1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 
29 #include "dm_services.h"
30 #include "core_types.h"
31 #include "dce_aux.h"
32 #include "dce/dce_11_0_sh_mask.h"
33 #include "dm_event_log.h"
34 
35 #define CTX \
36 	aux110->base.ctx
37 #define REG(reg_name)\
38 	(aux110->regs->reg_name)
39 
40 #define DC_LOGGER \
41 	engine->ctx->logger
42 
43 #include "reg_helper.h"
44 
45 #undef FN
46 #define FN(reg_name, field_name) \
47 	aux110->shift->field_name, aux110->mask->field_name
48 
49 #define FROM_AUX_ENGINE(ptr) \
50 	container_of((ptr), struct aux_engine_dce110, base)
51 
52 #define FROM_ENGINE(ptr) \
53 	FROM_AUX_ENGINE(container_of((ptr), struct dce_aux, base))
54 
55 #define FROM_AUX_ENGINE_ENGINE(ptr) \
56 	container_of((ptr), struct dce_aux, base)
57 enum {
58 	AUX_INVALID_REPLY_RETRY_COUNTER = 1,
59 	AUX_TIMED_OUT_RETRY_COUNTER = 2,
60 	AUX_DEFER_RETRY_COUNTER = 6
61 };
62 
63 #define TIME_OUT_INCREMENT        1016
64 #define TIME_OUT_MULTIPLIER_8     8
65 #define TIME_OUT_MULTIPLIER_16    16
66 #define TIME_OUT_MULTIPLIER_32    32
67 #define TIME_OUT_MULTIPLIER_64    64
68 #define MAX_TIMEOUT_LENGTH        127
69 #define DEFAULT_AUX_ENGINE_MULT   0
70 #define DEFAULT_AUX_ENGINE_LENGTH 69
71 
72 static void release_engine(
73 	struct dce_aux *engine)
74 {
75 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
76 
77 	dal_ddc_close(engine->ddc);
78 
79 	engine->ddc = NULL;
80 
81 	REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_DONE_USING_AUX_REG, 1);
82 }
83 
84 #define SW_CAN_ACCESS_AUX 1
85 #define DMCU_CAN_ACCESS_AUX 2
86 
87 static bool is_engine_available(
88 	struct dce_aux *engine)
89 {
90 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
91 
92 	uint32_t value = REG_READ(AUX_ARB_CONTROL);
93 	uint32_t field = get_reg_field_value(
94 			value,
95 			AUX_ARB_CONTROL,
96 			AUX_REG_RW_CNTL_STATUS);
97 
98 	return (field != DMCU_CAN_ACCESS_AUX);
99 }
100 static bool acquire_engine(
101 	struct dce_aux *engine)
102 {
103 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
104 
105 	uint32_t value = REG_READ(AUX_ARB_CONTROL);
106 	uint32_t field = get_reg_field_value(
107 			value,
108 			AUX_ARB_CONTROL,
109 			AUX_REG_RW_CNTL_STATUS);
110 	if (field == DMCU_CAN_ACCESS_AUX)
111 		return false;
112 	/* enable AUX before request SW to access AUX */
113 	value = REG_READ(AUX_CONTROL);
114 	field = get_reg_field_value(value,
115 				AUX_CONTROL,
116 				AUX_EN);
117 
118 	if (field == 0) {
119 		set_reg_field_value(
120 				value,
121 				1,
122 				AUX_CONTROL,
123 				AUX_EN);
124 
125 		if (REG(AUX_RESET_MASK)) {
126 			/*DP_AUX block as part of the enable sequence*/
127 			set_reg_field_value(
128 				value,
129 				1,
130 				AUX_CONTROL,
131 				AUX_RESET);
132 		}
133 
134 		REG_WRITE(AUX_CONTROL, value);
135 
136 		if (REG(AUX_RESET_MASK)) {
137 			/*poll HW to make sure reset it done*/
138 
139 			REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 1,
140 					1, 11);
141 
142 			set_reg_field_value(
143 				value,
144 				0,
145 				AUX_CONTROL,
146 				AUX_RESET);
147 
148 			REG_WRITE(AUX_CONTROL, value);
149 
150 			REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 0,
151 					1, 11);
152 		}
153 	} /*if (field)*/
154 
155 	/* request SW to access AUX */
156 	REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_USE_AUX_REG_REQ, 1);
