1 /* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "reg_helper.h" 28 #include "dcn10_optc.h" 29 #include "dc.h" 30 31 #define REG(reg)\ 32 optc1->tg_regs->reg 33 34 #define CTX \ 35 optc1->base.ctx 36 37 #undef FN 38 #define FN(reg_name, field_name) \ 39 optc1->tg_shift->field_name, optc1->tg_mask->field_name 40 41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100 42 43 /** 44 * apply_front_porch_workaround TODO FPGA still need? 45 * 46 * This is a workaround for a bug that has existed since R5xx and has not been 47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive. 48 */ 49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing) 50 { 51 if (timing->flags.INTERLACE == 1) { 52 if (timing->v_front_porch < 2) 53 timing->v_front_porch = 2; 54 } else { 55 if (timing->v_front_porch < 1) 56 timing->v_front_porch = 1; 57 } 58 } 59 60 void optc1_program_global_sync( 61 struct timing_generator *optc, 62 int vready_offset, 63 int vstartup_start, 64 int vupdate_offset, 65 int vupdate_width) 66 { 67 struct optc *optc1 = DCN10TG_FROM_TG(optc); 68 69 optc1->vready_offset = vready_offset; 70 optc1->vstartup_start = vstartup_start; 71 optc1->vupdate_offset = vupdate_offset; 72 optc1->vupdate_width = vupdate_width; 73 74 if (optc1->vstartup_start == 0) { 75 BREAK_TO_DEBUGGER(); 76 return; 77 } 78 79 REG_SET(OTG_VSTARTUP_PARAM, 0, 80 VSTARTUP_START, optc1->vstartup_start); 81 82 REG_SET_2(OTG_VUPDATE_PARAM, 0, 83 VUPDATE_OFFSET, optc1->vupdate_offset, 84 VUPDATE_WIDTH, optc1->vupdate_width); 85 86 REG_SET(OTG_VREADY_PARAM, 0, 87 VREADY_OFFSET, optc1->vready_offset); 88 } 89 90 static void optc1_disable_stereo(struct timing_generator *optc) 91 { 92 struct optc *optc1 = DCN10TG_FROM_TG(optc); 93 94 REG_SET(OTG_STEREO_CONTROL, 0, 95 OTG_STEREO_EN, 0); 96 97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0, 98 OTG_3D_STRUCTURE_EN, 0, 99 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0); 100 } 101 102 void optc1_setup_vertical_interrupt0( 103 struct timing_generator *optc, 104 uint32_t start_line, 105 uint32_t end_line) 106 { 107 struct optc *optc1 = DCN10TG_FROM_TG(optc); 108 109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0, 110 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line, 111 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line); 112 } 113 114 void optc1_setup_vertical_interrupt1( 115 struct timing_generator *optc, 116 uint32_t start_line) 117 { 118 struct optc *optc1 = DCN10TG_FROM_TG(optc); 119 120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0, 121 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line); 122 } 123 124 void optc1_setup_vertical_interrupt2( 125 struct timing_generator *optc, 126 uint32_t start_line) 127 { 128 struct optc *optc1 = DCN10TG_FROM_TG(optc); 129 130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0, 131 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line); 132 } 133 134 /** 135 * Vupdate keepout can be set to a window to block the update lock for that pipe from changing. 136 * Start offset begins with vstartup and goes for x number of clocks, 137 * end offset starts from end of vupdate to x number of clocks. 138 */ 139 void optc1_set_vupdate_keepout(struct timing_generator *optc, 140 struct vupdate_keepout_params *params) 141 { 142 struct optc *optc1 = DCN10TG_FROM_TG(optc); 143 144 REG_SET_3(OTG_VUPDATE_KEEPOUT, 0, 145 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset, 146 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset, 147 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable); 148 } 149 150 /** 151 * program_timing_generator used by mode timing set 152 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition. 153 * Including SYNC. Call BIOS command table to program Timings. 154 */ 155 void optc1_program_timing( 156 struct timing_generator *optc, 157 const struct dc_crtc_timing *dc_crtc_timing, 158 int vready_offset, 159 int vstartup_start, 160 int vupdate_offset, 161 int vupdate_width, 162 const enum signal_type signal, 163 bool use_vbios) 164 { 165 struct dc_crtc_timing patched_crtc_timing; 166 uint32_t asic_blank_end; 167 uint32_t asic_blank_start; 168 uint32_t v_total; 169 uint32_t v_sync_end; 170 uint32_t h_sync_polarity, v_sync_polarity; 171 uint32_t start_point = 0; 172 uint32_t field_num = 0; 173 enum h_timing_div_mode h_div = H_TIMING_NO_DIV; 174 175 struct optc *optc1 = DCN10TG_FROM_TG(optc); 176 177 optc1->signal = signal; 178 optc1->vready_offset = vready_offset; 179 optc1->vstartup_start = vstartup_start; 180 optc1->vupdate_offset = vupdate_offset; 181 optc1->vupdate_width = vupdate_width; 182 patched_crtc_timing = *dc_crtc_timing; 183 apply_front_porch_workaround(&patched_crtc_timing); 184 185 /* Load horizontal timing */ 186 187 /* CRTC_H_TOTAL = vesa.h_total - 1 */ 188 REG_SET(OTG_H_TOTAL, 0, 189 OTG_H_TOTAL, patched_crtc_timing.h_total - 1); 190 191 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */ 192 REG_UPDATE_2(OTG_H_SYNC_A, 193 OTG_H_SYNC_A_START, 0, 194 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width); 195 196 /* blank_start = line end - front porch */ 197 asic_blank_start = patched_crtc_timing.h_total - 198 patched_crtc_timing.h_front_porch; 199 200 /* blank_end = blank_start - active */ 201 asic_blank_end = asic_blank_start - 202 patched_crtc_timing.h_border_right - 203 patched_crtc_timing.h_addressable - 204 patched_crtc_timing.h_border_left; 205 206 REG_UPDATE_2(OTG_H_BLANK_START_END, 207 OTG_H_BLANK_START, asic_blank_start, 208 OTG_H_BLANK_END, asic_blank_end); 209 210 /* h_sync polarity */ 211 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ? 212 0 : 1; 213 214 REG_UPDATE(OTG_H_SYNC_A_CNTL, 215 OTG_H_SYNC_A_POL, h_sync_polarity); 216 217 v_total = patched_crtc_timing.v_total - 1; 218 219 REG_SET(OTG_V_TOTAL, 0, 220 OTG_V_TOTAL, v_total); 221 222 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and 223 * OTG_V_TOTAL_MIN are equal to V_TOTAL. 