1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 	if (timing->flags.INTERLACE == 1) {
52 		if (timing->v_front_porch < 2)
53 			timing->v_front_porch = 2;
54 	} else {
55 		if (timing->v_front_porch < 1)
56 			timing->v_front_porch = 1;
57 	}
58 }
59 
60 void optc1_program_global_sync(
61 		struct timing_generator *optc,
62 		int vready_offset,
63 		int vstartup_start,
64 		int vupdate_offset,
65 		int vupdate_width)
66 {
67 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
68 
69 	optc1->vready_offset = vready_offset;
70 	optc1->vstartup_start = vstartup_start;
71 	optc1->vupdate_offset = vupdate_offset;
72 	optc1->vupdate_width = vupdate_width;
73 
74 	if (optc1->vstartup_start == 0) {
75 		BREAK_TO_DEBUGGER();
76 		return;
77 	}
78 
79 	REG_SET(OTG_VSTARTUP_PARAM, 0,
80 		VSTARTUP_START, optc1->vstartup_start);
81 
82 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 			VUPDATE_OFFSET, optc1->vupdate_offset,
84 			VUPDATE_WIDTH, optc1->vupdate_width);
85 
86 	REG_SET(OTG_VREADY_PARAM, 0,
87 			VREADY_OFFSET, optc1->vready_offset);
88 }
89 
90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
93 
94 	REG_SET(OTG_STEREO_CONTROL, 0,
95 		OTG_STEREO_EN, 0);
96 
97 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 		OTG_3D_STRUCTURE_EN, 0,
99 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101 
102 void optc1_setup_vertical_interrupt0(
103 		struct timing_generator *optc,
104 		uint32_t start_line,
105 		uint32_t end_line)
106 {
107 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108 
109 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113 
114 void optc1_setup_vertical_interrupt1(
115 		struct timing_generator *optc,
116 		uint32_t start_line)
117 {
118 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
119 
120 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123 
124 void optc1_setup_vertical_interrupt2(
125 		struct timing_generator *optc,
126 		uint32_t start_line)
127 {
128 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
129 
130 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133 
134 /**
135  * program_timing_generator   used by mode timing set
136  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137  * Including SYNC. Call BIOS command table to program Timings.
138  */
139 void optc1_program_timing(
140 	struct timing_generator *optc,
141 	const struct dc_crtc_timing *dc_crtc_timing,
142 	int vready_offset,
143 	int vstartup_start,
144 	int vupdate_offset,
145 	int vupdate_width,
146 	const enum signal_type signal,
147 	bool use_vbios)
148 {
149 	struct dc_crtc_timing patched_crtc_timing;
150 	uint32_t asic_blank_end;
151 	uint32_t asic_blank_start;
152 	uint32_t v_total;
153 	uint32_t v_sync_end;
154 	uint32_t h_sync_polarity, v_sync_polarity;
155 	uint32_t start_point = 0;
156 	uint32_t field_num = 0;
157 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
158 
159 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
160 
161 	optc1->signal = signal;
162 	optc1->vready_offset = vready_offset;
163 	optc1->vstartup_start = vstartup_start;
164 	optc1->vupdate_offset = vupdate_offset;
165 	optc1->vupdate_width = vupdate_width;
166 	patched_crtc_timing = *dc_crtc_timing;
167 	apply_front_porch_workaround(&patched_crtc_timing);
168 	optc1->orginal_patched_timing = patched_crtc_timing;
169 
170 	/* Load horizontal timing */
171 
172 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
173 	REG_SET(OTG_H_TOTAL, 0,
174 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
175 
176 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
177 	REG_UPDATE_2(OTG_H_SYNC_A,
178 			OTG_H_SYNC_A_START, 0,
179 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
180 
181 	/* blank_start = line end - front porch */
182 	asic_blank_start = patched_crtc_timing.h_total -
183 			patched_crtc_timing.h_front_porch;
184 
185 	/* blank_end = blank_start - active */
186 	asic_blank_end = asic_blank_start -
187 			patched_crtc_timing.h_border_right -
188 			patched_crtc_timing.h_addressable -
189 			patched_crtc_timing.h_border_left;
190 
191 	REG_UPDATE_2(OTG_H_BLANK_START_END,
192 			OTG_H_BLANK_START, asic_blank_start,
193 			OTG_H_BLANK_END, asic_blank_end);
194 
195 	/* h_sync polarity */
196 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
197 			0 : 1;
198 
199 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
200 			OTG_H_SYNC_A_POL, h_sync_polarity);
201 
202 	v_total = patched_crtc_timing.v_total - 1;
203 
204 	REG_SET(OTG_V_TOTAL, 0,
205 			OTG_V_TOTAL, v_total);
206 
207 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
208 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
209 	 */
210 	REG_SET(OTG_V_TOTAL_MAX, 0,
211 		OTG_V_TOTAL_MAX, v_total);
212 	REG_SET(OTG_V_TOTAL_MIN, 0,
213 		OTG_V_TOTAL_MIN, v_total);
214 
215 	/* v_sync_start = 0, v_sync_end = v_sync_width */
216 	v_sync_end = patched_crtc_timing.v_sync_width;
217 
218 	REG_UPDATE_2(OTG_V_SYNC_A,
219 			OTG_V_SYNC_A_START, 0,
220 			OTG_V_SYNC_A_END, v_sync_end);
221 
222 	/* blank_start = frame end - front porch */
223 	asic_blank_start = patched_crtc_timing.v_total -
224 			patched_crtc_timing.v_front_porch;
225 
226 	/* blank_end = blank_start - active */
227 	asic_blank_end = asic_blank_start -
228 			patched_crtc_timing.v_border_bottom -
229 			patched_crtc_timing.v_addressable -
230 			patched_crtc_timing.v_border_top;
231 
232 	REG_UPDATE_2(OTG_V_BLANK_START_END,
233 			OTG_V_BLANK_START, asic_blank_start,
