xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision e825b29a)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 
28 #include "dm_services.h"
29 
30 #include "dc.h"
31 
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36 
37 #include "resource.h"
38 
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42 
43 #include "bios_parser_interface.h"
44 #include "bios/bios_parser_helper.h"
45 #include "include/irq_service_interface.h"
46 #include "transform.h"
47 #include "dmcu.h"
48 #include "dpp.h"
49 #include "timing_generator.h"
50 #include "abm.h"
51 #include "virtual/virtual_link_encoder.h"
52 #include "hubp.h"
53 
54 #include "link_hwss.h"
55 #include "link_encoder.h"
56 #include "link_enc_cfg.h"
57 
58 #include "dc_link.h"
59 #include "dc_link_ddc.h"
60 #include "dm_helpers.h"
61 #include "mem_input.h"
62 
63 #include "dc_link_dp.h"
64 #include "dc_dmub_srv.h"
65 
66 #include "dsc.h"
67 
68 #include "vm_helper.h"
69 
70 #include "dce/dce_i2c.h"
71 
72 #include "dmub/dmub_srv.h"
73 
74 #include "i2caux_interface.h"
75 #include "dce/dmub_hw_lock_mgr.h"
76 
77 #include "dc_trace.h"
78 
79 #define CTX \
80 	dc->ctx
81 
82 #define DC_LOGGER \
83 	dc->ctx->logger
84 
85 static const char DC_BUILD_ID[] = "production-build";
86 
87 /**
88  * DOC: Overview
89  *
90  * DC is the OS-agnostic component of the amdgpu DC driver.
91  *
92  * DC maintains and validates a set of structs representing the state of the
93  * driver and writes that state to AMD hardware
94  *
95  * Main DC HW structs:
96  *
97  * struct dc - The central struct.  One per driver.  Created on driver load,
98  * destroyed on driver unload.
99  *
100  * struct dc_context - One per driver.
101  * Used as a backpointer by most other structs in dc.
102  *
103  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
104  * plugpoints).  Created on driver load, destroyed on driver unload.
105  *
106  * struct dc_sink - One per display.  Created on boot or hotplug.
107  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
108  * (the display directly attached).  It may also have one or more remote
109  * sinks (in the Multi-Stream Transport case)
110  *
111  * struct resource_pool - One per driver.  Represents the hw blocks not in the
112  * main pipeline.  Not directly accessible by dm.
113  *
114  * Main dc state structs:
115  *
116  * These structs can be created and destroyed as needed.  There is a full set of
117  * these structs in dc->current_state representing the currently programmed state.
118  *
119  * struct dc_state - The global DC state to track global state information,
120  * such as bandwidth values.
121  *
122  * struct dc_stream_state - Represents the hw configuration for the pipeline from
123  * a framebuffer to a display.  Maps one-to-one with dc_sink.
124  *
125  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
126  * and may have more in the Multi-Plane Overlay case.
127  *
128  * struct resource_context - Represents the programmable state of everything in
129  * the resource_pool.  Not directly accessible by dm.
130  *
131  * struct pipe_ctx - A member of struct resource_context.  Represents the
132  * internal hardware pipeline components.  Each dc_plane_state has either
133  * one or two (in the pipe-split case).
134  */
135 
136 /*******************************************************************************
137  * Private functions
138  ******************************************************************************/
139 
140 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
141 {
142 	if (new > *original)
143 		*original = new;
144 }
145 
146 static void destroy_links(struct dc *dc)
147 {
148 	uint32_t i;
149 
150 	for (i = 0; i < dc->link_count; i++) {
151 		if (NULL != dc->links[i])
152 			link_destroy(&dc->links[i]);
153 	}
154 }
155 
156 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
157 {
158 	int i;
159 	uint32_t count = 0;
160 
161 	for (i = 0; i < num_links; i++) {
162 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
163 				links[i]->is_internal_display)
164 			count++;
165 	}
166 
167 	return count;
168 }
169 
170 static int get_seamless_boot_stream_count(struct dc_state *ctx)
171 {
172 	uint8_t i;
173 	uint8_t seamless_boot_stream_count = 0;
174 
175 	for (i = 0; i < ctx->stream_count; i++)
176 		if (ctx->streams[i]->apply_seamless_boot_optimization)
177 			seamless_boot_stream_count++;
178 
179 	return seamless_boot_stream_count;
180 }
181 
182 static bool create_links(
183 		struct dc *dc,
184 		uint32_t num_virtual_links)
185 {
186 	int i;
187 	int connectors_num;
188 	struct dc_bios *bios = dc->ctx->dc_bios;
189 
190 	dc->link_count = 0;
191 
192 	connectors_num = bios->funcs->get_connectors_number(bios);
193 
194 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
195 
196 	if (connectors_num > ENUM_ID_COUNT) {
197 		dm_error(
198 			"DC: Number of connectors %d exceeds maximum of %d!\n",
199 			connectors_num,
200 			ENUM_ID_COUNT);
201 		return false;
202 	}
203 
204 	dm_output_to_console(
205 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
206 		__func__,
207 		connectors_num,
208 		num_virtual_links);
209 
210 	for (i = 0; i < connectors_num; i++) {
211 		struct link_init_data link_init_params = {0};
212 		struct dc_link *link;
213 
214 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
215 
216 		link_init_params.ctx = dc->ctx;
217 		/* next BIOS object table connector */
218 		link_init_params.connector_index = i;
219 		link_init_params.link_index = dc->link_count;
220 		link_init_params.dc = dc;
221 		link = link_create(&link_init_params);
222 
223 		if (link) {
224 				dc->links[dc->link_count] = link;
225 				link->dc = dc;
226 				++dc->link_count;
227 		}
228 	}
229 
230 	DC_LOG_DC("BIOS object table - end");
231 
232 	for (i = 0; i < num_virtual_links; i++) {
233 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
234 		struct encoder_init_data enc_init = {0};
235 
236 		if (link == NULL) {
237 			BREAK_TO_DEBUGGER();
238 			goto failed_alloc;
239 		}
240 
241 		link->link_index = dc->link_count;
242 		dc->links[dc->link_count] = link;
243 		dc->link_count++;
244 
245 		link->ctx = dc->ctx;
246 		link->dc = dc;
247 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
248 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
249 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
250 		link->link_id.enum_id = ENUM_ID_1;
251 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
252 
253 		if (!link->link_enc) {
254 			BREAK_TO_DEBUGGER();
255 			goto failed_alloc;
256 		}
257 
258 		link->link_status.dpcd_caps = &link->dpcd_caps;
259 
260 		enc_init.ctx = dc->ctx;
261 		enc_init.channel = CHANNEL_ID_UNKNOWN;
262 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
263 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
264 		enc_init.connector = link->link_id;
265 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
266 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
267 		enc_init.encoder.enum_id = ENUM_ID_1;
268 		virtual_link_encoder_construct(link->link_enc, &enc_init);
269 	}
270 
271 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
272 
273 	return true;
274 
275 failed_alloc:
276 	return false;
277 }
278 
279 static struct dc_perf_trace *dc_perf_trace_create(void)
280 {
281 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
282 }
283 
284 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
285 {
286 	kfree(*perf_trace);
287 	*perf_trace = NULL;
288 }
289 
290 /**
291  *  dc_stream_adjust_vmin_vmax:
292  *
293  *  Looks up the pipe context of dc_stream_state and updates the
294  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
295  *  Rate, which is a power-saving feature that targets reducing panel
296  *  refresh rate while the screen is static
297  *
298  *  @dc:     dc reference
299  *  @stream: Initial dc stream state
300  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
301  */
302 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
303 		struct dc_stream_state *stream,
304 		struct dc_crtc_timing_adjust *adjust)
305 {
306 	int i;
307 	bool ret = false;
308 
309 	stream->adjust.v_total_max = adjust->v_total_max;
310 	stream->adjust.v_total_mid = adjust->v_total_mid;
311 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
312 	stream->adjust.v_total_min = adjust->v_total_min;
313 
314 	for (i = 0; i < MAX_PIPES; i++) {
315 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
316 
317 		if (pipe->stream == stream && pipe->stream_res.tg) {
318 			dc->hwss.set_drr(&pipe,
319 					1,
320 					*adjust);
321 
322 			ret = true;
323 		}
324 	}
325 	return ret;
326 }
327 
328 /**
329  *****************************************************************************
330  *  Function: dc_stream_get_last_vrr_vtotal
331  *
332  *  @brief
333  *     Looks up the pipe context of dc_stream_state and gets the
334  *     last VTOTAL used by DRR (Dynamic Refresh Rate)
335  *
336  *  @param [in] dc: dc reference
337  *  @param [in] stream: Initial dc stream state
338  *  @param [in] adjust: Updated parameters for vertical_total_min and
339  *  vertical_total_max
340  *****************************************************************************
341  */
342 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
343 		struct dc_stream_state *stream,
344 		uint32_t *refresh_rate)
345 {
346 	bool status = false;
347 
348 	int i = 0;
349 
350 	for (i = 0; i < MAX_PIPES; i++) {
351 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
352 
353 		if (pipe->stream == stream && pipe->stream_res.tg) {
354 			/* Only execute if a function pointer has been defined for
355 			 * the DC version in question
356 			 */
357 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
358 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
359 
360 				status = true;
361 
362 				break;
363 			}
364 		}
365 	}
366 
367 	return status;
368 }
369 
370 bool dc_stream_get_crtc_position(struct dc *dc,
371 		struct dc_stream_state **streams, int num_streams,
372 		unsigned int *v_pos, unsigned int *nom_v_pos)
373 {
374 	/* TODO: Support multiple streams */
375 	const struct dc_stream_state *stream = streams[0];
376 	int i;
377 	bool ret = false;
378 	struct crtc_position position;
379 
380 	for (i = 0; i < MAX_PIPES; i++) {
381 		struct pipe_ctx *pipe =
382 				&dc->current_state->res_ctx.pipe_ctx[i];
383 
384 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
385 			dc->hwss.get_position(&pipe, 1, &position);
386 
387 			*v_pos = position.vertical_count;
388 			*nom_v_pos = position.nominal_vcount;
389 			ret = true;
390 		}
391 	}
392 	return ret;
393 }
394 
395 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
396 bool dc_stream_forward_dmcu_crc_window(struct dc *dc, struct dc_stream_state *stream,
397 			     struct crc_params *crc_window)
398 {
399 	int i;
400 	struct dmcu *dmcu = dc->res_pool->dmcu;
401 	struct pipe_ctx *pipe;
402 	struct crc_region tmp_win, *crc_win;
403 	struct otg_phy_mux mapping_tmp, *mux_mapping;
404 
405 	/*crc window can't be null*/
406 	if (!crc_window)
407 		return false;
408 
409 	if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
410 		crc_win = &tmp_win;
411 		mux_mapping = &mapping_tmp;
412 		/*set crc window*/
413 		tmp_win.x_start = crc_window->windowa_x_start;
414 		tmp_win.y_start = crc_window->windowa_y_start;
415 		tmp_win.x_end = crc_window->windowa_x_end;
416 		tmp_win.y_end = crc_window->windowa_y_end;
417 
418 		for (i = 0; i < MAX_PIPES; i++) {
419 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
420 			if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
421 				break;
422 		}
423 
424 		/* Stream not found */
425 		if (i == MAX_PIPES)
426 			return false;
427 
428 
429 		/*set mux routing info*/
430 		mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
431 		mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
432 
433 		dmcu->funcs->forward_crc_window(dmcu, crc_win, mux_mapping);
434 	} else {
435 		DC_LOG_DC("dmcu is not initialized");
436 		return false;
437 	}
438 
439 	return true;
440 }
441 
442 bool dc_stream_stop_dmcu_crc_win_update(struct dc *dc, struct dc_stream_state *stream)
443 {
444 	int i;
445 	struct dmcu *dmcu = dc->res_pool->dmcu;
446 	struct pipe_ctx *pipe;
447 	struct otg_phy_mux mapping_tmp, *mux_mapping;
448 
449 	if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
450 		mux_mapping = &mapping_tmp;
451 
452 		for (i = 0; i < MAX_PIPES; i++) {
453 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
454 			if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
455 				break;
456 		}
457 
458 		/* Stream not found */
459 		if (i == MAX_PIPES)
460 			return false;
461 
462 
463 		/*set mux routing info*/
464 		mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
465 		mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
466 
467 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
468 	} else {
469 		DC_LOG_DC("dmcu is not initialized");
470 		return false;
471 	}
472 
473 	return true;
474 }
475 #endif
476 
477 /**
478  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
479  * @dc: DC Object
480  * @stream: The stream to configure CRC on.
481  * @enable: Enable CRC if true, disable otherwise.
482  * @crc_window: CRC window (x/y start/end) information
483  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
484  *              once.
485  *
486  * By default, only CRC0 is configured, and the entire frame is used to
487  * calculate the crc.