224 */ 225 REG_SET(OTG_V_TOTAL_MAX, 0, 226 OTG_V_TOTAL_MAX, v_total); 227 REG_SET(OTG_V_TOTAL_MIN, 0, 228 OTG_V_TOTAL_MIN, v_total); 229 230 /* v_sync_start = 0, v_sync_end = v_sync_width */ 231 v_sync_end = patched_crtc_timing.v_sync_width; 232 233 REG_UPDATE_2(OTG_V_SYNC_A, 234 OTG_V_SYNC_A_START, 0, 235 OTG_V_SYNC_A_END, v_sync_end); 236 237 /* blank_start = frame end - front porch */ 238 asic_blank_start = patched_crtc_timing.v_total - 239 patched_crtc_timing.v_front_porch; 240 241 /* blank_end = blank_start - active */ 242 asic_blank_end = asic_blank_start - 243 patched_crtc_timing.v_border_bottom - 244 patched_crtc_timing.v_addressable - 245 patched_crtc_timing.v_border_top; 246 247 REG_UPDATE_2(OTG_V_BLANK_START_END, 248 OTG_V_BLANK_START, asic_blank_start, 249 OTG_V_BLANK_END, asic_blank_end); 250 251 /* v_sync polarity */ 252 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ? 253 0 : 1; 254 255 REG_UPDATE(OTG_V_SYNC_A_CNTL, 256 OTG_V_SYNC_A_POL, v_sync_polarity); 257 258 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT || 259 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST || 260 optc1->signal == SIGNAL_TYPE_EDP) { 261 start_point = 1; 262 if (patched_crtc_timing.flags.INTERLACE == 1) 263 field_num = 1; 264 } 265 266 /* Interlace */ 267 if (REG(OTG_INTERLACE_CONTROL)) { 268 if (patched_crtc_timing.flags.INTERLACE == 1) 269 REG_UPDATE(OTG_INTERLACE_CONTROL, 270 OTG_INTERLACE_ENABLE, 1); 271 else 272 REG_UPDATE(OTG_INTERLACE_CONTROL, 273 OTG_INTERLACE_ENABLE, 0); 274 } 275 276 /* VTG enable set to 0 first VInit */ 277 REG_UPDATE(CONTROL, 278 VTG0_ENABLE, 0); 279 280 /* original code is using VTG offset to address OTG reg, seems wrong */ 281 REG_UPDATE_2(OTG_CONTROL, 282 OTG_START_POINT_CNTL, start_point, 283 OTG_FIELD_NUMBER_CNTL, field_num); 284 285 optc->funcs->program_global_sync(optc, 286 vready_offset, 287 vstartup_start, 288 vupdate_offset, 289 vupdate_width); 290 291 optc->funcs->set_vtg_params(optc, dc_crtc_timing, true); 292 293 /* TODO 294 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1 295 * program_horz_count_by_2 296 * for DVI 30bpp mode, 0 otherwise 297 * program_horz_count_by_2(optc, &patched_crtc_timing); 298 */ 299 300 /* Enable stereo - only when we need to pack 3D frame. Other types 301 * of stereo handled in explicit call 302 */ 303 304 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2) 305 h_div = H_TIMING_DIV_BY2; 306 307 if (REG(OPTC_DATA_FORMAT_CONTROL)) { 308 uint32_t data_fmt = 0; 309 310 if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) 311 data_fmt = 1; 312 else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) 313 data_fmt = 2; 314 315 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt); 316 } 317 318 if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) { 319 if (optc1->opp_count == 4) 320 h_div = H_TIMING_DIV_BY4; 321 322 REG_UPDATE(OTG_H_TIMING_CNTL, 323 OTG_H_TIMING_DIV_MODE, h_div); 324 } else { 325 REG_UPDATE(OTG_H_TIMING_CNTL, 326 OTG_H_TIMING_DIV_BY2, h_div); 327 } 328 } 329 330 void optc1_set_vtg_params(struct timing_generator *optc, 331 const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2) 332 { 333 struct dc_crtc_timing patched_crtc_timing; 334 uint32_t asic_blank_end; 335 uint32_t v_init; 336 uint32_t v_fp2 = 0; 337 int32_t vertical_line_start; 338 339 struct optc *optc1 = DCN10TG_FROM_TG(optc); 340 341 patched_crtc_timing = *dc_crtc_timing; 342 apply_front_porch_workaround(&patched_crtc_timing); 343 344 /* VCOUNT_INIT is the start of blank */ 345 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; 346 347 /* end of blank = v_init - active */ 348 asic_blank_end = v_init - 349 patched_crtc_timing.v_border_bottom - 350 patched_crtc_timing.v_addressable - 351 patched_crtc_timing.v_border_top; 352 353 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */ 354 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1; 355 if (vertical_line_start < 0) 356 v_fp2 = -vertical_line_start; 357 358 /* Interlace */ 359 if (REG(OTG_INTERLACE_CONTROL)) { 360 if (patched_crtc_timing.flags.INTERLACE == 1) { 361 v_init = v_init / 2; 362 if ((optc1->vstartup_start/2)*2 > asic_blank_end) 363 v_fp2 = v_fp2 / 2; 364 } 365 } 366 367 if (program_fp2) 368 REG_UPDATE_2(CONTROL, 369 VTG0_FP2, v_fp2, 370 VTG0_VCOUNT_INIT, v_init); 371 else 372 REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init); 373 } 374 375 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable) 376 { 377 struct optc *optc1 = DCN10TG_FROM_TG(optc); 378 379 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; 380 381 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 382 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable); 383 } 384 385 /** 386 * optc1_set_timing_double_buffer() - DRR double buffering control 387 * 388 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN, 389 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers. 390 * 391 * Options: any time, start of frame, dp start of frame (range timing) 392 */ 393 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable) 394 { 395 struct optc *optc1 = DCN10TG_FROM_TG(optc); 396 uint32_t mode = enable ? 2 : 0; 397 398 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, 399 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode); 400 } 401 402 /** 403 * unblank_crtc 404 * Call ASIC Control Object to UnBlank CRTC. 405 */ 406 static void optc1_unblank_crtc(struct timing_generator *optc) 407 { 408 struct optc *optc1 = DCN10TG_FROM_TG(optc); 409 410 REG_UPDATE_2(OTG_BLANK_CONTROL, 411 OTG_BLANK_DATA_EN, 0, 412 OTG_BLANK_DE_MODE, 0); 413 414 /* W/A for automated testing 415 * Automated testing will fail underflow test as there 416 * sporadic underflows which occur during the optc blank 417 * sequence. As a w/a, clear underflow on unblank. 418 * This prevents the failure, but will not mask actual 419 * underflow that affect real use cases. 