xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision 7f7bed74)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40 
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55 
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_dmub_srv.h"
61 
62 #include "dsc.h"
63 
64 #include "vm_helper.h"
65 
66 #include "dce/dce_i2c.h"
67 
68 #include "dmub/dmub_srv.h"
69 
70 #include "dce/dmub_psr.h"
71 
72 #include "dce/dmub_hw_lock_mgr.h"
73 
74 #include "dc_trace.h"
75 
76 #include "hw_sequencer_private.h"
77 
78 #include "dce/dmub_outbox.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /* Private functions */
138 
139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 	if (new > *original)
142 		*original = new;
143 }
144 
145 static void destroy_links(struct dc *dc)
146 {
147 	uint32_t i;
148 
149 	for (i = 0; i < dc->link_count; i++) {
150 		if (NULL != dc->links[i])
151 			dc->link_srv->destroy_link(&dc->links[i]);
152 	}
153 }
154 
155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 	int i;
158 	uint32_t count = 0;
159 
160 	for (i = 0; i < num_links; i++) {
161 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 				links[i]->is_internal_display)
163 			count++;
164 	}
165 
166 	return count;
167 }
168 
169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 	uint8_t i;
172 	uint8_t seamless_boot_stream_count = 0;
173 
174 	for (i = 0; i < ctx->stream_count; i++)
175 		if (ctx->streams[i]->apply_seamless_boot_optimization)
176 			seamless_boot_stream_count++;
177 
178 	return seamless_boot_stream_count;
179 }
180 
181 static bool create_links(
182 		struct dc *dc,
183 		uint32_t num_virtual_links)
184 {
185 	int i;
186 	int connectors_num;
187 	struct dc_bios *bios = dc->ctx->dc_bios;
188 
189 	dc->link_count = 0;
190 
191 	connectors_num = bios->funcs->get_connectors_number(bios);
192 
193 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194 
195 	if (connectors_num > ENUM_ID_COUNT) {
196 		dm_error(
197 			"DC: Number of connectors %d exceeds maximum of %d!\n",
198 			connectors_num,
199 			ENUM_ID_COUNT);
200 		return false;
201 	}
202 
203 	dm_output_to_console(
204 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 		__func__,
206 		connectors_num,
207 		num_virtual_links);
208 
209 	for (i = 0; i < connectors_num; i++) {
210 		struct link_init_data link_init_params = {0};
211 		struct dc_link *link;
212 
213 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214 
215 		link_init_params.ctx = dc->ctx;
216 		/* next BIOS object table connector */
217 		link_init_params.connector_index = i;
218 		link_init_params.link_index = dc->link_count;
219 		link_init_params.dc = dc;
220 		link = dc->link_srv->create_link(&link_init_params);
221 
222 		if (link) {
223 			dc->links[dc->link_count] = link;
224 			link->dc = dc;
225 			++dc->link_count;
226 		}
227 	}
228 
229 	DC_LOG_DC("BIOS object table - end");
230 
231 	/* Create a link for each usb4 dpia port */
232 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 		struct link_init_data link_init_params = {0};
234 		struct dc_link *link;
235 
236 		link_init_params.ctx = dc->ctx;
237 		link_init_params.connector_index = i;
238 		link_init_params.link_index = dc->link_count;
239 		link_init_params.dc = dc;
240 		link_init_params.is_dpia_link = true;
241 
242 		link = dc->link_srv->create_link(&link_init_params);
243 		if (link) {
244 			dc->links[dc->link_count] = link;
245 			link->dc = dc;
246 			++dc->link_count;
247 		}
248 	}
249 
250 	for (i = 0; i < num_virtual_links; i++) {
251 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 		struct encoder_init_data enc_init = {0};
253 
254 		if (link == NULL) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_index = dc->link_count;
260 		dc->links[dc->link_count] = link;
261 		dc->link_count++;
262 
263 		link->ctx = dc->ctx;
264 		link->dc = dc;
265 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 		link->link_id.enum_id = ENUM_ID_1;
269 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270 
271 		if (!link->link_enc) {
272 			BREAK_TO_DEBUGGER();
273 			goto failed_alloc;
274 		}
275 
276 		link->link_status.dpcd_caps = &link->dpcd_caps;
277 
278 		enc_init.ctx = dc->ctx;
279 		enc_init.channel = CHANNEL_ID_UNKNOWN;
280 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 		enc_init.connector = link->link_id;
283 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 		enc_init.encoder.enum_id = ENUM_ID_1;
286 		virtual_link_encoder_construct(link->link_enc, &enc_init);
287 	}
288 
289 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290 
291 	return true;
292 
293 failed_alloc:
294 	return false;
295 }
296 
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
301 static bool create_link_encoders(struct dc *dc)
302 {
303 	bool res = true;
304 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 	int i;
307 
308 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 	 * link encoders and physical display endpoints and does not require
310 	 * additional link encoder objects.
311 	 */
312 	if (num_usb4_dpia == 0)
313 		return res;
314 
315 	/* Create as many link encoder objects as the platform supports. DPIA
316 	 * endpoints can be programmably mapped to any DIG.
317 	 */
318 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 		for (i = 0; i < num_dig_link_enc; i++) {
320 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321 
322 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 						(enum engine_id)(ENGINE_ID_DIGA + i));
325 				if (link_enc) {
326 					dc->res_pool->link_encoders[i] = link_enc;
327 					dc->res_pool->dig_link_enc_count++;
328 				} else {
329 					res = false;
330 				}
331 			}
332 		}
333 	}
334 
335 	return res;
336 }
337 
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
342 static void destroy_link_encoders(struct dc *dc)
343 {
344 	unsigned int num_usb4_dpia;
345 	unsigned int num_dig_link_enc;
346 	int i;
347 
348 	if (!dc->res_pool)
349 		return;
350 
351 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353 
354 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 	 * link encoders and physical display endpoints and does not require
356 	 * additional link encoder objects.
357 	 */
358 	if (num_usb4_dpia == 0)
359 		return;
360 
361 	for (i = 0; i < num_dig_link_enc; i++) {
362 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363 
364 		if (link_enc) {
365 			link_enc->funcs->destroy(&link_enc);
366 			dc->res_pool->link_encoders[i] = NULL;
367 			dc->res_pool->dig_link_enc_count--;
368 		}
369 	}
370 }
371 
372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376 
377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 	kfree(*perf_trace);
380 	*perf_trace = NULL;
381 }
382 
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 		struct dc_stream_state *stream,
399 		struct dc_crtc_timing_adjust *adjust)
400 {
401 	int i;
402 
403 	/*
404 	 * Don't adjust DRR while there's bandwidth optimizations pending to
405 	 * avoid conflicting with firmware updates.
406 	 */
407 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 		if (dc->optimized_required || dc->wm_optimized_required)
409 			return false;
410 
411 	stream->adjust.v_total_max = adjust->v_total_max;
412 	stream->adjust.v_total_mid = adjust->v_total_mid;
413 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 	stream->adjust.v_total_min = adjust->v_total_min;
415 
416 	for (i = 0; i < MAX_PIPES; i++) {
417 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418 
419 		if (pipe->stream == stream && pipe->stream_res.tg) {
420 			dc->hwss.set_drr(&pipe,
421 					1,
422 					*adjust);
423 
424 			return true;
425 		}
426 	}
427 	return false;
428 }
429 
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 		struct dc_stream_state *stream,
445 		uint32_t *refresh_rate)
446 {
447 	bool status = false;
448 
449 	int i = 0;
450 
451 	for (i = 0; i < MAX_PIPES; i++) {
452 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453 
454 		if (pipe->stream == stream && pipe->stream_res.tg) {
455 			/* Only execute if a function pointer has been defined for
456 			 * the DC version in question
457 			 */
458 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460 
461 				status = true;
462 
463 				break;
464 			}
465 		}
466 	}
467 
468 	return status;
469 }
470 
471 bool dc_stream_get_crtc_position(struct dc *dc,
472 		struct dc_stream_state **streams, int num_streams,
473 		unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 	/* TODO: Support multiple streams */
476 	const struct dc_stream_state *stream = streams[0];
477 	int i;
478 	bool ret = false;
479 	struct crtc_position position;
480 
481 	for (i = 0; i < MAX_PIPES; i++) {
482 		struct pipe_ctx *pipe =
483 				&dc->current_state->res_ctx.pipe_ctx[i];
484 
485 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 			dc->hwss.get_position(&pipe, 1, &position);
487 
488 			*v_pos = position.vertical_count;
489 			*nom_v_pos = position.nominal_vcount;
490 			ret = true;
491 		}
492 	}
493 	return ret;
494 }
495 
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 	union dmub_rb_cmd cmd = {0};
502 
503 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505 
506 	if (is_stop) {
507 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 	} else {
510 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 		cmd.secure_display.roi_info.x_start = rect->x;
513 		cmd.secure_display.roi_info.y_start = rect->y;
514 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 	}
517 
518 	dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520 
521 static inline void
522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 	if (is_stop)
526 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 	else
528 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530 
531 bool
532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 		struct rect *rect, bool is_stop)
534 {
535 	struct dmcu *dmcu;
536 	struct dc_dmub_srv *dmub_srv;
537 	struct otg_phy_mux mux_mapping;
538 	struct pipe_ctx *pipe;
539 	int i;
540 	struct dc *dc = stream->ctx->dc;
541 
542 	for (i = 0; i < MAX_PIPES; i++) {
543 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 			break;
546 	}
547 
548 	/* Stream not found */
549 	if (i == MAX_PIPES)
550 		return false;
551 
552 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554 
555 	dmcu = dc->res_pool->dmcu;
556 	dmub_srv = dc->ctx->dmub_srv;
557 
558 	/* forward to dmub */
559 	if (dmub_srv)
560 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 	/* forward to dmcu */
562 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 	else
565 		return false;
566 
567 	return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570 
571 /**
572  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573  * @dc: DC Object
574  * @stream: The stream to configure CRC on.
575  * @enable: Enable CRC if true, disable otherwise.
576  * @crc_window: CRC window (x/y start/end) information
577  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578  *              once.
579  *
580  * By default, only CRC0 is configured, and the entire frame is used to
581  * calculate the CRC.
582  *
583  * Return: %false if the stream is not found or CRC capture is not supported;
584  *         %true if the stream has been configured.
