xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
49 static void optc1_apply_front_porch_workaround(
50 	struct timing_generator *optc,
51 	struct dc_crtc_timing *timing)
52 {
53 	if (timing->flags.INTERLACE == 1) {
54 		if (timing->v_front_porch < 2)
55 			timing->v_front_porch = 2;
56 	} else {
57 		if (timing->v_front_porch < 1)
58 			timing->v_front_porch = 1;
59 	}
60 }
61 
62 void optc1_program_global_sync(
63 		struct timing_generator *optc)
64 {
65 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
66 
67 	if (optc->dlg_otg_param.vstartup_start == 0) {
68 		BREAK_TO_DEBUGGER();
69 		return;
70 	}
71 
72 	REG_SET(OTG_VSTARTUP_PARAM, 0,
73 		VSTARTUP_START, optc->dlg_otg_param.vstartup_start);
74 
75 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
76 			VUPDATE_OFFSET, optc->dlg_otg_param.vupdate_offset,
77 			VUPDATE_WIDTH, optc->dlg_otg_param.vupdate_width);
78 
79 	REG_SET(OTG_VREADY_PARAM, 0,
80 			VREADY_OFFSET, optc->dlg_otg_param.vready_offset);
81 }
82 
83 static void optc1_disable_stereo(struct timing_generator *optc)
84 {
85 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
86 
87 	REG_SET(OTG_STEREO_CONTROL, 0,
88 		OTG_STEREO_EN, 0);
89 
90 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
91 		OTG_3D_STRUCTURE_EN, 0,
92 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
93 }
94 
95 void optc1_setup_vertical_interrupt0(
96 		struct timing_generator *optc,
97 		uint32_t start_line,
98 		uint32_t end_line)
99 {
100 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
101 
102 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
103 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
104 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
105 }
106 
107 void optc1_setup_vertical_interrupt1(
108 		struct timing_generator *optc,
109 		uint32_t start_line)
110 {
111 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
112 
113 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
114 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
115 }
116 
117 void optc1_setup_vertical_interrupt2(
118 		struct timing_generator *optc,
119 		uint32_t start_line)
120 {
121 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
122 
123 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
124 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
125 }
126 
127 /**
128  * program_timing_generator   used by mode timing set
129  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
130  * Including SYNC. Call BIOS command table to program Timings.
131  */
132 void optc1_program_timing(
133 	struct timing_generator *optc,
134 	const struct dc_crtc_timing *dc_crtc_timing,
135 	bool use_vbios)
136 {
137 	struct dc_crtc_timing patched_crtc_timing;
138 	uint32_t vesa_sync_start;
139 	uint32_t asic_blank_end;
140 	uint32_t asic_blank_start;
141 	uint32_t v_total;
142 	uint32_t v_sync_end;
143 	uint32_t v_init, v_fp2;
144 	uint32_t h_sync_polarity, v_sync_polarity;
145 	uint32_t start_point = 0;
146 	uint32_t field_num = 0;
147 	uint32_t h_div_2;
148 	int32_t vertical_line_start;
149 
150 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
151 
152 	patched_crtc_timing = *dc_crtc_timing;
153 	optc1_apply_front_porch_workaround(optc, &patched_crtc_timing);
154 
155 	/* Load horizontal timing */
156 
157 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
158 	REG_SET(OTG_H_TOTAL, 0,
159 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
160 
161 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
162 	REG_UPDATE_2(OTG_H_SYNC_A,
163 			OTG_H_SYNC_A_START, 0,
164 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
165 
166 	/* asic_h_blank_end = HsyncWidth + HbackPorch =
167 	 * vesa. usHorizontalTotal - vesa. usHorizontalSyncStart -
168 	 * vesa.h_left_border
169 	 */
170 	vesa_sync_start = patched_crtc_timing.h_addressable +
171 			patched_crtc_timing.h_border_right +
172 			patched_crtc_timing.h_front_porch;
173 
174 	asic_blank_end = patched_crtc_timing.h_total -
175 			vesa_sync_start -
176 			patched_crtc_timing.h_border_left;
177 
178 	/* h_blank_start = v_blank_end + v_active */
179 	asic_blank_start = asic_blank_end +
180 			patched_crtc_timing.h_border_left +
181 			patched_crtc_timing.h_addressable +
182 			patched_crtc_timing.h_border_right;
183 
184 	REG_UPDATE_2(OTG_H_BLANK_START_END,
185 			OTG_H_BLANK_START, asic_blank_start,
186 			OTG_H_BLANK_END, asic_blank_end);
187 
188 	/* h_sync polarity */
189 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
190 			0 : 1;
191 