420 */ 421 optc1_clear_optc_underflow(optc); 422 } 423 424 /** 425 * blank_crtc 426 * Call ASIC Control Object to Blank CRTC. 427 */ 428 429 static void optc1_blank_crtc(struct timing_generator *optc) 430 { 431 struct optc *optc1 = DCN10TG_FROM_TG(optc); 432 433 REG_UPDATE_2(OTG_BLANK_CONTROL, 434 OTG_BLANK_DATA_EN, 1, 435 OTG_BLANK_DE_MODE, 0); 436 437 optc1_set_blank_data_double_buffer(optc, false); 438 } 439 440 void optc1_set_blank(struct timing_generator *optc, 441 bool enable_blanking) 442 { 443 if (enable_blanking) 444 optc1_blank_crtc(optc); 445 else 446 optc1_unblank_crtc(optc); 447 } 448 449 bool optc1_is_blanked(struct timing_generator *optc) 450 { 451 struct optc *optc1 = DCN10TG_FROM_TG(optc); 452 uint32_t blank_en; 453 uint32_t blank_state; 454 455 REG_GET_2(OTG_BLANK_CONTROL, 456 OTG_BLANK_DATA_EN, &blank_en, 457 OTG_CURRENT_BLANK_STATE, &blank_state); 458 459 return blank_en && blank_state; 460 } 461 462 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable) 463 { 464 struct optc *optc1 = DCN10TG_FROM_TG(optc); 465 466 if (enable) { 467 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, 468 OPTC_INPUT_CLK_EN, 1, 469 OPTC_INPUT_CLK_GATE_DIS, 1); 470 471 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL, 472 OPTC_INPUT_CLK_ON, 1, 473 1, 1000); 474 475 /* Enable clock */ 476 REG_UPDATE_2(OTG_CLOCK_CONTROL, 477 OTG_CLOCK_EN, 1, 478 OTG_CLOCK_GATE_DIS, 1); 479 REG_WAIT(OTG_CLOCK_CONTROL, 480 OTG_CLOCK_ON, 1, 481 1, 1000); 482 } else { 483 REG_UPDATE_2(OTG_CLOCK_CONTROL, 484 OTG_CLOCK_GATE_DIS, 0, 485 OTG_CLOCK_EN, 0); 486 487 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, 488 OPTC_INPUT_CLK_GATE_DIS, 0, 489 OPTC_INPUT_CLK_EN, 0); 490 } 491 } 492 493 /** 494 * Enable CRTC 495 * Enable CRTC - call ASIC Control Object to enable Timing generator. 496 */ 497 static bool optc1_enable_crtc(struct timing_generator *optc) 498 { 499 /* TODO FPGA wait for answer 500 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE 501 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK 502 */ 503 struct optc *optc1 = DCN10TG_FROM_TG(optc); 504 505 /* opp instance for OTG. For DCN1.0, ODM is remoed. 506 * OPP and OPTC should 1:1 mapping 507 */ 508 REG_UPDATE(OPTC_DATA_SOURCE_SELECT, 509 OPTC_SRC_SEL, optc->inst); 510 511 /* VTG enable first is for HW workaround */ 512 REG_UPDATE(CONTROL, 513 VTG0_ENABLE, 1); 514 515 REG_SEQ_START(); 516 517 /* Enable CRTC */ 518 REG_UPDATE_2(OTG_CONTROL, 519 OTG_DISABLE_POINT_CNTL, 3, 520 OTG_MASTER_EN, 1); 521 522 REG_SEQ_SUBMIT(); 523 REG_SEQ_WAIT_DONE(); 524 525 return true; 526 } 527 528 /* disable_crtc - call ASIC Control Object to disable Timing generator. */ 529 bool optc1_disable_crtc(struct timing_generator *optc) 530 { 531 struct optc *optc1 = DCN10TG_FROM_TG(optc); 532 533 /* disable otg request until end of the first line 534 * in the vertical blank region 535 */ 536 REG_UPDATE_2(OTG_CONTROL, 537 OTG_DISABLE_POINT_CNTL, 3, 538 OTG_MASTER_EN, 0); 539 540 REG_UPDATE(CONTROL, 541 VTG0_ENABLE, 0); 542 543 /* CRTC disabled, so disable clock. */ 544 REG_WAIT(OTG_CLOCK_CONTROL, 545 OTG_BUSY, 0, 546 1, 100000); 547 548 return true; 549 } 550 551 552 void optc1_program_blank_color( 553 struct timing_generator *optc, 554 const struct tg_color *black_color) 555 { 556 struct optc *optc1 = DCN10TG_FROM_TG(optc); 557 558 REG_SET_3(OTG_BLACK_COLOR, 0, 559 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb, 560 OTG_BLACK_COLOR_G_Y, black_color->color_g_y, 561 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr); 562 } 563 564 bool optc1_validate_timing( 565 struct timing_generator *optc, 566 const struct dc_crtc_timing *timing) 567 { 568 uint32_t v_blank; 569 uint32_t h_blank; 570 uint32_t min_v_blank; 571 struct optc *optc1 = DCN10TG_FROM_TG(optc); 572 573 ASSERT(timing != NULL); 574 575 v_blank = (timing->v_total - timing->v_addressable - 576 timing->v_border_top - timing->v_border_bottom); 577 578 h_blank = (timing->h_total - timing->h_addressable - 579 timing->h_border_right - 580 timing->h_border_left); 581 582 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE && 583 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING && 584 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM && 585 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE && 586 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE && 587 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA) 588 return false; 589 590 /* Temporarily blocking interlacing mode until it's supported */ 591 if (timing->flags.INTERLACE == 1) 592 return false; 593 594 /* Check maximum number of pixels supported by Timing Generator 595 * (Currently will never fail, in order to fail needs display which 596 * needs more than 8192 horizontal and 597 * more than 8192 vertical total pixels) 598 */ 599 if (timing->h_total > optc1->max_h_total || 600 timing->v_total > optc1->max_v_total) 601 return false; 602 603 604 if (h_blank < optc1->min_h_blank) 605 return false; 606 607 if (timing->h_sync_width < optc1->min_h_sync_width || 608 timing->v_sync_width < optc1->min_v_sync_width) 609 return false; 610 611 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank; 612 613 if (v_blank < min_v_blank) 614 return false; 615 616 return true; 617 618 } 619 620 /* 621 * get_vblank_counter 622 * 623 * @brief 624 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which 625 * holds the counter of frames. 626 * 627 * @param 628 * struct timing_generator *optc - [in] timing generator which controls the 629 * desired CRTC 630 * 631 * @return 632 * Counter of frames, which should equal to number of vblanks. 