585  */
586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 			     struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 	struct pipe_ctx *pipe;
590 	struct crc_params param;
591 	struct timing_generator *tg;
592 
593 	pipe = resource_get_otg_master_for_stream(
594 			&dc->current_state->res_ctx, stream);
595 
596 	/* Stream not found */
597 	if (pipe == NULL)
598 		return false;
599 
600 	/* By default, capture the full frame */
601 	param.windowa_x_start = 0;
602 	param.windowa_y_start = 0;
603 	param.windowa_x_end = pipe->stream->timing.h_addressable;
604 	param.windowa_y_end = pipe->stream->timing.v_addressable;
605 	param.windowb_x_start = 0;
606 	param.windowb_y_start = 0;
607 	param.windowb_x_end = pipe->stream->timing.h_addressable;
608 	param.windowb_y_end = pipe->stream->timing.v_addressable;
609 
610 	if (crc_window) {
611 		param.windowa_x_start = crc_window->windowa_x_start;
612 		param.windowa_y_start = crc_window->windowa_y_start;
613 		param.windowa_x_end = crc_window->windowa_x_end;
614 		param.windowa_y_end = crc_window->windowa_y_end;
615 		param.windowb_x_start = crc_window->windowb_x_start;
616 		param.windowb_y_start = crc_window->windowb_y_start;
617 		param.windowb_x_end = crc_window->windowb_x_end;
618 		param.windowb_y_end = crc_window->windowb_y_end;
619 	}
620 
621 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
623 
624 	/* Default to the union of both windows */
625 	param.selection = UNION_WINDOW_A_B;
626 	param.continuous_mode = continuous;
627 	param.enable = enable;
628 
629 	tg = pipe->stream_res.tg;
630 
631 	/* Only call if supported */
632 	if (tg->funcs->configure_crc)
633 		return tg->funcs->configure_crc(tg, &param);
634 	DC_LOG_WARNING("CRC capture not supported.");
635 	return false;
636 }
637 
638 /**
639  * dc_stream_get_crc() - Get CRC values for the given stream.
640  *
641  * @dc: DC object.
642  * @stream: The DC stream state of the stream to get CRCs from.
643  * @r_cr: CRC value for the red component.
644  * @g_y:  CRC value for the green component.
645  * @b_cb: CRC value for the blue component.
646  *
647  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648  *
649  * Return:
650  * %false if stream is not found, or if CRCs are not enabled.
651  */
652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 	int i;
656 	struct pipe_ctx *pipe;
657 	struct timing_generator *tg;
658 
659 	for (i = 0; i < MAX_PIPES; i++) {
660 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 		if (pipe->stream == stream)
662 			break;
663 	}
664 	/* Stream not found */
665 	if (i == MAX_PIPES)
666 		return false;
667 
668 	tg = pipe->stream_res.tg;
669 
670 	if (tg->funcs->get_crc)
671 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 	DC_LOG_WARNING("CRC capture not supported.");
673 	return false;
674 }
675 
676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 		enum dc_dynamic_expansion option)
678 {
679 	/* OPP FMT dyn expansion updates*/
680 	int i;
681 	struct pipe_ctx *pipe_ctx;
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 				== stream) {
686 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 			pipe_ctx->stream_res.opp->dyn_expansion = option;
688 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 					pipe_ctx->stream_res.opp,
690 					COLOR_SPACE_YCBCR601,
691 					stream->timing.display_color_depth,
692 					stream->signal);
693 		}
694 	}
695 }
696 
697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 		enum dc_dither_option option)
699 {
700 	struct bit_depth_reduction_params params;
701 	struct dc_link *link = stream->link;
702 	struct pipe_ctx *pipes = NULL;
703 	int i;
704 
705 	for (i = 0; i < MAX_PIPES; i++) {
706 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 				stream) {
708 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 			break;
710 		}
711 	}
712 
713 	if (!pipes)
714 		return;
715 	if (option > DITHER_OPTION_MAX)
716 		return;
717 
718 	stream->dither_option = option;
719 
720 	memset(&params, 0, sizeof(params));
721 	resource_build_bit_depth_reduction_params(stream, &params);
722 	stream->bit_depth_params = params;
723 
724 	if (pipes->plane_res.xfm &&
725 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 			pipes->plane_res.xfm,
728 			pipes->plane_res.scl_data.lb_params.depth,
729 			&stream->bit_depth_params);
730 	}
731 
732 	pipes->stream_res.opp->funcs->
733 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
734 }
735 
736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 	int i;
739 	bool ret = false;
740 	struct pipe_ctx *pipes;
741 
742 	for (i = 0; i < MAX_PIPES; i++) {
743 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 			dc->hwss.program_gamut_remap(pipes);
746 			ret = true;
747 		}
748 	}
749 
750 	return ret;
751 }
752 
753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 	int i;
756 	bool ret = false;
757 	struct pipe_ctx *pipes;
758 
759 	for (i = 0; i < MAX_PIPES; i++) {
760 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 				== stream) {
762 
763 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 			dc->hwss.program_output_csc(dc,
765 					pipes,
766 					stream->output_color_space,
767 					stream->csc_color_matrix.matrix,
768 					pipes->stream_res.opp->inst);
769 			ret = true;
770 		}
771 	}
772 
773 	return ret;
774 }
775 
776 void dc_stream_set_static_screen_params(struct dc *dc,
777 		struct dc_stream_state **streams,
778 		int num_streams,
779 		const struct dc_static_screen_params *params)
780 {
781 	int i, j;
782 	struct pipe_ctx *pipes_affected[MAX_PIPES];
783 	int num_pipes_affected = 0;
784 
785 	for (i = 0; i < num_streams; i++) {
786 		struct dc_stream_state *stream = streams[i];
787 
788 		for (j = 0; j < MAX_PIPES; j++) {
789 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 					== stream) {
791 				pipes_affected[num_pipes_affected++] =
792 						&dc->current_state->res_ctx.pipe_ctx[j];
793 			}
794 		}
795 	}
796 
797 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799 
800 static void dc_destruct(struct dc *dc)
801 {
802 	// reset link encoder assignment table on destruct
803 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 		link_enc_cfg_init(dc, dc->current_state);
805 
806 	if (dc->current_state) {
807 		dc_release_state(dc->current_state);
808 		dc->current_state = NULL;
809 	}
810 
811 	destroy_links(dc);
812 
813 	destroy_link_encoders(dc);
814 
815 	if (dc->clk_mgr) {
816 		dc_destroy_clk_mgr(dc->clk_mgr);
817 		dc->clk_mgr = NULL;
818 	}
819 
820 	dc_destroy_resource_pool(dc);
821 
822 	if (dc->link_srv)
823 		link_destroy_link_service(&dc->link_srv);
824 
825 	if (dc->ctx->gpio_service)
826 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
827 
828 	if (dc->ctx->created_bios)
829 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
830 
831 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
832 
833 	kfree(dc->ctx);
834 	dc->ctx = NULL;
835 
836 	kfree(dc->bw_vbios);
837 	dc->bw_vbios = NULL;
838 
839 	kfree(dc->bw_dceip);
840 	dc->bw_dceip = NULL;
841 
842 	kfree(dc->dcn_soc);
843 	dc->dcn_soc = NULL;
844 
845 	kfree(dc->dcn_ip);
846 	dc->dcn_ip = NULL;
847 
848 	kfree(dc->vm_helper);
849 	dc->vm_helper = NULL;
850 
851 }
852 
853 static bool dc_construct_ctx(struct dc *dc,
854 		const struct dc_init_data *init_params)
855 {
856 	struct dc_context *dc_ctx;
857 
858 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 	if (!dc_ctx)
860 		return false;
861 
862 	dc_ctx->cgs_device = init_params->cgs_device;
863 	dc_ctx->driver_context = init_params->driver;
864 	dc_ctx->dc = dc;
865 	dc_ctx->asic_id = init_params->asic_id;
866 	dc_ctx->dc_sink_id_count = 0;
867 	dc_ctx->dc_stream_id_count = 0;
868 	dc_ctx->dce_environment = init_params->dce_environment;
869 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871 
872 	/* Create logger */
873 
874 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875 
876 	dc_ctx->perf_trace = dc_perf_trace_create();
877 	if (!dc_ctx->perf_trace) {
878 		kfree(dc_ctx);
879 		ASSERT_CRITICAL(false);
880 		return false;
881 	}
882 
883 	dc->ctx = dc_ctx;
884 
885 	dc->link_srv = link_create_link_service();
886 	if (!dc->link_srv)
887 		return false;
888 
889 	return true;
890 }
891 
892 static bool dc_construct(struct dc *dc,
893 		const struct dc_init_data *init_params)
894 {
895 	struct dc_context *dc_ctx;
896 	struct bw_calcs_dceip *dc_dceip;
897 	struct bw_calcs_vbios *dc_vbios;
898 	struct dcn_soc_bounding_box *dcn_soc;
899 	struct dcn_ip_params *dcn_ip;
900 
901 	dc->config = init_params->flags;
902 
903 	// Allocate memory for the vm_helper
904 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 	if (!dc->vm_helper) {
906 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 		goto fail;
908 	}
909 
910 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911 
912 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 	if (!dc_dceip) {
914 		dm_error("%s: failed to create dceip\n", __func__);
915 		goto fail;
916 	}
917 
918 	dc->bw_dceip = dc_dceip;
919 
920 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 	if (!dc_vbios) {
922 		dm_error("%s: failed to create vbios\n", __func__);
923 		goto fail;
924 	}
925 
926 	dc->bw_vbios = dc_vbios;
927 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 	if (!dcn_soc) {
929 		dm_error("%s: failed to create dcn_soc\n", __func__);
930 		goto fail;
931 	}
932 
933 	dc->dcn_soc = dcn_soc;
934 
935 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 	if (!dcn_ip) {
937 		dm_error("%s: failed to create dcn_ip\n", __func__);
938 		goto fail;
939 	}
940 
941 	dc->dcn_ip = dcn_ip;
942 
943 	if (!dc_construct_ctx(dc, init_params)) {
944 		dm_error("%s: failed to create ctx\n", __func__);
945 		goto fail;
946 	}
947 
948         dc_ctx = dc->ctx;
949 
950 	/* Resource should construct all asic specific resources.