157 
158 	value = REG_READ(AUX_ARB_CONTROL);
159 	field = get_reg_field_value(
160 			value,
161 			AUX_ARB_CONTROL,
162 			AUX_REG_RW_CNTL_STATUS);
163 
164 	return (field == SW_CAN_ACCESS_AUX);
165 }
166 
167 #define COMPOSE_AUX_SW_DATA_16_20(command, address) \
168 	((command) | ((0xF0000 & (address)) >> 16))
169 
170 #define COMPOSE_AUX_SW_DATA_8_15(address) \
171 	((0xFF00 & (address)) >> 8)
172 
173 #define COMPOSE_AUX_SW_DATA_0_7(address) \
174 	(0xFF & (address))
175 
176 static void submit_channel_request(
177 	struct dce_aux *engine,
178 	struct aux_request_transaction_data *request)
179 {
180 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
181 	uint32_t value;
182 	uint32_t length;
183 
184 	bool is_write =
185 		((request->type == AUX_TRANSACTION_TYPE_DP) &&
186 		 (request->action == I2CAUX_TRANSACTION_ACTION_DP_WRITE)) ||
187 		((request->type == AUX_TRANSACTION_TYPE_I2C) &&
188 		((request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
189 		 (request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT)));
190 	if (REG(AUXN_IMPCAL)) {
191 		/* clear_aux_error */
192 		REG_UPDATE_SEQ_2(AUXN_IMPCAL,
193 				AUXN_CALOUT_ERROR_AK, 1,
194 				AUXN_CALOUT_ERROR_AK, 0);
195 
196 		REG_UPDATE_SEQ_2(AUXP_IMPCAL,
197 				AUXP_CALOUT_ERROR_AK, 1,
198 				AUXP_CALOUT_ERROR_AK, 0);
199 
200 		/* force_default_calibrate */
201 		REG_UPDATE_SEQ_2(AUXN_IMPCAL,
202 				AUXN_IMPCAL_ENABLE, 1,
203 				AUXN_IMPCAL_OVERRIDE_ENABLE, 0);
204 
205 		/* bug? why AUXN update EN and OVERRIDE_EN 1 by 1 while AUX P toggles OVERRIDE? */
206 
207 		REG_UPDATE_SEQ_2(AUXP_IMPCAL,
208 				AUXP_IMPCAL_OVERRIDE_ENABLE, 1,
209 				AUXP_IMPCAL_OVERRIDE_ENABLE, 0);
210 	}
211 
212 	REG_UPDATE(AUX_INTERRUPT_CONTROL, AUX_SW_DONE_ACK, 1);
213 
214 	REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 0,
215 				10, aux110->polling_timeout_period/10);
216 
217 	/* set the delay and the number of bytes to write */
218 
219 	/* The length include
220 	 * the 4 bit header and the 20 bit address
221 	 * (that is 3 byte).
222 	 * If the requested length is non zero this means
223 	 * an addition byte specifying the length is required.
224 	 */
225 
226 	length = request->length ? 4 : 3;
227 	if (is_write)
228 		length += request->length;
229 
230 	REG_UPDATE_2(AUX_SW_CONTROL,
231 			AUX_SW_START_DELAY, request->delay,
232 			AUX_SW_WR_BYTES, length);
233 
234 	/* program action and address and payload data (if 'is_write') */
235 	value = REG_UPDATE_4(AUX_SW_DATA,
236 			AUX_SW_INDEX, 0,
237 			AUX_SW_DATA_RW, 0,
238 			AUX_SW_AUTOINCREMENT_DISABLE, 1,
239 			AUX_SW_DATA, COMPOSE_AUX_SW_DATA_16_20(request->action, request->address));
240 
241 	value = REG_SET_2(AUX_SW_DATA, value,
242 			AUX_SW_AUTOINCREMENT_DISABLE, 0,
243 			AUX_SW_DATA, COMPOSE_AUX_SW_DATA_8_15(request->address));
244 
245 	value = REG_SET(AUX_SW_DATA, value,
246 			AUX_SW_DATA, COMPOSE_AUX_SW_DATA_0_7(request->address));
247 
248 	if (request->length) {
249 		value = REG_SET(AUX_SW_DATA, value,
250 				AUX_SW_DATA, request->length - 1);
251 	}
252 
253 	if (is_write) {
254 		/* Load the HW buffer with the Data to be sent.
255 		 * This is relevant for write operation.
256 		 * For read, the data recived data will be
257 		 * processed in process_channel_reply().
