL_MAX,
1334 			OTG_V_TOTAL_MAX, &s->v_total_max);
1335 
1336 	REG_GET(OTG_V_TOTAL_MIN,
1337 			OTG_V_TOTAL_MIN, &s->v_total_min);
1338 
1339 	REG_GET(OTG_V_TOTAL_CONTROL,
1340 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1341 
1342 	REG_GET(OTG_V_TOTAL_CONTROL,
1343 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1344 
1345 	REG_GET_2(OTG_V_SYNC_A,
1346 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1347 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1348 
1349 	REG_GET_2(OTG_H_BLANK_START_END,
1350 			OTG_H_BLANK_START, &s->h_blank_start,
1351 			OTG_H_BLANK_END, &s->h_blank_end);
1352 
1353 	REG_GET_2(OTG_H_SYNC_A,
1354 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1355 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1356 
1357 	REG_GET(OTG_H_SYNC_A_CNTL,
1358 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1359 
1360 	REG_GET(OTG_H_TOTAL,
1361 			OTG_H_TOTAL, &s->h_total);
1362 
1363 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1364 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1365 
1366 	REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL,
1367 			OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en);
1368 
1369 	REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION,
1370 				OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line);
1371 
1372 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1373 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1374 
1375 	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1376 			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1377 }
1378 
1379 bool optc1_get_otg_active_size(struct timing_generator *optc,
1380 		uint32_t *otg_active_width,
1381 		uint32_t *otg_active_height)
1382 {
1383 	uint32_t otg_enabled;
1384 	uint32_t v_blank_start;
1385 	uint32_t v_blank_end;
1386 	uint32_t h_blank_start;
1387 	uint32_t h_blank_end;
1388 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1389 
1390 
1391 	REG_GET(OTG_CONTROL,
1392 			OTG_MASTER_EN, &otg_enabled);
1393 
1394 	if (otg_enabled == 0)
1395 		return false;
1396 
1397 	REG_GET_2(OTG_V_BLANK_START_END,
1398 			OTG_V_BLANK_START, &v_blank_start,
1399 			OTG_V_BLANK_END, &v_blank_end);
1400 
1401 	REG_GET_2(OTG_H_BLANK_START_END,
1402 			OTG_H_BLANK_START, &h_blank_start,
1403 			OTG_H_BLANK_END, &h_blank_end);
1404 
1405 	*otg_active_width = v_blank_start - v_blank_end;
1406 	*otg_active_height = h_blank_start - h_blank_end;
1407 	return true;
1408 }
1409 
1410 void optc1_clear_optc_underflow(struct timing_generator *optc)
1411 {
1412 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1413 
1414 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1415 }
1416 
1417 void optc1_tg_init(struct timing_generator *optc)
1418 {
1419 	optc1_set_blank_data_double_buffer(optc, true);
1420 	optc1_set_timing_double_buffer(optc, true);
1421 	optc1_clear_optc_underflow(optc);
1422 }
1423 
1424 bool optc1_is_tg_enabled(struct timing_generator *optc)
1425 {
1426 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1427 	uint32_t otg_enabled = 0;
1428 
1429 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1430 
1431 	return (otg_enabled != 0);
1432 
1433 }
1434 
1435 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1436 {
1437 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1438 	uint32_t underflow_occurred = 0;
1439 
1440 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1441 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1442 			&underflow_occurred);
1443 
1444 	return (underflow_occurred == 1);
1445 }
1446 
1447 bool optc1_configure_crc(struct timing_generator *optc,
1448 			  const struct crc_params *params)
1449 {
1450 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1451 
1452 	/* Cannot configure crc on a CRTC that is disabled */
1453 	if (!optc1_is_tg_enabled(optc))
1454 		return false;
1455 
1456 	REG_WRITE(OTG_CRC_CNTL, 0);
1457 
1458 	if (!params->enable)
1459 		return true;
1460 
1461 	/* Program frame boundaries */
1462 	/* Window A x axis start and end. */
1463 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1464 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1465 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1466 
1467 	/* Window A y axis start and end. */
1468 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1469 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1470 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1471 
1472 	/* Window B x axis start and end. */
1473 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1474 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1475 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1476 
1477 	/* Window B y axis start and end. */
1478 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1479 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1480 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1481 
1482 	/* Set crc mode and selection, and enable. Only using CRC0*/
1483 	REG_UPDATE_3(OTG_CRC_CNTL,
1484 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1485 			OTG_CRC0_SELECT, params->selection,
1486 			OTG_CRC_EN, 1);
1487 
1488 	return true;
1489 }
1490 
1491 /**
1492  * optc1_get_crc - Capture CRC result per component
1493  *
1494  * @optc: timing_generator instance.