951 	 * This should be the only place where we need to parse the asic id
952 	 */
953 	if (init_params->vbios_override)
954 		dc_ctx->dc_bios = init_params->vbios_override;
955 	else {
956 		/* Create BIOS parser */
957 		struct bp_init_data bp_init_data;
958 
959 		bp_init_data.ctx = dc_ctx;
960 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
961 
962 		dc_ctx->dc_bios = dal_bios_parser_create(
963 				&bp_init_data, dc_ctx->dce_version);
964 
965 		if (!dc_ctx->dc_bios) {
966 			ASSERT_CRITICAL(false);
967 			goto fail;
968 		}
969 
970 		dc_ctx->created_bios = true;
971 	}
972 
973 	dc->vendor_signature = init_params->vendor_signature;
974 
975 	/* Create GPIO service */
976 	dc_ctx->gpio_service = dal_gpio_service_create(
977 			dc_ctx->dce_version,
978 			dc_ctx->dce_environment,
979 			dc_ctx);
980 
981 	if (!dc_ctx->gpio_service) {
982 		ASSERT_CRITICAL(false);
983 		goto fail;
984 	}
985 
986 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 	if (!dc->res_pool)
988 		goto fail;
989 
990 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
991 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 	if (dc->caps.max_optimizable_video_width == 0)
994 		dc->caps.max_optimizable_video_width = 5120;
995 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
996 	if (!dc->clk_mgr)
997 		goto fail;
998 #ifdef CONFIG_DRM_AMD_DC_FP
999 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1000 
1001 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1002 		DC_FP_START();
1003 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1004 		DC_FP_END();
1005 	}
1006 #endif
1007 
1008 	/* Creation of current_state must occur after dc->dml
1009 	 * is initialized in dc_create_resource_pool because
1010 	 * on creation it copies the contents of dc->dml
1011 	 */
1012 
1013 	dc->current_state = dc_create_state(dc);
1014 
1015 	if (!dc->current_state) {
1016 		dm_error("%s: failed to create validate ctx\n", __func__);
1017 		goto fail;
1018 	}
1019 
1020 	if (!create_links(dc, init_params->num_virtual_links))
1021 		goto fail;
1022 
1023 	/* Create additional DIG link encoder objects if fewer than the platform
1024 	 * supports were created during link construction.
1025 	 */
1026 	if (!create_link_encoders(dc))
1027 		goto fail;
1028 
1029 	dc_resource_state_construct(dc, dc->current_state);
1030 
1031 	return true;
1032 
1033 fail:
1034 	return false;
1035 }
1036 
1037 static void disable_all_writeback_pipes_for_stream(
1038 		const struct dc *dc,
1039 		struct dc_stream_state *stream,
1040 		struct dc_state *context)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < stream->num_wb_info; i++)
1045 		stream->writeback_info[i].wb_enabled = false;
1046 }
1047 
1048 static void apply_ctx_interdependent_lock(struct dc *dc,
1049 					  struct dc_state *context,
1050 					  struct dc_stream_state *stream,
1051 					  bool lock)
1052 {
1053 	int i;
1054 
1055 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1056 	if (dc->hwss.interdependent_update_lock)
1057 		dc->hwss.interdependent_update_lock(dc, context, lock);
1058 	else {
1059 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1060 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1061 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1062 
1063 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1064 			if (stream == pipe_ctx->stream) {
1065 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1066 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1067 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1068 			}
1069 		}
1070 	}
1071 }
1072 
1073 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1074 {
1075 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1076 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1077 
1078 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1079 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1080 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1081 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1082 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1083 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1084 		else {
1085 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1086 				color_space_to_black_color(
1087 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1088 		}
1089 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1090 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1091 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1092 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1093 				get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1094 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1095 				get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1096 		}
1097 	}
1098 }
1099 
1100 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1101 {
1102 	int i, j;
1103 	struct dc_state *dangling_context = dc_create_state(dc);
1104 	struct dc_state *current_ctx;
1105 	struct pipe_ctx *pipe;
1106 	struct timing_generator *tg;
1107 
1108 	if (dangling_context == NULL)
1109 		return;
1110 
1111 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1112 
1113 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1114 		struct dc_stream_state *old_stream =
1115 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1116 		bool should_disable = true;
1117 		bool pipe_split_change = false;
1118 
1119 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1120 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1121 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1122 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1123 		else
1124 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1125 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1126 
1127 		for (j = 0; j < context->stream_count; j++) {
1128 			if (old_stream == context->streams[j]) {
1129 				should_disable = false;
1130 				break;
1131 			}
1132 		}
1133 		if (!should_disable && pipe_split_change &&
1134 				dc->current_state->stream_count != context->stream_count)
1135 			should_disable = true;
1136 
1137 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1138 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1139 			struct pipe_ctx *old_pipe, *new_pipe;
1140 
1141 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1142 			new_pipe = &context->res_ctx.pipe_ctx[i];
1143 
1144 			if (old_pipe->plane_state && !new_pipe->plane_state)
1145 				should_disable = true;
1146 		}
1147 
1148 		if (should_disable && old_stream) {
1149 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1150 			tg = pipe->stream_res.tg;
1151 			/* When disabling plane for a phantom pipe, we must turn on the
1152 			 * phantom OTG so the disable programming gets the double buffer
1153 			 * update. Otherwise the pipe will be left in a partially disabled
1154 			 * state that can result in underflow or hang when enabling it
1155 			 * again for different use.
1156 			 */
1157 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1158 				if (tg->funcs->enable_crtc) {
1159 					int main_pipe_width, main_pipe_height;
1160 
1161 					main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1162 					main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1163 					if (dc->hwss.blank_phantom)
1164 						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1165 					tg->funcs->enable_crtc(tg);
1166 				}
1167 			}
1168 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1169 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1170 
1171 			if (pipe->stream && pipe->plane_state)
1172 				dc_update_viusal_confirm_color(dc, context, pipe);
1173 
1174 			if (dc->hwss.apply_ctx_for_surface) {
1175 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1176 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1177 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1178 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1179 			}
1180 			if (dc->hwss.program_front_end_for_ctx) {
1181 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1182 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1183 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1184 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1185 			}
1186 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1187 			 * can get corruption when transition from one SubVP config to a different one.
1188 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1189 			 * will still get it's double buffer update.
1190 			 */
1191 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1192 				if (tg->funcs->disable_phantom_crtc)
1193 					tg->funcs->disable_phantom_crtc(tg);
1194 			}
1195 		}
1196 	}
1197 
1198 	current_ctx = dc->current_state;
1199 	dc->current_state = dangling_context;
1200 	dc_release_state(current_ctx);
1201 }
1202 
1203 static void disable_vbios_mode_if_required(
1204 		struct dc *dc,
1205 		struct dc_state *context)
1206 {
1207 	unsigned int i, j;
1208 
1209 	/* check if timing_changed, disable stream*/
1210 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1211 		struct dc_stream_state *stream = NULL;
1212 		struct dc_link *link = NULL;
1213 		struct pipe_ctx *pipe = NULL;
1214 
1215 		pipe = &context->res_ctx.pipe_ctx[i];
1216 		stream = pipe->stream;
1217 		if (stream == NULL)
1218 			continue;
1219 
1220 		if (stream->apply_seamless_boot_optimization)
1221 			continue;
1222 
1223 		// only looking for first odm pipe
1224 		if (pipe->prev_odm_pipe)
1225 			continue;
1226 
1227 		if (stream->link->local_sink &&
1228 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 			link = stream->link;
1230 		}
1231 
1232 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1233 			unsigned int enc_inst, tg_inst = 0;
1234 			unsigned int pix_clk_100hz;
1235 
1236 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1237 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1238 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1239 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1240 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1241 							dc->res_pool->stream_enc[j]);
1242 						break;
1243 					}
1244 				}
1245 
1246 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 					dc->res_pool->dp_clock_source,
1248 					tg_inst, &pix_clk_100hz);
1249 
1250 				if (link->link_status.link_active) {
1251 					uint32_t requested_pix_clk_100hz =
1252 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1253 
1254 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1255 						dc->link_srv->set_dpms_off(pipe);
1256 						pipe->stream->dpms_off = false;
1257 					}
1258 				}
1259 			}
1260 		}
1261 	}
1262 }
1263 
1264 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1265 {
1266 	int i;
1267 	PERF_TRACE();
1268 	for (i = 0; i < MAX_PIPES; i++) {
1269 		int count = 0;
1270 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1271 
1272 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1273 			continue;
1274 
1275 		/* Timeout 100 ms */
1276 		while (count < 100000) {
1277 			/* Must set to false to start with, due to OR in update function */
1278 			pipe->plane_state->status.is_flip_pending = false;
1279 			dc->hwss.update_pending_status(pipe);
1280 			if (!pipe->plane_state->status.is_flip_pending)
1281 				break;
1282 			udelay(1);
1283 			count++;
1284 		}
1285 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1286 	}
1287 	PERF_TRACE();
1288 }
1289 
1290 /* Public functions */
1291 
1292 struct dc *dc_create(const struct dc_init_data *init_params)
1293 {
1294 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1295 	unsigned int full_pipe_count;