258 		 */
259 		uint32_t i = 0;
260 
261 		while (i < request->length) {
262 			value = REG_SET(AUX_SW_DATA, value,
263 					AUX_SW_DATA, request->data[i]);
264 
265 			++i;
266 		}
267 	}
268 
269 	REG_UPDATE(AUX_SW_CONTROL, AUX_SW_GO, 1);
270 	EVENT_LOG_AUX_REQ(engine->ddc->pin_data->en, EVENT_LOG_AUX_ORIGIN_NATIVE,
271 					request->action, request->address, request->length, request->data);
272 }
273 
274 static int read_channel_reply(struct dce_aux *engine, uint32_t size,
275 			      uint8_t *buffer, uint8_t *reply_result,
276 			      uint32_t *sw_status)
277 {
278 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
279 	uint32_t bytes_replied;
280 	uint32_t reply_result_32;
281 
282 	*sw_status = REG_GET(AUX_SW_STATUS, AUX_SW_REPLY_BYTE_COUNT,
283 			     &bytes_replied);
284 
285 	/* In case HPD is LOW, exit AUX transaction */
286 	if ((*sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
287 		return -1;
288 
289 	/* Need at least the status byte */
290 	if (!bytes_replied)
291 		return -1;
292 
293 	REG_UPDATE_SEQ_3(AUX_SW_DATA,
294 			  AUX_SW_INDEX, 0,
295 			  AUX_SW_AUTOINCREMENT_DISABLE, 1,
296 			  AUX_SW_DATA_RW, 1);
297 
298 	REG_GET(AUX_SW_DATA, AUX_SW_DATA, &reply_result_32);
299 	reply_result_32 = reply_result_32 >> 4;
300 	if (reply_result != NULL)
301 		*reply_result = (uint8_t)reply_result_32;
302 
303 	if (reply_result_32 == 0) { /* ACK */
304 		uint32_t i = 0;
305 
306 		/* First byte was already used to get the command status */
307 		--bytes_replied;
308 
309 		/* Do not overflow buffer */
310 		if (bytes_replied > size)
311 			return -1;
312 
313 		while (i < bytes_replied) {
314 			uint32_t aux_sw_data_val;
315 
316 			REG_GET(AUX_SW_DATA, AUX_SW_DATA, &aux_sw_data_val);
317 			buffer[i] = aux_sw_data_val;
318 			++i;
319 		}
320 
321 		return i;
322 	}
323 
324 	return 0;
325 }
326 
327 static enum aux_channel_operation_result get_channel_status(
328 	struct dce_aux *engine,
329 	uint8_t *returned_bytes)
330 {
331 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
332 
333 	uint32_t value;
334 
335 	if (returned_bytes == NULL) {
336 		/*caller pass NULL pointer*/
337 		ASSERT_CRITICAL(false);
338 		return AUX_CHANNEL_OPERATION_FAILED_REASON_UNKNOWN;
339 	}
340 	*returned_bytes = 0;
341 
342 	/* poll to make sure that SW_DONE is asserted */
343 	REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 1,
344 				10, aux110->polling_timeout_period/10);
345 
346 	value = REG_READ(AUX_SW_STATUS);
347 	/* in case HPD is LOW, exit AUX transaction */
348 	if ((value & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
349 		return AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON;
350 
351 	/* Note that the following bits are set in 'status.bits'
352 	 * during CTS 4.2.1.2 (FW 3.3.1):
353 	 * AUX_SW_RX_MIN_COUNT_VIOL, AUX_SW_RX_INVALID_STOP,
354 	 * AUX_SW_RX_RECV_NO_DET, AUX_SW_RX_RECV_INVALID_H.
355 	 *
356 	 * AUX_SW_RX_MIN_COUNT_VIOL is an internal,
357 	 * HW debugging bit and should be ignored.