234 			OTG_V_BLANK_END, asic_blank_end);
235 
236 	/* v_sync polarity */
237 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
238 			0 : 1;
239 
240 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
241 		OTG_V_SYNC_A_POL, v_sync_polarity);
242 
243 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
244 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
245 			optc1->signal == SIGNAL_TYPE_EDP) {
246 		start_point = 1;
247 		if (patched_crtc_timing.flags.INTERLACE == 1)
248 			field_num = 1;
249 	}
250 
251 	/* Interlace */
252 	if (REG(OTG_INTERLACE_CONTROL)) {
253 		if (patched_crtc_timing.flags.INTERLACE == 1)
254 			REG_UPDATE(OTG_INTERLACE_CONTROL,
255 					OTG_INTERLACE_ENABLE, 1);
256 		else
257 			REG_UPDATE(OTG_INTERLACE_CONTROL,
258 					OTG_INTERLACE_ENABLE, 0);
259 	}
260 
261 	/* VTG enable set to 0 first VInit */
262 	REG_UPDATE(CONTROL,
263 			VTG0_ENABLE, 0);
264 
265 	/* original code is using VTG offset to address OTG reg, seems wrong */
266 	REG_UPDATE_2(OTG_CONTROL,
267 			OTG_START_POINT_CNTL, start_point,
268 			OTG_FIELD_NUMBER_CNTL, field_num);
269 
270 	optc->funcs->program_global_sync(optc,
271 			vready_offset,
272 			vstartup_start,
273 			vupdate_offset,
274 			vupdate_width);
275 
276 	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
277 
278 	/* TODO
279 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
280 	 * program_horz_count_by_2
281 	 * for DVI 30bpp mode, 0 otherwise
282 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
283 	 */
284 
285 	/* Enable stereo - only when we need to pack 3D frame. Other types
286 	 * of stereo handled in explicit call
287 	 */
288 
289 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
290 		h_div = H_TIMING_DIV_BY2;
291 
292 	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
293 		uint32_t data_fmt = 0;
294 
295 		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
296 			data_fmt = 1;
297 		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
298 			data_fmt = 2;
299 
300 		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
301 	}
302 
303 	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
304 		if (optc1->opp_count == 4)
305 			h_div = H_TIMING_DIV_BY4;
306 
307 		REG_UPDATE(OTG_H_TIMING_CNTL,
308 		OTG_H_TIMING_DIV_MODE, h_div);
309 	} else {
310 		REG_UPDATE(OTG_H_TIMING_CNTL,
311 		OTG_H_TIMING_DIV_BY2, h_div);
312 	}
313 }
314 
315 void optc1_set_vtg_params(struct timing_generator *optc,
316 		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
317 {
318 	struct dc_crtc_timing patched_crtc_timing;
319 	uint32_t asic_blank_end;
320 	uint32_t v_init;
321 	uint32_t v_fp2 = 0;
322 	int32_t vertical_line_start;
323 
324 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
325 
326 	patched_crtc_timing = *dc_crtc_timing;
327 	apply_front_porch_workaround(&patched_crtc_timing);
328 
329 	/* VCOUNT_INIT is the start of blank */
330 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
331 
332 	/* end of blank = v_init - active */
333 	asic_blank_end = v_init -
334 			patched_crtc_timing.v_border_bottom -
335 			patched_crtc_timing.v_addressable -
336 			patched_crtc_timing.v_border_top;
337 
338 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
339 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
340 	if (vertical_line_start < 0)
341 		v_fp2 = -vertical_line_start;
342 
343 	/* Interlace */
344 	if (REG(OTG_INTERLACE_CONTROL)) {
345 		if (patched_crtc_timing.flags.INTERLACE == 1) {
346 			v_init = v_init / 2;
347 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
348 				v_fp2 = v_fp2 / 2;
349 		}
350 	}
351 
352 	if (program_fp2)
353 		REG_UPDATE_2(CONTROL,
354 				VTG0_FP2, v_fp2,
355 				VTG0_VCOUNT_INIT, v_init);
356 	else
357 		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
358 }
359 
360 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
361 {
362 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
363 
364 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
365 
366 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
367 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
368 }
369 
370 /**
371  * optc1_set_timing_double_buffer() - DRR double buffering control
372  *
373  * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
374  * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
375  *
376  * Options: any time,  start of frame, dp start of frame (range timing)
377  */
378 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
379 {
380 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
381 	uint32_t mode = enable ? 2 : 0;
382 
383 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
384 		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
385 }
386 
387 /**
388  * unblank_crtc
389  * Call ASIC Control Object to UnBlank CRTC.
390  */
391 static void optc1_unblank_crtc(struct timing_generator *optc)
392 {
393 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
394 
395 	REG_UPDATE_2(OTG_BLANK_CONTROL,
396 			OTG_BLANK_DATA_EN, 0,
397 			OTG_BLANK_DE_MODE, 0);
398 
399 	/* W/A for automated testing
400 	 * Automated testing will fail underflow test as there
401 	 * sporadic underflows which occur during the optc blank
402 	 * sequence.  As a w/a, clear underflow on unblank.
403 	 * This prevents the failure, but will not mask actual
404 	 * underflow that affect real use cases.
405 	 */
406 	optc1_clear_optc_underflow(optc);
407 }
408 
409 /**
410  * blank_crtc
411  * Call ASIC Control Object to Blank CRTC.