1296 
1297 	if (!dc)
1298 		return NULL;
1299 
1300 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1301 		if (!dc_construct_ctx(dc, init_params))
1302 			goto destruct_dc;
1303 	} else {
1304 		if (!dc_construct(dc, init_params))
1305 			goto destruct_dc;
1306 
1307 		full_pipe_count = dc->res_pool->pipe_count;
1308 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1309 			full_pipe_count--;
1310 		dc->caps.max_streams = min(
1311 				full_pipe_count,
1312 				dc->res_pool->stream_enc_count);
1313 
1314 		dc->caps.max_links = dc->link_count;
1315 		dc->caps.max_audios = dc->res_pool->audio_count;
1316 		dc->caps.linear_pitch_alignment = 64;
1317 
1318 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1319 
1320 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1321 
1322 		if (dc->res_pool->dmcu != NULL)
1323 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1324 	}
1325 
1326 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1327 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1328 
1329 	/* Populate versioning information */
1330 	dc->versions.dc_ver = DC_VER;
1331 
1332 	dc->build_id = DC_BUILD_ID;
1333 
1334 	DC_LOG_DC("Display Core initialized\n");
1335 
1336 
1337 
1338 	return dc;
1339 
1340 destruct_dc:
1341 	dc_destruct(dc);
1342 	kfree(dc);
1343 	return NULL;
1344 }
1345 
1346 static void detect_edp_presence(struct dc *dc)
1347 {
1348 	struct dc_link *edp_links[MAX_NUM_EDP];
1349 	struct dc_link *edp_link = NULL;
1350 	enum dc_connection_type type;
1351 	int i;
1352 	int edp_num;
1353 
1354 	dc_get_edp_links(dc, edp_links, &edp_num);
1355 	if (!edp_num)
1356 		return;
1357 
1358 	for (i = 0; i < edp_num; i++) {
1359 		edp_link = edp_links[i];
1360 		if (dc->config.edp_not_connected) {
1361 			edp_link->edp_sink_present = false;
1362 		} else {
1363 			dc_link_detect_connection_type(edp_link, &type);
1364 			edp_link->edp_sink_present = (type != dc_connection_none);
1365 		}
1366 	}
1367 }
1368 
1369 void dc_hardware_init(struct dc *dc)
1370 {
1371 
1372 	detect_edp_presence(dc);
1373 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1374 		dc->hwss.init_hw(dc);
1375 }
1376 
1377 void dc_init_callbacks(struct dc *dc,
1378 		const struct dc_callback_init *init_params)
1379 {
1380 	dc->ctx->cp_psp = init_params->cp_psp;
1381 }
1382 
1383 void dc_deinit_callbacks(struct dc *dc)
1384 {
1385 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1386 }
1387 
1388 void dc_destroy(struct dc **dc)
1389 {
1390 	dc_destruct(*dc);
1391 	kfree(*dc);
1392 	*dc = NULL;
1393 }
1394 
1395 static void enable_timing_multisync(
1396 		struct dc *dc,
1397 		struct dc_state *ctx)
1398 {
1399 	int i, multisync_count = 0;
1400 	int pipe_count = dc->res_pool->pipe_count;
1401 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1402 
1403 	for (i = 0; i < pipe_count; i++) {
1404 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1405 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1406 			continue;
1407 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1408 			continue;
1409 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1410 		multisync_count++;
1411 	}
1412 
1413 	if (multisync_count > 0) {
1414 		dc->hwss.enable_per_frame_crtc_position_reset(
1415 			dc, multisync_count, multisync_pipes);
1416 	}
1417 }
1418 
1419 static void program_timing_sync(
1420 		struct dc *dc,
1421 		struct dc_state *ctx)
1422 {
1423 	int i, j, k;
1424 	int group_index = 0;
1425 	int num_group = 0;
1426 	int pipe_count = dc->res_pool->pipe_count;
1427 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1428 
1429 	for (i = 0; i < pipe_count; i++) {
1430 		if (!ctx->res_ctx.pipe_ctx[i].stream
1431 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1432 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1433 			continue;
1434 
1435 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1436 	}
1437 
1438 	for (i = 0; i < pipe_count; i++) {
1439 		int group_size = 1;
1440 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1441 		struct pipe_ctx *pipe_set[MAX_PIPES];
1442 
1443 		if (!unsynced_pipes[i])
1444 			continue;
1445 
1446 		pipe_set[0] = unsynced_pipes[i];
1447 		unsynced_pipes[i] = NULL;
1448 
1449 		/* Add tg to the set, search rest of the tg's for ones with
1450 		 * same timing, add all tgs with same timing to the group
1451 		 */
1452 		for (j = i + 1; j < pipe_count; j++) {
1453 			if (!unsynced_pipes[j])
1454 				continue;
1455 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1456 				dc->hwss.enable_vblanks_synchronization &&
1457 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1458 				resource_are_vblanks_synchronizable(
1459 					unsynced_pipes[j]->stream,
1460 					pipe_set[0]->stream)) {
1461 				sync_type = VBLANK_SYNCHRONIZABLE;
1462 				pipe_set[group_size] = unsynced_pipes[j];
1463 				unsynced_pipes[j] = NULL;
1464 				group_size++;
1465 			} else
1466 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1467 				resource_are_streams_timing_synchronizable(
1468 					unsynced_pipes[j]->stream,
1469 					pipe_set[0]->stream)) {
1470 				sync_type = TIMING_SYNCHRONIZABLE;
1471 				pipe_set[group_size] = unsynced_pipes[j];
1472 				unsynced_pipes[j] = NULL;
1473 				group_size++;
1474 			}
1475 		}
1476 
1477 		/* set first unblanked pipe as master */
1478 		for (j = 0; j < group_size; j++) {
1479 			bool is_blanked;
1480 
1481 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1482 				is_blanked =
1483 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1484 			else
1485 				is_blanked =
1486 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1487 			if (!is_blanked) {
1488 				if (j == 0)
1489 					break;
1490 
1491 				swap(pipe_set[0], pipe_set[j]);
1492 				break;
1493 			}
1494 		}
1495 
1496 		for (k = 0; k < group_size; k++) {
1497 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1498 
1499 			status->timing_sync_info.group_id = num_group;
1500 			status->timing_sync_info.group_size = group_size;
1501 			if (k == 0)
1502 				status->timing_sync_info.master = true;
1503 			else
1504 				status->timing_sync_info.master = false;
1505 
1506 		}
1507 
1508 		/* remove any other pipes that are already been synced */
1509 		if (dc->config.use_pipe_ctx_sync_logic) {
1510 			/* check pipe's syncd to decide which pipe to be removed */
1511 			for (j = 1; j < group_size; j++) {
1512 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1513 					group_size--;
1514 					pipe_set[j] = pipe_set[group_size];
1515 					j--;
1516 				} else
1517 					/* link slave pipe's syncd with master pipe */
1518 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1519 			}
1520 		} else {
1521 			for (j = j + 1; j < group_size; j++) {
1522 				bool is_blanked;
1523 
1524 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1525 					is_blanked =
1526 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1527 				else
1528 					is_blanked =
1529 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1530 				if (!is_blanked) {
1531 					group_size--;
1532 					pipe_set[j] = pipe_set[group_size];
1533 					j--;
1534 				}
1535 			}
1536 		}
1537 
1538 		if (group_size > 1) {
1539 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1540 				dc->hwss.enable_timing_synchronization(
1541 					dc, group_index, group_size, pipe_set);
1542 			} else
1543 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1544 				dc->hwss.enable_vblanks_synchronization(
1545 					dc, group_index, group_size, pipe_set);
1546 				}
1547 			group_index++;
1548 		}
1549 		num_group++;
1550 	}
1551 }
1552 
1553 static bool streams_changed(struct dc *dc,
1554 			    struct dc_stream_state *streams[],
1555 			    uint8_t stream_count)
1556 {
1557 	uint8_t i;
1558 
1559 	if (stream_count != dc->current_state->stream_count)
1560 		return true;
1561 
1562 	for (i = 0; i < dc->current_state->stream_count; i++) {
1563 		if (dc->current_state->streams[i] != streams[i])
1564 			return true;
1565 		if (!streams[i]->link->link_state_valid)
1566 			return true;
1567 	}
1568 
1569 	return false;
1570 }
1571 
1572 bool dc_validate_boot_timing(const struct dc *dc,
1573 				const struct dc_sink *sink,
1574 				struct dc_crtc_timing *crtc_timing)
1575 {
1576 	struct timing_generator *tg;
1577 	struct stream_encoder *se = NULL;
1578 
1579 	struct dc_crtc_timing hw_crtc_timing = {0};
1580 
1581 	struct dc_link *link = sink->link;
1582 	unsigned int i, enc_inst, tg_inst = 0;
1583 
1584 	/* Support seamless boot on EDP displays only */
1585 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1586 		return false;
1587 	}
1588 
1589 	if (dc->debug.force_odm_combine)
1590 		return false;
1591 
1592 	/* Check for enabled DIG to identify enabled display */
1593 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1594 		return false;
1595 
1596 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1597 
1598 	if (enc_inst == ENGINE_ID_UNKNOWN)
1599 		return false;
1600 
1601 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1602 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1603 
1604 			se = dc->res_pool->stream_enc[i];
1605 
1606 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1607 				dc->res_pool->stream_enc[i]);
1608 			break;
1609 		}
1610 	}
1611 
1612 	// tg_inst not found
1613 	if (i == dc->res_pool->stream_enc_count)
1614 		return false;
1615 
1616 	if (tg_inst >= dc->res_pool->timing_generator_count)
1617 		return false;
1618 
1619 	if (tg_inst != link->link_enc->preferred_engine)
1620 		return false;
1621 
1622 	tg = dc->res_pool->timing_generators[tg_inst];
1623 
1624 	if (!tg->funcs->get_hw_timing)
1625 		return false;
1626 
1627 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1628 		return false;
1629 
1630 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1631 		return false;
1632 
1633 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1634 		return false;
1635 
1636 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1637 		return false;
1638 
1639 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1640 		return false;
1641 
1642 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1643 		return false;
1644 
1645 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1646 		return false;
1647 
1648 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1649 		return false;
1650 
1651 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1652 		return false;
1653 
1654 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1655 		return false;
1656 
1657 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1658 		return false;
1659 
1660 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1661 		return false;
1662 
1663 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1664 		return false;
1665 
1666 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1667 	if (crtc_timing->flags.DSC)
1668 		return false;
1669 
1670 	if (dc_is_dp_signal(link->connector_signal)) {
1671 		unsigned int pix_clk_100hz;
1672 		uint32_t numOdmPipes = 1;
1673 		uint32_t id_src[4] = {0};
1674 
1675 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1676 			dc->res_pool->dp_clock_source,
1677 			tg_inst, &pix_clk_100hz);
1678 
1679 		if (tg->funcs->get_optc_source)
1680 			tg->funcs->get_optc_source(tg,
1681 						&numOdmPipes, &id_src[0], &id_src[1]);
1682 
1683 		if (numOdmPipes == 2)
1684 			pix_clk_100hz *= 2;
1685 		if (numOdmPipes == 4)
1686 			pix_clk_100hz *= 4;
1687 
1688 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1689 		// slightly due to rounding issues in 10 kHz units.