488  */
489 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
490 			     struct crc_params *crc_window, bool enable, bool continuous)
491 {
492 	int i;
493 	struct pipe_ctx *pipe;
494 	struct crc_params param;
495 	struct timing_generator *tg;
496 
497 	for (i = 0; i < MAX_PIPES; i++) {
498 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
499 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
500 			break;
501 	}
502 	/* Stream not found */
503 	if (i == MAX_PIPES)
504 		return false;
505 
506 	/* By default, capture the full frame */
507 	param.windowa_x_start = 0;
508 	param.windowa_y_start = 0;
509 	param.windowa_x_end = pipe->stream->timing.h_addressable;
510 	param.windowa_y_end = pipe->stream->timing.v_addressable;
511 	param.windowb_x_start = 0;
512 	param.windowb_y_start = 0;
513 	param.windowb_x_end = pipe->stream->timing.h_addressable;
514 	param.windowb_y_end = pipe->stream->timing.v_addressable;
515 
516 	if (crc_window) {
517 		param.windowa_x_start = crc_window->windowa_x_start;
518 		param.windowa_y_start = crc_window->windowa_y_start;
519 		param.windowa_x_end = crc_window->windowa_x_end;
520 		param.windowa_y_end = crc_window->windowa_y_end;
521 		param.windowb_x_start = crc_window->windowb_x_start;
522 		param.windowb_y_start = crc_window->windowb_y_start;
523 		param.windowb_x_end = crc_window->windowb_x_end;
524 		param.windowb_y_end = crc_window->windowb_y_end;
525 	}
526 
527 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
528 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
529 
530 	/* Default to the union of both windows */
531 	param.selection = UNION_WINDOW_A_B;
532 	param.continuous_mode = continuous;
533 	param.enable = enable;
534 
535 	tg = pipe->stream_res.tg;
536 
537 	/* Only call if supported */
538 	if (tg->funcs->configure_crc)
539 		return tg->funcs->configure_crc(tg, &param);
540 	DC_LOG_WARNING("CRC capture not supported.");
541 	return false;
542 }
543 
544 /**
545  * dc_stream_get_crc() - Get CRC values for the given stream.
546  * @dc: DC object
547  * @stream: The DC stream state of the stream to get CRCs from.
548  * @r_cr: CRC value for the first of the 3 channels stored here.
549  * @g_y:  CRC value for the second of the 3 channels stored here.
550  * @b_cb: CRC value for the third of the 3 channels stored here.
551  *
552  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
553  * Return false if stream is not found, or if CRCs are not enabled.
554  */
555 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
556 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
557 {
558 	int i;
559 	struct pipe_ctx *pipe;
560 	struct timing_generator *tg;
561 
562 	for (i = 0; i < MAX_PIPES; i++) {
563 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
564 		if (pipe->stream == stream)
565 			break;
566 	}
567 	/* Stream not found */
568 	if (i == MAX_PIPES)
569 		return false;
570 
571 	tg = pipe->stream_res.tg;
572 
573 	if (tg->funcs->get_crc)
574 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
575 	DC_LOG_WARNING("CRC capture not supported.");
576 	return false;
577 }
578 
579 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
580 		enum dc_dynamic_expansion option)
581 {
582 	/* OPP FMT dyn expansion updates*/
583 	int i;
584 	struct pipe_ctx *pipe_ctx;
585 
586 	for (i = 0; i < MAX_PIPES; i++) {
587 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
588 				== stream) {
589 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
590 			pipe_ctx->stream_res.opp->dyn_expansion = option;
591 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
592 					pipe_ctx->stream_res.opp,
593 					COLOR_SPACE_YCBCR601,
594 					stream->timing.display_color_depth,
595 					stream->signal);
596 		}
597 	}
598 }
599 
600 void dc_stream_set_dither_option(struct dc_stream_state *stream,
601 		enum dc_dither_option option)
602 {
603 	struct bit_depth_reduction_params params;
604 	struct dc_link *link = stream->link;
605 	struct pipe_ctx *pipes = NULL;
606 	int i;
607 
608 	for (i = 0; i < MAX_PIPES; i++) {
609 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
610 				stream) {
611 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
612 			break;
613 		}
614 	}
615 
616 	if (!pipes)
617 		return;
618 	if (option > DITHER_OPTION_MAX)
619 		return;
620 
621 	stream->dither_option = option;
622 
623 	memset(&params, 0, sizeof(params));
624 	resource_build_bit_depth_reduction_params(stream, &params);
625 	stream->bit_depth_params = params;
626 
627 	if (pipes->plane_res.xfm &&
628 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
629 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
630 			pipes->plane_res.xfm,
631 			pipes->plane_res.scl_data.lb_params.depth,
632 			&stream->bit_depth_params);
633 	}
634 
635 	pipes->stream_res.opp->funcs->
636 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
637 }
638 
639 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
640 {
641 	int i;
642 	bool ret = false;
643 	struct pipe_ctx *pipes;
644 
645 	for (i = 0; i < MAX_PIPES; i++) {
646 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
647 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
648 			dc->hwss.program_gamut_remap(pipes);
649 			ret = true;
650 		}
651 	}
652 
653 	return ret;
654 }
655 
656 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
657 {
658 	int i;
659 	bool ret = false;
660 	struct pipe_ctx *pipes;
661 
662 	for (i = 0; i < MAX_PIPES; i++) {
663 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
664 				== stream) {
665 
666 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
667 			dc->hwss.program_output_csc(dc,
668 					pipes,
669 					stream->output_color_space,
670 					stream->csc_color_matrix.matrix,
671 					pipes->stream_res.opp->inst);
672 			ret = true;
673 		}
674 	}
675 
676 	return ret;
677 }
678 
679 void dc_stream_set_static_screen_params(struct dc *dc,
680 		struct dc_stream_state **streams,
681 		int num_streams,
682 		const struct dc_static_screen_params *params)
683 {
684 	int i, j;
685 	struct pipe_ctx *pipes_affected[MAX_PIPES];
686 	int num_pipes_affected = 0;
687 
688 	for (i = 0; i < num_streams; i++) {
689 		struct dc_stream_state *stream = streams[i];
690 
691 		for (j = 0; j < MAX_PIPES; j++) {
692 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
693 					== stream) {
694 				pipes_affected[num_pipes_affected++] =
695 						&dc->current_state->res_ctx.pipe_ctx[j];
696 			}
697 		}
698 	}
699 
700 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
701 }
702 
703 static void dc_destruct(struct dc *dc)
704 {
705 	if (dc->current_state) {
706 		dc_release_state(dc->current_state);
707 		dc->current_state = NULL;
708 	}
709 
710 	destroy_links(dc);
711 
712 	if (dc->clk_mgr) {
713 		dc_destroy_clk_mgr(dc->clk_mgr);
714 		dc->clk_mgr = NULL;
715 	}
716 
717 	dc_destroy_resource_pool(dc);
718 
719 	if (dc->ctx->gpio_service)
720 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
721 
722 	if (dc->ctx->created_bios)
723 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
724 
725 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
726 
727 	kfree(dc->ctx);
728 	dc->ctx = NULL;
729 
730 	kfree(dc->bw_vbios);
731 	dc->bw_vbios = NULL;
732 
733 	kfree(dc->bw_dceip);
734 	dc->bw_dceip = NULL;
735 
736 #ifdef CONFIG_DRM_AMD_DC_DCN
737 	kfree(dc->dcn_soc);
738 	dc->dcn_soc = NULL;
739 
740 	kfree(dc->dcn_ip);
741 	dc->dcn_ip = NULL;
742 
743 #endif
744 	kfree(dc->vm_helper);
745 	dc->vm_helper = NULL;
746 
747 }
748 
749 static bool dc_construct_ctx(struct dc *dc,
750 		const struct dc_init_data *init_params)
751 {
752 	struct dc_context *dc_ctx;
753 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
754 
755 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
756 	if (!dc_ctx)
757 		return false;
758 
759 	dc_ctx->cgs_device = init_params->cgs_device;
760 	dc_ctx->driver_context = init_params->driver;
761 	dc_ctx->dc = dc;
762 	dc_ctx->asic_id = init_params->asic_id;
763 	dc_ctx->dc_sink_id_count = 0;
764 	dc_ctx->dc_stream_id_count = 0;
765 	dc_ctx->dce_environment = init_params->dce_environment;
766 
767 	/* Create logger */
768 
769 	dc_version = resource_parse_asic_id(init_params->asic_id);
770 	dc_ctx->dce_version = dc_version;
771 
772 	dc_ctx->perf_trace = dc_perf_trace_create();
773 	if (!dc_ctx->perf_trace) {
774 		ASSERT_CRITICAL(false);
775 		return false;
776 	}
777 
778 	dc->ctx = dc_ctx;
779 
780 	return true;
781 }
782 
783 static bool dc_construct(struct dc *dc,
784 		const struct dc_init_data *init_params)
785 {
786 	struct dc_context *dc_ctx;
787 	struct bw_calcs_dceip *dc_dceip;
788 	struct bw_calcs_vbios *dc_vbios;
789 #ifdef CONFIG_DRM_AMD_DC_DCN
790 	struct dcn_soc_bounding_box *dcn_soc;
791 	struct dcn_ip_params *dcn_ip;
792 #endif
793 
794 	dc->config = init_params->flags;
795 
796 	// Allocate memory for the vm_helper
797 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
798 	if (!dc->vm_helper) {
799 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
800 		goto fail;
801 	}
802 
803 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
804 
805 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
806 	if (!dc_dceip) {
807 		dm_error("%s: failed to create dceip\n", __func__);
808 		goto fail;
809 	}
810 
811 	dc->bw_dceip = dc_dceip;
812 
813 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
814 	if (!dc_vbios) {
815 		dm_error("%s: failed to create vbios\n", __func__);
816 		goto fail;
817 	}
818 
819 	dc->bw_vbios = dc_vbios;
820 #ifdef CONFIG_DRM_AMD_DC_DCN
821 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
822 	if (!dcn_soc) {
823 		dm_error("%s: failed to create dcn_soc\n", __func__);
824 		goto fail;
825 	}
826 
827 	dc->dcn_soc = dcn_soc;
828 
829 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
830 	if (!dcn_ip) {
831 		dm_error("%s: failed to create dcn_ip\n", __func__);
832 		goto fail;
833 	}
834 
835 	dc->dcn_ip = dcn_ip;
836 #endif
837 
838 	if (!dc_construct_ctx(dc, init_params)) {
839 		dm_error("%s: failed to create ctx\n", __func__);
840 		goto fail;
841 	}
842 
843         dc_ctx = dc->ctx;
844 
845 	/* Resource should construct all asic specific resources.