192 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
193 			OTG_H_SYNC_A_POL, h_sync_polarity);
194 
195 	v_total = patched_crtc_timing.v_total - 1;
196 
197 	REG_SET(OTG_V_TOTAL, 0,
198 			OTG_V_TOTAL, v_total);
199 
200 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
201 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
202 	 */
203 	REG_SET(OTG_V_TOTAL_MAX, 0,
204 		OTG_V_TOTAL_MAX, v_total);
205 	REG_SET(OTG_V_TOTAL_MIN, 0,
206 		OTG_V_TOTAL_MIN, v_total);
207 
208 	/* v_sync_start = 0, v_sync_end = v_sync_width */
209 	v_sync_end = patched_crtc_timing.v_sync_width;
210 
211 	REG_UPDATE_2(OTG_V_SYNC_A,
212 			OTG_V_SYNC_A_START, 0,
213 			OTG_V_SYNC_A_END, v_sync_end);
214 
215 	vesa_sync_start = patched_crtc_timing.v_addressable +
216 			patched_crtc_timing.v_border_bottom +
217 			patched_crtc_timing.v_front_porch;
218 
219 	asic_blank_end = (patched_crtc_timing.v_total -
220 			vesa_sync_start -
221 			patched_crtc_timing.v_border_top);
222 
223 	/* v_blank_start = v_blank_end + v_active */
224 	asic_blank_start = asic_blank_end +
225 			(patched_crtc_timing.v_border_top +
226 			patched_crtc_timing.v_addressable +
227 			patched_crtc_timing.v_border_bottom);
228 
229 	vertical_line_start = asic_blank_end - optc->dlg_otg_param.vstartup_start + 1;
230 	v_fp2 = 0;
231 	if (vertical_line_start < 0)
232 		v_fp2 = -vertical_line_start;
233 
234 	REG_UPDATE_2(OTG_V_BLANK_START_END,
235 			OTG_V_BLANK_START, asic_blank_start,
236 			OTG_V_BLANK_END, asic_blank_end);
237 
238 	/* v_sync polarity */
239 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
240 			0 : 1;
241 
242 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
243 		OTG_V_SYNC_A_POL, v_sync_polarity);
244 
245 	v_init = asic_blank_start;
246 	if (optc->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT ||
247 		optc->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
248 		optc->dlg_otg_param.signal == SIGNAL_TYPE_EDP) {
249 		start_point = 1;
250 		if (patched_crtc_timing.flags.INTERLACE == 1)
251 			field_num = 1;
252 	}
253 
254 	/* Interlace */
255 	if (REG(OTG_INTERLACE_CONTROL)) {
256 		if (patched_crtc_timing.flags.INTERLACE == 1) {
257 			REG_UPDATE(OTG_INTERLACE_CONTROL,
258 					OTG_INTERLACE_ENABLE, 1);
259 			v_init = v_init / 2;
260 			if ((optc->dlg_otg_param.vstartup_start/2)*2 > asic_blank_end)
261 				v_fp2 = v_fp2 / 2;
262 		} else
263 			REG_UPDATE(OTG_INTERLACE_CONTROL,
264 					OTG_INTERLACE_ENABLE, 0);
265 	}
266 
267 	/* VTG enable set to 0 first VInit */
268 	REG_UPDATE(CONTROL,
269 			VTG0_ENABLE, 0);
270 
271 	REG_UPDATE_2(CONTROL,
272 			VTG0_FP2, v_fp2,
273 			VTG0_VCOUNT_INIT, v_init);
274 
275 	/* original code is using VTG offset to address OTG reg, seems wrong */
276 	REG_UPDATE_2(OTG_CONTROL,
277 			OTG_START_POINT_CNTL, start_point,
278 			OTG_FIELD_NUMBER_CNTL, field_num);
279 
280 	optc1_program_global_sync(optc);
281 
282 	/* TODO
283 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
284 	 * program_horz_count_by_2
285 	 * for DVI 30bpp mode, 0 otherwise
286 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
287 	 */
288 
289 	/* Enable stereo - only when we need to pack 3D frame. Other types
290 	 * of stereo handled in explicit call
291 	 */
292 
293 	h_div_2 = optc1_is_two_pixels_per_containter(&patched_crtc_timing);
294 	REG_UPDATE(OTG_H_TIMING_CNTL,
295 			OTG_H_TIMING_DIV_BY2, h_div_2 || optc1->comb_opp_id != 0xf);
296 
297 }
298 
299 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
300 {
301 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
302 
303 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
304 
305 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
306 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
307 }
308 
309 /**
310  * unblank_crtc
311  * Call ASIC Control Object to UnBlank CRTC.
312  */
313 static void optc1_unblank_crtc(struct timing_generator *optc)
314 {
315 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
316 
317 	REG_UPDATE_2(OTG_BLANK_CONTROL,
318 			OTG_BLANK_DATA_EN, 0,
319 			OTG_BLANK_DE_MODE, 0);
320 
321 	/* W/A for automated testing
322 	 * Automated testing will fail underflow test as there
323 	 * sporadic underflows which occur during the optc blank
324 	 * sequence.  As a w/a, clear underflow on unblank.
325 	 * This prevents the failure, but will not mask actual
326 	 * underflow that affect real use cases.
327 	 */
328 	optc1_clear_optc_underflow(optc);
329 }
330 
331 /**
332  * blank_crtc
333  * Call ASIC Control Object to Blank CRTC.