633 */ 634 uint32_t optc1_get_vblank_counter(struct timing_generator *optc) 635 { 636 struct optc *optc1 = DCN10TG_FROM_TG(optc); 637 uint32_t frame_count; 638 639 REG_GET(OTG_STATUS_FRAME_COUNT, 640 OTG_FRAME_COUNT, &frame_count); 641 642 return frame_count; 643 } 644 645 void optc1_lock(struct timing_generator *optc) 646 { 647 struct optc *optc1 = DCN10TG_FROM_TG(optc); 648 uint32_t regval = 0; 649 650 regval = REG_READ(OTG_CONTROL); 651 652 /* otg is not running, do not need to be locked */ 653 if ((regval & 0x1) == 0x0) 654 return; 655 656 REG_SET(OTG_GLOBAL_CONTROL0, 0, 657 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); 658 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 659 OTG_MASTER_UPDATE_LOCK, 1); 660 661 /* Should be fast, status does not update on maximus */ 662 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) { 663 664 REG_WAIT(OTG_MASTER_UPDATE_LOCK, 665 UPDATE_LOCK_STATUS, 1, 666 1, 10); 667 } 668 } 669 670 void optc1_unlock(struct timing_generator *optc) 671 { 672 struct optc *optc1 = DCN10TG_FROM_TG(optc); 673 674 REG_SET(OTG_MASTER_UPDATE_LOCK, 0, 675 OTG_MASTER_UPDATE_LOCK, 0); 676 } 677 678 bool optc1_is_locked(struct timing_generator *optc) 679 { 680 struct optc *optc1 = DCN10TG_FROM_TG(optc); 681 uint32_t locked; 682 683 REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked); 684 685 return (locked == 1); 686 } 687 688 void optc1_get_position(struct timing_generator *optc, 689 struct crtc_position *position) 690 { 691 struct optc *optc1 = DCN10TG_FROM_TG(optc); 692 693 REG_GET_2(OTG_STATUS_POSITION, 694 OTG_HORZ_COUNT, &position->horizontal_count, 695 OTG_VERT_COUNT, &position->vertical_count); 696 697 REG_GET(OTG_NOM_VERT_POSITION, 698 OTG_VERT_COUNT_NOM, &position->nominal_vcount); 699 } 700 701 bool optc1_is_counter_moving(struct timing_generator *optc) 702 { 703 struct crtc_position position1, position2; 704 705 optc->funcs->get_position(optc, &position1); 706 optc->funcs->get_position(optc, &position2); 707 708 if (position1.horizontal_count == position2.horizontal_count && 709 position1.vertical_count == position2.vertical_count) 710 return false; 711 else 712 return true; 713 } 714 715 bool optc1_did_triggered_reset_occur( 716 struct timing_generator *optc) 717 { 718 struct optc *optc1 = DCN10TG_FROM_TG(optc); 719 uint32_t occurred_force, occurred_vsync; 720 721 REG_GET(OTG_FORCE_COUNT_NOW_CNTL, 722 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force); 723 724 REG_GET(OTG_VERT_SYNC_CONTROL, 725 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync); 726 727 return occurred_vsync != 0 || occurred_force != 0; 728 } 729 730 void optc1_disable_reset_trigger(struct timing_generator *optc) 731 { 732 struct optc *optc1 = DCN10TG_FROM_TG(optc); 733 734 REG_WRITE(OTG_TRIGA_CNTL, 0); 735 736 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 737 OTG_FORCE_COUNT_NOW_CLEAR, 1); 738 739 REG_SET(OTG_VERT_SYNC_CONTROL, 0, 740 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1); 741 } 742 743 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst) 744 { 745 struct optc *optc1 = DCN10TG_FROM_TG(optc); 746 uint32_t falling_edge; 747 748 REG_GET(OTG_V_SYNC_A_CNTL, 749 OTG_V_SYNC_A_POL, &falling_edge); 750 751 if (falling_edge) 752 REG_SET_3(OTG_TRIGA_CNTL, 0, 753 /* vsync signal from selected OTG pipe based 754 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 755 */ 756 OTG_TRIGA_SOURCE_SELECT, 20, 757 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 758 /* always detect falling edge */ 759 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1); 760 else 761 REG_SET_3(OTG_TRIGA_CNTL, 0, 762 /* vsync signal from selected OTG pipe based 763 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 764 */ 765 OTG_TRIGA_SOURCE_SELECT, 20, 766 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 767 /* always detect rising edge */ 768 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1); 769 770 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 771 /* force H count to H_TOTAL and V count to V_TOTAL in 772 * progressive mode and V_TOTAL-1 in interlaced mode 773 */ 774 OTG_FORCE_COUNT_NOW_MODE, 2); 775 } 776 777 void optc1_enable_crtc_reset( 778 struct timing_generator *optc, 779 int source_tg_inst, 780 struct crtc_trigger_info *crtc_tp) 781 { 782 struct optc *optc1 = DCN10TG_FROM_TG(optc); 783 uint32_t falling_edge = 0; 784 uint32_t rising_edge = 0; 785 786 switch (crtc_tp->event) { 787 788 case CRTC_EVENT_VSYNC_RISING: 789 rising_edge = 1; 790 break; 791 792 case CRTC_EVENT_VSYNC_FALLING: 793 falling_edge = 1; 794 break; 795 } 796 797 REG_SET_4(OTG_TRIGA_CNTL, 0, 798 /* vsync signal from selected OTG pipe based 799 * on OTG_TRIG_SOURCE_PIPE_SELECT setting 800 */ 801 OTG_TRIGA_SOURCE_SELECT, 20, 802 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, 803 /* always detect falling edge */ 804 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge, 805 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge); 806 807 switch (crtc_tp->delay) { 808 case TRIGGER_DELAY_NEXT_LINE: 809 REG_SET(OTG_VERT_SYNC_CONTROL, 0, 810 OTG_AUTO_FORCE_VSYNC_MODE, 1); 811 break; 812 case TRIGGER_DELAY_NEXT_PIXEL: 813 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, 814 /* force H count to H_TOTAL and V count to V_TOTAL in 815 * progressive mode and V_TOTAL-1 in interlaced mode 816 */ 817 OTG_FORCE_COUNT_NOW_MODE, 2); 818 break; 819 } 820 } 821 822 void optc1_wait_for_state(struct timing_generator *optc, 823 enum crtc_state state) 824 { 825 struct optc *optc1 = DCN10TG_FROM_TG(optc); 826 827 switch (state) { 828 case CRTC_STATE_VBLANK: 829 REG_WAIT(OTG_STATUS, 830 OTG_V_BLANK, 1, 831 1, 100000); /* 1 vupdate at 10hz */ 832 break; 833 834 case CRTC_STATE_VACTIVE: 835 REG_WAIT(OTG_STATUS, 836 OTG_V_ACTIVE_DISP, 1, 837 1, 100000); /* 1 vupdate at 10hz */ 838 break; 839 840 default: 841 break; 842 } 843 } 844 845 void optc1_set_early_control( 846 struct timing_generator *optc, 847 uint32_t early_cntl) 848 { 849 /* asic design change, do not need this control 850 * empty for share caller logic 851 */ 852 } 853 854 855 void optc1_set_static_screen_control( 856 struct timing_generator *optc, 857 uint32_t event_triggers, 858 uint32_t num_frames) 859 { 860 struct optc *optc1 = DCN10TG_FROM_TG(optc); 861 862 // By register spec, it only takes 8 bit value 863 if (num_frames > 0xFF) 864 num_frames = 0xFF; 865 866 /* Bit 8 is no longer applicable in RV for PSR case, 867 * set bit 8 