412  */
413 
414 static void optc1_blank_crtc(struct timing_generator *optc)
415 {
416 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
417 
418 	REG_UPDATE_2(OTG_BLANK_CONTROL,
419 			OTG_BLANK_DATA_EN, 1,
420 			OTG_BLANK_DE_MODE, 0);
421 
422 	optc1_set_blank_data_double_buffer(optc, false);
423 }
424 
425 void optc1_set_blank(struct timing_generator *optc,
426 		bool enable_blanking)
427 {
428 	if (enable_blanking)
429 		optc1_blank_crtc(optc);
430 	else
431 		optc1_unblank_crtc(optc);
432 }
433 
434 bool optc1_is_blanked(struct timing_generator *optc)
435 {
436 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
437 	uint32_t blank_en;
438 	uint32_t blank_state;
439 
440 	REG_GET_2(OTG_BLANK_CONTROL,
441 			OTG_BLANK_DATA_EN, &blank_en,
442 			OTG_CURRENT_BLANK_STATE, &blank_state);
443 
444 	return blank_en && blank_state;
445 }
446 
447 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
448 {
449 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
450 
451 	if (enable) {
452 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
453 				OPTC_INPUT_CLK_EN, 1,
454 				OPTC_INPUT_CLK_GATE_DIS, 1);
455 
456 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
457 				OPTC_INPUT_CLK_ON, 1,
458 				1, 1000);
459 
460 		/* Enable clock */
461 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
462 				OTG_CLOCK_EN, 1,
463 				OTG_CLOCK_GATE_DIS, 1);
464 		REG_WAIT(OTG_CLOCK_CONTROL,
465 				OTG_CLOCK_ON, 1,
466 				1, 1000);
467 	} else  {
468 
469 		//last chance to clear underflow, otherwise, it will always there due to clock is off.
470 		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
471 			optc->funcs->clear_optc_underflow(optc);
472 
473 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
474 				OTG_CLOCK_GATE_DIS, 0,
475 				OTG_CLOCK_EN, 0);
476 
477 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
478 				OPTC_INPUT_CLK_GATE_DIS, 0,
479 				OPTC_INPUT_CLK_EN, 0);
480 	}
481 }
482 
483 /**
484  * Enable CRTC
485  * Enable CRTC - call ASIC Control Object to enable Timing generator.
486  */
487 static bool optc1_enable_crtc(struct timing_generator *optc)
488 {
489 	/* TODO FPGA wait for answer
490 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
491 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
492 	 */
493 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
494 
495 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
496 	 * OPP and OPTC should 1:1 mapping
497 	 */
498 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
499 			OPTC_SRC_SEL, optc->inst);
500 
501 	/* VTG enable first is for HW workaround */
502 	REG_UPDATE(CONTROL,
503 			VTG0_ENABLE, 1);
504 
505 	REG_SEQ_START();
506 
507 	/* Enable CRTC */
508 	REG_UPDATE_2(OTG_CONTROL,
509 			OTG_DISABLE_POINT_CNTL, 3,
510 			OTG_MASTER_EN, 1);
511 
512 	REG_SEQ_SUBMIT();
513 	REG_SEQ_WAIT_DONE();
514 
515 	return true;
516 }
517 
518 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
519 bool optc1_disable_crtc(struct timing_generator *optc)
520 {
521 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
522 
523 	/* disable otg request until end of the first line
524 	 * in the vertical blank region
525 	 */
526 	REG_UPDATE_2(OTG_CONTROL,
527 			OTG_DISABLE_POINT_CNTL, 3,
528 			OTG_MASTER_EN, 0);
529 
530 	REG_UPDATE(CONTROL,
531 			VTG0_ENABLE, 0);
532 
533 	/* CRTC disabled, so disable  clock. */
534 	REG_WAIT(OTG_CLOCK_CONTROL,
535 			OTG_BUSY, 0,
536 			1, 100000);
537 
538 	return true;
539 }
540 
541 
542 void optc1_program_blank_color(
543 		struct timing_generator *optc,
544 		const struct tg_color *black_color)
545 {
546 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
547 
548 	REG_SET_3(OTG_BLACK_COLOR, 0,
549 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
550 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
551 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
552 }
553 
554 bool optc1_validate_timing(
555 	struct timing_generator *optc,
556 	const struct dc_crtc_timing *timing)
557 {
558 	uint32_t v_blank;
559 	uint32_t h_blank;
560 	uint32_t min_v_blank;
561 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
562 
563 	ASSERT(timing != NULL);
564 
565 	v_blank = (timing->v_total - timing->v_addressable -
566 					timing->v_border_top - timing->v_border_bottom);
567 
568 	h_blank = (timing->h_total - timing->h_addressable -
569 		timing->h_border_right -
570 		timing->h_border_left);
571 
572 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
573 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
574 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
575 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
576 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
577 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
578 		return false;
579 
580 	/* Temporarily blocking interlacing mode until it's supported */
581 	if (timing->flags.INTERLACE == 1)
582 		return false;
583 
584 	/* Check maximum number of pixels supported by Timing Generator
585 	 * (Currently will never fail, in order to fail needs display which
586 	 * needs more than 8192 horizontal and
587 	 * more than 8192 vertical total pixels)
588 	 */
589 	if (timing->h_total > optc1->max_h_total ||
590 		timing->v_total > optc1->max_v_total)
591 		return false;
592 
593 
594 	if (h_blank < optc1->min_h_blank)
595 		return false;
596 
597 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
598 		 timing->v_sync_width  < optc1->min_v_sync_width)
599 		return false;
600 
601 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
602 
603 	if (v_blank < min_v_blank)
604 		return false;
605 
606 	return true;
607 
608 }
609 
610 /*
611  * get_vblank_counter
612  *
613  * @brief
614  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
615  * holds the counter of frames.
616  *
617  * @param
618  * struct timing_generator *optc - [in] timing generator which controls the
619  * desired CRTC
620  *
621  * @return
622  * Counter of frames, which should equal to number of vblanks.