1690 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1691 			return false;
1692 
1693 		if (!se->funcs->dp_get_pixel_format)
1694 			return false;
1695 
1696 		if (!se->funcs->dp_get_pixel_format(
1697 			se,
1698 			&hw_crtc_timing.pixel_encoding,
1699 			&hw_crtc_timing.display_color_depth))
1700 			return false;
1701 
1702 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1703 			return false;
1704 
1705 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1706 			return false;
1707 	}
1708 
1709 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1710 		return false;
1711 	}
1712 
1713 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1714 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1715 		return false;
1716 	}
1717 
1718 	return true;
1719 }
1720 
1721 static inline bool should_update_pipe_for_stream(
1722 		struct dc_state *context,
1723 		struct pipe_ctx *pipe_ctx,
1724 		struct dc_stream_state *stream)
1725 {
1726 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1727 }
1728 
1729 static inline bool should_update_pipe_for_plane(
1730 		struct dc_state *context,
1731 		struct pipe_ctx *pipe_ctx,
1732 		struct dc_plane_state *plane_state)
1733 {
1734 	return (pipe_ctx->plane_state == plane_state);
1735 }
1736 
1737 void dc_enable_stereo(
1738 	struct dc *dc,
1739 	struct dc_state *context,
1740 	struct dc_stream_state *streams[],
1741 	uint8_t stream_count)
1742 {
1743 	int i, j;
1744 	struct pipe_ctx *pipe;
1745 
1746 	for (i = 0; i < MAX_PIPES; i++) {
1747 		if (context != NULL) {
1748 			pipe = &context->res_ctx.pipe_ctx[i];
1749 		} else {
1750 			context = dc->current_state;
1751 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1752 		}
1753 
1754 		for (j = 0; pipe && j < stream_count; j++)  {
1755 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1756 				dc->hwss.setup_stereo)
1757 				dc->hwss.setup_stereo(pipe, dc);
1758 		}
1759 	}
1760 }
1761 
1762 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1763 {
1764 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1765 		enable_timing_multisync(dc, context);
1766 		program_timing_sync(dc, context);
1767 	}
1768 }
1769 
1770 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1771 {
1772 	int i;
1773 	unsigned int stream_mask = 0;
1774 
1775 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1776 		if (context->res_ctx.pipe_ctx[i].stream)
1777 			stream_mask |= 1 << i;
1778 	}
1779 
1780 	return stream_mask;
1781 }
1782 
1783 void dc_z10_restore(const struct dc *dc)
1784 {
1785 	if (dc->hwss.z10_restore)
1786 		dc->hwss.z10_restore(dc);
1787 }
1788 
1789 void dc_z10_save_init(struct dc *dc)
1790 {
1791 	if (dc->hwss.z10_save_init)
1792 		dc->hwss.z10_save_init(dc);
1793 }
1794 
1795 /**
1796  * dc_commit_state_no_check - Apply context to the hardware
1797  *
1798  * @dc: DC object with the current status to be updated
1799  * @context: New state that will become the current status at the end of this function
1800  *
1801  * Applies given context to the hardware and copy it into current context.
1802  * It's up to the user to release the src context afterwards.
1803  *
1804  * Return: an enum dc_status result code for the operation
1805  */
1806 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1807 {
1808 	struct dc_bios *dcb = dc->ctx->dc_bios;
1809 	enum dc_status result = DC_ERROR_UNEXPECTED;
1810 	struct pipe_ctx *pipe;
1811 	int i, k, l;
1812 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1813 	struct dc_state *old_state;
1814 	bool subvp_prev_use = false;
1815 
1816 	dc_z10_restore(dc);
1817 	dc_allow_idle_optimizations(dc, false);
1818 
1819 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1820 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1821 
1822 		/* Check old context for SubVP */
1823 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1824 		if (subvp_prev_use)
1825 			break;
1826 	}
1827 
1828 	for (i = 0; i < context->stream_count; i++)
1829 		dc_streams[i] =  context->streams[i];
1830 
1831 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1832 		disable_vbios_mode_if_required(dc, context);
1833 		dc->hwss.enable_accelerated_mode(dc, context);
1834 	}
1835 
1836 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1837 		context->stream_count == 0)
1838 		dc->hwss.prepare_bandwidth(dc, context);
1839 
1840 	/* When SubVP is active, all HW programming must be done while
1841 	 * SubVP lock is acquired
1842 	 */
1843 	if (dc->hwss.subvp_pipe_control_lock)
1844 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1845 
1846 	if (dc->hwss.update_dsc_pg)
1847 		dc->hwss.update_dsc_pg(dc, context, false);
1848 
1849 	disable_dangling_plane(dc, context);
1850 	/* re-program planes for existing stream, in case we need to
1851 	 * free up plane resource for later use
1852 	 */
1853 	if (dc->hwss.apply_ctx_for_surface) {
1854 		for (i = 0; i < context->stream_count; i++) {
1855 			if (context->streams[i]->mode_changed)
1856 				continue;
1857 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1858 			dc->hwss.apply_ctx_for_surface(
1859 				dc, context->streams[i],
1860 				context->stream_status[i].plane_count,
1861 				context); /* use new pipe config in new context */
1862 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1863 			dc->hwss.post_unlock_program_front_end(dc, context);
1864 		}
1865 	}
1866 
1867 	/* Program hardware */
1868 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1869 		pipe = &context->res_ctx.pipe_ctx[i];
1870 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1871 	}
1872 
1873 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1874 
1875 	if (result != DC_OK) {
1876 		/* Application of dc_state to hardware stopped. */
1877 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1878 		return result;
1879 	}
1880 
1881 	dc_trigger_sync(dc, context);
1882 
1883 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1884 	for (i = 0; i < context->stream_count; i++) {
1885 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1886 
1887 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1888 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1889 	}
1890 
1891 	/* Program all planes within new context*/
1892 	if (dc->hwss.program_front_end_for_ctx) {
1893 		dc->hwss.interdependent_update_lock(dc, context, true);
1894 		dc->hwss.program_front_end_for_ctx(dc, context);
1895 		dc->hwss.interdependent_update_lock(dc, context, false);
1896 		dc->hwss.post_unlock_program_front_end(dc, context);
1897 	}
1898 
1899 	if (dc->hwss.commit_subvp_config)
1900 		dc->hwss.commit_subvp_config(dc, context);
1901 	if (dc->hwss.subvp_pipe_control_lock)
1902 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1903 
1904 	for (i = 0; i < context->stream_count; i++) {
1905 		const struct dc_link *link = context->streams[i]->link;
1906 
1907 		if (!context->streams[i]->mode_changed)
1908 			continue;
1909 
1910 		if (dc->hwss.apply_ctx_for_surface) {
1911 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1912 			dc->hwss.apply_ctx_for_surface(
1913 					dc, context->streams[i],
1914 					context->stream_status[i].plane_count,
1915 					context);
1916 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1917 			dc->hwss.post_unlock_program_front_end(dc, context);
1918 		}
1919 
1920 		/*
1921 		 * enable stereo
1922 		 * TODO rework dc_enable_stereo call to work with validation sets?
1923 		 */
1924 		for (k = 0; k < MAX_PIPES; k++) {
1925 			pipe = &context->res_ctx.pipe_ctx[k];
1926 
1927 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1928 				if (context->streams[l] &&
1929 					context->streams[l] == pipe->stream &&
1930 					dc->hwss.setup_stereo)
1931 					dc->hwss.setup_stereo(pipe, dc);
1932 			}
1933 		}
1934 
1935 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1936 				context->streams[i]->timing.h_addressable,
1937 				context->streams[i]->timing.v_addressable,
1938 				context->streams[i]->timing.h_total,
1939 				context->streams[i]->timing.v_total,
1940 				context->streams[i]->timing.pix_clk_100hz / 10);
1941 	}
1942 
1943 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1944 
1945 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1946 		context->stream_count == 0) {
1947 		/* Must wait for no flips to be pending before doing optimize bw */
1948 		wait_for_no_pipes_pending(dc, context);
1949 		/* pplib is notified if disp_num changed */
1950 		dc->hwss.optimize_bandwidth(dc, context);
1951 	}
1952 
1953 	if (dc->hwss.update_dsc_pg)
1954 		dc->hwss.update_dsc_pg(dc, context, true);
1955 
1956 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1957 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1958 	else
1959 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1960 
1961 	context->stream_mask = get_stream_mask(dc, context);
1962 
1963 	if (context->stream_mask != dc->current_state->stream_mask)
1964 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1965 
1966 	for (i = 0; i < context->stream_count; i++)
1967 		context->streams[i]->mode_changed = false;
1968 
1969 	/* Clear update flags that were set earlier to avoid redundant programming */
1970 	for (i = 0; i < context->stream_count; i++) {
1971 		context->streams[i]->update_flags.raw = 0x0;
1972 	}
1973 
1974 	old_state = dc->current_state;
1975 	dc->current_state = context;
1976 
1977 	dc_release_state(old_state);
1978 
1979 	dc_retain_state(dc->current_state);
1980 
1981 	return result;
1982 }
1983 
1984 static bool commit_minimal_transition_state(struct dc *dc,
1985 		struct dc_state *transition_base_context);
1986 
1987 /**
1988  * dc_commit_streams - Commit current stream state
1989  *
1990  * @dc: DC object with the commit state to be configured in the hardware
1991  * @streams: Array with a list of stream state
1992  * @stream_count: Total of streams
1993  *
1994  * Function responsible for commit streams change to the hardware.
1995  *
1996  * Return:
1997  * Return DC_OK if everything work as expected, otherwise, return a dc_status
1998  * code.
1999  */
2000 enum dc_status dc_commit_streams(struct dc *dc,
2001 				 struct dc_stream_state *streams[],
2002 				 uint8_t stream_count)
2003 {
2004 	int i, j;
2005 	struct dc_state *context;
2006 	enum dc_status res = DC_OK;
2007 	struct dc_validation_set set[MAX_STREAMS] = {0};
2008 	struct pipe_ctx *pipe;
2009 	bool handle_exit_odm2to1 = false;
2010 
2011 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2012 		return res;
2013 
2014 	if (!streams_changed(dc, streams, stream_count))
2015 		return res;
2016 
2017 	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2018 
2019 	for (i = 0; i < stream_count; i++) {
2020 		struct dc_stream_state *stream = streams[i];
2021 		struct dc_stream_status *status = dc_stream_get_status(stream);
2022 
2023 		dc_stream_log(dc, stream);
2024 
2025 		set[i].stream = stream;
2026 
2027 		if (status) {
2028 			set[i].plane_count = status->plane_count;
2029 			for (j = 0; j < status->plane_count; j++)
2030 				set[i].plane_states[j] = status->plane_states[j];
2031 		}
2032 	}
2033 
2034 	/* ODM Combine 2:1 power optimization is only applied for single stream
2035 	 * scenario, it uses extra pipes than needed to reduce power consumption
2036 	 * We need to switch off this feature to make room for new streams.