1495  * @r_cr: 16-bit primary CRC signature for red data.
1496  * @g_y: 16-bit primary CRC signature for green data.
1497  * @b_cb: 16-bit primary CRC signature for blue data.
1498  *
1499  * This function reads the CRC signature from the OPTC registers. Notice that
1500  * we have three registers to keep the CRC result per color component (RGB).
1501  *
1502  * Returns:
1503  * If CRC is disabled, return false; otherwise, return true, and the CRC
1504  * results in the parameters.
1505  */
1506 bool optc1_get_crc(struct timing_generator *optc,
1507 		   uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1508 {
1509 	uint32_t field = 0;
1510 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1511 
1512 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1513 
1514 	/* Early return if CRC is not enabled for this CRTC */
1515 	if (!field)
1516 		return false;
1517 
1518 	/* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */
1519 	REG_GET_2(OTG_CRC0_DATA_RG,
1520 		  CRC0_R_CR, r_cr,
1521 		  CRC0_G_Y, g_y);
1522 
1523 	/* OTG_CRC0_DATA_B has the CRC16 results for the blue component */
1524 	REG_GET(OTG_CRC0_DATA_B,
1525 		CRC0_B_CB, b_cb);
1526 
1527 	return true;
1528 }
1529 
1530 static const struct timing_generator_funcs dcn10_tg_funcs = {
1531 		.validate_timing = optc1_validate_timing,
1532 		.program_timing = optc1_program_timing,
1533 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1534 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1535 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1536 		.program_global_sync = optc1_program_global_sync,
1537 		.enable_crtc = optc1_enable_crtc,
1538 		.disable_crtc = optc1_disable_crtc,
1539 		/* used by enable_timing_synchronization. Not need for FPGA */
1540 		.is_counter_moving = optc1_is_counter_moving,
1541 		.get_position = optc1_get_position,
1542 		.get_frame_count = optc1_get_vblank_counter,
1543 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1544 		.get_otg_active_size = optc1_get_otg_active_size,
1545 		.set_early_control = optc1_set_early_control,
1546 		/* used by enable_timing_synchronization. Not need for FPGA */
1547 		.wait_for_state = optc1_wait_for_state,
1548 		.set_blank = optc1_set_blank,
1549 		.is_blanked = optc1_is_blanked,
1550 		.set_blank_color = optc1_program_blank_color,
1551 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1552 		.enable_reset_trigger = optc1_enable_reset_trigger,
1553 		.enable_crtc_reset = optc1_enable_crtc_reset,
1554 		.disable_reset_trigger = optc1_disable_reset_trigger,
1555 		.lock = optc1_lock,
1556 		.unlock = optc1_unlock,
1557 		.enable_optc_clock = optc1_enable_optc_clock,
1558 		.set_drr = optc1_set_drr,
1559 		.get_last_used_drr_vtotal = NULL,
1560 		.set_vtotal_min_max = optc1_set_vtotal_min_max,
1561 		.set_static_screen_control = optc1_set_static_screen_control,
1562 		.set_test_pattern = optc1_set_test_pattern,
1563 		.program_stereo = optc1_program_stereo,
1564 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1565 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1566 		.tg_init = optc1_tg_init,
1567 		.is_tg_enabled = optc1_is_tg_enabled,
1568 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1569 		.clear_optc_underflow = optc1_clear_optc_underflow,
1570 		.get_crc = optc1_get_crc,
1571 		.configure_crc = optc1_configure_crc,
1572 		.set_vtg_params = optc1_set_vtg_params,
1573 		.program_manual_trigger = optc1_program_manual_trigger,
1574 		.setup_manual_trigger = optc1_setup_manual_trigger,
1575 		.get_hw_timing = optc1_get_hw_timing,
1576 };
1577 
1578 void dcn10_timing_generator_init(struct optc *optc1)
1579 {
1580 	optc1->base.funcs = &dcn10_tg_funcs;
1581 
1582 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1583 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1584 
1585 	optc1->min_h_blank = 32;
1586 	optc1->min_v_blank = 3;
1587 	optc1->min_v_blank_interlace = 5;
1588 	optc1->min_h_sync_width = 4;
1589 	optc1->min_v_sync_width = 1;
1590 }
1591 
1592 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1593  *
1594  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1595  *   containter rate.
1596  *
1597  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1598  *   halved to maintain the correct pixel rate.
1599  *
1600  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1601  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1602  *
1603  */
1604 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1605 {
1606 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1607 
1608 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1609 			&& !timing->dsc_cfg.ycbcr422_simple);
1610 	return two_pix;
1611 }
1612 
1613