623  */
624 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
625 {
626 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
627 	uint32_t frame_count;
628 
629 	REG_GET(OTG_STATUS_FRAME_COUNT,
630 		OTG_FRAME_COUNT, &frame_count);
631 
632 	return frame_count;
633 }
634 
635 void optc1_lock(struct timing_generator *optc)
636 {
637 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
638 	uint32_t regval = 0;
639 
640 	regval = REG_READ(OTG_CONTROL);
641 
642 	/* otg is not running, do not need to be locked */
643 	if ((regval & 0x1) == 0x0)
644 		return;
645 
646 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
647 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
648 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
649 			OTG_MASTER_UPDATE_LOCK, 1);
650 
651 	/* Should be fast, status does not update on maximus */
652 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
653 
654 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
655 				UPDATE_LOCK_STATUS, 1,
656 				1, 10);
657 	}
658 }
659 
660 void optc1_unlock(struct timing_generator *optc)
661 {
662 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
663 
664 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
665 			OTG_MASTER_UPDATE_LOCK, 0);
666 }
667 
668 bool optc1_is_locked(struct timing_generator *optc)
669 {
670 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
671 	uint32_t locked;
672 
673 	REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
674 
675 	return (locked == 1);
676 }
677 
678 void optc1_get_position(struct timing_generator *optc,
679 		struct crtc_position *position)
680 {
681 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
682 
683 	REG_GET_2(OTG_STATUS_POSITION,
684 			OTG_HORZ_COUNT, &position->horizontal_count,
685 			OTG_VERT_COUNT, &position->vertical_count);
686 
687 	REG_GET(OTG_NOM_VERT_POSITION,
688 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
689 }
690 
691 bool optc1_is_counter_moving(struct timing_generator *optc)
692 {
693 	struct crtc_position position1, position2;
694 
695 	optc->funcs->get_position(optc, &position1);
696 	optc->funcs->get_position(optc, &position2);
697 
698 	if (position1.horizontal_count == position2.horizontal_count &&
699 		position1.vertical_count == position2.vertical_count)
700 		return false;
701 	else
702 		return true;
703 }
704 
705 bool optc1_did_triggered_reset_occur(
706 	struct timing_generator *optc)
707 {
708 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
709 	uint32_t occurred_force, occurred_vsync;
710 
711 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
712 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
713 
714 	REG_GET(OTG_VERT_SYNC_CONTROL,
715 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
716 
717 	return occurred_vsync != 0 || occurred_force != 0;
718 }
719 
720 void optc1_disable_reset_trigger(struct timing_generator *optc)
721 {
722 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
723 
724 	REG_WRITE(OTG_TRIGA_CNTL, 0);
725 
726 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
727 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
728 
729 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
730 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
731 }
732 
733 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
734 {
735 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
736 	uint32_t falling_edge;
737 
738 	REG_GET(OTG_V_SYNC_A_CNTL,
739 			OTG_V_SYNC_A_POL, &falling_edge);
740 
741 	if (falling_edge)
742 		REG_SET_3(OTG_TRIGA_CNTL, 0,
743 				/* vsync signal from selected OTG pipe based
744 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
745 				 */
746 				OTG_TRIGA_SOURCE_SELECT, 20,
747 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
748 				/* always detect falling edge */
749 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
750 	else
751 		REG_SET_3(OTG_TRIGA_CNTL, 0,
752 				/* vsync signal from selected OTG pipe based
753 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
754 				 */
755 				OTG_TRIGA_SOURCE_SELECT, 20,
756 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
757 				/* always detect rising edge */
758 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
759 
760 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
761 			/* force H count to H_TOTAL and V count to V_TOTAL in
762 			 * progressive mode and V_TOTAL-1 in interlaced mode
763 			 */
764 			OTG_FORCE_COUNT_NOW_MODE, 2);
765 }
766 
767 void optc1_enable_crtc_reset(
768 		struct timing_generator *optc,
769 		int source_tg_inst,
770 		struct crtc_trigger_info *crtc_tp)
771 {
772 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
773 	uint32_t falling_edge = 0;
774 	uint32_t rising_edge = 0;
775 
776 	switch (crtc_tp->event) {
777 
778 	case CRTC_EVENT_VSYNC_RISING:
779 		rising_edge = 1;
780 		break;
781 
782 	case CRTC_EVENT_VSYNC_FALLING:
783 		falling_edge = 1;
784 		break;
785 	}
786 
787 	REG_SET_4(OTG_TRIGA_CNTL, 0,
788 		 /* vsync signal from selected OTG pipe based
789 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
790 		  */
791 		  OTG_TRIGA_SOURCE_SELECT, 20,
792 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
793 		  /* always detect falling edge */
794 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
795 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
796 
797 	switch (crtc_tp->delay) {
798 	case TRIGGER_DELAY_NEXT_LINE:
799 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
800 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
801 		break;
802 	case TRIGGER_DELAY_NEXT_PIXEL:
803 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