846 	 * This should be the only place where we need to parse the asic id
847 	 */
848 	if (init_params->vbios_override)
849 		dc_ctx->dc_bios = init_params->vbios_override;
850 	else {
851 		/* Create BIOS parser */
852 		struct bp_init_data bp_init_data;
853 
854 		bp_init_data.ctx = dc_ctx;
855 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
856 
857 		dc_ctx->dc_bios = dal_bios_parser_create(
858 				&bp_init_data, dc_ctx->dce_version);
859 
860 		if (!dc_ctx->dc_bios) {
861 			ASSERT_CRITICAL(false);
862 			goto fail;
863 		}
864 
865 		dc_ctx->created_bios = true;
866 	}
867 
868 	dc->vendor_signature = init_params->vendor_signature;
869 
870 	/* Create GPIO service */
871 	dc_ctx->gpio_service = dal_gpio_service_create(
872 			dc_ctx->dce_version,
873 			dc_ctx->dce_environment,
874 			dc_ctx);
875 
876 	if (!dc_ctx->gpio_service) {
877 		ASSERT_CRITICAL(false);
878 		goto fail;
879 	}
880 
881 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
882 	if (!dc->res_pool)
883 		goto fail;
884 
885 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
886 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
887 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
888 
889 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
890 	if (!dc->clk_mgr)
891 		goto fail;
892 #ifdef CONFIG_DRM_AMD_DC_DCN
893 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
894 #endif
895 
896 	if (dc->res_pool->funcs->update_bw_bounding_box)
897 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
898 
899 	/* Creation of current_state must occur after dc->dml
900 	 * is initialized in dc_create_resource_pool because
901 	 * on creation it copies the contents of dc->dml
902 	 */
903 
904 	dc->current_state = dc_create_state(dc);
905 
906 	if (!dc->current_state) {
907 		dm_error("%s: failed to create validate ctx\n", __func__);
908 		goto fail;
909 	}
910 
911 	dc_resource_state_construct(dc, dc->current_state);
912 
913 	if (!create_links(dc, init_params->num_virtual_links))
914 		goto fail;
915 
916 	/* Initialise DIG link encoder resource tracking variables. */
917 	link_enc_cfg_init(dc, dc->current_state);
918 
919 	return true;
920 
921 fail:
922 	return false;
923 }
924 
925 static void disable_all_writeback_pipes_for_stream(
926 		const struct dc *dc,
927 		struct dc_stream_state *stream,
928 		struct dc_state *context)
929 {
930 	int i;
931 
932 	for (i = 0; i < stream->num_wb_info; i++)
933 		stream->writeback_info[i].wb_enabled = false;
934 }
935 
936 static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context,
937 					  struct dc_stream_state *stream, bool lock)
938 {
939 	int i;
940 
941 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
942 	if (dc->hwss.interdependent_update_lock)
943 		dc->hwss.interdependent_update_lock(dc, context, lock);
944 	else {
945 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
946 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
947 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
948 
949 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
950 			if (stream == pipe_ctx->stream) {
951 				if (!pipe_ctx->top_pipe &&
952 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
953 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
954 			}
955 		}
956 	}
957 }
958 
959 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
960 {
961 	int i, j;
962 	struct dc_state *dangling_context = dc_create_state(dc);
963 	struct dc_state *current_ctx;
964 
965 	if (dangling_context == NULL)
966 		return;
967 
968 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
969 
970 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
971 		struct dc_stream_state *old_stream =
972 				dc->current_state->res_ctx.pipe_ctx[i].stream;
973 		bool should_disable = true;
974 
975 		for (j = 0; j < context->stream_count; j++) {
976 			if (old_stream == context->streams[j]) {
977 				should_disable = false;
978 				break;
979 			}
980 		}
981 		if (should_disable && old_stream) {
982 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
983 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
984 
985 			if (dc->hwss.apply_ctx_for_surface) {
986 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
987 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
988 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
989 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
990 			}
991 			if (dc->hwss.program_front_end_for_ctx) {
992 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
993 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
994 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
995 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
996 			}
997 		}
998 	}
999 
1000 	current_ctx = dc->current_state;
1001 	dc->current_state = dangling_context;
1002 	dc_release_state(current_ctx);
1003 }
1004 
1005 static void disable_vbios_mode_if_required(
1006 		struct dc *dc,
1007 		struct dc_state *context)
1008 {
1009 	unsigned int i, j;
1010 
1011 	/* check if timing_changed, disable stream*/
1012 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1013 		struct dc_stream_state *stream = NULL;
1014 		struct dc_link *link = NULL;
1015 		struct pipe_ctx *pipe = NULL;
1016 
1017 		pipe = &context->res_ctx.pipe_ctx[i];
1018 		stream = pipe->stream;
1019 		if (stream == NULL)
1020 			continue;
1021 
1022 		// only looking for first odm pipe
1023 		if (pipe->prev_odm_pipe)
1024 			continue;
1025 
1026 		if (stream->link->local_sink &&
1027 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1028 			link = stream->link;
1029 		}
1030 
1031 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1032 			unsigned int enc_inst, tg_inst = 0;
1033 			unsigned int pix_clk_100hz;
1034 
1035 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1036 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1037 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1038 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1039 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1040 							dc->res_pool->stream_enc[j]);
1041 						break;
1042 					}
1043 				}
1044 
1045 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1046 					dc->res_pool->dp_clock_source,
1047 					tg_inst, &pix_clk_100hz);
1048 
1049 				if (link->link_status.link_active) {
1050 					uint32_t requested_pix_clk_100hz =
1051 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1052 
1053 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1054 						core_link_disable_stream(pipe);
1055 						pipe->stream->dpms_off = false;
1056 					}
1057 				}
1058 			}
1059 		}
1060 	}
1061 }
1062 
1063 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1064 {
1065 	int i;
1066 	PERF_TRACE();
1067 	for (i = 0; i < MAX_PIPES; i++) {
1068 		int count = 0;
1069 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1070 
1071 		if (!pipe->plane_state)
1072 			continue;
1073 
1074 		/* Timeout 100 ms */
1075 		while (count < 100000) {
1076 			/* Must set to false to start with, due to OR in update function */
1077 			pipe->plane_state->status.is_flip_pending = false;
1078 			dc->hwss.update_pending_status(pipe);
1079 			if (!pipe->plane_state->status.is_flip_pending)
1080 				break;
1081 			udelay(1);
1082 			count++;
1083 		}
1084 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1085 	}
1086 	PERF_TRACE();
1087 }
1088 
1089 /*******************************************************************************
1090  * Public functions
1091  ******************************************************************************/
1092 
1093 struct dc *dc_create(const struct dc_init_data *init_params)
1094 {
1095 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1096 	unsigned int full_pipe_count;
1097 
1098 	if (!dc)
1099 		return NULL;
1100 
1101 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1102 		if (!dc_construct_ctx(dc, init_params))
1103 			goto destruct_dc;
1104 	} else {
1105 		if (!dc_construct(dc, init_params))
1106 			goto destruct_dc;
1107 
1108 		full_pipe_count = dc->res_pool->pipe_count;
1109 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1110 			full_pipe_count--;
1111 		dc->caps.max_streams = min(
1112 				full_pipe_count,
1113 				dc->res_pool->stream_enc_count);
1114 
1115 		dc->caps.max_links = dc->link_count;
1116 		dc->caps.max_audios = dc->res_pool->audio_count;
1117 		dc->caps.linear_pitch_alignment = 64;
1118 
1119 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1120 
1121 		if (dc->res_pool->dmcu != NULL)
1122 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1123 	}
1124 
1125 	/* Populate versioning information */
1126 	dc->versions.dc_ver = DC_VER;
1127 
1128 	dc->build_id = DC_BUILD_ID;
1129 
1130 	DC_LOG_DC("Display Core initialized\n");
1131 
1132 
1133 
1134 	return dc;
1135 
1136 destruct_dc:
1137 	dc_destruct(dc);
1138 	kfree(dc);
1139 	return NULL;
1140 }
1141 
1142 static void detect_edp_presence(struct dc *dc)
1143 {
1144 	struct dc_link *edp_links[MAX_NUM_EDP];
1145 	struct dc_link *edp_link = NULL;
1146 	enum dc_connection_type type;
1147 	int i;
1148 	int edp_num;
1149 
1150 	get_edp_links(dc, edp_links, &edp_num);
1151 	if (!edp_num)
1152 		return;
1153 
1154 	for (i = 0; i < edp_num; i++) {
1155 		edp_link = edp_links[i];
1156 		if (dc->config.edp_not_connected) {
1157 			edp_link->edp_sink_present = false;
1158 		} else {
1159 			dc_link_detect_sink(edp_link, &type);
1160 			edp_link->edp_sink_present = (type != dc_connection_none);
1161 		}
1162 	}
1163 }
1164 
1165 void dc_hardware_init(struct dc *dc)
1166 {
1167 
1168 	detect_edp_presence(dc);
1169 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1170 		dc->hwss.init_hw(dc);
1171 }
1172 
1173 void dc_init_callbacks(struct dc *dc,
1174 		const struct dc_callback_init *init_params)
1175 {
1176 #ifdef CONFIG_DRM_AMD_DC_HDCP
1177 	dc->ctx->cp_psp = init_params->cp_psp;
1178 #endif
1179 }
1180 
1181 void dc_deinit_callbacks(struct dc *dc)
1182 {
1183 #ifdef CONFIG_DRM_AMD_DC_HDCP
1184 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1185 #endif
1186 }
1187 
1188 void dc_destroy(struct dc **dc)
1189 {
1190 	dc_destruct(*dc);
1191 	kfree(*dc);
1192 	*dc = NULL;
1193 }
1194 
1195 static void enable_timing_multisync(
1196 		struct dc *dc,
1197 		struct dc_state *ctx)
1198 {
1199 	int i, multisync_count = 0;
1200 	int pipe_count = dc->res_pool->pipe_count;
1201 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1202 
1203 	for (i = 0; i < pipe_count; i++) {
1204 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1205 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1206 			continue;
1207 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1208 			continue;
1209 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1210 		multisync_count++;
1211 	}
1212 
1213 	if (multisync_count > 0) {
1214 		dc->hwss.enable_per_frame_crtc_position_reset(
1215 			dc, multisync_count, multisync_pipes);
1216 	}
1217 }
1218 
1219 static void program_timing_sync(
1220 		struct dc *dc,
1221 		struct dc_state *ctx)
1222 {
1223 	int i, j, k;
1224 	int group_index = 0;
1225 	int num_group = 0;
1226 	int pipe_count = dc->res_pool->pipe_count;
1227 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1228 
1229 	for (i = 0; i < pipe_count; i++) {
1230 		if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1231 			continue;
1232 
1233 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1234 	}
1235 
1236 	for (i = 0; i < pipe_count; i++) {
1237 		int group_size = 1;
1238 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1239 		struct pipe_ctx *pipe_set[MAX_PIPES];
1240 
1241 		if (!unsynced_pipes[i])
1242 			continue;
1243 
1244 		pipe_set[0] = unsynced_pipes[i];
1245 		unsynced_pipes[i] = NULL;
1246 
1247 		/* Add tg to the set, search rest of the tg's for ones with
1248 		 * same timing, add all tgs with same timing to the group
1249 		 */
1250 		for (j = i + 1; j < pipe_count; j++) {
1251 			if (!unsynced_pipes[j])
1252 				continue;
1253 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1254 				dc->hwss.enable_vblanks_synchronization &&
1255 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1256 				resource_are_vblanks_synchronizable(
1257 					unsynced_pipes[j]->stream,
1258 					pipe_set[0]->stream)) {
1259 				sync_type = VBLANK_SYNCHRONIZABLE;
1260 				pipe_set[group_size] = unsynced_pipes[j];
1261 				unsynced_pipes[j] = NULL;
1262 				group_size++;
1263 			} else
1264 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1265 				resource_are_streams_timing_synchronizable(
1266 					unsynced_pipes[j]->stream,
1267 					pipe_set[0]->stream)) {
1268 				sync_type = TIMING_SYNCHRONIZABLE;
1269 				pipe_set[group_size] = unsynced_pipes[j];
1270 				unsynced_pipes[j] = NULL;
1271 				group_size++;
1272 			}
1273 		}
1274 
1275 		/* set first unblanked pipe as master */
1276 		for (j = 0; j < group_size; j++) {
1277 			bool is_blanked;
1278 
1279 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1280 				is_blanked =
1281 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1282 			else
1283 				is_blanked =
1284 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1285 			if (!is_blanked) {
1286 				if (j == 0)
1287 					break;
1288 
1289 				swap(pipe_set[0], pipe_set[j]);
1290 				break;
1291 			}
1292 		}
1293 
1294 		for (k = 0; k < group_size; k++) {
1295 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1296 
1297 			status->timing_sync_info.group_id = num_group;
1298 			status->timing_sync_info.group_size = group_size;
1299 			if (k == 0)
1300 				status->timing_sync_info.master = true;
1301 			else
1302 				status->timing_sync_info.master = false;
1303 
1304 		}
1305 		/* remove any other unblanked pipes as they have already been synced */
1306 		for (j = j + 1; j < group_size; j++) {
1307 			bool is_blanked;
1308 
1309 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1310 				is_blanked =
1311 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1312 			else
1313 				is_blanked =
1314 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1315 			if (!is_blanked) {
1316 				group_size--;
1317 				pipe_set[j] = pipe_set[group_size];
1318 				j--;
1319 			}
1320 		}
1321 
1322 		if (group_size > 1) {
1323 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1324 				dc->hwss.enable_timing_synchronization(
1325 					dc, group_index, group_size, pipe_set);
1326 			} else
1327 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1328 				dc->hwss.enable_vblanks_synchronization(
1329 					dc, group_index, group_size, pipe_set);
1330 				}
1331 			group_index++;
1332 		}
1333 		num_group++;
1334 	}