334  */
335 
336 static void optc1_blank_crtc(struct timing_generator *optc)
337 {
338 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
339 
340 	REG_UPDATE_2(OTG_BLANK_CONTROL,
341 			OTG_BLANK_DATA_EN, 1,
342 			OTG_BLANK_DE_MODE, 0);
343 
344 	optc1_set_blank_data_double_buffer(optc, false);
345 }
346 
347 void optc1_set_blank(struct timing_generator *optc,
348 		bool enable_blanking)
349 {
350 	if (enable_blanking)
351 		optc1_blank_crtc(optc);
352 	else
353 		optc1_unblank_crtc(optc);
354 }
355 
356 bool optc1_is_blanked(struct timing_generator *optc)
357 {
358 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
359 	uint32_t blank_en;
360 	uint32_t blank_state;
361 
362 	REG_GET_2(OTG_BLANK_CONTROL,
363 			OTG_BLANK_DATA_EN, &blank_en,
364 			OTG_CURRENT_BLANK_STATE, &blank_state);
365 
366 	return blank_en && blank_state;
367 }
368 
369 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
370 {
371 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
372 
373 	if (enable) {
374 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
375 				OPTC_INPUT_CLK_EN, 1,
376 				OPTC_INPUT_CLK_GATE_DIS, 1);
377 
378 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
379 				OPTC_INPUT_CLK_ON, 1,
380 				1, 1000);
381 
382 		/* Enable clock */
383 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
384 				OTG_CLOCK_EN, 1,
385 				OTG_CLOCK_GATE_DIS, 1);
386 		REG_WAIT(OTG_CLOCK_CONTROL,
387 				OTG_CLOCK_ON, 1,
388 				1, 1000);
389 	} else  {
390 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
391 				OTG_CLOCK_GATE_DIS, 0,
392 				OTG_CLOCK_EN, 0);
393 
394 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
395 				OPTC_INPUT_CLK_GATE_DIS, 0,
396 				OPTC_INPUT_CLK_EN, 0);
397 	}
398 }
399 
400 /**
401  * Enable CRTC
402  * Enable CRTC - call ASIC Control Object to enable Timing generator.
403  */
404 static bool optc1_enable_crtc(struct timing_generator *optc)
405 {
406 	/* TODO FPGA wait for answer
407 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
408 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
409 	 */
410 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
411 
412 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
413 	 * OPP and OPTC should 1:1 mapping
414 	 */
415 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
416 			OPTC_SRC_SEL, optc->inst);
417 
418 	/* VTG enable first is for HW workaround */
419 	REG_UPDATE(CONTROL,
420 			VTG0_ENABLE, 1);
421 
422 	/* Enable CRTC */
423 	REG_UPDATE_2(OTG_CONTROL,
424 			OTG_DISABLE_POINT_CNTL, 3,
425 			OTG_MASTER_EN, 1);
426 
427 	return true;
428 }
429 
430 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
431 bool optc1_disable_crtc(struct timing_generator *optc)
432 {
433 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
434 
435 	/* disable otg request until end of the first line
436 	 * in the vertical blank region
437 	 */
438 	REG_UPDATE_2(OTG_CONTROL,
439 			OTG_DISABLE_POINT_CNTL, 3,
440 			OTG_MASTER_EN, 0);
441 
442 	REG_UPDATE(CONTROL,
443 			VTG0_ENABLE, 0);
444 
445 	/* CRTC disabled, so disable  clock. */
446 	REG_WAIT(OTG_CLOCK_CONTROL,
447 			OTG_BUSY, 0,
448 			1, 100000);
449 
450 	return true;
451 }
452 
453 
454 void optc1_program_blank_color(
455 		struct timing_generator *optc,
456 		const struct tg_color *black_color)
457 {
458 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
459 
460 	REG_SET_3(OTG_BLACK_COLOR, 0,
461 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
462 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
463 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
464 }
465 
466 bool optc1_validate_timing(
467 	struct timing_generator *optc,
468 	const struct dc_crtc_timing *timing)
469 {
470 	uint32_t v_blank;
471 	uint32_t h_blank;
472 	uint32_t min_v_blank;
473 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
474 
475 	ASSERT(timing != NULL);
476 
477 	v_blank = (timing->v_total - timing->v_addressable -
478 					timing->v_border_top - timing->v_border_bottom);
479 
480 	h_blank = (timing->h_total - timing->h_addressable -
481 		timing->h_border_right -
482 		timing->h_border_left);
483 
484 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
485 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
486 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
487 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
488 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
489 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
490 		return false;
491 
492 	/* Temporarily blocking interlacing mode until it's supported */
493 	if (timing->flags.INTERLACE == 1)
494 		return false;
495 
496 	/* Check maximum number of pixels supported by Timing Generator
497 	 * (Currently will never fail, in order to fail needs display which
498 	 * needs more than 8192 horizontal and
499 	 * more than 8192 vertical total pixels)
500 	 */
501 	if (timing->h_total > optc1->max_h_total ||
502 		timing->v_total > optc1->max_v_total)
503 		return false;
504 
505 
506 	if (h_blank < optc1->min_h_blank)
507 		return false;
508 
509 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
510 		 timing->v_sync_width  < optc1->min_v_sync_width)
511 		return false;
512 
513 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
514 
515 	if (v_blank < min_v_blank)
516 		return false;
517 
518 	return true;
519 
520 }
521 
522 /*
523  * get_vblank_counter
524  *
525  * @brief
526  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
527  * holds the counter of frames.
528  *
529  * @param
530  * struct timing_generator *optc - [in] timing generator which controls the
531  * desired CRTC
532  *
533  * @return
534  * Counter of frames, which should equal to number of vblanks.