804 			/* force H count to H_TOTAL and V count to V_TOTAL in
805 			 * progressive mode and V_TOTAL-1 in interlaced mode
806 			 */
807 			OTG_FORCE_COUNT_NOW_MODE, 2);
808 		break;
809 	}
810 }
811 
812 void optc1_wait_for_state(struct timing_generator *optc,
813 		enum crtc_state state)
814 {
815 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
816 
817 	switch (state) {
818 	case CRTC_STATE_VBLANK:
819 		REG_WAIT(OTG_STATUS,
820 				OTG_V_BLANK, 1,
821 				1, 100000); /* 1 vupdate at 10hz */
822 		break;
823 
824 	case CRTC_STATE_VACTIVE:
825 		REG_WAIT(OTG_STATUS,
826 				OTG_V_ACTIVE_DISP, 1,
827 				1, 100000); /* 1 vupdate at 10hz */
828 		break;
829 
830 	default:
831 		break;
832 	}
833 }
834 
835 void optc1_set_early_control(
836 	struct timing_generator *optc,
837 	uint32_t early_cntl)
838 {
839 	/* asic design change, do not need this control
840 	 * empty for share caller logic
841 	 */
842 }
843 
844 
845 void optc1_set_static_screen_control(
846 	struct timing_generator *optc,
847 	uint32_t event_triggers,
848 	uint32_t num_frames)
849 {
850 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
851 
852 	// By register spec, it only takes 8 bit value
853 	if (num_frames > 0xFF)
854 		num_frames = 0xFF;
855 
856 	/* Bit 8 is no longer applicable in RV for PSR case,
857 	 * set bit 8 to 0 if given
858 	 */
859 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
860 			!= 0)
861 		event_triggers = event_triggers &
862 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
863 
864 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
865 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
866 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
867 }
868 
869 static void optc1_setup_manual_trigger(struct timing_generator *optc)
870 {
871 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
872 
873 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
874 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
875 
876 	REG_SET_8(OTG_TRIGA_CNTL, 0,
877 			OTG_TRIGA_SOURCE_SELECT, 22,
878 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
879 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
880 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
881 			OTG_TRIGA_POLARITY_SELECT, 0,
882 			OTG_TRIGA_FREQUENCY_SELECT, 0,
883 			OTG_TRIGA_DELAY, 0,
884 			OTG_TRIGA_CLEAR, 1);
885 }
886 
887 static void optc1_program_manual_trigger(struct timing_generator *optc)
888 {
889 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
890 
891 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
892 			MANUAL_FLOW_CONTROL, 1);
893 
894 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
895 			MANUAL_FLOW_CONTROL, 0);
896 }
897 
898 
899 /**
900  *****************************************************************************
901  *  Function: set_drr
902  *
903  *  @brief
904  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
905  *
906  *****************************************************************************
907  */
908 void optc1_set_drr(
909 	struct timing_generator *optc,
910 	const struct drr_params *params)
911 {
912 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
913 
914 	if (params != NULL &&
915 		params->vertical_total_max > 0 &&
916 		params->vertical_total_min > 0) {
917 
918 		if (params->vertical_total_mid != 0) {
919 
920 			REG_SET(OTG_V_TOTAL_MID, 0,
921 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
922 
923 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
924 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
925 					OTG_VTOTAL_MID_FRAME_NUM,
926 					(uint8_t)params->vertical_total_mid_frame_num);
927 
928 		}
929 
930 		REG_SET(OTG_V_TOTAL_MAX, 0,
931 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
932 
933 		REG_SET(OTG_V_TOTAL_MIN, 0,
934 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
935 
936 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
937 				OTG_V_TOTAL_MIN_SEL, 1,
938 				OTG_V_TOTAL_MAX_SEL, 1,
939 				OTG_FORCE_LOCK_ON_EVENT, 0,
940 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
941 				OTG_SET_V_TOTAL_MIN_MASK, 0);
942 
943 		// Setup manual flow control for EOF via TRIG_A
944 		optc->funcs->setup_manual_trigger(optc);
945 
946 	} else {
947 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
948 				OTG_SET_V_TOTAL_MIN_MASK, 0,
949 				OTG_V_TOTAL_MIN_SEL, 0,
950 				OTG_V_TOTAL_MAX_SEL, 0,
951 				OTG_FORCE_LOCK_ON_EVENT, 0);
952 
953 		REG_SET(OTG_V_TOTAL_MIN, 0,
954 			OTG_V_TOTAL_MIN, 0);
955 
956 		REG_SET(OTG_V_TOTAL_MAX, 0,
957 			OTG_V_TOTAL_MAX, 0);
958 	}
959 }
960 
961 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
962 {
963 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
964 
965 	REG_SET(OTG_V_TOTAL_MAX, 0,
966 		OTG_V_TOTAL_MAX, vtotal_max);
967 
968 	REG_SET(OTG_V_TOTAL_MIN, 0,
969 		OTG_V_TOTAL_MIN, vtotal_min);
970 }
971 
972 static void optc1_set_test_pattern(
973 	struct timing_generator *optc,
974 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
975 	 * because this is not DP-specific (which is probably somewhere in DP
976 	 * encoder) */
977 	enum controller_dp_test_pattern test_pattern,
978 	enum dc_color_depth color_depth)
979 {
980 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
981 	enum test_pattern_color_format bit_depth;
982 	enum test_pattern_dyn_range dyn_range;
983 	enum test_pattern_mode mode;
984 	uint32_t pattern_mask;
985 	uint32_t pattern_data;
986 	/* color ramp generator mixes 16-bits color */
987 	uint32_t src_bpc = 16;
988 	/* requested bpc */
989 	uint32_t dst_bpc;
990 	uint32_t index;
991 	/* RGB values of the color bars.