1335 }
1336 
1337 static bool context_changed(
1338 		struct dc *dc,
1339 		struct dc_state *context)
1340 {
1341 	uint8_t i;
1342 
1343 	if (context->stream_count != dc->current_state->stream_count)
1344 		return true;
1345 
1346 	for (i = 0; i < dc->current_state->stream_count; i++) {
1347 		if (dc->current_state->streams[i] != context->streams[i])
1348 			return true;
1349 	}
1350 
1351 	return false;
1352 }
1353 
1354 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1355 				const struct dc_sink *sink,
1356 				struct dc_crtc_timing *crtc_timing)
1357 {
1358 	struct timing_generator *tg;
1359 	struct stream_encoder *se = NULL;
1360 
1361 	struct dc_crtc_timing hw_crtc_timing = {0};
1362 
1363 	struct dc_link *link = sink->link;
1364 	unsigned int i, enc_inst, tg_inst = 0;
1365 
1366 	/* Support seamless boot on EDP displays only */
1367 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1368 		return false;
1369 	}
1370 
1371 	/* Check for enabled DIG to identify enabled display */
1372 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1373 		return false;
1374 
1375 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1376 
1377 	if (enc_inst == ENGINE_ID_UNKNOWN)
1378 		return false;
1379 
1380 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1381 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1382 
1383 			se = dc->res_pool->stream_enc[i];
1384 
1385 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1386 				dc->res_pool->stream_enc[i]);
1387 			break;
1388 		}
1389 	}
1390 
1391 	// tg_inst not found
1392 	if (i == dc->res_pool->stream_enc_count)
1393 		return false;
1394 
1395 	if (tg_inst >= dc->res_pool->timing_generator_count)
1396 		return false;
1397 
1398 	tg = dc->res_pool->timing_generators[tg_inst];
1399 
1400 	if (!tg->funcs->get_hw_timing)
1401 		return false;
1402 
1403 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1404 		return false;
1405 
1406 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1407 		return false;
1408 
1409 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1410 		return false;
1411 
1412 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1413 		return false;
1414 
1415 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1416 		return false;
1417 
1418 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1419 		return false;
1420 
1421 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1422 		return false;
1423 
1424 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1425 		return false;
1426 
1427 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1428 		return false;
1429 
1430 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1431 		return false;
1432 
1433 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1434 		return false;
1435 
1436 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1437 		return false;
1438 
1439 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1440 		return false;
1441 
1442 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1443 	if (crtc_timing->flags.DSC)
1444 		return false;
1445 
1446 	if (dc_is_dp_signal(link->connector_signal)) {
1447 		unsigned int pix_clk_100hz;
1448 
1449 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1450 			dc->res_pool->dp_clock_source,
1451 			tg_inst, &pix_clk_100hz);
1452 
1453 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1454 			return false;
1455 
1456 		if (!se->funcs->dp_get_pixel_format)
1457 			return false;
1458 
1459 		if (!se->funcs->dp_get_pixel_format(
1460 			se,
1461 			&hw_crtc_timing.pixel_encoding,
1462 			&hw_crtc_timing.display_color_depth))
1463 			return false;
1464 
1465 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1466 			return false;
1467 
1468 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1469 			return false;
1470 	}
1471 
1472 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1473 		return false;
1474 	}
1475 
1476 	if (is_edp_ilr_optimization_required(link, crtc_timing)) {
1477 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1478 		return false;
1479 	}
1480 
1481 	return true;
1482 }
1483 
1484 static inline bool should_update_pipe_for_stream(
1485 		struct dc_state *context,
1486 		struct pipe_ctx *pipe_ctx,
1487 		struct dc_stream_state *stream)
1488 {
1489 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1490 }
1491 
1492 static inline bool should_update_pipe_for_plane(
1493 		struct dc_state *context,
1494 		struct pipe_ctx *pipe_ctx,
1495 		struct dc_plane_state *plane_state)
1496 {
1497 	return (pipe_ctx->plane_state == plane_state);
1498 }
1499 
1500 void dc_enable_stereo(
1501 	struct dc *dc,
1502 	struct dc_state *context,
1503 	struct dc_stream_state *streams[],
1504 	uint8_t stream_count)
1505 {
1506 	int i, j;
1507 	struct pipe_ctx *pipe;
1508 
1509 	for (i = 0; i < MAX_PIPES; i++) {
1510 		if (context != NULL) {
1511 			pipe = &context->res_ctx.pipe_ctx[i];
1512 		} else {
1513 			context = dc->current_state;
1514 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1515 		}
1516 
1517 		for (j = 0; pipe && j < stream_count; j++)  {
1518 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1519 				dc->hwss.setup_stereo)
1520 				dc->hwss.setup_stereo(pipe, dc);
1521 		}
1522 	}
1523 }
1524 
1525 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1526 {
1527 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1528 		enable_timing_multisync(dc, context);
1529 		program_timing_sync(dc, context);
1530 	}
1531 }
1532 
1533 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1534 {
1535 	int i;
1536 	unsigned int stream_mask = 0;
1537 
1538 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1539 		if (context->res_ctx.pipe_ctx[i].stream)
1540 			stream_mask |= 1 << i;
1541 	}
1542 
1543 	return stream_mask;
1544 }
1545 
1546 #if defined(CONFIG_DRM_AMD_DC_DCN)
1547 void dc_z10_restore(struct dc *dc)
1548 {
1549 	if (dc->hwss.z10_restore)
1550 		dc->hwss.z10_restore(dc);
1551 }
1552 
1553 void dc_z10_save_init(struct dc *dc)
1554 {
1555 	if (dc->hwss.z10_save_init)
1556 		dc->hwss.z10_save_init(dc);
1557 }
1558 #endif
1559 /*
1560  * Applies given context to HW and copy it into current context.
1561  * It's up to the user to release the src context afterwards.
1562  */
1563 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1564 {
1565 	struct dc_bios *dcb = dc->ctx->dc_bios;
1566 	enum dc_status result = DC_ERROR_UNEXPECTED;
1567 	struct pipe_ctx *pipe;
1568 	int i, k, l;
1569 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1570 
1571 #if defined(CONFIG_DRM_AMD_DC_DCN)
1572 	dc_z10_restore(dc);
1573 	dc_allow_idle_optimizations(dc, false);
1574 #endif
1575 
1576 	for (i = 0; i < context->stream_count; i++)
1577 		dc_streams[i] =  context->streams[i];
1578 
1579 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1580 		disable_vbios_mode_if_required(dc, context);
1581 		dc->hwss.enable_accelerated_mode(dc, context);
1582 	}
1583 
1584 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1585 		context->stream_count == 0)
1586 		dc->hwss.prepare_bandwidth(dc, context);
1587 
1588 	disable_dangling_plane(dc, context);
1589 	/* re-program planes for existing stream, in case we need to
1590 	 * free up plane resource for later use
1591 	 */
1592 	if (dc->hwss.apply_ctx_for_surface) {
1593 		for (i = 0; i < context->stream_count; i++) {
1594 			if (context->streams[i]->mode_changed)
1595 				continue;
1596 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1597 			dc->hwss.apply_ctx_for_surface(
1598 				dc, context->streams[i],
1599 				context->stream_status[i].plane_count,
1600 				context); /* use new pipe config in new context */
1601 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1602 			dc->hwss.post_unlock_program_front_end(dc, context);
1603 		}
1604 	}
1605 
1606 	/* Program hardware */
1607 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1608 		pipe = &context->res_ctx.pipe_ctx[i];
1609 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1610 	}
1611 
1612 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1613 
1614 	if (result != DC_OK)
1615 		return result;
1616 
1617 	dc_trigger_sync(dc, context);
1618 
1619 	/* Program all planes within new context*/
1620 	if (dc->hwss.program_front_end_for_ctx) {
1621 		dc->hwss.interdependent_update_lock(dc, context, true);
1622 		dc->hwss.program_front_end_for_ctx(dc, context);
1623 		dc->hwss.interdependent_update_lock(dc, context, false);
1624 		dc->hwss.post_unlock_program_front_end(dc, context);
1625 	}
1626 	for (i = 0; i < context->stream_count; i++) {
1627 		const struct dc_link *link = context->streams[i]->link;
1628 
1629 		if (!context->streams[i]->mode_changed)
1630 			continue;
1631 
1632 		if (dc->hwss.apply_ctx_for_surface) {
1633 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1634 			dc->hwss.apply_ctx_for_surface(
1635 					dc, context->streams[i],
1636 					context->stream_status[i].plane_count,
1637 					context);
1638 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1639 			dc->hwss.post_unlock_program_front_end(dc, context);
1640 		}
1641 
1642 		/*
1643 		 * enable stereo
1644 		 * TODO rework dc_enable_stereo call to work with validation sets?
1645 		 */
1646 		for (k = 0; k < MAX_PIPES; k++) {
1647 			pipe = &context->res_ctx.pipe_ctx[k];
1648 
1649 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1650 				if (context->streams[l] &&
1651 					context->streams[l] == pipe->stream &&
1652 					dc->hwss.setup_stereo)
1653 					dc->hwss.setup_stereo(pipe, dc);
1654 			}
1655 		}
1656 
1657 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1658 				context->streams[i]->timing.h_addressable,
1659 				context->streams[i]->timing.v_addressable,
1660 				context->streams[i]->timing.h_total,
1661 				context->streams[i]->timing.v_total,
1662 				context->streams[i]->timing.pix_clk_100hz / 10);
1663 	}
1664 
1665 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1666 
1667 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1668 		context->stream_count == 0) {
1669 		/* Must wait for no flips to be pending before doing optimize bw */
1670 		wait_for_no_pipes_pending(dc, context);
1671 		/* pplib is notified if disp_num changed */
1672 		dc->hwss.optimize_bandwidth(dc, context);
1673 	}
1674 
1675 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1676 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1677 	else
1678 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1679 
1680 	context->stream_mask = get_stream_mask(dc, context);
1681 
1682 	if (context->stream_mask != dc->current_state->stream_mask)
1683 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1684 
1685 	for (i = 0; i < context->stream_count; i++)
1686 		context->streams[i]->mode_changed = false;
1687 
1688 	dc_release_state(dc->current_state);
1689 
1690 	dc->current_state = context;
1691 
1692 	dc_retain_state(dc->current_state);
1693 
1694 	return result;
1695 }
1696 
1697 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1698 {
1699 	enum dc_status result = DC_ERROR_UNEXPECTED;
1700 	int i;
1701 
1702 	if (!context_changed(dc, context))
1703 		return DC_OK;
1704 
1705 	DC_LOG_DC("%s: %d streams\n",
1706 				__func__, context->stream_count);
1707 
1708 	for (i = 0; i < context->stream_count; i++) {
1709 		struct dc_stream_state *stream = context->streams[i];
1710 
1711 		dc_stream_log(dc, stream);
1712 	}
1713 
1714 	result = dc_commit_state_no_check(dc, context);
1715 
1716 	return (result == DC_OK);
1717 }
1718 
1719 #if defined(CONFIG_DRM_AMD_DC_DCN)
1720 bool dc_acquire_release_mpc_3dlut(
1721 		struct dc *dc, bool acquire,
1722 		struct dc_stream_state *stream,
1723 		struct dc_3dlut **lut,
1724 		struct dc_transfer_func **shaper)
1725 {
1726 	int pipe_idx;
1727 	bool ret = false;
1728 	bool found_pipe_idx = false;
1729 	const struct resource_pool *pool = dc->res_pool;
1730 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
1731 	int mpcc_id = 0;
1732 
1733 	if (pool && res_ctx) {
1734 		if (acquire) {
1735 			/*find pipe idx for the given stream*/
1736 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1737 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1738 					found_pipe_idx = true;
1739 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1740 					break;
1741 				}
1742 			}
1743 		} else
1744 			found_pipe_idx = true;/*for release pipe_idx is not required*/
1745 
1746 		if (found_pipe_idx) {
1747 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1748 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1749 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
1750 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1751 		}
1752 	}
1753 	return ret;
1754 }
1755 #endif
1756 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1757 {
1758 	int i;
1759 	struct pipe_ctx *pipe;
1760 
1761 	for (i = 0; i < MAX_PIPES; i++) {
1762 		pipe = &context->res_ctx.pipe_ctx[i];
1763 
1764 		if (!pipe->plane_state)
1765 			continue;
1766 
1767 		/* Must set to false to start with, due to OR in update function */
1768 		pipe->plane_state->status.is_flip_pending = false;
1769 		dc->hwss.update_pending_status(pipe);
1770 		if (pipe->plane_state->status.is_flip_pending)
1771 			return true;
1772 	}
1773 	return false;
1774 }
1775 
1776 void dc_post_update_surfaces_to_stream(struct dc *dc)
1777 {
1778 	int i;
1779 	struct dc_state *context = dc->current_state;
1780 
1781 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
1782 		return;
1783 
1784 	post_surface_trace(dc);
1785 
1786 	if (is_flip_pending_in_pipes(dc, context))
1787 		return;
1788 
1789 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1790 		if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1791 		    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1792 			context->res_ctx.pipe_ctx[i].pipe_idx = i;
1793 			dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1794 		}
1795 
1796 	dc->hwss.optimize_bandwidth(dc, context);
1797 
1798 	dc->optimized_required = false;
1799 	dc->wm_optimized_required = false;
1800 }
1801 
1802 static void init_state(struct dc *dc, struct dc_state *context)
1803 {
1804 	/* Each context must have their own instance of VBA and in order to
1805 	 * initialize and obtain IP and SOC the base DML instance from DC is
1806 	 * initially copied into every context
1807 	 */
1808 #ifdef CONFIG_DRM_AMD_DC_DCN
1809 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1810 #endif
1811 }
1812 
1813 struct dc_state *dc_create_state(struct dc *dc)
1814 {
1815 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1816 					    GFP_KERNEL);
1817 
1818 	if (!context)
1819 		return NULL;