2037 	 */
2038 	if (stream_count > dc->current_state->stream_count &&
2039 			dc->current_state->stream_count == 1) {
2040 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2041 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2042 			if (pipe->next_odm_pipe)
2043 				handle_exit_odm2to1 = true;
2044 		}
2045 	}
2046 
2047 	if (handle_exit_odm2to1)
2048 		res = commit_minimal_transition_state(dc, dc->current_state);
2049 
2050 	context = dc_create_state(dc);
2051 	if (!context)
2052 		goto context_alloc_fail;
2053 
2054 	dc_resource_state_copy_construct_current(dc, context);
2055 
2056 	res = dc_validate_with_context(dc, set, stream_count, context, false);
2057 	if (res != DC_OK) {
2058 		BREAK_TO_DEBUGGER();
2059 		goto fail;
2060 	}
2061 
2062 	res = dc_commit_state_no_check(dc, context);
2063 
2064 	for (i = 0; i < stream_count; i++) {
2065 		for (j = 0; j < context->stream_count; j++) {
2066 			if (streams[i]->stream_id == context->streams[j]->stream_id)
2067 				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2068 
2069 			if (dc_is_embedded_signal(streams[i]->signal)) {
2070 				struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2071 
2072 				if (dc->hwss.is_abm_supported)
2073 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2074 				else
2075 					status->is_abm_supported = true;
2076 			}
2077 		}
2078 	}
2079 
2080 fail:
2081 	dc_release_state(context);
2082 
2083 context_alloc_fail:
2084 
2085 	DC_LOG_DC("%s Finished.\n", __func__);
2086 
2087 	return res;
2088 }
2089 
2090 bool dc_acquire_release_mpc_3dlut(
2091 		struct dc *dc, bool acquire,
2092 		struct dc_stream_state *stream,
2093 		struct dc_3dlut **lut,
2094 		struct dc_transfer_func **shaper)
2095 {
2096 	int pipe_idx;
2097 	bool ret = false;
2098 	bool found_pipe_idx = false;
2099 	const struct resource_pool *pool = dc->res_pool;
2100 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2101 	int mpcc_id = 0;
2102 
2103 	if (pool && res_ctx) {
2104 		if (acquire) {
2105 			/*find pipe idx for the given stream*/
2106 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2107 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2108 					found_pipe_idx = true;
2109 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2110 					break;
2111 				}
2112 			}
2113 		} else
2114 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2115 
2116 		if (found_pipe_idx) {
2117 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2118 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2119 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2120 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2121 		}
2122 	}
2123 	return ret;
2124 }
2125 
2126 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2127 {
2128 	int i;
2129 	struct pipe_ctx *pipe;
2130 
2131 	for (i = 0; i < MAX_PIPES; i++) {
2132 		pipe = &context->res_ctx.pipe_ctx[i];
2133 
2134 		// Don't check flip pending on phantom pipes
2135 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2136 			continue;
2137 
2138 		/* Must set to false to start with, due to OR in update function */
2139 		pipe->plane_state->status.is_flip_pending = false;
2140 		dc->hwss.update_pending_status(pipe);
2141 		if (pipe->plane_state->status.is_flip_pending)
2142 			return true;
2143 	}
2144 	return false;
2145 }
2146 
2147 /* Perform updates here which need to be deferred until next vupdate
2148  *
2149  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2150  * but forcing lut memory to shutdown state is immediate. This causes
2151  * single frame corruption as lut gets disabled mid-frame unless shutdown
2152  * is deferred until after entering bypass.
2153  */
2154 static void process_deferred_updates(struct dc *dc)
2155 {
2156 	int i = 0;
2157 
2158 	if (dc->debug.enable_mem_low_power.bits.cm) {
2159 		ASSERT(dc->dcn_ip->max_num_dpp);
2160 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2161 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2162 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2163 	}
2164 }
2165 
2166 void dc_post_update_surfaces_to_stream(struct dc *dc)
2167 {
2168 	int i;
2169 	struct dc_state *context = dc->current_state;
2170 
2171 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2172 		return;
2173 
2174 	post_surface_trace(dc);
2175 
2176 	/*
2177 	 * Only relevant for DCN behavior where we can guarantee the optimization
2178 	 * is safe to apply - retain the legacy behavior for DCE.
2179 	 */
2180 
2181 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2182 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2183 	else {
2184 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2185 
2186 		if (is_flip_pending_in_pipes(dc, context))
2187 			return;
2188 
2189 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2190 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2191 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2192 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2193 				dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2194 			}
2195 
2196 		process_deferred_updates(dc);
2197 
2198 		dc->hwss.optimize_bandwidth(dc, context);
2199 
2200 		if (dc->hwss.update_dsc_pg)
2201 			dc->hwss.update_dsc_pg(dc, context, true);
2202 	}
2203 
2204 	dc->optimized_required = false;
2205 	dc->wm_optimized_required = false;
2206 }
2207 
2208 static void init_state(struct dc *dc, struct dc_state *context)
2209 {
2210 	/* Each context must have their own instance of VBA and in order to
2211 	 * initialize and obtain IP and SOC the base DML instance from DC is
2212 	 * initially copied into every context
2213 	 */
2214 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2215 }
2216 
2217 struct dc_state *dc_create_state(struct dc *dc)
2218 {
2219 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2220 					    GFP_KERNEL);
2221 
2222 	if (!context)
2223 		return NULL;
2224 
2225 	init_state(dc, context);
2226 
2227 	kref_init(&context->refcount);
2228 
2229 	return context;
2230 }
2231 
2232 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2233 {
2234 	int i, j;
2235 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2236 
2237 	if (!new_ctx)
2238 		return NULL;
2239 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2240 
2241 	for (i = 0; i < MAX_PIPES; i++) {
2242 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2243 
2244 			if (cur_pipe->top_pipe)
2245 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2246 
2247 			if (cur_pipe->bottom_pipe)
2248 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2249 
2250 			if (cur_pipe->prev_odm_pipe)
2251 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2252 
2253 			if (cur_pipe->next_odm_pipe)
2254 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2255 
2256 	}
2257 
2258 	for (i = 0; i < new_ctx->stream_count; i++) {
2259 			dc_stream_retain(new_ctx->streams[i]);
2260 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2261 				dc_plane_state_retain(
2262 					new_ctx->stream_status[i].plane_states[j]);
2263 	}
2264 
2265 	kref_init(&new_ctx->refcount);
2266 
2267 	return new_ctx;
2268 }
2269 
2270 void dc_retain_state(struct dc_state *context)
2271 {
2272 	kref_get(&context->refcount);
2273 }
2274 
2275 static void dc_state_free(struct kref *kref)
2276 {
2277 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2278 	dc_resource_state_destruct(context);
2279 	kvfree(context);
2280 }
2281 
2282 void dc_release_state(struct dc_state *context)
2283 {
2284 	kref_put(&context->refcount, dc_state_free);
2285 }
2286 
2287 bool dc_set_generic_gpio_for_stereo(bool enable,
2288 		struct gpio_service *gpio_service)
2289 {
2290 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2291 	struct gpio_pin_info pin_info;
2292 	struct gpio *generic;
2293 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2294 			   GFP_KERNEL);
2295 
2296 	if (!config)
2297 		return false;
2298 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2299 
2300 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2301 		kfree(config);
2302 		return false;
2303 	} else {
2304 		generic = dal_gpio_service_create_generic_mux(
2305 			gpio_service,
2306 			pin_info.offset,
2307 			pin_info.mask);
2308 	}
2309 
2310 	if (!generic) {
2311 		kfree(config);
2312 		return false;
2313 	}
2314 
2315 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2316 
2317 	config->enable_output_from_mux = enable;
2318 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2319 
2320 	if (gpio_result == GPIO_RESULT_OK)
2321 		gpio_result = dal_mux_setup_config(generic, config);
2322 
2323 	if (gpio_result == GPIO_RESULT_OK) {
2324 		dal_gpio_close(generic);
2325 		dal_gpio_destroy_generic_mux(&generic);
2326 		kfree(config);
2327 		return true;
2328 	} else {
2329 		dal_gpio_close(generic);
2330 		dal_gpio_destroy_generic_mux(&generic);
2331 		kfree(config);
2332 		return false;
2333 	}
2334 }
2335 
2336 static bool is_surface_in_context(
2337 		const struct dc_state *context,
2338 		const struct dc_plane_state *plane_state)
2339 {
2340 	int j;
2341 
2342 	for (j = 0; j < MAX_PIPES; j++) {
2343 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2344 
2345 		if (plane_state == pipe_ctx->plane_state) {
2346 			return true;
2347 		}
2348 	}
2349 
2350 	return false;
2351 }
2352 
2353 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2354 {
2355 	union surface_update_flags *update_flags = &u->surface->update_flags;
2356 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2357 
2358 	if (!u->plane_info)
2359 		return UPDATE_TYPE_FAST;
2360 
2361 	if (u->plane_info->color_space != u->surface->color_space) {
2362 		update_flags->bits.color_space_change = 1;
2363 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2364 	}
2365 
2366 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2367 		update_flags->bits.horizontal_mirror_change = 1;
2368 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2369 	}
2370 
2371 	if (u->plane_info->rotation != u->surface->rotation) {
2372 		update_flags->bits.rotation_change = 1;
2373 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2374 	}
2375 
2376 	if (u->plane_info->format != u->surface->format) {
2377 		update_flags->bits.pixel_format_change = 1;
2378 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2379 	}
2380 
2381 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2382 		update_flags->bits.stereo_format_change = 1;
2383 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2384 	}
2385 
2386 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2387 		update_flags->bits.per_pixel_alpha_change = 1;
2388 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2389 	}
2390 
2391 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2392 		update_flags->bits.global_alpha_change = 1;
2393 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2394 	}
2395 
2396 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2397 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2398 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2399 		/* During DCC on/off, stutter period is calculated before
2400 		 * DCC has fully transitioned. This results in incorrect
2401 		 * stutter period calculation. Triggering a full update will
2402 		 * recalculate stutter period.
2403 		 */
2404 		update_flags->bits.dcc_change = 1;
2405 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2406 	}
2407 
2408 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2409 			resource_pixel_format_to_bpp(u->surface->format)) {
2410 		/* different bytes per element will require full bandwidth
2411 		 * and DML calculation
2412 		 */
2413 		update_flags->bits.bpp_change = 1;
2414 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2415 	}
2416 
2417 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2418 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2419 		update_flags->bits.plane_size_change = 1;
2420 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2421 	}
2422 
2423 
2424 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2425 			sizeof(union dc_tiling_info)) != 0) {
2426 		update_flags->bits.swizzle_change = 1;
2427 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2428 
2429 		/* todo: below are HW dependent, we should add a hook to
2430 		 * DCE/N resource and validated there.