992 	 * Produce two RGB colors: RGB0 - white (all Fs)
993 	 * and RGB1 - black (all 0s)
994 	 * (three RGB components for two colors)
995 	 */
996 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
997 						0x0000, 0x0000};
998 	/* dest color (converted to the specified color format) */
999 	uint16_t dst_color[6];
1000 	uint32_t inc_base;
1001 
1002 	/* translate to bit depth */
1003 	switch (color_depth) {
1004 	case COLOR_DEPTH_666:
1005 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1006 	break;
1007 	case COLOR_DEPTH_888:
1008 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1009 	break;
1010 	case COLOR_DEPTH_101010:
1011 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1012 	break;
1013 	case COLOR_DEPTH_121212:
1014 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1015 	break;
1016 	default:
1017 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1018 	break;
1019 	}
1020 
1021 	switch (test_pattern) {
1022 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1023 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1024 	{
1025 		dyn_range = (test_pattern ==
1026 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1027 				TEST_PATTERN_DYN_RANGE_CEA :
1028 				TEST_PATTERN_DYN_RANGE_VESA);
1029 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1030 
1031 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1032 				OTG_TEST_PATTERN_VRES, 6,
1033 				OTG_TEST_PATTERN_HRES, 6);
1034 
1035 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1036 				OTG_TEST_PATTERN_EN, 1,
1037 				OTG_TEST_PATTERN_MODE, mode,
1038 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1039 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1040 	}
1041 	break;
1042 
1043 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1044 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1045 	{
1046 		mode = (test_pattern ==
1047 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1048 			TEST_PATTERN_MODE_VERTICALBARS :
1049 			TEST_PATTERN_MODE_HORIZONTALBARS);
1050 
1051 		switch (bit_depth) {
1052 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1053 			dst_bpc = 6;
1054 		break;
1055 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1056 			dst_bpc = 8;
1057 		break;
1058 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1059 			dst_bpc = 10;
1060 		break;
1061 		default:
1062 			dst_bpc = 8;
1063 		break;
1064 		}
1065 
1066 		/* adjust color to the required colorFormat */
1067 		for (index = 0; index < 6; index++) {
1068 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1069 			 * (srcBpc - dstBpc);
1070 			 */
1071 			dst_color[index] =
1072 				src_color[index] >> (src_bpc - dst_bpc);
1073 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1074 		 * lowest 6 are hardwired to ZERO
1075 		 * color bits should be left aligned aligned to MSB
1076 		 * XXXXXXXXXX000000 for 10 bit,
1077 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1078 		 */
1079 			dst_color[index] <<= (16 - dst_bpc);
1080 		}
1081 
1082 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1083 
1084 		/* We have to write the mask before data, similar to pipeline.
1085 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1086 		 * and RGB1 to be cyan,
1087 		 * we need to make 7 writes:
1088 		 * MASK   DATA
1089 		 * 000001 00000000 00000000                     set mask to R0
1090 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1091 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1092 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1093 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1094 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1095 		 * 100000 11111111 00000000     B1 255, 0xFF00
1096 		 *
1097 		 * we will make a loop of 6 in which we prepare the mask,
1098 		 * then write, then prepare the color for next write.
1099 		 * first iteration will write mask only,
1100 		 * but each next iteration color prepared in
1101 		 * previous iteration will be written within new mask,
1102 		 * the last component will written separately,
1103 		 * mask is not changing between 6th and 7th write
1104 		 * and color will be prepared by last iteration
1105 		 */
1106 
1107 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1108 		 * is B1, G1, R1, B0, G0, R0
1109 		 */
1110 		pattern_data = 0;
1111 		for (index = 0; index < 6; index++) {
1112 			/* prepare color mask, first write PATTERN_DATA
1113 			 * will have all zeros
1114 			 */
1115 			pattern_mask = (1 << index);
1116 
1117 			/* write color component */
1118 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1119 					OTG_TEST_PATTERN_MASK, pattern_mask,
1120 					OTG_TEST_PATTERN_DATA, pattern_data);
1121 
1122 			/* prepare next color component,
1123 			 * will be written in the next iteration
1124 			 */
1125 			pattern_data = dst_color[index];
1126 		}
1127 		/* write last color component,
1128 		 * it's been already prepared in the loop
1129 		 */
1130 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1131 				OTG_TEST_PATTERN_MASK, pattern_mask,
1132 				OTG_TEST_PATTERN_DATA, pattern_data);
1133 
1134 		/* enable test pattern */
1135 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1136 				OTG_TEST_PATTERN_EN, 1,
1137 				OTG_TEST_PATTERN_MODE, mode,
1138 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1139 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1140 	}
1141 	break;
1142 
1143 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1144 	{
1145 		mode = (bit_depth ==
1146 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1147 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1148 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1149 
1150 		switch (bit_depth) {
1151 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1152 			dst_bpc = 6;
1153 		break;
1154 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1155 			dst_bpc = 8;
1156 		break;
1157 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1158 			dst_bpc = 10;
1159 		break;
1160 		default:
1161 			dst_bpc = 8;
1162 		break;
1163 		}
1164 
1165 		/* increment for the first ramp for one color gradation
1166 		 * 1 gradation for 6-bit color is 2^10
1167 		 * gradations in 16-bit color
1168 		 */
1169 		inc_base = (src_bpc - dst_bpc);
1170 
1171 		switch (bit_depth) {
1172 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1173 		{
1174 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1175 					OTG_TEST_PATTERN_INC0, inc_base,
1176 					OTG_TEST_PATTERN_INC1, 0,
1177 					OTG_TEST_PATTERN_HRES, 6,
1178 					OTG_TEST_PATTERN_VRES, 6,
1179 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1180 		}
1181 		break;
1182 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1183 		{
1184 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1185 					OTG_TEST_PATTERN_INC0, inc_base,
1186 					OTG_TEST_PATTERN_INC1, 0,
1187 					OTG_TEST_PATTERN_HRES, 8,