to 0 if given 868 */ 869 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN) 870 != 0) 871 event_triggers = event_triggers & 872 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN; 873 874 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0, 875 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers, 876 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames); 877 } 878 879 void optc1_setup_manual_trigger(struct timing_generator *optc) 880 { 881 struct optc *optc1 = DCN10TG_FROM_TG(optc); 882 883 REG_SET(OTG_GLOBAL_CONTROL2, 0, 884 MANUAL_FLOW_CONTROL_SEL, optc->inst); 885 886 REG_SET_8(OTG_TRIGA_CNTL, 0, 887 OTG_TRIGA_SOURCE_SELECT, 22, 888 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, 889 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, 890 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, 891 OTG_TRIGA_POLARITY_SELECT, 0, 892 OTG_TRIGA_FREQUENCY_SELECT, 0, 893 OTG_TRIGA_DELAY, 0, 894 OTG_TRIGA_CLEAR, 1); 895 } 896 897 void optc1_program_manual_trigger(struct timing_generator *optc) 898 { 899 struct optc *optc1 = DCN10TG_FROM_TG(optc); 900 901 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, 902 MANUAL_FLOW_CONTROL, 1); 903 904 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, 905 MANUAL_FLOW_CONTROL, 0); 906 } 907 908 909 /** 910 ***************************************************************************** 911 * Function: set_drr 912 * 913 * @brief 914 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*. 915 * 916 ***************************************************************************** 917 */ 918 void optc1_set_drr( 919 struct timing_generator *optc, 920 const struct drr_params *params) 921 { 922 struct optc *optc1 = DCN10TG_FROM_TG(optc); 923 924 if (params != NULL && 925 params->vertical_total_max > 0 && 926 params->vertical_total_min > 0) { 927 928 if (params->vertical_total_mid != 0) { 929 930 REG_SET(OTG_V_TOTAL_MID, 0, 931 OTG_V_TOTAL_MID, params->vertical_total_mid - 1); 932 933 REG_UPDATE_2(OTG_V_TOTAL_CONTROL, 934 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1, 935 OTG_VTOTAL_MID_FRAME_NUM, 936 (uint8_t)params->vertical_total_mid_frame_num); 937 938 } 939 940 REG_SET(OTG_V_TOTAL_MAX, 0, 941 OTG_V_TOTAL_MAX, params->vertical_total_max - 1); 942 943 REG_SET(OTG_V_TOTAL_MIN, 0, 944 OTG_V_TOTAL_MIN, params->vertical_total_min - 1); 945 946 REG_UPDATE_5(OTG_V_TOTAL_CONTROL, 947 OTG_V_TOTAL_MIN_SEL, 1, 948 OTG_V_TOTAL_MAX_SEL, 1, 949 OTG_FORCE_LOCK_ON_EVENT, 0, 950 OTG_SET_V_TOTAL_MIN_MASK_EN, 0, 951 OTG_SET_V_TOTAL_MIN_MASK, 0); 952 953 // Setup manual flow control for EOF via TRIG_A 954 optc->funcs->setup_manual_trigger(optc); 955 956 } else { 957 REG_UPDATE_4(OTG_V_TOTAL_CONTROL, 958 OTG_SET_V_TOTAL_MIN_MASK, 0, 959 OTG_V_TOTAL_MIN_SEL, 0, 960 OTG_V_TOTAL_MAX_SEL, 0, 961 OTG_FORCE_LOCK_ON_EVENT, 0); 962 963 REG_SET(OTG_V_TOTAL_MIN, 0, 964 OTG_V_TOTAL_MIN, 0); 965 966 REG_SET(OTG_V_TOTAL_MAX, 0, 967 OTG_V_TOTAL_MAX, 0); 968 } 969 } 970 971 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max) 972 { 973 struct optc *optc1 = DCN10TG_FROM_TG(optc); 974 975 REG_SET(OTG_V_TOTAL_MAX, 0, 976 OTG_V_TOTAL_MAX, vtotal_max); 977 978 REG_SET(OTG_V_TOTAL_MIN, 0, 979 OTG_V_TOTAL_MIN, vtotal_min); 980 } 981 982 static void optc1_set_test_pattern( 983 struct timing_generator *optc, 984 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' 985 * because this is not DP-specific (which is probably somewhere in DP 986 * encoder) */ 987 enum controller_dp_test_pattern test_pattern, 988 enum dc_color_depth color_depth) 989 { 990 struct optc *optc1 = DCN10TG_FROM_TG(optc); 991 enum test_pattern_color_format bit_depth; 992 enum test_pattern_dyn_range dyn_range; 993 enum test_pattern_mode mode; 994 uint32_t pattern_mask; 995 uint32_t pattern_data; 996 /* color ramp generator mixes 16-bits color */ 997 uint32_t src_bpc = 16; 998 /* requested bpc */ 999 uint32_t dst_bpc; 1000 uint32_t index; 1001 /* RGB values of the color bars. 1002 * Produce two RGB colors: RGB0 - white (all Fs) 1003 * and RGB1 - black (all 0s) 1004 * (three RGB components for two colors) 1005 */ 1006 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 1007 0x0000, 0x0000}; 1008 /* dest color (converted to the specified color format) */ 1009 uint16_t dst_color[6]; 1010 uint32_t inc_base; 1011 1012 /* translate to bit depth */ 1013 switch (color_depth) { 1014 case COLOR_DEPTH_666: 1015 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; 1016 break; 1017 case COLOR_DEPTH_888: 1018 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 1019 break; 1020 case COLOR_DEPTH_101010: 1021 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; 1022 break; 1023 case COLOR_DEPTH_121212: 1024 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; 1025 break; 1026 default: 1027 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 1028 break; 1029 } 1030 1031 switch (test_pattern) { 1032 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: 1033 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: 1034 { 1035 dyn_range = (test_pattern == 1036 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? 1037 TEST_PATTERN_DYN_RANGE_CEA : 1038 TEST_PATTERN_DYN_RANGE_VESA); 1039 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; 1040 1041 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS, 1042 OTG_TEST_PATTERN_VRES, 6, 1043 OTG_TEST_PATTERN_HRES, 6); 1044 1045 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, 1046 OTG_TEST_PATTERN_EN, 1, 1047 OTG_TEST_PATTERN_MODE, mode, 1048 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range, 1049 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1050 } 1051 break; 1052 1053 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: 1054 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: 1055 { 1056 mode = (test_pattern == 1057 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? 