358 	 */
359 	if (value & AUX_SW_STATUS__AUX_SW_DONE_MASK) {
360 		if ((value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_STATE_MASK) ||
361 			(value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_MASK))
362 			return AUX_CHANNEL_OPERATION_FAILED_TIMEOUT;
363 
364 		else if ((value & AUX_SW_STATUS__AUX_SW_RX_INVALID_STOP_MASK) ||
365 			(value & AUX_SW_STATUS__AUX_SW_RX_RECV_NO_DET_MASK) ||
366 			(value &
367 				AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_H_MASK) ||
368 			(value & AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_L_MASK))
369 			return AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY;
370 
371 		*returned_bytes = get_reg_field_value(value,
372 				AUX_SW_STATUS,
373 				AUX_SW_REPLY_BYTE_COUNT);
374 
375 		if (*returned_bytes == 0)
376 			return
377 			AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY;
378 		else {
379 			*returned_bytes -= 1;
380 			return AUX_CHANNEL_OPERATION_SUCCEEDED;
381 		}
382 	} else {
383 		/*time_elapsed >= aux_engine->timeout_period
384 		 *  AUX_SW_STATUS__AUX_SW_HPD_DISCON = at this point
385 		 */
386 		ASSERT_CRITICAL(false);
387 		return AUX_CHANNEL_OPERATION_FAILED_TIMEOUT;
388 	}
389 }
390 
391 enum i2caux_engine_type get_engine_type(
392 		const struct dce_aux *engine)
393 {
394 	return I2CAUX_ENGINE_TYPE_AUX;
395 }
396 
397 static bool acquire(
398 	struct dce_aux *engine,
399 	struct ddc *ddc)
400 {
401 	enum gpio_result result;
402 
403 	if ((engine == NULL) || !is_engine_available(engine))
404 		return false;
405 
406 	result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE,
407 		GPIO_DDC_CONFIG_TYPE_MODE_AUX);
408 
409 	if (result != GPIO_RESULT_OK)
410 		return false;
411 
412 	if (!acquire_engine(engine)) {
413 		dal_ddc_close(ddc);
414 		return false;
415 	}
416 
417 	engine->ddc = ddc;
418 
419 	return true;
420 }
421 
422 void dce110_engine_destroy(struct dce_aux **engine)
423 {
424 
425 	struct aux_engine_dce110 *engine110 = FROM_AUX_ENGINE(*engine);
426 
427 	kfree(engine110);
428 	*engine = NULL;
429 
430 }
431 
432 static uint32_t dce_aux_configure_timeout(struct ddc_service *ddc,
433 		uint32_t timeout_in_us)
434 {
435 	uint32_t multiplier = 0;
436 	uint32_t length = 0;
437 	uint32_t prev_length = 0;
438 	uint32_t prev_mult = 0;
439 	uint32_t prev_timeout_val = 0;
440 	struct ddc *ddc_pin = ddc->ddc_pin;
441 	struct dce_aux *aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
442 	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(aux_engine);
443 
444 	/* 1-Update polling timeout period */
445 	aux110->polling_timeout_period = timeout_in_us * SW_AUX_TIMEOUT_PERIOD_MULTIPLIER;
446 
447 	/* 2-Update aux timeout period length and multiplier */
448 	if (timeout_in_us == 0) {
449 		multiplier = DEFAULT_AUX_ENGINE_MULT;
450 		length = DEFAULT_AUX_ENGINE_LENGTH;
451 	} else if (timeout_in_us <= TIME_OUT_INCREMENT) {
452 		multiplier = 0;
453 		length = timeout_in_us/TIME_OUT_MULTIPLIER_8;
454 		if (timeout_in_us % TIME_OUT_MULTIPLIER_8 != 0)
455 			length++;
456 	} else if (timeout_in_us <= 2 * TIME_OUT_INCREMENT) {
457 		multiplier = 1;
458 		length = timeout_in_us/TIME_OUT_MULTIPLIER_16;
459 		if (timeout_in_us % TIME_OUT_MULTIPLIER_16 != 0)
460 			length++;
461 	} else if (timeout_in_us <= 4 * TIME_OUT_INCREMENT) {
462 		multiplier = 2;
463 		length = timeout_in_us/TIME_OUT_MULTIPLIER_32;
464 		if (timeout_in_us % TIME_OUT_MULTIPLIER_32 != 0)
465 			length++;
466 	} else if (timeout_in_us > 4 * TIME_OUT_INCREMENT) {
467 		multiplier = 3;
468 		length = timeout_in_us/TIME_OUT_MULTIPLIER_64;
469 		if (timeout_in_us % TIME_OUT_MULTIPLIER_64 != 0)
470 			length++;
471 	}
472 
473 	length = (length < MAX_TIMEOUT_LENGTH) ? length : MAX_TIMEOUT_LENGTH;
474 
475 	REG_GET_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, &prev_length, AUX_RX_TIMEOUT_LEN_MUL, &prev_mult);