1188 					OTG_TEST_PATTERN_VRES, 6,
1189 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1190 		}
1191 		break;
1192 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1193 		{
1194 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1195 					OTG_TEST_PATTERN_INC0, inc_base,
1196 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1197 					OTG_TEST_PATTERN_HRES, 8,
1198 					OTG_TEST_PATTERN_VRES, 5,
1199 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1200 		}
1201 		break;
1202 		default:
1203 		break;
1204 		}
1205 
1206 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1207 
1208 		/* enable test pattern */
1209 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1210 
1211 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1212 				OTG_TEST_PATTERN_EN, 1,
1213 				OTG_TEST_PATTERN_MODE, mode,
1214 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1215 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1216 	}
1217 	break;
1218 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1219 	{
1220 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1221 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1222 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1223 	}
1224 	break;
1225 	default:
1226 		break;
1227 
1228 	}
1229 }
1230 
1231 void optc1_get_crtc_scanoutpos(
1232 	struct timing_generator *optc,
1233 	uint32_t *v_blank_start,
1234 	uint32_t *v_blank_end,
1235 	uint32_t *h_position,
1236 	uint32_t *v_position)
1237 {
1238 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1239 	struct crtc_position position;
1240 
1241 	REG_GET_2(OTG_V_BLANK_START_END,
1242 			OTG_V_BLANK_START, v_blank_start,
1243 			OTG_V_BLANK_END, v_blank_end);
1244 
1245 	optc1_get_position(optc, &position);
1246 
1247 	*h_position = position.horizontal_count;
1248 	*v_position = position.vertical_count;
1249 }
1250 
1251 static void optc1_enable_stereo(struct timing_generator *optc,
1252 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1253 {
1254 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1255 
1256 	if (flags) {
1257 		uint32_t stereo_en;
1258 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1259 
1260 		if (flags->PROGRAM_STEREO)
1261 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1262 				OTG_STEREO_EN, stereo_en,
1263 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1264 				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1265 
1266 		if (flags->PROGRAM_POLARITY)
1267 			REG_UPDATE(OTG_STEREO_CONTROL,
1268 				OTG_STEREO_EYE_FLAG_POLARITY,
1269 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1270 
1271 		if (flags->DISABLE_STEREO_DP_SYNC)
1272 			REG_UPDATE(OTG_STEREO_CONTROL,
1273 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1274 
1275 		if (flags->PROGRAM_STEREO)
1276 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1277 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1278 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1279 
1280 	}
1281 }
1282 
1283 void optc1_program_stereo(struct timing_generator *optc,
1284 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1285 {
1286 	if (flags->PROGRAM_STEREO)
1287 		optc1_enable_stereo(optc, timing, flags);
1288 	else
1289 		optc1_disable_stereo(optc);
1290 }
1291 
1292 
1293 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1294 {
1295 	bool ret = false;
1296 	uint32_t left_eye = 0;
1297 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1298 
1299 	REG_GET(OTG_STEREO_STATUS,
1300 		OTG_STEREO_CURRENT_EYE, &left_eye);
1301 	if (left_eye == 1)
1302 		ret = true;
1303 	else
1304 		ret = false;
1305 
1306 	return ret;
1307 }
1308 
1309 bool optc1_get_hw_timing(struct timing_generator *tg,
1310 		struct dc_crtc_timing *hw_crtc_timing)
1311 {
1312 	struct dcn_otg_state s = {0};
1313 
1314 	if (tg == NULL || hw_crtc_timing == NULL)
1315 		return false;
1316 
1317 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1318 
1319 	hw_crtc_timing->h_total = s.h_total + 1;
1320 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1321 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1322 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1323 
1324 	hw_crtc_timing->v_total = s.v_total + 1;
1325 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1326 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1327 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1328 
1329 	return true;
1330 }
1331 
1332 
1333 void optc1_read_otg_state(struct optc *optc1,
1334 		struct dcn_otg_state *s)
1335 {
1336 	REG_GET(OTG_CONTROL,
1337 			OTG_MASTER_EN, &s->otg_enabled);
1338 
1339 	REG_GET_2(OTG_V_BLANK_START_END,
1340 			OTG_V_BLANK_START, &s->v_blank_start,
1341 			OTG_V_BLANK_END, &s->v_blank_end);
1342 
1343 	REG_GET(OTG_V_SYNC_A_CNTL,
1344 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1345 
1346 	REG_GET(OTG_V_TOTAL,
1347 			OTG_V_TOTAL, &s->v_total);
1348 
1349 	REG_GET(OTG_V_TOTAL_MAX,
1350 			OTG_V_TOTAL_MAX, &s->v_total_max);
1351 
1352 	REG_GET(OTG_V_TOTAL_MIN,
1353 			OTG_V_TOTAL_MIN, &s->v_total_min);
1354 
1355 	REG_GET(OTG_V_TOTAL_CONTROL,
1356 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1357 
1358 	REG_GET(OTG_V_TOTAL_CONTROL,
1359 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1360 
1361 	REG_GET_2(OTG_V_SYNC_A,
1362 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1363 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1364 
1365 	REG_GET_2(OTG_H_BLANK_START_END,
1366 			OTG_H_BLANK_START, &s->h_blank_start,
1367 			OTG_H_BLANK_END, &s->h_blank_end);
1368 
1369 	REG_GET_2(OTG_H_SYNC_A,
1370 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1371 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1372 
1373 	REG_GET(OTG_H_SYNC_A_CNTL,
1374 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1375 
1376 	REG_GET(OTG_H_TOTAL,
1377 			OTG_H_TOTAL, &s->h_total);
1378 
1379 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1380 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1381 
1382 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1383 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1384 
1385 	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1386 			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1387 }
1388 
1389 bool optc1_get_otg_active_size(struct timing_generator *optc,
1390 		uint32_t *otg_active_width,
1391 		uint32_t *otg_active_height)
1392 {
1393 	uint32_t otg_enabled;
1394 	uint32_t v_blank_start;
1395 	uint32_t v_blank_end;
1396 	uint32_t h_blank_start;
1397 	uint32_t h_blank_end;
1398 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1399 
1400 
1401 	REG_GET(OTG_CONTROL,
1402 			OTG_MASTER_EN, &otg_enabled);
1403 
1404 	if (otg_enabled == 0)
1405 		return false;
1406 
1407 	REG_GET_2(OTG_V_BLANK_START_END,
1408 			OTG_V_BLANK_START, &v_blank_start,
1409 			OTG_V_BLANK_END, &v_blank_end);
1410 
1411 	REG_GET_2(OTG_H_BLANK_START_END,
1412 			OTG_H_BLANK_START, &h_blank_start,