2431 		 */
2432 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2433 			/* swizzled mode requires RQ to be setup properly,
2434 			 * thus need to run DML to calculate RQ settings
2435 			 */
2436 			update_flags->bits.bandwidth_change = 1;
2437 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2438 		}
2439 	}
2440 
2441 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2442 	return update_type;
2443 }
2444 
2445 static enum surface_update_type get_scaling_info_update_type(
2446 		const struct dc *dc,
2447 		const struct dc_surface_update *u)
2448 {
2449 	union surface_update_flags *update_flags = &u->surface->update_flags;
2450 
2451 	if (!u->scaling_info)
2452 		return UPDATE_TYPE_FAST;
2453 
2454 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2455 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2456 			|| u->scaling_info->scaling_quality.integer_scaling !=
2457 				u->surface->scaling_quality.integer_scaling
2458 			) {
2459 		update_flags->bits.scaling_change = 1;
2460 
2461 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2462 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2463 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2464 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2465 			/* Making dst rect smaller requires a bandwidth change */
2466 			update_flags->bits.bandwidth_change = 1;
2467 	}
2468 
2469 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2470 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2471 
2472 		update_flags->bits.scaling_change = 1;
2473 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2474 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2475 			/* Making src rect bigger requires a bandwidth change */
2476 			update_flags->bits.clock_change = 1;
2477 	}
2478 
2479 	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2480 		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2481 		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2482 		 /* Changing clip size of a large surface may result in MPC slice count change */
2483 		update_flags->bits.bandwidth_change = 1;
2484 
2485 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2486 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2487 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2488 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2489 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2490 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2491 		update_flags->bits.position_change = 1;
2492 
2493 	if (update_flags->bits.clock_change
2494 			|| update_flags->bits.bandwidth_change
2495 			|| update_flags->bits.scaling_change)
2496 		return UPDATE_TYPE_FULL;
2497 
2498 	if (update_flags->bits.position_change)
2499 		return UPDATE_TYPE_MED;
2500 
2501 	return UPDATE_TYPE_FAST;
2502 }
2503 
2504 static enum surface_update_type det_surface_update(const struct dc *dc,
2505 		const struct dc_surface_update *u)
2506 {
2507 	const struct dc_state *context = dc->current_state;
2508 	enum surface_update_type type;
2509 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2510 	union surface_update_flags *update_flags = &u->surface->update_flags;
2511 
2512 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2513 		update_flags->raw = 0xFFFFFFFF;
2514 		return UPDATE_TYPE_FULL;
2515 	}
2516 
2517 	update_flags->raw = 0; // Reset all flags
2518 
2519 	type = get_plane_info_update_type(u);
2520 	elevate_update_type(&overall_type, type);
2521 
2522 	type = get_scaling_info_update_type(dc, u);
2523 	elevate_update_type(&overall_type, type);
2524 
2525 	if (u->flip_addr) {
2526 		update_flags->bits.addr_update = 1;
2527 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2528 			update_flags->bits.tmz_changed = 1;
2529 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2530 		}
2531 	}
2532 	if (u->in_transfer_func)
2533 		update_flags->bits.in_transfer_func_change = 1;
2534 
2535 	if (u->input_csc_color_matrix)
2536 		update_flags->bits.input_csc_change = 1;
2537 
2538 	if (u->coeff_reduction_factor)
2539 		update_flags->bits.coeff_reduction_change = 1;
2540 
2541 	if (u->gamut_remap_matrix)
2542 		update_flags->bits.gamut_remap_change = 1;
2543 
2544 	if (u->gamma) {
2545 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2546 
2547 		if (u->plane_info)
2548 			format = u->plane_info->format;
2549 		else if (u->surface)
2550 			format = u->surface->format;
2551 
2552 		if (dce_use_lut(format))
2553 			update_flags->bits.gamma_change = 1;
2554 	}
2555 
2556 	if (u->lut3d_func || u->func_shaper)
2557 		update_flags->bits.lut_3d = 1;
2558 
2559 	if (u->hdr_mult.value)
2560 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2561 			update_flags->bits.hdr_mult = 1;
2562 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2563 		}
2564 
2565 	if (update_flags->bits.in_transfer_func_change) {
2566 		type = UPDATE_TYPE_MED;
2567 		elevate_update_type(&overall_type, type);
2568 	}
2569 
2570 	if (update_flags->bits.lut_3d) {
2571 		type = UPDATE_TYPE_FULL;
2572 		elevate_update_type(&overall_type, type);
2573 	}
2574 
2575 	if (dc->debug.enable_legacy_fast_update &&
2576 			(update_flags->bits.gamma_change ||
2577 			update_flags->bits.gamut_remap_change ||
2578 			update_flags->bits.input_csc_change ||
2579 			update_flags->bits.coeff_reduction_change)) {
2580 		type = UPDATE_TYPE_FULL;
2581 		elevate_update_type(&overall_type, type);
2582 	}
2583 	return overall_type;
2584 }
2585 
2586 static enum surface_update_type check_update_surfaces_for_stream(
2587 		struct dc *dc,
2588 		struct dc_surface_update *updates,
2589 		int surface_count,
2590 		struct dc_stream_update *stream_update,
2591 		const struct dc_stream_status *stream_status)
2592 {
2593 	int i;
2594 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2595 
2596 	if (dc->idle_optimizations_allowed)
2597 		overall_type = UPDATE_TYPE_FULL;
2598 
2599 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2600 		overall_type = UPDATE_TYPE_FULL;
2601 
2602 	if (stream_update && stream_update->pending_test_pattern) {
2603 		overall_type = UPDATE_TYPE_FULL;
2604 	}
2605 
2606 	/* some stream updates require passive update */
2607 	if (stream_update) {
2608 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2609 
2610 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2611 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2612 			stream_update->integer_scaling_update)
2613 			su_flags->bits.scaling = 1;
2614 
2615 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2616 			su_flags->bits.out_tf = 1;
2617 
2618 		if (stream_update->abm_level)
2619 			su_flags->bits.abm_level = 1;
2620 
2621 		if (stream_update->dpms_off)
2622 			su_flags->bits.dpms_off = 1;
2623 
2624 		if (stream_update->gamut_remap)
2625 			su_flags->bits.gamut_remap = 1;
2626 
2627 		if (stream_update->wb_update)
2628 			su_flags->bits.wb_update = 1;
2629 
2630 		if (stream_update->dsc_config)
2631 			su_flags->bits.dsc_changed = 1;
2632 
2633 		if (stream_update->mst_bw_update)
2634 			su_flags->bits.mst_bw = 1;
2635 
2636 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2637 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2638 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2639 			su_flags->bits.fams_changed = 1;
2640 
2641 		if (su_flags->raw != 0)
2642 			overall_type = UPDATE_TYPE_FULL;
2643 
2644 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2645 			su_flags->bits.out_csc = 1;
2646 
2647 		/* Output transfer function changes do not require bandwidth recalculation,
2648 		 * so don't trigger a full update
2649 		 */
2650 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2651 			su_flags->bits.out_tf = 1;
2652 	}
2653 
2654 	for (i = 0 ; i < surface_count; i++) {
2655 		enum surface_update_type type =
2656 				det_surface_update(dc, &updates[i]);
2657 
2658 		elevate_update_type(&overall_type, type);
2659 	}
2660 
2661 	return overall_type;
2662 }
2663 
2664 /*
2665  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2666  *
2667  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2668  */
2669 enum surface_update_type dc_check_update_surfaces_for_stream(
2670 		struct dc *dc,
2671 		struct dc_surface_update *updates,
2672 		int surface_count,
2673 		struct dc_stream_update *stream_update,
2674 		const struct dc_stream_status *stream_status)
2675 {
2676 	int i;
2677 	enum surface_update_type type;
2678 
2679 	if (stream_update)
2680 		stream_update->stream->update_flags.raw = 0;
2681 	for (i = 0; i < surface_count; i++)
2682 		updates[i].surface->update_flags.raw = 0;
2683 
2684 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2685 	if (type == UPDATE_TYPE_FULL) {
2686 		if (stream_update) {
2687 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2688 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2689 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2690 		}
2691 		for (i = 0; i < surface_count; i++)
2692 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2693 	}
2694 
2695 	if (type == UPDATE_TYPE_FAST) {
2696 		// If there's an available clock comparator, we use that.
2697 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2698 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2699 				dc->optimized_required = true;
2700 		// Else we fallback to mem compare.