1820 
1821 	init_state(dc, context);
1822 
1823 	kref_init(&context->refcount);
1824 
1825 	return context;
1826 }
1827 
1828 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1829 {
1830 	int i, j;
1831 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1832 
1833 	if (!new_ctx)
1834 		return NULL;
1835 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1836 
1837 	for (i = 0; i < MAX_PIPES; i++) {
1838 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1839 
1840 			if (cur_pipe->top_pipe)
1841 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1842 
1843 			if (cur_pipe->bottom_pipe)
1844 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1845 
1846 			if (cur_pipe->prev_odm_pipe)
1847 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1848 
1849 			if (cur_pipe->next_odm_pipe)
1850 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1851 
1852 	}
1853 
1854 	for (i = 0; i < new_ctx->stream_count; i++) {
1855 			dc_stream_retain(new_ctx->streams[i]);
1856 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1857 				dc_plane_state_retain(
1858 					new_ctx->stream_status[i].plane_states[j]);
1859 	}
1860 
1861 	kref_init(&new_ctx->refcount);
1862 
1863 	return new_ctx;
1864 }
1865 
1866 void dc_retain_state(struct dc_state *context)
1867 {
1868 	kref_get(&context->refcount);
1869 }
1870 
1871 static void dc_state_free(struct kref *kref)
1872 {
1873 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
1874 	dc_resource_state_destruct(context);
1875 	kvfree(context);
1876 }
1877 
1878 void dc_release_state(struct dc_state *context)
1879 {
1880 	kref_put(&context->refcount, dc_state_free);
1881 }
1882 
1883 bool dc_set_generic_gpio_for_stereo(bool enable,
1884 		struct gpio_service *gpio_service)
1885 {
1886 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1887 	struct gpio_pin_info pin_info;
1888 	struct gpio *generic;
1889 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1890 			   GFP_KERNEL);
1891 
1892 	if (!config)
1893 		return false;
1894 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1895 
1896 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1897 		kfree(config);
1898 		return false;
1899 	} else {
1900 		generic = dal_gpio_service_create_generic_mux(
1901 			gpio_service,
1902 			pin_info.offset,
1903 			pin_info.mask);
1904 	}
1905 
1906 	if (!generic) {
1907 		kfree(config);
1908 		return false;
1909 	}
1910 
1911 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1912 
1913 	config->enable_output_from_mux = enable;
1914 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1915 
1916 	if (gpio_result == GPIO_RESULT_OK)
1917 		gpio_result = dal_mux_setup_config(generic, config);
1918 
1919 	if (gpio_result == GPIO_RESULT_OK) {
1920 		dal_gpio_close(generic);
1921 		dal_gpio_destroy_generic_mux(&generic);
1922 		kfree(config);
1923 		return true;
1924 	} else {
1925 		dal_gpio_close(generic);
1926 		dal_gpio_destroy_generic_mux(&generic);
1927 		kfree(config);
1928 		return false;
1929 	}
1930 }
1931 
1932 static bool is_surface_in_context(
1933 		const struct dc_state *context,
1934 		const struct dc_plane_state *plane_state)
1935 {
1936 	int j;
1937 
1938 	for (j = 0; j < MAX_PIPES; j++) {
1939 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1940 
1941 		if (plane_state == pipe_ctx->plane_state) {
1942 			return true;
1943 		}
1944 	}
1945 
1946 	return false;
1947 }
1948 
1949 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1950 {
1951 	union surface_update_flags *update_flags = &u->surface->update_flags;
1952 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
1953 
1954 	if (!u->plane_info)
1955 		return UPDATE_TYPE_FAST;
1956 
1957 	if (u->plane_info->color_space != u->surface->color_space) {
1958 		update_flags->bits.color_space_change = 1;
1959 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1960 	}
1961 
1962 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1963 		update_flags->bits.horizontal_mirror_change = 1;
1964 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1965 	}
1966 
1967 	if (u->plane_info->rotation != u->surface->rotation) {
1968 		update_flags->bits.rotation_change = 1;
1969 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1970 	}
1971 
1972 	if (u->plane_info->format != u->surface->format) {
1973 		update_flags->bits.pixel_format_change = 1;
1974 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1975 	}
1976 
1977 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
1978 		update_flags->bits.stereo_format_change = 1;
1979 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1980 	}
1981 
1982 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1983 		update_flags->bits.per_pixel_alpha_change = 1;
1984 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1985 	}
1986 
1987 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1988 		update_flags->bits.global_alpha_change = 1;
1989 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1990 	}
1991 
1992 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
1993 			|| u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1994 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1995 		/* During DCC on/off, stutter period is calculated before
1996 		 * DCC has fully transitioned. This results in incorrect
1997 		 * stutter period calculation. Triggering a full update will
1998 		 * recalculate stutter period.
1999 		 */
2000 		update_flags->bits.dcc_change = 1;
2001 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2002 	}
2003 
2004 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2005 			resource_pixel_format_to_bpp(u->surface->format)) {
2006 		/* different bytes per element will require full bandwidth
2007 		 * and DML calculation
2008 		 */
2009 		update_flags->bits.bpp_change = 1;
2010 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2011 	}
2012 
2013 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2014 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2015 		update_flags->bits.plane_size_change = 1;
2016 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2017 	}
2018 
2019 
2020 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2021 			sizeof(union dc_tiling_info)) != 0) {
2022 		update_flags->bits.swizzle_change = 1;
2023 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2024 
2025 		/* todo: below are HW dependent, we should add a hook to
2026 		 * DCE/N resource and validated there.
2027 		 */
2028 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2029 			/* swizzled mode requires RQ to be setup properly,
2030 			 * thus need to run DML to calculate RQ settings
2031 			 */
2032 			update_flags->bits.bandwidth_change = 1;
2033 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2034 		}
2035 	}
2036 
2037 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2038 	return update_type;
2039 }
2040 
2041 static enum surface_update_type get_scaling_info_update_type(
2042 		const struct dc_surface_update *u)
2043 {
2044 	union surface_update_flags *update_flags = &u->surface->update_flags;
2045 
2046 	if (!u->scaling_info)
2047 		return UPDATE_TYPE_FAST;
2048 
2049 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2050 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2051 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2052 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2053 			|| u->scaling_info->scaling_quality.integer_scaling !=
2054 				u->surface->scaling_quality.integer_scaling
2055 			) {
2056 		update_flags->bits.scaling_change = 1;
2057 
2058 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2059 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2060 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2061 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2062 			/* Making dst rect smaller requires a bandwidth change */
2063 			update_flags->bits.bandwidth_change = 1;
2064 	}
2065 
2066 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2067 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2068 
2069 		update_flags->bits.scaling_change = 1;
2070 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2071 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2072 			/* Making src rect bigger requires a bandwidth change */
2073 			update_flags->bits.clock_change = 1;
2074 	}
2075 
2076 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2077 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2078 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2079 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2080 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2081 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2082 		update_flags->bits.position_change = 1;
2083 
2084 	if (update_flags->bits.clock_change
2085 			|| update_flags->bits.bandwidth_change
2086 			|| update_flags->bits.scaling_change)
2087 		return UPDATE_TYPE_FULL;
2088 
2089 	if (update_flags->bits.position_change)
2090 		return UPDATE_TYPE_MED;
2091 
2092 	return UPDATE_TYPE_FAST;
2093 }
2094 
2095 static enum surface_update_type det_surface_update(const struct dc *dc,
2096 		const struct dc_surface_update *u)
2097 {
2098 	const struct dc_state *context = dc->current_state;
2099 	enum surface_update_type type;
2100 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2101 	union surface_update_flags *update_flags = &u->surface->update_flags;
2102 
2103 	if (u->flip_addr)
2104 		update_flags->bits.addr_update = 1;
2105 
2106 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2107 		update_flags->raw = 0xFFFFFFFF;
2108 		return UPDATE_TYPE_FULL;
2109 	}
2110 
2111 	update_flags->raw = 0; // Reset all flags
2112 
2113 	type = get_plane_info_update_type(u);
2114 	elevate_update_type(&overall_type, type);
2115 
2116 	type = get_scaling_info_update_type(u);
2117 	elevate_update_type(&overall_type, type);
2118 
2119 	if (u->flip_addr)
2120 		update_flags->bits.addr_update = 1;
2121 
2122 	if (u->in_transfer_func)
2123 		update_flags->bits.in_transfer_func_change = 1;
2124 
2125 	if (u->input_csc_color_matrix)
2126 		update_flags->bits.input_csc_change = 1;
2127 
2128 	if (u->coeff_reduction_factor)
2129 		update_flags->bits.coeff_reduction_change = 1;
2130 
2131 	if (u->gamut_remap_matrix)
2132 		update_flags->bits.gamut_remap_change = 1;
2133 
2134 	if (u->gamma) {
2135 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2136 
2137 		if (u->plane_info)
2138 			format = u->plane_info->format;
2139 		else if (u->surface)
2140 			format = u->surface->format;
2141 
2142 		if (dce_use_lut(format))
2143 			update_flags->bits.gamma_change = 1;
2144 	}
2145 
2146 	if (u->hdr_mult.value)
2147 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2148 			update_flags->bits.hdr_mult = 1;
2149 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2150 		}
2151 
2152 	if (update_flags->bits.in_transfer_func_change) {
2153 		type = UPDATE_TYPE_MED;
2154 		elevate_update_type(&overall_type, type);
2155 	}
2156 
2157 	if (update_flags->bits.input_csc_change
2158 			|| update_flags->bits.coeff_reduction_change
2159 			|| update_flags->bits.gamma_change
2160 			|| update_flags->bits.gamut_remap_change) {
2161 		type = UPDATE_TYPE_FULL;
2162 		elevate_update_type(&overall_type, type);
2163 	}
2164 
2165 	return overall_type;
2166 }
2167 
2168 static enum surface_update_type check_update_surfaces_for_stream(
2169 		struct dc *dc,
2170 		struct dc_surface_update *updates,
2171 		int surface_count,
2172 		struct dc_stream_update *stream_update,
2173 		const struct dc_stream_status *stream_status)
2174 {
2175 	int i;
2176 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2177 
2178 #if defined(CONFIG_DRM_AMD_DC_DCN)
2179 	if (dc->idle_optimizations_allowed)
2180 		overall_type = UPDATE_TYPE_FULL;
2181 
2182 #endif
2183 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2184 		overall_type = UPDATE_TYPE_FULL;
2185 
2186 	if (stream_update && stream_update->pending_test_pattern) {
2187 		overall_type = UPDATE_TYPE_FULL;
2188 	}
2189 
2190 	/* some stream updates require passive update */
2191 	if (stream_update) {
2192 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2193 
2194 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2195 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2196 			stream_update->integer_scaling_update)
2197 			su_flags->bits.scaling = 1;
2198 
2199 		if (stream_update->out_transfer_func)
2200 			su_flags->bits.out_tf = 1;
2201 
2202 		if (stream_update->abm_level)
2203 			su_flags->bits.abm_level = 1;
2204 
2205 		if (stream_update->dpms_off)
2206 			su_flags->bits.dpms_off = 1;
2207 
2208 		if (stream_update->gamut_remap)
2209 			su_flags->bits.gamut_remap = 1;
2210 
2211 		if (stream_update->wb_update)
2212 			su_flags->bits.wb_update = 1;
2213 
2214 		if (stream_update->dsc_config)
2215 			su_flags->bits.dsc_changed = 1;
2216 
2217 		if (su_flags->raw != 0)
2218 			overall_type = UPDATE_TYPE_FULL;
2219 
2220 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2221 			su_flags->bits.out_csc = 1;
2222 	}
2223 
2224 	for (i = 0 ; i < surface_count; i++) {
2225 		enum surface_update_type type =
2226 				det_surface_update(dc, &updates[i]);
2227 
2228 		elevate_update_type(&overall_type, type);
2229 	}
2230 
2231 	return overall_type;
2232 }
2233 
2234 /*
2235  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2236  *
2237  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2238  */
2239 enum surface_update_type dc_check_update_surfaces_for_stream(
2240 		struct dc *dc,
2241 		struct dc_surface_update *updates,
2242 		int surface_count,
2243 		struct dc_stream_update *stream_update,
2244 		const struct dc_stream_status *stream_status)
2245 {
2246 	int i;
2247 	enum surface_update_type type;
2248 
2249 	if (stream_update)
2250 		stream_update->stream->update_flags.raw = 0;
2251 	for (i = 0; i < surface_count; i++)
2252 		updates[i].surface->update_flags.raw = 0;
2253 
2254 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2255 	if (type == UPDATE_TYPE_FULL) {
2256 		if (stream_update) {
2257 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2258 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2259 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2260 		}
2261 		for (i = 0; i < surface_count; i++)
2262 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2263 	}
2264 
2265 	if (type == UPDATE_TYPE_FAST) {
2266 		// If there's an available clock comparator, we use that.
2267 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2268 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2269 				dc->optimized_required = true;
2270 		// Else we fallback to mem compare.