476 
477 	switch (prev_mult) {
478 	case 0:
479 		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_8;
480 		break;
481 	case 1:
482 		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_16;
483 		break;
484 	case 2:
485 		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_32;
486 		break;
487 	case 3:
488 		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_64;
489 		break;
490 	default:
491 		prev_timeout_val = DEFAULT_AUX_ENGINE_LENGTH * TIME_OUT_MULTIPLIER_8;
492 		break;
493 	}
494 
495 	REG_UPDATE_SEQ_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, length, AUX_RX_TIMEOUT_LEN_MUL, multiplier);
496 
497 	return prev_timeout_val;
498 }
499 
500 static struct dce_aux_funcs aux_functions = {
501 	.configure_timeout = NULL,
502 	.destroy = NULL,
503 };
504 
505 struct dce_aux *dce110_aux_engine_construct(struct aux_engine_dce110 *aux_engine110,
506 		struct dc_context *ctx,
507 		uint32_t inst,
508 		uint32_t timeout_period,
509 		const struct dce110_aux_registers *regs,
510 		const struct dce110_aux_registers_mask *mask,
511 		const struct dce110_aux_registers_shift *shift,
512 		bool is_ext_aux_timeout_configurable)
513 {
514 	aux_engine110->base.ddc = NULL;
515 	aux_engine110->base.ctx = ctx;
516 	aux_engine110->base.delay = 0;
517 	aux_engine110->base.max_defer_write_retry = 0;
518 	aux_engine110->base.inst = inst;
519 	aux_engine110->polling_timeout_period = timeout_period;
520 	aux_engine110->regs = regs;
521 
522 	aux_engine110->mask = mask;
523 	aux_engine110->shift = shift;
524 	aux_engine110->base.funcs = &aux_functions;
525 	if (is_ext_aux_timeout_configurable)
526 		aux_engine110->base.funcs->configure_timeout = &dce_aux_configure_timeout;
527 
528 	return &aux_engine110->base;
529 }
530 
531 static enum i2caux_transaction_action i2caux_action_from_payload(struct aux_payload *payload)
532 {
533 	if (payload->i2c_over_aux) {
534 		if (payload->write) {
535 			if (payload->mot)
536 				return I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT;
537 			return I2CAUX_TRANSACTION_ACTION_I2C_WRITE;
538 		}
539 		if (payload->mot)
540 			return I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT;
541 		return I2CAUX_TRANSACTION_ACTION_I2C_READ;
542 	}
543 	if (payload->write)
544 		return I2CAUX_TRANSACTION_ACTION_DP_WRITE;
545 	return I2CAUX_TRANSACTION_ACTION_DP_READ;
546 }
547 
548 int dce_aux_transfer_raw(struct ddc_service *ddc,
549 		struct aux_payload *payload,
550 		enum aux_channel_operation_result *operation_result)
551 {
552 	struct ddc *ddc_pin = ddc->ddc_pin;
553 	struct dce_aux *aux_engine;
554 	struct aux_request_transaction_data aux_req;
555 	struct aux_reply_transaction_data aux_rep;
556 	uint8_t returned_bytes = 0;
557 	int res = -1;
558 	uint32_t status;
559 
560 	memset(&aux_req, 0, sizeof(aux_req));
561 	memset(&aux_rep, 0, sizeof(aux_rep));
562 
563 	aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
564 	if (!acquire(aux_engine, ddc_pin)) {
565 		*operation_result = AUX_CHANNEL_OPERATION_FAILED_ENGINE_ACQUIRE;
566 		return -1;
567 	}
568 
569 	if (payload->i2c_over_aux)
570 		aux_req.type = AUX_TRANSACTION_TYPE_I2C;
571 	else
572 		aux_req.type = AUX_TRANSACTION_TYPE_DP;
573 
574 	aux_req.action = i2caux_action_from_payload(payload);
575 
576 	aux_req.address = payload->address;
577 	aux_req.delay = 0;
578 	aux_req.length = payload->length;
579 	aux_req.data = payload->data;
580 
581 	submit_channel_request(aux_engine, &aux_req);
582 	*operation_result = get_channel_status(aux_engine, &returned_bytes);
583 
584 	if (*operation_result == AUX_CHANNEL_OPERATION_SUCCEEDED) {
585 		int bytes_replied = 0;
586 		bytes_replied = read_channel_reply(aux_engine, payload->length,
587 					 payload->data, payload->reply,
588 					 &status);
589 		EVENT_LOG_AUX_REP(aux_engine->ddc->pin_data->en,