535  */
536 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
537 {
538 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
539 	uint32_t frame_count;
540 
541 	REG_GET(OTG_STATUS_FRAME_COUNT,
542 		OTG_FRAME_COUNT, &frame_count);
543 
544 	return frame_count;
545 }
546 
547 void optc1_lock(struct timing_generator *optc)
548 {
549 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
550 
551 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
552 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
553 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
554 			OTG_MASTER_UPDATE_LOCK, 1);
555 
556 	/* Should be fast, status does not update on maximus */
557 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
558 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
559 				UPDATE_LOCK_STATUS, 1,
560 				1, 10);
561 }
562 
563 void optc1_unlock(struct timing_generator *optc)
564 {
565 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
566 
567 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
568 			OTG_MASTER_UPDATE_LOCK, 0);
569 }
570 
571 void optc1_get_position(struct timing_generator *optc,
572 		struct crtc_position *position)
573 {
574 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
575 
576 	REG_GET_2(OTG_STATUS_POSITION,
577 			OTG_HORZ_COUNT, &position->horizontal_count,
578 			OTG_VERT_COUNT, &position->vertical_count);
579 
580 	REG_GET(OTG_NOM_VERT_POSITION,
581 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
582 }
583 
584 bool optc1_is_counter_moving(struct timing_generator *optc)
585 {
586 	struct crtc_position position1, position2;
587 
588 	optc->funcs->get_position(optc, &position1);
589 	optc->funcs->get_position(optc, &position2);
590 
591 	if (position1.horizontal_count == position2.horizontal_count &&
592 		position1.vertical_count == position2.vertical_count)
593 		return false;
594 	else
595 		return true;
596 }
597 
598 bool optc1_did_triggered_reset_occur(
599 	struct timing_generator *optc)
600 {
601 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
602 	uint32_t occurred_force, occurred_vsync;
603 
604 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
605 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
606 
607 	REG_GET(OTG_VERT_SYNC_CONTROL,
608 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
609 
610 	return occurred_vsync != 0 || occurred_force != 0;
611 }
612 
613 void optc1_disable_reset_trigger(struct timing_generator *optc)
614 {
615 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
616 
617 	REG_WRITE(OTG_TRIGA_CNTL, 0);
618 
619 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
620 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
621 
622 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
623 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
624 }
625 
626 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
627 {
628 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
629 	uint32_t falling_edge;
630 
631 	REG_GET(OTG_V_SYNC_A_CNTL,
632 			OTG_V_SYNC_A_POL, &falling_edge);
633 
634 	if (falling_edge)
635 		REG_SET_3(OTG_TRIGA_CNTL, 0,
636 				/* vsync signal from selected OTG pipe based
637 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
638 				 */
639 				OTG_TRIGA_SOURCE_SELECT, 20,
640 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
641 				/* always detect falling edge */
642 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
643 	else
644 		REG_SET_3(OTG_TRIGA_CNTL, 0,
645 				/* vsync signal from selected OTG pipe based
646 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
647 				 */
648 				OTG_TRIGA_SOURCE_SELECT, 20,
649 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
650 				/* always detect rising edge */
651 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
652 
653 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
654 			/* force H count to H_TOTAL and V count to V_TOTAL in
655 			 * progressive mode and V_TOTAL-1 in interlaced mode
656 			 */
657 			OTG_FORCE_COUNT_NOW_MODE, 2);
658 }
659 
660 void optc1_enable_crtc_reset(
661 		struct timing_generator *optc,
662 		int source_tg_inst,
663 		struct crtc_trigger_info *crtc_tp)
664 {
665 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
666 	uint32_t falling_edge = 0;
667 	uint32_t rising_edge = 0;
668 
669 	switch (crtc_tp->event) {
670 
671 	case CRTC_EVENT_VSYNC_RISING:
672 		rising_edge = 1;
673 		break;
674 
675 	case CRTC_EVENT_VSYNC_FALLING:
676 		falling_edge = 1;
677 		break;
678 	}
679 
680 	REG_SET_4(OTG_TRIGA_CNTL, 0,
681 		 /* vsync signal from selected OTG pipe based
682 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
683 		  */
684 		  OTG_TRIGA_SOURCE_SELECT, 20,
685 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
686 		  /* always detect falling edge */
687 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
688 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
689 
690 	switch (crtc_tp->delay) {
691 	case TRIGGER_DELAY_NEXT_LINE:
692 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
693 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
694 		break;
695 	case TRIGGER_DELAY_NEXT_PIXEL:
696 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
697 			/* force H count to H_TOTAL and V count to V_TOTAL in
698 			 * progressive mode and V_TOTAL-1 in interlaced mode
699 			 */
700 			OTG_FORCE_COUNT_NOW_MODE, 2);
701 		break;
702 	}
703 }
704 
705 void optc1_wait_for_state(struct timing_generator *optc,
706 		enum crtc_state state)
707 {
708 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
709 
710 	switch (state) {
711 	case CRTC_STATE_VBLANK:
712 		REG_WAIT(OTG_STATUS,
713 				OTG_V_BLANK, 1,
714 				1, 100000); /* 1 vupdate at 10hz */
715 		break;
716 
717 	case CRTC_STATE_VACTIVE:
718 		REG_WAIT(OTG_STATUS,
719 				OTG_V_ACTIVE_DISP, 1,
720 				1, 100000); /* 1 vupdate at 10hz */
721 		break;
722 
723 	default:
724 		break;
725 	}
726 }
727 
728 void optc1_set_early_control(
729 	struct timing_generator *optc,
730 	uint32_t early_cntl)
731 {
732 	/* asic design change, do not need this control
733 	 * empty for share caller logic
734 	 */
735 }
736 
737 
738 void optc1_set_static_screen_control(
739 	struct timing_generator *optc,
740 	uint32_t value)
741 {
742 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
743 