1058 TEST_PATTERN_MODE_VERTICALBARS : 1059 TEST_PATTERN_MODE_HORIZONTALBARS); 1060 1061 switch (bit_depth) { 1062 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1063 dst_bpc = 6; 1064 break; 1065 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1066 dst_bpc = 8; 1067 break; 1068 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1069 dst_bpc = 10; 1070 break; 1071 default: 1072 dst_bpc = 8; 1073 break; 1074 } 1075 1076 /* adjust color to the required colorFormat */ 1077 for (index = 0; index < 6; index++) { 1078 /* dst = 2^dstBpc * src / 2^srcBpc = src >> 1079 * (srcBpc - dstBpc); 1080 */ 1081 dst_color[index] = 1082 src_color[index] >> (src_bpc - dst_bpc); 1083 /* CRTC_TEST_PATTERN_DATA has 16 bits, 1084 * lowest 6 are hardwired to ZERO 1085 * color bits should be left aligned aligned to MSB 1086 * XXXXXXXXXX000000 for 10 bit, 1087 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 1088 */ 1089 dst_color[index] <<= (16 - dst_bpc); 1090 } 1091 1092 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); 1093 1094 /* We have to write the mask before data, similar to pipeline. 1095 * For example, for 8 bpc, if we want RGB0 to be magenta, 1096 * and RGB1 to be cyan, 1097 * we need to make 7 writes: 1098 * MASK DATA 1099 * 000001 00000000 00000000 set mask to R0 1100 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 1101 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 1102 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 1103 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 1104 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 1105 * 100000 11111111 00000000 B1 255, 0xFF00 1106 * 1107 * we will make a loop of 6 in which we prepare the mask, 1108 * then write, then prepare the color for next write. 1109 * first iteration will write mask only, 1110 * but each next iteration color prepared in 1111 * previous iteration will be written within new mask, 1112 * the last component will written separately, 1113 * mask is not changing between 6th and 7th write 1114 * and color will be prepared by last iteration 1115 */ 1116 1117 /* write color, color values mask in CRTC_TEST_PATTERN_MASK 1118 * is B1, G1, R1, B0, G0, R0 1119 */ 1120 pattern_data = 0; 1121 for (index = 0; index < 6; index++) { 1122 /* prepare color mask, first write PATTERN_DATA 1123 * will have all zeros 1124 */ 1125 pattern_mask = (1 << index); 1126 1127 /* write color component */ 1128 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, 1129 OTG_TEST_PATTERN_MASK, pattern_mask, 1130 OTG_TEST_PATTERN_DATA, pattern_data); 1131 1132 /* prepare next color component, 1133 * will be written in the next iteration 1134 */ 1135 pattern_data = dst_color[index]; 1136 } 1137 /* write last color component, 1138 * it's been already prepared in the loop 1139 */ 1140 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, 1141 OTG_TEST_PATTERN_MASK, pattern_mask, 1142 OTG_TEST_PATTERN_DATA, pattern_data); 1143 1144 /* enable test pattern */ 1145 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, 1146 OTG_TEST_PATTERN_EN, 1, 1147 OTG_TEST_PATTERN_MODE, mode, 1148 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, 1149 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1150 } 1151 break; 1152 1153 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: 1154 { 1155 mode = (bit_depth == 1156 TEST_PATTERN_COLOR_FORMAT_BPC_10 ? 1157 TEST_PATTERN_MODE_DUALRAMP_RGB : 1158 TEST_PATTERN_MODE_SINGLERAMP_RGB); 1159 1160 switch (bit_depth) { 1161 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1162 dst_bpc = 6; 1163 break; 1164 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1165 dst_bpc = 8; 1166 break; 1167 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1168 dst_bpc = 10; 1169 break; 1170 default: 1171 dst_bpc = 8; 1172 break; 1173 } 1174 1175 /* increment for the first ramp for one color gradation 1176 * 1 gradation for 6-bit color is 2^10 1177 * gradations in 16-bit color 1178 */ 1179 inc_base = (src_bpc - dst_bpc); 1180 1181 switch (bit_depth) { 1182 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 1183 { 1184 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1185 OTG_TEST_PATTERN_INC0, inc_base, 1186 OTG_TEST_PATTERN_INC1, 0, 1187 OTG_TEST_PATTERN_HRES, 6, 1188 OTG_TEST_PATTERN_VRES, 6, 1189 OTG_TEST_PATTERN_RAMP0_OFFSET, 0); 1190 } 1191 break; 1192 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 1193 { 1194 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1195 OTG_TEST_PATTERN_INC0, inc_base, 1196 OTG_TEST_PATTERN_INC1, 0, 1197 OTG_TEST_PATTERN_HRES, 8, 1198 OTG_TEST_PATTERN_VRES, 6, 1199 OTG_TEST_PATTERN_RAMP0_OFFSET, 0); 1200 } 1201 break; 1202 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1203 { 1204 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, 1205 OTG_TEST_PATTERN_INC0, inc_base, 1206 OTG_TEST_PATTERN_INC1, inc_base + 2, 1207 OTG_TEST_PATTERN_HRES, 8, 1208 OTG_TEST_PATTERN_VRES, 5, 1209 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6); 1210 } 1211 break; 1212 default: 1213 break; 1214 } 1215 1216 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); 1217 1218 /* enable test pattern */ 1219 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); 1220 1221 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0, 1222 OTG_TEST_PATTERN_EN, 1, 1223 OTG_TEST_PATTERN_MODE, mode, 1224 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, 1225 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); 1226 } 1227 break; 1228 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: 1229 { 1230 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); 1231 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); 1232 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); 1233 } 1234 break; 1235 default: 1236 break; 1237 1238 } 1239 } 1240 1241 void optc1_get_crtc_scanoutpos( 1242 struct timing_generator *optc, 1243 uint32_t *v_blank_start, 1244 uint32_t *v_blank_end, 1245 uint32_t *h_position, 1246 uint32_t *v_position) 1247 { 1248 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1249 struct crtc_position position; 