590 					EVENT_LOG_AUX_ORIGIN_NATIVE, *payload->reply,
591 					bytes_replied, payload->data);
592 		res = returned_bytes;
593 	} else {
594 		res = -1;
595 	}
596 
597 	release_engine(aux_engine);
598 	return res;
599 }
600 
601 #define AUX_MAX_RETRIES 7
602 #define AUX_MAX_DEFER_RETRIES 7
603 #define AUX_MAX_I2C_DEFER_RETRIES 7
604 #define AUX_MAX_INVALID_REPLY_RETRIES 2
605 #define AUX_MAX_TIMEOUT_RETRIES 3
606 
607 bool dce_aux_transfer_with_retries(struct ddc_service *ddc,
608 		struct aux_payload *payload)
609 {
610 	int i, ret = 0;
611 	uint8_t reply;
612 	bool payload_reply = true;
613 	enum aux_channel_operation_result operation_result;
614 	bool retry_on_defer = false;
615 
616 	int aux_ack_retries = 0,
617 		aux_defer_retries = 0,
618 		aux_i2c_defer_retries = 0,
619 		aux_timeout_retries = 0,
620 		aux_invalid_reply_retries = 0;
621 
622 	if (!payload->reply) {
623 		payload_reply = false;
624 		payload->reply = &reply;
625 	}
626 
627 	for (i = 0; i < AUX_MAX_RETRIES; i++) {
628 		ret = dce_aux_transfer_raw(ddc, payload, &operation_result);
629 		switch (operation_result) {
630 		case AUX_CHANNEL_OPERATION_SUCCEEDED:
631 			aux_timeout_retries = 0;
632 			aux_invalid_reply_retries = 0;
633 
634 			switch (*payload->reply) {
635 			case AUX_TRANSACTION_REPLY_AUX_ACK:
636 				if (!payload->write && payload->length != ret) {
637 					if (++aux_ack_retries >= AUX_MAX_RETRIES)
638 						goto fail;
639 					else
640 						udelay(300);
641 				} else
642 					return true;
643 			break;
644 
645 			case AUX_TRANSACTION_REPLY_AUX_DEFER:
646 			case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER:
647 				retry_on_defer = true;
648 				fallthrough;
649 			case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK:
650 				if (++aux_defer_retries >= AUX_MAX_DEFER_RETRIES) {
651 					goto fail;
652 				} else {
653 					if ((*payload->reply == AUX_TRANSACTION_REPLY_AUX_DEFER) ||
654 						(*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER)) {
655 						if (payload->defer_delay > 1)
656 							msleep(payload->defer_delay);
657 						else if (payload->defer_delay <= 1)
658 							udelay(payload->defer_delay * 1000);
659 					}
660 				}
661 				break;
662 
663 			case AUX_TRANSACTION_REPLY_I2C_DEFER:
664 				aux_defer_retries = 0;
665 				if (++aux_i2c_defer_retries >= AUX_MAX_I2C_DEFER_RETRIES)
666 					goto fail;
667 				break;
668 
669 			case AUX_TRANSACTION_REPLY_AUX_NACK:
670 			case AUX_TRANSACTION_REPLY_HPD_DISCON:
671 			default:
672 				goto fail;
673 			}
674 			break;
675 
676 		case AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY:
677 			if (++aux_invalid_reply_retries >= AUX_MAX_INVALID_REPLY_RETRIES)
678 				goto fail;
679 			else
680 				udelay(400);
681 			break;
682 
683 		case AUX_CHANNEL_OPERATION_FAILED_TIMEOUT:
684 			// Check whether a DEFER had occurred before the timeout.
685 			// If so, treat timeout as a DEFER.
686 			if (retry_on_defer) {
687 				if (++aux_defer_retries >= AUX_MAX_DEFER_RETRIES)
688 					goto fail;
689 				else if (payload->defer_delay > 0)
690 					msleep(payload->defer_delay);
691 			} else {
692 				if (++aux_timeout_retries >= AUX_MAX_TIMEOUT_RETRIES)
693 					goto fail;
694 				else {
695 					/*
696 					 * DP 1.4, 2.8.2:  AUX Transaction Response/Reply Timeouts
697 					 * According to the DP spec there should be 3 retries total
698 					 * with a 400us wait inbetween each. Hardware already waits
699 					 * for 550us therefore no wait is required here.
700 					 */
701 				}
702 			}
703 			break;
704 
705 		case AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON:
706 		case AUX_CHANNEL_OPERATION_FAILED_ENGINE_ACQUIRE:
707 		case AUX_CHANNEL_OPERATION_FAILED_REASON_UNKNOWN:
708 		default:
709 			goto fail;
710 		}
711 	}
712 
713 fail:
714 	if (!payload_reply)
715 		payload->reply = NULL;
716 	return false;
717 }
718