1413 			OTG_H_BLANK_END, &h_blank_end);
1414 
1415 	*otg_active_width = v_blank_start - v_blank_end;
1416 	*otg_active_height = h_blank_start - h_blank_end;
1417 	return true;
1418 }
1419 
1420 void optc1_clear_optc_underflow(struct timing_generator *optc)
1421 {
1422 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1423 
1424 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1425 }
1426 
1427 void optc1_tg_init(struct timing_generator *optc)
1428 {
1429 	optc1_set_blank_data_double_buffer(optc, true);
1430 	optc1_set_timing_double_buffer(optc, true);
1431 	optc1_clear_optc_underflow(optc);
1432 }
1433 
1434 bool optc1_is_tg_enabled(struct timing_generator *optc)
1435 {
1436 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1437 	uint32_t otg_enabled = 0;
1438 
1439 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1440 
1441 	return (otg_enabled != 0);
1442 
1443 }
1444 
1445 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1446 {
1447 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1448 	uint32_t underflow_occurred = 0;
1449 
1450 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1451 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1452 			&underflow_occurred);
1453 
1454 	return (underflow_occurred == 1);
1455 }
1456 
1457 bool optc1_configure_crc(struct timing_generator *optc,
1458 			  const struct crc_params *params)
1459 {
1460 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1461 
1462 	/* Cannot configure crc on a CRTC that is disabled */
1463 	if (!optc1_is_tg_enabled(optc))
1464 		return false;
1465 
1466 	REG_WRITE(OTG_CRC_CNTL, 0);
1467 
1468 	if (!params->enable)
1469 		return true;
1470 
1471 	/* Program frame boundaries */
1472 	/* Window A x axis start and end. */
1473 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1474 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1475 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1476 
1477 	/* Window A y axis start and end. */
1478 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1479 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1480 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1481 
1482 	/* Window B x axis start and end. */
1483 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1484 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1485 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1486 
1487 	/* Window B y axis start and end. */
1488 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1489 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1490 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1491 
1492 	/* Set crc mode and selection, and enable. Only using CRC0*/
1493 	REG_UPDATE_3(OTG_CRC_CNTL,
1494 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1495 			OTG_CRC0_SELECT, params->selection,
1496 			OTG_CRC_EN, 1);
1497 
1498 	return true;
1499 }
1500 
1501 bool optc1_get_crc(struct timing_generator *optc,
1502 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1503 {
1504 	uint32_t field = 0;
1505 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1506 
1507 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1508 
1509 	/* Early return if CRC is not enabled for this CRTC */
1510 	if (!field)
1511 		return false;
1512 
1513 	REG_GET_2(OTG_CRC0_DATA_RG,
1514 			CRC0_R_CR, r_cr,
1515 			CRC0_G_Y, g_y);
1516 
1517 	REG_GET(OTG_CRC0_DATA_B,
1518 			CRC0_B_CB, b_cb);
1519 
1520 	return true;
1521 }
1522 
1523 static const struct timing_generator_funcs dcn10_tg_funcs = {
1524 		.validate_timing = optc1_validate_timing,
1525 		.program_timing = optc1_program_timing,
1526 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1527 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1528 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1529 		.program_global_sync = optc1_program_global_sync,
1530 		.enable_crtc = optc1_enable_crtc,
1531 		.disable_crtc = optc1_disable_crtc,
1532 		/* used by enable_timing_synchronization. Not need for FPGA */
1533 		.is_counter_moving = optc1_is_counter_moving,
1534 		.get_position = optc1_get_position,
1535 		.get_frame_count = optc1_get_vblank_counter,
1536 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1537 		.get_otg_active_size = optc1_get_otg_active_size,
1538 		.set_early_control = optc1_set_early_control,
1539 		/* used by enable_timing_synchronization. Not need for FPGA */
1540 		.wait_for_state = optc1_wait_for_state,
1541 		.set_blank = optc1_set_blank,
1542 		.is_blanked = optc1_is_blanked,
1543 		.set_blank_color = optc1_program_blank_color,
1544 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1545 		.enable_reset_trigger = optc1_enable_reset_trigger,
1546 		.enable_crtc_reset = optc1_enable_crtc_reset,
1547 		.disable_reset_trigger = optc1_disable_reset_trigger,
1548 		.lock = optc1_lock,
1549 		.is_locked = optc1_is_locked,
1550 		.unlock = optc1_unlock,
1551 		.enable_optc_clock = optc1_enable_optc_clock,
1552 		.set_drr = optc1_set_drr,
1553 		.get_last_used_drr_vtotal = NULL,
1554 		.set_static_screen_control = optc1_set_static_screen_control,
1555 		.set_test_pattern = optc1_set_test_pattern,
1556 		.program_stereo = optc1_program_stereo,
1557 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1558 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1559 		.tg_init = optc1_tg_init,
1560 		.is_tg_enabled = optc1_is_tg_enabled,
1561 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1562 		.clear_optc_underflow = optc1_clear_optc_underflow,
1563 		.get_crc = optc1_get_crc,
1564 		.configure_crc = optc1_configure_crc,
1565 		.set_vtg_params = optc1_set_vtg_params,
1566 		.program_manual_trigger = optc1_program_manual_trigger,
1567 		.setup_manual_trigger = optc1_setup_manual_trigger,
1568 		.get_hw_timing = optc1_get_hw_timing,
1569 };
1570 
1571 void dcn10_timing_generator_init(struct optc *optc1)
1572 {
1573 	optc1->base.funcs = &dcn10_tg_funcs;
1574 
1575 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1576 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1577 
1578 	optc1->min_h_blank = 32;
1579 	optc1->min_v_blank = 3;
1580 	optc1->min_v_blank_interlace = 5;
1581 	optc1->min_h_sync_width = 4;
1582 	optc1->min_v_sync_width = 1;
1583 }
1584 
1585 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1586  *
1587  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1588  *   containter rate.
1589  *
1590  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1591  *   halved to maintain the correct pixel rate.
1592  *
1593  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1594  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1595  *
1596  */
1597 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1598 {
1599 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1600 
1601 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1602 			&& !timing->dsc_cfg.ycbcr422_simple);
1603 	return two_pix;
1604 }
1605 
1606