1250 1251 REG_GET_2(OTG_V_BLANK_START_END, 1252 OTG_V_BLANK_START, v_blank_start, 1253 OTG_V_BLANK_END, v_blank_end); 1254 1255 optc1_get_position(optc, &position); 1256 1257 *h_position = position.horizontal_count; 1258 *v_position = position.vertical_count; 1259 } 1260 1261 static void optc1_enable_stereo(struct timing_generator *optc, 1262 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) 1263 { 1264 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1265 1266 if (flags) { 1267 uint32_t stereo_en; 1268 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0; 1269 1270 if (flags->PROGRAM_STEREO) 1271 REG_UPDATE_3(OTG_STEREO_CONTROL, 1272 OTG_STEREO_EN, stereo_en, 1273 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0, 1274 OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); 1275 1276 if (flags->PROGRAM_POLARITY) 1277 REG_UPDATE(OTG_STEREO_CONTROL, 1278 OTG_STEREO_EYE_FLAG_POLARITY, 1279 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); 1280 1281 if (flags->DISABLE_STEREO_DP_SYNC) 1282 REG_UPDATE(OTG_STEREO_CONTROL, 1283 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1); 1284 1285 if (flags->PROGRAM_STEREO) 1286 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL, 1287 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED, 1288 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED); 1289 1290 } 1291 } 1292 1293 void optc1_program_stereo(struct timing_generator *optc, 1294 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) 1295 { 1296 if (flags->PROGRAM_STEREO) 1297 optc1_enable_stereo(optc, timing, flags); 1298 else 1299 optc1_disable_stereo(optc); 1300 } 1301 1302 1303 bool optc1_is_stereo_left_eye(struct timing_generator *optc) 1304 { 1305 bool ret = false; 1306 uint32_t left_eye = 0; 1307 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1308 1309 REG_GET(OTG_STEREO_STATUS, 1310 OTG_STEREO_CURRENT_EYE, &left_eye); 1311 if (left_eye == 1) 1312 ret = true; 1313 else 1314 ret = false; 1315 1316 return ret; 1317 } 1318 1319 bool optc1_get_hw_timing(struct timing_generator *tg, 1320 struct dc_crtc_timing *hw_crtc_timing) 1321 { 1322 struct dcn_otg_state s = {0}; 1323 1324 if (tg == NULL || hw_crtc_timing == NULL) 1325 return false; 1326 1327 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s); 1328 1329 hw_crtc_timing->h_total = s.h_total + 1; 1330 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end); 1331 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start; 1332 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start; 1333 1334 hw_crtc_timing->v_total = s.v_total + 1; 1335 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end); 1336 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start; 1337 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start; 1338 1339 return true; 1340 } 1341 1342 1343 void optc1_read_otg_state(struct optc *optc1, 1344 struct dcn_otg_state *s) 1345 { 1346 REG_GET(OTG_CONTROL, 1347 OTG_MASTER_EN, &s->otg_enabled); 1348 1349 REG_GET_2(OTG_V_BLANK_START_END, 1350 OTG_V_BLANK_START, &s->v_blank_start, 1351 OTG_V_BLANK_END, &s->v_blank_end); 1352 1353 REG_GET(OTG_V_SYNC_A_CNTL, 1354 OTG_V_SYNC_A_POL, &s->v_sync_a_pol); 1355 1356 REG_GET(OTG_V_TOTAL, 1357 OTG_V_TOTAL, &s->v_total); 1358 1359 REG_GET(OTG_V_TOTAL_MAX, 1360 OTG_V_TOTAL_MAX, &s->v_total_max); 1361 1362 REG_GET(OTG_V_TOTAL_MIN, 1363 OTG_V_TOTAL_MIN, &s->v_total_min); 1364 1365 REG_GET(OTG_V_TOTAL_CONTROL, 1366 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel); 1367 1368 REG_GET(OTG_V_TOTAL_CONTROL, 1369 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel); 1370 1371 REG_GET_2(OTG_V_SYNC_A, 1372 OTG_V_SYNC_A_START, &s->v_sync_a_start, 1373 OTG_V_SYNC_A_END, &s->v_sync_a_end); 1374 1375 REG_GET_2(OTG_H_BLANK_START_END, 1376 OTG_H_BLANK_START, &s->h_blank_start, 1377 OTG_H_BLANK_END, &s->h_blank_end); 1378 1379 REG_GET_2(OTG_H_SYNC_A, 1380 OTG_H_SYNC_A_START, &s->h_sync_a_start, 1381 OTG_H_SYNC_A_END, &s->h_sync_a_end); 1382 1383 REG_GET(OTG_H_SYNC_A_CNTL, 1384 OTG_H_SYNC_A_POL, &s->h_sync_a_pol); 1385 1386 REG_GET(OTG_H_TOTAL, 1387 OTG_H_TOTAL, &s->h_total); 1388 1389 REG_GET(OPTC_INPUT_GLOBAL_CONTROL, 1390 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status); 1391 1392 REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL, 1393 OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en); 1394 1395 REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION, 1396 OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line); 1397 } 1398 1399 bool optc1_get_otg_active_size(struct timing_generator *optc, 1400 uint32_t *otg_active_width, 1401 uint32_t *otg_active_height) 1402 { 1403 uint32_t otg_enabled; 1404 uint32_t v_blank_start; 1405 uint32_t v_blank_end; 1406 uint32_t h_blank_start; 1407 uint32_t h_blank_end; 1408 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1409 1410 1411 REG_GET(OTG_CONTROL, 1412 OTG_MASTER_EN, &otg_enabled); 1413 1414 if (otg_enabled == 0) 1415 return false; 1416 1417 REG_GET_2(OTG_V_BLANK_START_END, 1418 OTG_V_BLANK_START, &v_blank_start, 1419 OTG_V_BLANK_END, &v_blank_end); 1420 1421 REG_GET_2(OTG_H_BLANK_START_END, 1422 OTG_H_BLANK_START, &h_blank_start, 1423 OTG_H_BLANK_END, &h_blank_end); 1424 1425 *otg_active_width = v_blank_start - v_blank_end; 1426 *otg_active_height = h_blank_start - h_blank_end; 1427 return true; 1428 } 1429 1430 void optc1_clear_optc_underflow(struct timing_generator *optc) 1431 { 1432 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1433 1434 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1); 1435 } 1436 1437 void optc1_tg_init(struct timing_generator *optc) 1438 { 1439 optc1_set_blank_data_double_buffer(optc, true); 1440 optc1_set_timing_double_buffer(optc, true); 1441 optc1_clear_optc_underflow(optc); 1442 } 1443 1444 bool optc1_is_tg_enabled(struct timing_generator *optc) 1445 { 1446 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1447 uint32_t otg_enabled = 0; 1448 1449 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled); 