2271 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2272 			dc->optimized_required = true;
2273 		}
2274 
2275 		dc->optimized_required |= dc->wm_optimized_required;
2276 	}
2277 
2278 	return type;
2279 }
2280 
2281 static struct dc_stream_status *stream_get_status(
2282 	struct dc_state *ctx,
2283 	struct dc_stream_state *stream)
2284 {
2285 	uint8_t i;
2286 
2287 	for (i = 0; i < ctx->stream_count; i++) {
2288 		if (stream == ctx->streams[i]) {
2289 			return &ctx->stream_status[i];
2290 		}
2291 	}
2292 
2293 	return NULL;
2294 }
2295 
2296 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2297 
2298 static void copy_surface_update_to_plane(
2299 		struct dc_plane_state *surface,
2300 		struct dc_surface_update *srf_update)
2301 {
2302 	if (srf_update->flip_addr) {
2303 		surface->address = srf_update->flip_addr->address;
2304 		surface->flip_immediate =
2305 			srf_update->flip_addr->flip_immediate;
2306 		surface->time.time_elapsed_in_us[surface->time.index] =
2307 			srf_update->flip_addr->flip_timestamp_in_us -
2308 				surface->time.prev_update_time_in_us;
2309 		surface->time.prev_update_time_in_us =
2310 			srf_update->flip_addr->flip_timestamp_in_us;
2311 		surface->time.index++;
2312 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2313 			surface->time.index = 0;
2314 
2315 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2316 	}
2317 
2318 	if (srf_update->scaling_info) {
2319 		surface->scaling_quality =
2320 				srf_update->scaling_info->scaling_quality;
2321 		surface->dst_rect =
2322 				srf_update->scaling_info->dst_rect;
2323 		surface->src_rect =
2324 				srf_update->scaling_info->src_rect;
2325 		surface->clip_rect =
2326 				srf_update->scaling_info->clip_rect;
2327 	}
2328 
2329 	if (srf_update->plane_info) {
2330 		surface->color_space =
2331 				srf_update->plane_info->color_space;
2332 		surface->format =
2333 				srf_update->plane_info->format;
2334 		surface->plane_size =
2335 				srf_update->plane_info->plane_size;
2336 		surface->rotation =
2337 				srf_update->plane_info->rotation;
2338 		surface->horizontal_mirror =
2339 				srf_update->plane_info->horizontal_mirror;
2340 		surface->stereo_format =
2341 				srf_update->plane_info->stereo_format;
2342 		surface->tiling_info =
2343 				srf_update->plane_info->tiling_info;
2344 		surface->visible =
2345 				srf_update->plane_info->visible;
2346 		surface->per_pixel_alpha =
2347 				srf_update->plane_info->per_pixel_alpha;
2348 		surface->global_alpha =
2349 				srf_update->plane_info->global_alpha;
2350 		surface->global_alpha_value =
2351 				srf_update->plane_info->global_alpha_value;
2352 		surface->dcc =
2353 				srf_update->plane_info->dcc;
2354 		surface->layer_index =
2355 				srf_update->plane_info->layer_index;
2356 	}
2357 
2358 	if (srf_update->gamma &&
2359 			(surface->gamma_correction !=
2360 					srf_update->gamma)) {
2361 		memcpy(&surface->gamma_correction->entries,
2362 			&srf_update->gamma->entries,
2363 			sizeof(struct dc_gamma_entries));
2364 		surface->gamma_correction->is_identity =
2365 			srf_update->gamma->is_identity;
2366 		surface->gamma_correction->num_entries =
2367 			srf_update->gamma->num_entries;
2368 		surface->gamma_correction->type =
2369 			srf_update->gamma->type;
2370 	}
2371 
2372 	if (srf_update->in_transfer_func &&
2373 			(surface->in_transfer_func !=
2374 				srf_update->in_transfer_func)) {
2375 		surface->in_transfer_func->sdr_ref_white_level =
2376 			srf_update->in_transfer_func->sdr_ref_white_level;
2377 		surface->in_transfer_func->tf =
2378 			srf_update->in_transfer_func->tf;
2379 		surface->in_transfer_func->type =
2380 			srf_update->in_transfer_func->type;
2381 		memcpy(&surface->in_transfer_func->tf_pts,
2382 			&srf_update->in_transfer_func->tf_pts,
2383 			sizeof(struct dc_transfer_func_distributed_points));
2384 	}
2385 
2386 	if (srf_update->func_shaper &&
2387 			(surface->in_shaper_func !=
2388 			srf_update->func_shaper))
2389 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2390 		sizeof(*surface->in_shaper_func));
2391 
2392 	if (srf_update->lut3d_func &&
2393 			(surface->lut3d_func !=
2394 			srf_update->lut3d_func))
2395 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2396 		sizeof(*surface->lut3d_func));
2397 
2398 	if (srf_update->hdr_mult.value)
2399 		surface->hdr_mult =
2400 				srf_update->hdr_mult;
2401 
2402 	if (srf_update->blend_tf &&
2403 			(surface->blend_tf !=
2404 			srf_update->blend_tf))
2405 		memcpy(surface->blend_tf, srf_update->blend_tf,
2406 		sizeof(*surface->blend_tf));
2407 
2408 	if (srf_update->input_csc_color_matrix)
2409 		surface->input_csc_color_matrix =
2410 			*srf_update->input_csc_color_matrix;
2411 
2412 	if (srf_update->coeff_reduction_factor)
2413 		surface->coeff_reduction_factor =
2414 			*srf_update->coeff_reduction_factor;
2415 
2416 	if (srf_update->gamut_remap_matrix)
2417 		surface->gamut_remap_matrix =
2418 			*srf_update->gamut_remap_matrix;
2419 }
2420 
2421 static void copy_stream_update_to_stream(struct dc *dc,
2422 					 struct dc_state *context,
2423 					 struct dc_stream_state *stream,
2424 					 struct dc_stream_update *update)
2425 {
2426 	struct dc_context *dc_ctx = dc->ctx;
2427 
2428 	if (update == NULL || stream == NULL)
2429 		return;
2430 
2431 	if (update->src.height && update->src.width)
2432 		stream->src = update->src;
2433 
2434 	if (update->dst.height && update->dst.width)
2435 		stream->dst = update->dst;
2436 
2437 	if (update->out_transfer_func &&
2438 	    stream->out_transfer_func != update->out_transfer_func) {
2439 		stream->out_transfer_func->sdr_ref_white_level =
2440 			update->out_transfer_func->sdr_ref_white_level;
2441 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2442 		stream->out_transfer_func->type =
2443 			update->out_transfer_func->type;
2444 		memcpy(&stream->out_transfer_func->tf_pts,
2445 		       &update->out_transfer_func->tf_pts,
2446 		       sizeof(struct dc_transfer_func_distributed_points));
2447 	}
2448 
2449 	if (update->hdr_static_metadata)
2450 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2451 
2452 	if (update->abm_level)
2453 		stream->abm_level = *update->abm_level;
2454 
2455 	if (update->periodic_interrupt0)
2456 		stream->periodic_interrupt0 = *update->periodic_interrupt0;
2457 
2458 	if (update->periodic_interrupt1)
2459 		stream->periodic_interrupt1 = *update->periodic_interrupt1;
2460 
2461 	if (update->gamut_remap)
2462 		stream->gamut_remap_matrix = *update->gamut_remap;
2463 
2464 	/* Note: this being updated after mode set is currently not a use case
2465 	 * however if it arises OCSC would need to be reprogrammed at the
2466 	 * minimum
2467 	 */
2468 	if (update->output_color_space)
2469 		stream->output_color_space = *update->output_color_space;
2470 
2471 	if (update->output_csc_transform)
2472 		stream->csc_color_matrix = *update->output_csc_transform;
2473 
2474 	if (update->vrr_infopacket)
2475 		stream->vrr_infopacket = *update->vrr_infopacket;
2476 
2477 	if (update->dpms_off)
2478 		stream->dpms_off = *update->dpms_off;
2479 
2480 	if (update->vsc_infopacket)
2481 		stream->vsc_infopacket = *update->vsc_infopacket;
2482 
2483 	if (update->vsp_infopacket)
2484 		stream->vsp_infopacket = *update->vsp_infopacket;
2485 
2486 	if (update->dither_option)
2487 		stream->dither_option = *update->dither_option;
2488 
2489 	if (update->pending_test_pattern)
2490 		stream->test_pattern = *update->pending_test_pattern;
2491 	/* update current stream with writeback info */
2492 	if (update->wb_update) {
2493 		int i;
2494 
2495 		stream->num_wb_info = update->wb_update->num_wb_info;
2496 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2497 		for (i = 0; i < stream->num_wb_info; i++)
2498 			stream->writeback_info[i] =
2499 				update->wb_update->writeback_info[i];
2500 	}
2501 	if (update->dsc_config) {
2502 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2503 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2504 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2505 				       update->dsc_config->num_slices_v != 0);
2506 
2507 		/* Use temporarry context for validating new DSC config */
2508 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2509 
2510 		if (dsc_validate_context) {
2511 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2512 
2513 			stream->timing.dsc_cfg = *update->dsc_config;
2514 			stream->timing.flags.DSC = enable_dsc;
2515 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2516 				stream->timing.dsc_cfg = old_dsc_cfg;
2517 				stream->timing.flags.DSC = old_dsc_enabled;
2518 				update->dsc_config = NULL;
2519 			}
2520 
2521 			dc_release_state(dsc_validate_context);
2522 		} else {
2523 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2524 			update->dsc_config = NULL;
2525 		}
2526 	}
2527 }
2528 
2529 static void commit_planes_do_stream_update(struct dc *dc,
2530 		struct dc_stream_state *stream,
2531 		struct dc_stream_update *stream_update,
2532 		enum surface_update_type update_type,
2533 		struct dc_state *context)
2534 {
2535 	int j;
2536 
2537 	// Stream updates
2538 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2539 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2540 
2541 		if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2542 
2543 			if (stream_update->periodic_interrupt0 &&
2544 					dc->hwss.setup_periodic_interrupt)
2545 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE0);
2546 
2547 			if (stream_update->periodic_interrupt1 &&
2548 					dc->hwss.setup_periodic_interrupt)
2549 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE1);
2550 
2551 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2552 					stream_update->vrr_infopacket ||
2553 					stream_update->vsc_infopacket ||
2554 					stream_update->vsp_infopacket) {
2555 				resource_build_info_frame(pipe_ctx);
2556 				dc->hwss.update_info_frame(pipe_ctx);
2557 			}
2558 
2559 			if (stream_update->hdr_static_metadata &&
2560 					stream->use_dynamic_meta &&
2561 					dc->hwss.set_dmdata_attributes &&
2562 					pipe_ctx->stream->dmdata_address.quad_part != 0)
2563 				dc->hwss.set_dmdata_attributes(pipe_ctx);
2564 
2565 			if (stream_update->gamut_remap)
2566 				dc_stream_set_gamut_remap(dc, stream);
2567 
2568 			if (stream_update->output_csc_transform)
2569 				dc_stream_program_csc_matrix(dc, stream);
2570 
2571 			if (stream_update->dither_option) {
2572 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2573 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2574 									&pipe_ctx->stream->bit_depth_params);
2575 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2576 						&stream->bit_depth_params,
2577 						&stream->clamping);
2578 				while (odm_pipe) {
2579 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2580 							&stream->bit_depth_params,
2581 							&stream->clamping);
2582 					odm_pipe = odm_pipe->next_odm_pipe;
2583 				}
2584 			}
2585 
2586 
2587 			/* Full fe update*/
2588 			if (update_type == UPDATE_TYPE_FAST)
2589 				continue;
2590 
2591 			if (stream_update->dsc_config)
2592 				dp_update_dsc_config(pipe_ctx);
2593 
2594 			if (stream_update->pending_test_pattern) {
2595 				dc_link_dp_set_test_pattern(stream->link,
2596 					stream->test_pattern.type,
2597 					stream->test_pattern.color_space,
2598 					stream->test_pattern.p_link_settings,
2599 					stream->test_pattern.p_custom_pattern,
2600 					stream->test_pattern.cust_pattern_size);
2601 			}
2602 
2603 			if (stream_update->dpms_off) {
2604 				if (*stream_update->dpms_off) {
2605 					core_link_disable_stream(pipe_ctx);
2606 					/* for dpms, keep acquired resources*/
2607 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2608 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2609 
2610 					dc->optimized_required = true;
2611 
2612 				} else {
2613 					if (get_seamless_boot_stream_count(context) == 0)
2614 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
2615 
2616 					core_link_enable_stream(dc->current_state, pipe_ctx);
2617 				}
2618 			}
2619 
2620 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2621 				bool should_program_abm = true;
2622 
2623 				// if otg funcs defined check if blanked before programming
2624 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2625 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2626 						should_program_abm = false;
2627 
2628 				if (should_program_abm) {
2629 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2630 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
2631 					} else {
2632 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
2633 							pipe_ctx->stream_res.abm, stream->abm_level);
2634 					}
2635 				}
2636 			}
2637 		}
2638 	}
2639 }
2640 
2641 static void commit_planes_for_stream(struct dc *dc,
2642 		struct dc_surface_update *srf_updates,
2643 		int surface_count,
2644 		struct dc_stream_state *stream,
2645 		struct dc_stream_update *stream_update,
2646 		enum surface_update_type update_type,
2647 		struct dc_state *context)
2648 {
2649 	int i, j;
2650 	struct pipe_ctx *top_pipe_to_program = NULL;
2651 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
2652 
2653 #if defined(CONFIG_DRM_AMD_DC_DCN)
2654 	dc_z10_restore(dc);
2655 #endif
2656 
2657 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
2658 		/* Optimize seamless boot flag keeps clocks and watermarks high until
2659 		 * first flip. After first flip, optimization is required to lower
2660 		 * bandwidth. Important to note that it is expected UEFI will
2661 		 * only light up a single display on POST, therefore we only expect
2662 		 * one stream with seamless boot flag set.