744 	/* Bit 8 is no longer applicable in RV for PSR case,
745 	 * set bit 8 to 0 if given
746 	 */
747 	if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
748 			!= 0)
749 		value = value &
750 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
751 
752 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
753 			OTG_STATIC_SCREEN_EVENT_MASK, value,
754 			OTG_STATIC_SCREEN_FRAME_COUNT, 2);
755 }
756 
757 
758 /**
759  *****************************************************************************
760  *  Function: set_drr
761  *
762  *  @brief
763  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
764  *
765  *****************************************************************************
766  */
767 void optc1_set_drr(
768 	struct timing_generator *optc,
769 	const struct drr_params *params)
770 {
771 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
772 
773 	if (params != NULL &&
774 		params->vertical_total_max > 0 &&
775 		params->vertical_total_min > 0) {
776 
777 		REG_SET(OTG_V_TOTAL_MAX, 0,
778 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
779 
780 		REG_SET(OTG_V_TOTAL_MIN, 0,
781 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
782 
783 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
784 				OTG_V_TOTAL_MIN_SEL, 1,
785 				OTG_V_TOTAL_MAX_SEL, 1,
786 				OTG_FORCE_LOCK_ON_EVENT, 0,
787 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
788 				OTG_SET_V_TOTAL_MIN_MASK, 0);
789 	} else {
790 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
791 				OTG_SET_V_TOTAL_MIN_MASK, 0,
792 				OTG_V_TOTAL_MIN_SEL, 0,
793 				OTG_V_TOTAL_MAX_SEL, 0,
794 				OTG_FORCE_LOCK_ON_EVENT, 0);
795 
796 		REG_SET(OTG_V_TOTAL_MIN, 0,
797 			OTG_V_TOTAL_MIN, 0);
798 
799 		REG_SET(OTG_V_TOTAL_MAX, 0,
800 			OTG_V_TOTAL_MAX, 0);
801 	}
802 }
803 
804 static void optc1_set_test_pattern(
805 	struct timing_generator *optc,
806 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
807 	 * because this is not DP-specific (which is probably somewhere in DP
808 	 * encoder) */
809 	enum controller_dp_test_pattern test_pattern,
810 	enum dc_color_depth color_depth)
811 {
812 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
813 	enum test_pattern_color_format bit_depth;
814 	enum test_pattern_dyn_range dyn_range;
815 	enum test_pattern_mode mode;
816 	uint32_t pattern_mask;
817 	uint32_t pattern_data;
818 	/* color ramp generator mixes 16-bits color */
819 	uint32_t src_bpc = 16;
820 	/* requested bpc */
821 	uint32_t dst_bpc;
822 	uint32_t index;
823 	/* RGB values of the color bars.
824 	 * Produce two RGB colors: RGB0 - white (all Fs)
825 	 * and RGB1 - black (all 0s)
826 	 * (three RGB components for two colors)
827 	 */
828 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
829 						0x0000, 0x0000};
830 	/* dest color (converted to the specified color format) */
831 	uint16_t dst_color[6];
832 	uint32_t inc_base;
833 
834 	/* translate to bit depth */
835 	switch (color_depth) {
836 	case COLOR_DEPTH_666:
837 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
838 	break;
839 	case COLOR_DEPTH_888:
840 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
841 	break;
842 	case COLOR_DEPTH_101010:
843 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
844 	break;
845 	case COLOR_DEPTH_121212:
846 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
847 	break;
848 	default:
849 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
850 	break;
851 	}
852 
853 	switch (test_pattern) {
854 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
855 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
856 	{
857 		dyn_range = (test_pattern ==
858 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
859 				TEST_PATTERN_DYN_RANGE_CEA :
860 				TEST_PATTERN_DYN_RANGE_VESA);
861 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
862 
863 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
864 				OTG_TEST_PATTERN_VRES, 6,
865 				OTG_TEST_PATTERN_HRES, 6);
866 
867 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
868 				OTG_TEST_PATTERN_EN, 1,
869 				OTG_TEST_PATTERN_MODE, mode,
870 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
871 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
872 	}
873 	break;
874 
875 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
876 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
877 	{
878 		mode = (test_pattern ==
879 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
880 			TEST_PATTERN_MODE_VERTICALBARS :
881 			TEST_PATTERN_MODE_HORIZONTALBARS);
882 
883 		switch (bit_depth) {
884 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
885 			dst_bpc = 6;
886 		break;
887 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
888 			dst_bpc = 8;
889 		break;
890 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
891 			dst_bpc = 10;
892 		break;
893 		default:
894 			dst_bpc = 8;
895 		break;
896 		}
897 
898 		/* adjust color to the required colorFormat */
899 		for (index = 0; index < 6; index++) {
900 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
901 			 * (srcBpc - dstBpc);
902 			 */
903 			dst_color[index] =
904 				src_color[index] >> (src_bpc - dst_bpc);
905 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
906 		 * lowest 6 are hardwired to ZERO
907 		 * color bits should be left aligned aligned to MSB
908 		 * XXXXXXXXXX000000 for 10 bit,
909 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
910 		 */
911 			dst_color[index] <<= (16 - dst_bpc);
912 		}
913 
914 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
915 
916 		/* We have to write the mask before data, similar to pipeline.
917 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
918 		 * and RGB1 to be cyan,
919 		 * we need to make 7 writes:
920 		 * MASK   DATA
921 		 * 000001 00000000 00000000                     set mask to R0
922 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
923 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
924 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
925 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
926 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
927 		 * 100000 11111111 00000000     B1 255, 0xFF00
928 		 *
929 		 * we will make a loop of 6 in which we prepare the mask,
930 		 * then write, then prepare the color for next write.