1450 1451 return (otg_enabled != 0); 1452 1453 } 1454 1455 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc) 1456 { 1457 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1458 uint32_t underflow_occurred = 0; 1459 1460 REG_GET(OPTC_INPUT_GLOBAL_CONTROL, 1461 OPTC_UNDERFLOW_OCCURRED_STATUS, 1462 &underflow_occurred); 1463 1464 return (underflow_occurred == 1); 1465 } 1466 1467 bool optc1_configure_crc(struct timing_generator *optc, 1468 const struct crc_params *params) 1469 { 1470 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1471 1472 /* Cannot configure crc on a CRTC that is disabled */ 1473 if (!optc1_is_tg_enabled(optc)) 1474 return false; 1475 1476 REG_WRITE(OTG_CRC_CNTL, 0); 1477 1478 if (!params->enable) 1479 return true; 1480 1481 /* Program frame boundaries */ 1482 /* Window A x axis start and end. */ 1483 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL, 1484 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start, 1485 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end); 1486 1487 /* Window A y axis start and end. */ 1488 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL, 1489 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start, 1490 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end); 1491 1492 /* Window B x axis start and end. */ 1493 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL, 1494 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start, 1495 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end); 1496 1497 /* Window B y axis start and end. */ 1498 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL, 1499 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start, 1500 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end); 1501 1502 /* Set crc mode and selection, and enable. Only using CRC0*/ 1503 REG_UPDATE_3(OTG_CRC_CNTL, 1504 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0, 1505 OTG_CRC0_SELECT, params->selection, 1506 OTG_CRC_EN, 1); 1507 1508 return true; 1509 } 1510 1511 bool optc1_get_crc(struct timing_generator *optc, 1512 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) 1513 { 1514 uint32_t field = 0; 1515 struct optc *optc1 = DCN10TG_FROM_TG(optc); 1516 1517 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field); 1518 1519 /* Early return if CRC is not enabled for this CRTC */ 1520 if (!field) 1521 return false; 1522 1523 REG_GET_2(OTG_CRC0_DATA_RG, 1524 CRC0_R_CR, r_cr, 1525 CRC0_G_Y, g_y); 1526 1527 REG_GET(OTG_CRC0_DATA_B, 1528 CRC0_B_CB, b_cb); 1529 1530 return true; 1531 } 1532 1533 static const struct timing_generator_funcs dcn10_tg_funcs = { 1534 .validate_timing = optc1_validate_timing, 1535 .program_timing = optc1_program_timing, 1536 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, 1537 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, 1538 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, 1539 .program_global_sync = optc1_program_global_sync, 1540 .enable_crtc = optc1_enable_crtc, 1541 .disable_crtc = optc1_disable_crtc, 1542 /* used by enable_timing_synchronization. Not need for FPGA */ 1543 .is_counter_moving = optc1_is_counter_moving, 1544 .get_position = optc1_get_position, 1545 .get_frame_count = optc1_get_vblank_counter, 1546 .get_scanoutpos = optc1_get_crtc_scanoutpos, 1547 .get_otg_active_size = optc1_get_otg_active_size, 1548 .set_early_control = optc1_set_early_control, 1549 /* used by enable_timing_synchronization. Not need for FPGA */ 1550 .wait_for_state = optc1_wait_for_state, 1551 .set_blank = optc1_set_blank, 1552 .is_blanked = optc1_is_blanked, 1553 .set_blank_color = optc1_program_blank_color, 1554 .did_triggered_reset_occur = optc1_did_triggered_reset_occur, 1555 .enable_reset_trigger = optc1_enable_reset_trigger, 1556 .enable_crtc_reset = optc1_enable_crtc_reset, 1557 .disable_reset_trigger = optc1_disable_reset_trigger, 1558 .lock = optc1_lock, 1559 .is_locked = optc1_is_locked, 1560 .unlock = optc1_unlock, 1561 .enable_optc_clock = optc1_enable_optc_clock, 1562 .set_drr = optc1_set_drr, 1563 .get_last_used_drr_vtotal = NULL, 1564 .set_static_screen_control = optc1_set_static_screen_control, 1565 .set_test_pattern = optc1_set_test_pattern, 1566 .program_stereo = optc1_program_stereo, 1567 .is_stereo_left_eye = optc1_is_stereo_left_eye, 1568 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, 1569 .tg_init = optc1_tg_init, 1570 .is_tg_enabled = optc1_is_tg_enabled, 1571 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, 1572 .clear_optc_underflow = optc1_clear_optc_underflow, 1573 .get_crc = optc1_get_crc, 1574 .configure_crc = optc1_configure_crc, 1575 .set_vtg_params = optc1_set_vtg_params, 1576 .program_manual_trigger = optc1_program_manual_trigger, 1577 .setup_manual_trigger = optc1_setup_manual_trigger, 1578 .get_hw_timing = optc1_get_hw_timing, 1579 }; 1580 1581 void dcn10_timing_generator_init(struct optc *optc1) 1582 { 1583 optc1->base.funcs = &dcn10_tg_funcs; 1584 1585 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; 1586 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; 1587 1588 optc1->min_h_blank = 32; 1589 optc1->min_v_blank = 3; 1590 optc1->min_v_blank_interlace = 5; 1591 optc1->min_h_sync_width = 4; 1592 optc1->min_v_sync_width = 1; 1593 } 1594 1595 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this: 1596 * 1597 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as 1598 * containter rate. 1599 * 1600 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be 1601 * halved to maintain the correct pixel rate. 1602 * 1603 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied 1604 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well. 1605 * 1606 */ 1607 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) 1608 { 1609 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420; 1610 1611 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422 1612 && !timing->dsc_cfg.ycbcr422_simple); 1613 return two_pix; 1614 } 1615 1616