2663 		 */
2664 		if (stream->apply_seamless_boot_optimization) {
2665 			stream->apply_seamless_boot_optimization = false;
2666 
2667 			if (get_seamless_boot_stream_count(context) == 0)
2668 				dc->optimized_required = true;
2669 		}
2670 	}
2671 
2672 	if (update_type == UPDATE_TYPE_FULL) {
2673 #if defined(CONFIG_DRM_AMD_DC_DCN)
2674 		dc_allow_idle_optimizations(dc, false);
2675 
2676 #endif
2677 		if (get_seamless_boot_stream_count(context) == 0)
2678 			dc->hwss.prepare_bandwidth(dc, context);
2679 
2680 		context_clock_trace(dc, context);
2681 	}
2682 
2683 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2684 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2685 
2686 		if (!pipe_ctx->top_pipe &&
2687 			!pipe_ctx->prev_odm_pipe &&
2688 			pipe_ctx->stream &&
2689 			pipe_ctx->stream == stream) {
2690 			top_pipe_to_program = pipe_ctx;
2691 		}
2692 	}
2693 
2694 #ifdef CONFIG_DRM_AMD_DC_DCN
2695 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
2696 		struct pipe_ctx *mpcc_pipe;
2697 		struct pipe_ctx *odm_pipe;
2698 
2699 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
2700 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
2701 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
2702 	}
2703 #endif
2704 
2705 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2706 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2707 			if (should_use_dmub_lock(stream->link)) {
2708 				union dmub_hw_lock_flags hw_locks = { 0 };
2709 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2710 
2711 				hw_locks.bits.lock_dig = 1;
2712 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2713 
2714 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2715 							true,
2716 							&hw_locks,
2717 							&inst_flags);
2718 			} else
2719 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2720 						top_pipe_to_program->stream_res.tg);
2721 		}
2722 
2723 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock)
2724 		dc->hwss.interdependent_update_lock(dc, context, true);
2725 	else
2726 		/* Lock the top pipe while updating plane addrs, since freesync requires
2727 		 *  plane addr update event triggers to be synchronized.
2728 		 *  top_pipe_to_program is expected to never be NULL
2729 		 */
2730 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2731 
2732 	// Stream updates
2733 	if (stream_update)
2734 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2735 
2736 	if (surface_count == 0) {
2737 		/*
2738 		 * In case of turning off screen, no need to program front end a second time.
2739 		 * just return after program blank.
2740 		 */
2741 		if (dc->hwss.apply_ctx_for_surface)
2742 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2743 		if (dc->hwss.program_front_end_for_ctx)
2744 			dc->hwss.program_front_end_for_ctx(dc, context);
2745 
2746 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock)
2747 			dc->hwss.interdependent_update_lock(dc, context, false);
2748 		else
2749 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2750 		dc->hwss.post_unlock_program_front_end(dc, context);
2751 		return;
2752 	}
2753 
2754 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2755 		for (i = 0; i < surface_count; i++) {
2756 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2757 			/*set logical flag for lock/unlock use*/
2758 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2759 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2760 				if (!pipe_ctx->plane_state)
2761 					continue;
2762 				if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
2763 					continue;
2764 				pipe_ctx->plane_state->triplebuffer_flips = false;
2765 				if (update_type == UPDATE_TYPE_FAST &&
2766 					dc->hwss.program_triplebuffer != NULL &&
2767 					!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2768 						/*triple buffer for VUpdate  only*/
2769 						pipe_ctx->plane_state->triplebuffer_flips = true;
2770 				}
2771 			}
2772 			if (update_type == UPDATE_TYPE_FULL) {
2773 				/* force vsync flip when reconfiguring pipes to prevent underflow */
2774 				plane_state->flip_immediate = false;
2775 			}
2776 		}
2777 	}
2778 
2779 	// Update Type FULL, Surface updates
2780 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2781 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2782 
2783 		if (!pipe_ctx->top_pipe &&
2784 			!pipe_ctx->prev_odm_pipe &&
2785 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
2786 			struct dc_stream_status *stream_status = NULL;
2787 
2788 			if (!pipe_ctx->plane_state)
2789 				continue;
2790 
2791 			/* Full fe update*/
2792 			if (update_type == UPDATE_TYPE_FAST)
2793 				continue;
2794 
2795 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2796 
2797 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2798 				/*turn off triple buffer for full update*/
2799 				dc->hwss.program_triplebuffer(
2800 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2801 			}
2802 			stream_status =
2803 				stream_get_status(context, pipe_ctx->stream);
2804 
2805 			if (dc->hwss.apply_ctx_for_surface)
2806 				dc->hwss.apply_ctx_for_surface(
2807 					dc, pipe_ctx->stream, stream_status->plane_count, context);
2808 		}
2809 	}
2810 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2811 		dc->hwss.program_front_end_for_ctx(dc, context);
2812 #ifdef CONFIG_DRM_AMD_DC_DCN
2813 		if (dc->debug.validate_dml_output) {
2814 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
2815 				struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2816 				if (cur_pipe.stream == NULL)
2817 					continue;
2818 
2819 				cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2820 						cur_pipe.plane_res.hubp, dc->ctx,
2821 						&context->res_ctx.pipe_ctx[i].rq_regs,
2822 						&context->res_ctx.pipe_ctx[i].dlg_regs,
2823 						&context->res_ctx.pipe_ctx[i].ttu_regs);
2824 			}
2825 		}
2826 #endif
2827 	}
2828 
2829 	// Update Type FAST, Surface updates
2830 	if (update_type == UPDATE_TYPE_FAST) {
2831 		if (dc->hwss.set_flip_control_gsl)
2832 			for (i = 0; i < surface_count; i++) {
2833 				struct dc_plane_state *plane_state = srf_updates[i].surface;
2834 
2835 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
2836 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2837 
2838 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
2839 						continue;
2840 
2841 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
2842 						continue;
2843 
2844 					// GSL has to be used for flip immediate
2845 					dc->hwss.set_flip_control_gsl(pipe_ctx,
2846 							pipe_ctx->plane_state->flip_immediate);
2847 				}
2848 			}
2849 
2850 		/* Perform requested Updates */
2851 		for (i = 0; i < surface_count; i++) {
2852 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2853 
2854 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2855 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2856 
2857 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
2858 					continue;
2859 
2860 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
2861 					continue;
2862 
2863 				/*program triple buffer after lock based on flip type*/
2864 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2865 					/*only enable triplebuffer for  fast_update*/
2866 					dc->hwss.program_triplebuffer(
2867 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2868 				}
2869 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
2870 					dc->hwss.update_plane_addr(dc, pipe_ctx);
2871 			}
2872 		}
2873 
2874 	}
2875 
2876 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock)
2877 		dc->hwss.interdependent_update_lock(dc, context, false);
2878 	else
2879 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2880 
2881 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2882 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2883 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2884 					top_pipe_to_program->stream_res.tg,
2885 					CRTC_STATE_VACTIVE);
2886 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2887 					top_pipe_to_program->stream_res.tg,
2888 					CRTC_STATE_VBLANK);
2889 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2890 					top_pipe_to_program->stream_res.tg,
2891 					CRTC_STATE_VACTIVE);
2892 
2893 			if (stream && should_use_dmub_lock(stream->link)) {
2894 				union dmub_hw_lock_flags hw_locks = { 0 };
2895 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2896 
2897 				hw_locks.bits.lock_dig = 1;
2898 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2899 
2900 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2901 							false,
2902 							&hw_locks,
2903 							&inst_flags);
2904 			} else
2905 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2906 					top_pipe_to_program->stream_res.tg);
2907 		}
2908 
2909 	if (update_type != UPDATE_TYPE_FAST)
2910 		dc->hwss.post_unlock_program_front_end(dc, context);
2911 
2912 	// Fire manual trigger only when bottom plane is flipped
2913 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2914 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2915 
2916 		if (!pipe_ctx->plane_state)
2917 			continue;
2918 
2919 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
2920 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
2921 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
2922 				pipe_ctx->plane_state->skip_manual_trigger)
2923 			continue;
2924 
2925 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2926 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2927 	}
2928 }
2929 
2930 void dc_commit_updates_for_stream(struct dc *dc,
2931 		struct dc_surface_update *srf_updates,
2932 		int surface_count,
2933 		struct dc_stream_state *stream,
2934 		struct dc_stream_update *stream_update,
2935 		struct dc_state *state)
2936 {
2937 	const struct dc_stream_status *stream_status;
2938 	enum surface_update_type update_type;
2939 	struct dc_state *context;
2940 	struct dc_context *dc_ctx = dc->ctx;
2941 	int i, j;
2942 
2943 	stream_status = dc_stream_get_status(stream);
2944 	context = dc->current_state;
2945 
2946 	update_type = dc_check_update_surfaces_for_stream(
2947 				dc, srf_updates, surface_count, stream_update, stream_status);
2948 
2949 	if (update_type >= update_surface_trace_level)
2950 		update_surface_trace(dc, srf_updates, surface_count);
2951 
2952 
2953 	if (update_type >= UPDATE_TYPE_FULL) {
2954 
2955 		/* initialize scratch memory for building context */
2956 		context = dc_create_state(dc);
2957 		if (context == NULL) {
2958 			DC_ERROR("Failed to allocate new validate context!\n");
2959 			return;
2960 		}
2961 
2962 		dc_resource_state_copy_construct(state, context);
2963 
2964 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2965 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2966 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2967 
2968 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2969 				new_pipe->plane_state->force_full_update = true;
2970 		}
2971 	}
2972 
2973 
2974 	for (i = 0; i < surface_count; i++) {
2975 		struct dc_plane_state *surface = srf_updates[i].surface;
2976 
2977 		copy_surface_update_to_plane(surface, &srf_updates[i]);
2978 
2979 		if (update_type >= UPDATE_TYPE_MED) {
2980 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2981 				struct pipe_ctx *pipe_ctx =
2982 					&context->res_ctx.pipe_ctx[j];
2983 
2984 				if (pipe_ctx->plane_state != surface)
2985 					continue;
2986 
2987 				resource_build_scaling_params(pipe_ctx);
2988 			}
2989 		}
2990 	}
2991 
2992 	copy_stream_update_to_stream(dc, context, stream, stream_update);
2993 
2994 	if (update_type >= UPDATE_TYPE_FULL) {
2995 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2996 			DC_ERROR("Mode validation failed for stream update!\n");
2997 			dc_release_state(context);
2998 			return;
2999 		}
3000 	}
3001 
3002 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
3003 
3004 	commit_planes_for_stream(
3005 				dc,
3006 				srf_updates,
3007 				surface_count,
3008 				stream,
3009 				stream_update,
3010 				update_type,
3011 				context);
3012 	/*update current_State*/
3013 	if (dc->current_state != context) {
3014 
3015 		struct dc_state *old = dc->current_state;
3016 
3017 		dc->current_state = context;
3018 		dc_release_state(old);
3019 
3020 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3021 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3022 
3023 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
3024 				pipe_ctx->plane_state->force_full_update = false;
3025 		}
3026 	}
3027 	/*let's use current_state to update watermark etc*/
3028 	if (update_type >= UPDATE_TYPE_FULL) {
3029 		dc_post_update_surfaces_to_stream(dc);
3030 
3031 		if (dc_ctx->dce_version >= DCE_VERSION_MAX)
3032 			TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
3033 		else
3034 			TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
3035 	}
3036 
3037 	return;
3038 
3039 }
3040 
3041 uint8_t dc_get_current_stream_count(struct dc *dc)
3042 {
3043 	return dc->current_state->stream_count;
3044 }
3045 
3046 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
3047 {
3048 	if (i < dc->current_state->stream_count)
3049 		return dc->current_state->streams[i];
3050 	return NULL;
3051 }
3052 
3053 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
3054 {
3055 	uint8_t i;
3056 	struct dc_context *ctx = link->ctx;
3057 
3058 	for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
3059 		if (ctx->dc->current_state->streams[i]->link == link)
3060 			return ctx->dc->current_state->streams[i];
3061 	}
3062 
3063 	return NULL;
3064 }
3065 
3066 enum dc_irq_source dc_interrupt_to_irq_source(
3067 		struct dc *dc,
3068 		uint32_t src_id,
3069 		uint32_t ext_id)
3070 {
3071 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
3072 }
3073 
3074 /*
3075  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
3076  */
3077 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
3078 {
3079 
3080 	if (dc == NULL)
3081 		return false;
3082 
3083 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
3084 }
3085 
3086 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
3087 {
3088 	dal_irq_service_ack(dc->res_pool->irqs, src);
3089 }
3090 
3091 void dc_power_down_on_boot(struct dc *dc)
3092 {
3093 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
3094 			dc->hwss.power_down_on_boot)
3095 		dc->hwss.power_down_on_boot(dc);
3096 }
3097 
3098 void dc_set_power_state(
3099 	struct dc *dc,
3100 	enum dc_acpi_cm_power_state power_state)
3101 {
3102 	struct kref refcount;
3103 	struct display_mode_lib *dml;
3104 
3105 	if (!dc->current_state)
3106 		return;
3107 
3108 	switch (power_state) {
3109 	case DC_ACPI_CM_POWER_STATE_D0:
3110 		dc_resource_state_construct(dc, dc->current_state);
3111 
3112 #if defined(CONFIG_DRM_AMD_DC_DCN)
3113 		dc_z10_restore(dc);
3114 #endif
3115 		if (dc->ctx->dmub_srv)
3116 			dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
3117 
3118 		dc->hwss.init_hw(dc);
3119 
3120 		if (dc->hwss.init_sys_ctx != NULL &&
3121 			dc->vm_pa_config.valid) {
3122 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
3123 		}
3124 
3125 		break;
3126 	default:
3127 		ASSERT(dc->current_state->stream_count == 0);
3128 		/* Zero out the current context so that on resume we start with
3129 		 * clean state, and dc hw programming optimizations will not
3130 		 * cause any trouble.