931 		 * first iteration will write mask only,
932 		 * but each next iteration color prepared in
933 		 * previous iteration will be written within new mask,
934 		 * the last component will written separately,
935 		 * mask is not changing between 6th and 7th write
936 		 * and color will be prepared by last iteration
937 		 */
938 
939 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
940 		 * is B1, G1, R1, B0, G0, R0
941 		 */
942 		pattern_data = 0;
943 		for (index = 0; index < 6; index++) {
944 			/* prepare color mask, first write PATTERN_DATA
945 			 * will have all zeros
946 			 */
947 			pattern_mask = (1 << index);
948 
949 			/* write color component */
950 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
951 					OTG_TEST_PATTERN_MASK, pattern_mask,
952 					OTG_TEST_PATTERN_DATA, pattern_data);
953 
954 			/* prepare next color component,
955 			 * will be written in the next iteration
956 			 */
957 			pattern_data = dst_color[index];
958 		}
959 		/* write last color component,
960 		 * it's been already prepared in the loop
961 		 */
962 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
963 				OTG_TEST_PATTERN_MASK, pattern_mask,
964 				OTG_TEST_PATTERN_DATA, pattern_data);
965 
966 		/* enable test pattern */
967 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
968 				OTG_TEST_PATTERN_EN, 1,
969 				OTG_TEST_PATTERN_MODE, mode,
970 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
971 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
972 	}
973 	break;
974 
975 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
976 	{
977 		mode = (bit_depth ==
978 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
979 			TEST_PATTERN_MODE_DUALRAMP_RGB :
980 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
981 
982 		switch (bit_depth) {
983 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
984 			dst_bpc = 6;
985 		break;
986 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
987 			dst_bpc = 8;
988 		break;
989 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
990 			dst_bpc = 10;
991 		break;
992 		default:
993 			dst_bpc = 8;
994 		break;
995 		}
996 
997 		/* increment for the first ramp for one color gradation
998 		 * 1 gradation for 6-bit color is 2^10
999 		 * gradations in 16-bit color
1000 		 */
1001 		inc_base = (src_bpc - dst_bpc);
1002 
1003 		switch (bit_depth) {
1004 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1005 		{
1006 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1007 					OTG_TEST_PATTERN_INC0, inc_base,
1008 					OTG_TEST_PATTERN_INC1, 0,
1009 					OTG_TEST_PATTERN_HRES, 6,
1010 					OTG_TEST_PATTERN_VRES, 6,
1011 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1012 		}
1013 		break;
1014 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1015 		{
1016 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1017 					OTG_TEST_PATTERN_INC0, inc_base,
1018 					OTG_TEST_PATTERN_INC1, 0,
1019 					OTG_TEST_PATTERN_HRES, 8,
1020 					OTG_TEST_PATTERN_VRES, 6,
1021 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1022 		}
1023 		break;
1024 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1025 		{
1026 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1027 					OTG_TEST_PATTERN_INC0, inc_base,
1028 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1029 					OTG_TEST_PATTERN_HRES, 8,
1030 					OTG_TEST_PATTERN_VRES, 5,
1031 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1032 		}
1033 		break;
1034 		default:
1035 		break;
1036 		}
1037 
1038 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1039 
1040 		/* enable test pattern */
1041 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1042 
1043 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1044 				OTG_TEST_PATTERN_EN, 1,
1045 				OTG_TEST_PATTERN_MODE, mode,
1046 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1047 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1048 	}
1049 	break;
1050 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1051 	{
1052 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1053 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1054 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1055 	}
1056 	break;
1057 	default:
1058 		break;
1059 
1060 	}
1061 }
1062 
1063 void optc1_get_crtc_scanoutpos(
1064 	struct timing_generator *optc,
1065 	uint32_t *v_blank_start,
1066 	uint32_t *v_blank_end,
1067 	uint32_t *h_position,
1068 	uint32_t *v_position)
1069 {
1070 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1071 	struct crtc_position position;
1072 
1073 	REG_GET_2(OTG_V_BLANK_START_END,
1074 			OTG_V_BLANK_START, v_blank_start,
1075 			OTG_V_BLANK_END, v_blank_end);
1076 
1077 	optc1_get_position(optc, &position);
1078 
1079 	*h_position = position.horizontal_count;
1080 	*v_position = position.vertical_count;
1081 }
1082 
1083 static void optc1_enable_stereo(struct timing_generator *optc,
1084 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1085 {
1086 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1087 
1088 	if (flags) {
1089 		uint32_t stereo_en;
1090 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1091 
1092 		if (flags->PROGRAM_STEREO)
1093 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1094 				OTG_STEREO_EN, stereo_en,
1095 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1096 				OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1097 
1098 		if (flags->PROGRAM_POLARITY)
1099 			REG_UPDATE(OTG_STEREO_CONTROL,
1100 				OTG_STEREO_EYE_FLAG_POLARITY,
1101 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1102 
1103 		if (flags->DISABLE_STEREO_DP_SYNC)
1104 			REG_UPDATE(OTG_STEREO_CONTROL,
1105 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1106 
1107 		if (flags->PROGRAM_STEREO)
1108 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1109 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1110 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1111 
1112 	}
1113 }
1114 
1115 void optc1_program_stereo(struct timing_generator *optc,
1116 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1117 {
1118 	if (flags->PROGRAM_STEREO)
1119 		optc1_enable_stereo(optc, timing, flags);
1120 	else
1121 		optc1_disable_stereo(optc);
1122 }
1123 
1124 
1125 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1126 {
1127 	bool ret = false;
1128 	uint32_t left_eye = 0;
1129 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1130 
1131 	REG_GET(OTG_STEREO_STATUS,
1132 		OTG_STEREO_CURRENT_EYE, &left_eye);
1133 	if (left_eye == 1)
1134 		ret = true;
1135 	else
1136 		ret = false;
1137 
1138 	return ret;
1139 }
1140 
1141 bool optc1_is_matching_timing(struct timing_generator *tg,
1142 		const struct dc_crtc_timing *otg_timing)
1143 {
1144 	struct dc_crtc_timing hw_crtc_timing = {0};
1145 	struct dcn_otg_state s = {0};
1146 
1147 	if (tg == NULL || otg_timing == NULL)
1148 		return false;
1149 
1150 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1151 
1152 	hw_crtc_timing.h_total = s.h_total + 1;
1153 	hw_crtc_timing.h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1154 	hw_crtc_timing.h_front_porch = s.h_total + 1 - s.h_blank_start;
1155 	hw_crtc_timing.h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1156 
1157 	hw_crtc_timing.v_total = s.v_total + 1;
1158 	hw_crtc_timing.v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1159 	hw_crtc_timing.v_front_porch = s.v_total + 1 - s.v_blank_start;
1160 	hw_crtc_timing.v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1161 
1162 	if (otg_timing->h_total != hw_crtc_timing.h_total)
1163 		return false;
1164 
1165 	if (otg_timing->h_border_left != hw_crtc_timing.h_border_left)
1166 		return false;
1167 
1168 	if (otg_timing->h_addressable != hw_crtc_timing.h_addressable)
1169 		return false;
1170 
1171 	if (otg_timing->h_border_right != hw_crtc_timing.h_border_right)
1172 		return false;
1173 
1174 	if (otg_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1175 		return false;
1176 
1177 	if (otg_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1178 		return false;
1179 
1180 	if (otg_timing->v_total != hw_crtc_timing.v_total)
1181 		return false;
1182 
1183 	if (otg_timing->v_border_top != hw_crtc_timing.v_border_top)
1184 		return false;
1185 
1186 	if (otg_timing->v_addressable != hw_crtc_timing.v_addressable)
1187 		return false;
1188 
1189 	if (otg_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1190 		return false;
1191 
1192 	if (otg_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1193 		return false;
1194 
1195 	return true;
1196 }
1197 
1198 
1199 void optc1_read_otg_state(struct optc *optc1,
1200 		struct dcn_otg_state *s)
1201 {
1202 	REG_GET(OTG_CONTROL,
1203 			OTG_MASTER_EN, &s->otg_enabled);
1204 
1205 	REG_GET_2(OTG_V_BLANK_START_END,
1206 			OTG_V_BLANK_START, &s->v_blank_start,
1207 			OTG_V_BLANK_END, &s->v_blank_end);
1208 
1209 	REG_GET(OTG_V_SYNC_A_CNTL,
1210 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1211 
1212 	REG_GET(OTG_V_TOTAL,
1213 			OTG_V_TOTAL, &s->v_total);
1214 
1215 	REG_GET(OTG_V_TOTAL_MAX,
1216 			OTG_V_TOTAL_MAX, &s->v_total_max);
1217 
1218 	REG_GET(OTG_V_TOTAL_MIN,
1219 			OTG_V_TOTAL_MIN, &s->v_total_min);
1220 
1221 	REG_GET(OTG_V_TOTAL_CONTROL,
1222 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1223 
1224 	REG_GET(OTG_V_TOTAL_CONTROL,
1225 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1226 
1227 	REG_GET_2(OTG_V_SYNC_A,
1228 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1229 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1230 
1231 	REG_GET_2(OTG_H_BLANK_START_END,
1232 			OTG_H_BLANK_START, &s->h_blank_start,
1233 			OTG_H_BLANK_END, &s->h_blank_end);
1234 
1235 	REG_GET_2(OTG_H_SYNC_A,
1236 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1237 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1238 
1239 	REG_GET(OTG_H_SYNC_A_CNTL,
1240 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1241 
1242 	REG_GET(OTG_H_TOTAL,
1243 			OTG_H_TOTAL, &s->h_total);
1244 
1245 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1246 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1247 }
1248 
1249 bool optc1_get_otg_active_size(struct timing_generator *optc,
1250 		uint32_t *otg_active_width,
1251 		uint32_t *otg_active_height)
1252 {
1253 	uint32_t otg_enabled;
1254 	uint32_t v_blank_start;
1255 	uint32_t v_blank_end;
1256 	uint32_t h_blank_start;
1257 	uint32_t h_blank_end;
1258 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1259 
1260 
1261 	REG_GET(OTG_CONTROL,
1262 			OTG_MASTER_EN, &otg_enabled);
1263 
1264 	if (otg_enabled == 0)
1265 		return false;
1266 
1267 	REG_GET_2(OTG_V_BLANK_START_END,
1268 			OTG_V_BLANK_START, &v_blank_start,
1269 			OTG_V_BLANK_END, &v_blank_end);
1270 
1271 	REG_GET_2(OTG_H_BLANK_START_END,
1272 			OTG_H_BLANK_START, &h_blank_start,
1273 			OTG_H_BLANK_END, &h_blank_end);
1274 
1275 	*otg_active_width = v_blank_start - v_blank_end;
1276 	*otg_active_height = h_blank_start - h_blank_end;
1277 	return true;
1278 }
1279 
1280 void optc1_clear_optc_underflow(struct timing_generator *optc)
1281 {
1282 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1283 
1284 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1285 }
1286 
1287 void optc1_tg_init(struct timing_generator *optc)
1288 {