3131 		 */
3132 		dml = kzalloc(sizeof(struct display_mode_lib),
3133 				GFP_KERNEL);
3134 
3135 		ASSERT(dml);
3136 		if (!dml)
3137 			return;
3138 
3139 		/* Preserve refcount */
3140 		refcount = dc->current_state->refcount;
3141 		/* Preserve display mode lib */
3142 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
3143 
3144 		dc_resource_state_destruct(dc->current_state);
3145 		memset(dc->current_state, 0,
3146 				sizeof(*dc->current_state));
3147 
3148 		dc->current_state->refcount = refcount;
3149 		dc->current_state->bw_ctx.dml = *dml;
3150 
3151 		kfree(dml);
3152 
3153 		break;
3154 	}
3155 }
3156 
3157 void dc_resume(struct dc *dc)
3158 {
3159 	uint32_t i;
3160 
3161 	for (i = 0; i < dc->link_count; i++)
3162 		core_link_resume(dc->links[i]);
3163 }
3164 
3165 bool dc_is_dmcu_initialized(struct dc *dc)
3166 {
3167 	struct dmcu *dmcu = dc->res_pool->dmcu;
3168 
3169 	if (dmcu)
3170 		return dmcu->funcs->is_dmcu_initialized(dmcu);
3171 	return false;
3172 }
3173 
3174 bool dc_submit_i2c(
3175 		struct dc *dc,
3176 		uint32_t link_index,
3177 		struct i2c_command *cmd)
3178 {
3179 
3180 	struct dc_link *link = dc->links[link_index];
3181 	struct ddc_service *ddc = link->ddc;
3182 	return dce_i2c_submit_command(
3183 		dc->res_pool,
3184 		ddc->ddc_pin,
3185 		cmd);
3186 }
3187 
3188 bool dc_submit_i2c_oem(
3189 		struct dc *dc,
3190 		struct i2c_command *cmd)
3191 {
3192 	struct ddc_service *ddc = dc->res_pool->oem_device;
3193 	return dce_i2c_submit_command(
3194 		dc->res_pool,
3195 		ddc->ddc_pin,
3196 		cmd);
3197 }
3198 
3199 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
3200 {
3201 	if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
3202 		BREAK_TO_DEBUGGER();
3203 		return false;
3204 	}
3205 
3206 	dc_sink_retain(sink);
3207 
3208 	dc_link->remote_sinks[dc_link->sink_count] = sink;
3209 	dc_link->sink_count++;
3210 
3211 	return true;
3212 }
3213 
3214 /*
3215  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
3216  *
3217  * EDID length is in bytes
3218  */
3219 struct dc_sink *dc_link_add_remote_sink(
3220 		struct dc_link *link,
3221 		const uint8_t *edid,
3222 		int len,
3223 		struct dc_sink_init_data *init_data)
3224 {
3225 	struct dc_sink *dc_sink;
3226 	enum dc_edid_status edid_status;
3227 
3228 	if (len > DC_MAX_EDID_BUFFER_SIZE) {
3229 		dm_error("Max EDID buffer size breached!\n");
3230 		return NULL;
3231 	}
3232 
3233 	if (!init_data) {
3234 		BREAK_TO_DEBUGGER();
3235 		return NULL;
3236 	}
3237 
3238 	if (!init_data->link) {
3239 		BREAK_TO_DEBUGGER();
3240 		return NULL;
3241 	}
3242 
3243 	dc_sink = dc_sink_create(init_data);
3244 
3245 	if (!dc_sink)
3246 		return NULL;
3247 
3248 	memmove(dc_sink->dc_edid.raw_edid, edid, len);
3249 	dc_sink->dc_edid.length = len;
3250 
3251 	if (!link_add_remote_sink_helper(
3252 			link,
3253 			dc_sink))
3254 		goto fail_add_sink;
3255 
3256 	edid_status = dm_helpers_parse_edid_caps(
3257 			link->ctx,
3258 			&dc_sink->dc_edid,
3259 			&dc_sink->edid_caps);
3260 
3261 	/*
3262 	 * Treat device as no EDID device if EDID
3263 	 * parsing fails
3264 	 */
3265 	if (edid_status != EDID_OK) {
3266 		dc_sink->dc_edid.length = 0;
3267 		dm_error("Bad EDID, status%d!\n", edid_status);
3268 	}
3269 
3270 	return dc_sink;
3271 
3272 fail_add_sink:
3273 	dc_sink_release(dc_sink);
3274 	return NULL;
3275 }
3276 
3277 /*
3278  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
3279  *
3280  * Note that this just removes the struct dc_sink - it doesn't
3281  * program hardware or alter other members of dc_link
3282  */
3283 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
3284 {
3285 	int i;
3286 
3287 	if (!link->sink_count) {
3288 		BREAK_TO_DEBUGGER();
3289 		return;
3290 	}
3291 
3292 	for (i = 0; i < link->sink_count; i++) {
3293 		if (link->remote_sinks[i] == sink) {
3294 			dc_sink_release(sink);
3295 			link->remote_sinks[i] = NULL;
3296 
3297 			/* shrink array to remove empty place */
3298 			while (i < link->sink_count - 1) {
3299 				link->remote_sinks[i] = link->remote_sinks[i+1];
3300 				i++;
3301 			}
3302 			link->remote_sinks[i] = NULL;
3303 			link->sink_count--;
3304 			return;
3305 		}
3306 	}
3307 }
3308 
3309 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3310 {
3311 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3312 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3313 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3314 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3315 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3316 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3317 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3318 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3319 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3320 }
3321 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3322 {
3323 	if (dc->hwss.set_clock)
3324 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3325 	return DC_ERROR_UNEXPECTED;
3326 }
3327 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3328 {
3329 	if (dc->hwss.get_clock)
3330 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
3331 }
3332 
3333 /* enable/disable eDP PSR without specify stream for eDP */
3334 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3335 {
3336 	int i;
3337 
3338 	for (i = 0; i < dc->current_state->stream_count ; i++) {
3339 		struct dc_link *link;
3340 		struct dc_stream_state *stream = dc->current_state->streams[i];
3341 
3342 		link = stream->link;
3343 		if (!link)
3344 			continue;
3345 
3346 		if (link->psr_settings.psr_feature_enabled) {
3347 			if (enable && !link->psr_settings.psr_allow_active) {
3348 				if (!dc_link_set_psr_allow_active(link, true, false, false))
3349 					return false;
3350 			} else if (!enable && link->psr_settings.psr_allow_active) {
3351 				if (!dc_link_set_psr_allow_active(link, false, true, false))
3352 					return false;
3353 			}
3354 		}
3355 	}
3356 
3357 	return true;
3358 }
3359 
3360 #if defined(CONFIG_DRM_AMD_DC_DCN)
3361 
3362 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3363 {
3364 	if (dc->debug.disable_idle_power_optimizations)
3365 		return;
3366 
3367 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
3368 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
3369 			return;
3370 
3371 	if (allow == dc->idle_optimizations_allowed)
3372 		return;
3373 
3374 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3375 		dc->idle_optimizations_allowed = allow;
3376 }
3377 
3378 /*
3379  * blank all streams, and set min and max memory clock to
3380  * lowest and highest DPM level, respectively
3381  */
3382 void dc_unlock_memory_clock_frequency(struct dc *dc)
3383 {
3384 	unsigned int i;
3385 
3386 	for (i = 0; i < MAX_PIPES; i++)
3387 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3388 			core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3389 
3390 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3391 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3392 }
3393 
3394 /*
3395  * set min memory clock to the min required for current mode,
3396  * max to maxDPM, and unblank streams
3397  */
3398 void dc_lock_memory_clock_frequency(struct dc *dc)
3399 {
3400 	unsigned int i;
3401 
3402 	dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3403 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3404 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3405 
3406 	for (i = 0; i < MAX_PIPES; i++)
3407 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3408 			core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3409 }
3410 
3411 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
3412 		struct dc_cursor_attributes *cursor_attr)
3413 {
3414 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
3415 		return true;
3416 	return false;
3417 }
3418 
3419 /* cleanup on driver unload */
3420 void dc_hardware_release(struct dc *dc)
3421 {
3422 	if (dc->hwss.hardware_release)
3423 		dc->hwss.hardware_release(dc);
3424 }
3425 #endif
3426 
3427 /**
3428  * dc_enable_dmub_notifications - Returns whether dmub notification can be enabled
3429  * @dc: dc structure
3430  *
3431  * Returns: True to enable dmub notifications, False otherwise
3432  */
3433 bool dc_enable_dmub_notifications(struct dc *dc)
3434 {
3435 	/* dmub aux needs dmub notifications to be enabled */
3436 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
3437 }
3438 
3439 /**
3440  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
3441  *                                      Sets port index appropriately for legacy DDC
3442  * @dc: dc structure
3443  * @link_index: link index
3444  * @payload: aux payload
3445  *
3446  * Returns: True if successful, False if failure
3447  */
3448 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
3449 				uint32_t link_index,
3450 				struct aux_payload *payload)
3451 {
3452 	uint8_t action;
3453 	union dmub_rb_cmd cmd = {0};
3454 	struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
3455 
3456 	ASSERT(payload->length <= 16);
3457 
3458 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
3459 	cmd.dp_aux_access.header.payload_bytes = 0;
3460 	cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
3461 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
3462 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
3463 	cmd.dp_aux_access.aux_control.timeout = 0;
3464 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
3465 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
3466 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
3467 
3468 	/* set aux action */
3469 	if (payload->i2c_over_aux) {
3470 		if (payload->write) {
3471 			if (payload->mot)
3472 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
3473 			else
3474 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
3475 		} else {
3476 			if (payload->mot)
3477 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
3478 			else
3479 				action = DP_AUX_REQ_ACTION_I2C_READ;
3480 			}
3481 	} else {
3482 		if (payload->write)
3483 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
3484 		else
3485 			action = DP_AUX_REQ_ACTION_DPCD_READ;
3486 	}
3487 
3488 	cmd.dp_aux_access.aux_control.dpaux.action = action;
3489 
3490 	if (payload->length && payload->write) {
3491 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
3492 			payload->data,
3493 			payload->length
3494 			);
3495 	}
3496 
3497 	dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
3498 	dc_dmub_srv_cmd_execute(dmub_srv);
3499 	dc_dmub_srv_wait_idle(dmub_srv);
3500 
3501 	return true;
3502 }
3503 
3504 /**
3505  * dc_disable_accelerated_mode - disable accelerated mode
3506  * @dc: dc structure
3507  */
3508 void dc_disable_accelerated_mode(struct dc *dc)
3509 {
3510 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
3511 }
3512