1289 	optc1_set_blank_data_double_buffer(optc, true);
1290 	optc1_clear_optc_underflow(optc);
1291 }
1292 
1293 bool optc1_is_tg_enabled(struct timing_generator *optc)
1294 {
1295 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1296 	uint32_t otg_enabled = 0;
1297 
1298 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1299 
1300 	return (otg_enabled != 0);
1301 
1302 }
1303 
1304 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1305 {
1306 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1307 	uint32_t underflow_occurred = 0;
1308 
1309 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1310 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1311 			&underflow_occurred);
1312 
1313 	return (underflow_occurred == 1);
1314 }
1315 
1316 bool optc1_configure_crc(struct timing_generator *optc,
1317 			  const struct crc_params *params)
1318 {
1319 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1320 
1321 	/* Cannot configure crc on a CRTC that is disabled */
1322 	if (!optc1_is_tg_enabled(optc))
1323 		return false;
1324 
1325 	REG_WRITE(OTG_CRC_CNTL, 0);
1326 
1327 	if (!params->enable)
1328 		return true;
1329 
1330 	/* Program frame boundaries */
1331 	/* Window A x axis start and end. */
1332 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1333 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1334 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1335 
1336 	/* Window A y axis start and end. */
1337 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1338 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1339 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1340 
1341 	/* Window B x axis start and end. */
1342 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1343 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1344 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1345 
1346 	/* Window B y axis start and end. */
1347 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1348 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1349 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1350 
1351 	/* Set crc mode and selection, and enable. Only using CRC0*/
1352 	REG_UPDATE_3(OTG_CRC_CNTL,
1353 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1354 			OTG_CRC0_SELECT, params->selection,
1355 			OTG_CRC_EN, 1);
1356 
1357 	return true;
1358 }
1359 
1360 bool optc1_get_crc(struct timing_generator *optc,
1361 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1362 {
1363 	uint32_t field = 0;
1364 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1365 
1366 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1367 
1368 	/* Early return if CRC is not enabled for this CRTC */
1369 	if (!field)
1370 		return false;
1371 
1372 	REG_GET_2(OTG_CRC0_DATA_RG,
1373 			CRC0_R_CR, r_cr,
1374 			CRC0_G_Y, g_y);
1375 
1376 	REG_GET(OTG_CRC0_DATA_B,
1377 			CRC0_B_CB, b_cb);
1378 
1379 	return true;
1380 }
1381 
1382 static const struct timing_generator_funcs dcn10_tg_funcs = {
1383 		.validate_timing = optc1_validate_timing,
1384 		.program_timing = optc1_program_timing,
1385 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1386 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1387 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1388 		.program_global_sync = optc1_program_global_sync,
1389 		.enable_crtc = optc1_enable_crtc,
1390 		.disable_crtc = optc1_disable_crtc,
1391 		/* used by enable_timing_synchronization. Not need for FPGA */
1392 		.is_counter_moving = optc1_is_counter_moving,
1393 		.get_position = optc1_get_position,
1394 		.get_frame_count = optc1_get_vblank_counter,
1395 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1396 		.get_otg_active_size = optc1_get_otg_active_size,
1397 		.is_matching_timing = optc1_is_matching_timing,
1398 		.set_early_control = optc1_set_early_control,
1399 		/* used by enable_timing_synchronization. Not need for FPGA */
1400 		.wait_for_state = optc1_wait_for_state,
1401 		.set_blank = optc1_set_blank,
1402 		.is_blanked = optc1_is_blanked,
1403 		.set_blank_color = optc1_program_blank_color,
1404 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1405 		.enable_reset_trigger = optc1_enable_reset_trigger,
1406 		.enable_crtc_reset = optc1_enable_crtc_reset,
1407 		.disable_reset_trigger = optc1_disable_reset_trigger,
1408 		.lock = optc1_lock,
1409 		.unlock = optc1_unlock,
1410 		.enable_optc_clock = optc1_enable_optc_clock,
1411 		.set_drr = optc1_set_drr,
1412 		.set_static_screen_control = optc1_set_static_screen_control,
1413 		.set_test_pattern = optc1_set_test_pattern,
1414 		.program_stereo = optc1_program_stereo,
1415 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1416 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1417 		.tg_init = optc1_tg_init,
1418 		.is_tg_enabled = optc1_is_tg_enabled,
1419 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1420 		.clear_optc_underflow = optc1_clear_optc_underflow,
1421 		.get_crc = optc1_get_crc,
1422 		.configure_crc = optc1_configure_crc,
1423 };
1424 
1425 void dcn10_timing_generator_init(struct optc *optc1)
1426 {
1427 	optc1->base.funcs = &dcn10_tg_funcs;
1428 
1429 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1430 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1431 
1432 	optc1->min_h_blank = 32;
1433 	optc1->min_v_blank = 3;
1434 	optc1->min_v_blank_interlace = 5;
1435 	optc1->min_h_sync_width = 8;
1436 	optc1->min_v_sync_width = 1;
1437 	optc1->comb_opp_id = 0xf;
1438 }
1439 
1440 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1441 {
1442 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1443 
1444 	return two_pix;
1445 }
1446 
1447