2701 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2702 			dc->optimized_required = true;
2703 		}
2704 
2705 		dc->optimized_required |= dc->wm_optimized_required;
2706 	}
2707 
2708 	return type;
2709 }
2710 
2711 static struct dc_stream_status *stream_get_status(
2712 	struct dc_state *ctx,
2713 	struct dc_stream_state *stream)
2714 {
2715 	uint8_t i;
2716 
2717 	for (i = 0; i < ctx->stream_count; i++) {
2718 		if (stream == ctx->streams[i]) {
2719 			return &ctx->stream_status[i];
2720 		}
2721 	}
2722 
2723 	return NULL;
2724 }
2725 
2726 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2727 
2728 static void copy_surface_update_to_plane(
2729 		struct dc_plane_state *surface,
2730 		struct dc_surface_update *srf_update)
2731 {
2732 	if (srf_update->flip_addr) {
2733 		surface->address = srf_update->flip_addr->address;
2734 		surface->flip_immediate =
2735 			srf_update->flip_addr->flip_immediate;
2736 		surface->time.time_elapsed_in_us[surface->time.index] =
2737 			srf_update->flip_addr->flip_timestamp_in_us -
2738 				surface->time.prev_update_time_in_us;
2739 		surface->time.prev_update_time_in_us =
2740 			srf_update->flip_addr->flip_timestamp_in_us;
2741 		surface->time.index++;
2742 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2743 			surface->time.index = 0;
2744 
2745 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2746 	}
2747 
2748 	if (srf_update->scaling_info) {
2749 		surface->scaling_quality =
2750 				srf_update->scaling_info->scaling_quality;
2751 		surface->dst_rect =
2752 				srf_update->scaling_info->dst_rect;
2753 		surface->src_rect =
2754 				srf_update->scaling_info->src_rect;
2755 		surface->clip_rect =
2756 				srf_update->scaling_info->clip_rect;
2757 	}
2758 
2759 	if (srf_update->plane_info) {
2760 		surface->color_space =
2761 				srf_update->plane_info->color_space;
2762 		surface->format =
2763 				srf_update->plane_info->format;
2764 		surface->plane_size =
2765 				srf_update->plane_info->plane_size;
2766 		surface->rotation =
2767 				srf_update->plane_info->rotation;
2768 		surface->horizontal_mirror =
2769 				srf_update->plane_info->horizontal_mirror;
2770 		surface->stereo_format =
2771 				srf_update->plane_info->stereo_format;
2772 		surface->tiling_info =
2773 				srf_update->plane_info->tiling_info;
2774 		surface->visible =
2775 				srf_update->plane_info->visible;
2776 		surface->per_pixel_alpha =
2777 				srf_update->plane_info->per_pixel_alpha;
2778 		surface->global_alpha =
2779 				srf_update->plane_info->global_alpha;
2780 		surface->global_alpha_value =
2781 				srf_update->plane_info->global_alpha_value;
2782 		surface->dcc =
2783 				srf_update->plane_info->dcc;
2784 		surface->layer_index =
2785 				srf_update->plane_info->layer_index;
2786 	}
2787 
2788 	if (srf_update->gamma &&
2789 			(surface->gamma_correction !=
2790 					srf_update->gamma)) {
2791 		memcpy(&surface->gamma_correction->entries,
2792 			&srf_update->gamma->entries,
2793 			sizeof(struct dc_gamma_entries));
2794 		surface->gamma_correction->is_identity =
2795 			srf_update->gamma->is_identity;
2796 		surface->gamma_correction->num_entries =
2797 			srf_update->gamma->num_entries;
2798 		surface->gamma_correction->type =
2799 			srf_update->gamma->type;
2800 	}
2801 
2802 	if (srf_update->in_transfer_func &&
2803 			(surface->in_transfer_func !=
2804 				srf_update->in_transfer_func)) {
2805 		surface->in_transfer_func->sdr_ref_white_level =
2806 			srf_update->in_transfer_func->sdr_ref_white_level;
2807 		surface->in_transfer_func->tf =
2808 			srf_update->in_transfer_func->tf;
2809 		surface->in_transfer_func->type =
2810 			srf_update->in_transfer_func->type;
2811 		memcpy(&surface->in_transfer_func->tf_pts,
2812 			&srf_update->in_transfer_func->tf_pts,
2813 			sizeof(struct dc_transfer_func_distributed_points));
2814 	}
2815 
2816 	if (srf_update->func_shaper &&
2817 			(surface->in_shaper_func !=
2818 			srf_update->func_shaper))
2819 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2820 		sizeof(*surface->in_shaper_func));
2821 
2822 	if (srf_update->lut3d_func &&
2823 			(surface->lut3d_func !=
2824 			srf_update->lut3d_func))
2825 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2826 		sizeof(*surface->lut3d_func));
2827 
2828 	if (srf_update->hdr_mult.value)
2829 		surface->hdr_mult =
2830 				srf_update->hdr_mult;
2831 
2832 	if (srf_update->blend_tf &&
2833 			(surface->blend_tf !=
2834 			srf_update->blend_tf))
2835 		memcpy(surface->blend_tf, srf_update->blend_tf,
2836 		sizeof(*surface->blend_tf));
2837 
2838 	if (srf_update->input_csc_color_matrix)
2839 		surface->input_csc_color_matrix =
2840 			*srf_update->input_csc_color_matrix;
2841 
2842 	if (srf_update->coeff_reduction_factor)
2843 		surface->coeff_reduction_factor =
2844 			*srf_update->coeff_reduction_factor;
2845 
2846 	if (srf_update->gamut_remap_matrix)
2847 		surface->gamut_remap_matrix =
2848 			*srf_update->gamut_remap_matrix;
2849 }
2850 
2851 static void copy_stream_update_to_stream(struct dc *dc,
2852 					 struct dc_state *context,
2853 					 struct dc_stream_state *stream,
2854 					 struct dc_stream_update *update)
2855 {
2856 	struct dc_context *dc_ctx = dc->ctx;
2857 
2858 	if (update == NULL || stream == NULL)
2859 		return;
2860 
2861 	if (update->src.height && update->src.width)
2862 		stream->src = update->src;
2863 
2864 	if (update->dst.height && update->dst.width)
2865 		stream->dst = update->dst;
2866 
2867 	if (update->out_transfer_func &&
2868 	    stream->out_transfer_func != update->out_transfer_func) {
2869 		stream->out_transfer_func->sdr_ref_white_level =
2870 			update->out_transfer_func->sdr_ref_white_level;
2871 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2872 		stream->out_transfer_func->type =
2873 			update->out_transfer_func->type;
2874 		memcpy(&stream->out_transfer_func->tf_pts,
2875 		       &update->out_transfer_func->tf_pts,
2876 		       sizeof(struct dc_transfer_func_distributed_points));
2877 	}
2878 
2879 	if (update->hdr_static_metadata)
2880 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2881 
2882 	if (update->abm_level)
2883 		stream->abm_level = *update->abm_level;
2884 
2885 	if (update->periodic_interrupt)
2886 		stream->periodic_interrupt = *update->periodic_interrupt;
2887 
2888 	if (update->gamut_remap)
2889 		stream->gamut_remap_matrix = *update->gamut_remap;
2890 
2891 	/* Note: this being updated after mode set is currently not a use case
2892 	 * however if it arises OCSC would need to be reprogrammed at the
2893 	 * minimum
2894 	 */
2895 	if (update->output_color_space)
2896 		stream->output_color_space = *update->output_color_space;
2897 
2898 	if (update->output_csc_transform)
2899 		stream->csc_color_matrix = *update->output_csc_transform;
2900 
2901 	if (update->vrr_infopacket)
2902 		stream->vrr_infopacket = *update->vrr_infopacket;
2903 
2904 	if (update->allow_freesync)
2905 		stream->allow_freesync = *update->allow_freesync;
2906 
2907 	if (update->vrr_active_variable)
2908 		stream->vrr_active_variable = *update->vrr_active_variable;
2909 
2910 	if (update->vrr_active_fixed)
2911 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2912 
2913 	if (update->crtc_timing_adjust)
2914 		stream->adjust = *update->crtc_timing_adjust;
2915 
2916 	if (update->dpms_off)
2917 		stream->dpms_off = *update->dpms_off;
2918 
2919 	if (update->hfvsif_infopacket)
2920 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2921 
2922 	if (update->vtem_infopacket)
2923 		stream->vtem_infopacket = *update->vtem_infopacket;
2924 
2925 	if (update->vsc_infopacket)
2926 		stream->vsc_infopacket = *update->vsc_infopacket;
2927 
2928 	if (update->vsp_infopacket)
2929 		stream->vsp_infopacket = *update->vsp_infopacket;
2930 
2931 	if (update->adaptive_sync_infopacket)
2932 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2933 
2934 	if (update->dither_option)
2935 		stream->dither_option = *update->dither_option;
2936 
2937 	if (update->pending_test_pattern)
2938 		stream->test_pattern = *update->pending_test_pattern;
2939 	/* update current stream with writeback info */
2940 	if (update->wb_update) {
2941 		int i;
2942 
2943 		stream->num_wb_info = update->wb_update->num_wb_info;
2944 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2945 		for (i = 0; i < stream->num_wb_info; i++)
2946 			stream->writeback_info[i] =
2947 				update->wb_update->writeback_info[i];
2948 	}
2949 	if (update->dsc_config) {
2950 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2951 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2952 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2953 				       update->dsc_config->num_slices_v != 0);
2954 
2955 		/* Use temporarry context for validating new DSC config */
2956 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2957 
2958 		if (dsc_validate_context) {
2959 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2960 
2961 			stream->timing.dsc_cfg = *update->dsc_config;
2962 			stream->timing.flags.DSC = enable_dsc;
2963 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2964 				stream->timing.dsc_cfg = old_dsc_cfg;
2965 				stream->timing.flags.DSC = old_dsc_enabled;
2966 				update->dsc_config = NULL;
2967 			}
2968 
2969 			dc_release_state(dsc_validate_context);
2970 		} else {
2971 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2972 			update->dsc_config = NULL;
2973 		}
2974 	}
2975 }
2976 
2977 static bool update_planes_and_stream_state(struct dc *dc,
2978 		struct dc_surface_update *srf_updates, int surface_count,
2979 		struct dc_stream_state *stream,
2980 		struct dc_stream_update *stream_update,
2981 		enum surface_update_type *new_update_type,
2982 		struct dc_state **new_context)
2983 {
2984 	struct dc_state *context;
2985 	int i, j;
2986 	enum surface_update_type update_type;
2987 	const struct dc_stream_status *stream_status;
2988 	struct dc_context *dc_ctx = dc->ctx;
2989 
2990 	stream_status = dc_stream_get_status(stream);
2991 
2992 	if (!stream_status) {
2993 		if (surface_count) /* Only an error condition if surf_count non-zero*/
2994 			ASSERT(false);
2995 
2996 		return false; /* Cannot commit surface to stream that is not committed */
2997 	}
2998 
2999 	context = dc->current_state;
3000 
3001 	update_type = dc_check_update_surfaces_for_stream(
3002 			dc, srf_updates, surface_count, stream_update, stream_status);
3003 
3004 	/* update current stream with the new updates */
3005 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3006 
3007 	/* do not perform surface update if surface has invalid dimensions
3008 	 * (all zero) and no scaling_info is provided
3009 	 */
3010 	if (surface_count > 0) {
3011 		for (i = 0; i < surface_count; i++) {
3012 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3013 				 srf_updates[i].surface->src_rect.height == 0 ||
3014 				 srf_updates[i].surface->dst_rect.width == 0 ||
3015 				 srf_updates[i].surface->dst_rect.height == 0) &&
3016 				(!srf_updates[i].scaling_info ||
3017 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3018 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3019 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3020 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3021 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3022 				return false;
3023 			}
3024 		}
3025 	}
3026 
3027 	if (update_type >= update_surface_trace_level)
3028 		update_surface_trace(dc, srf_updates, surface_count);
3029 
3030 	if (update_type >= UPDATE_TYPE_FULL) {
3031 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3032 
3033 		for (i = 0; i < surface_count; i++)
3034 			new_planes[i] = srf_updates[i].surface;
3035 
3036 		/* initialize scratch memory for building context */
3037 		context = dc_create_state(dc);
3038 		if (context == NULL) {
3039 			DC_ERROR("Failed to allocate new validate context!\n");
3040 			return false;
3041 		}
3042 
3043 		dc_resource_state_copy_construct(
3044 				dc->current_state, context);
3045 
3046 		/* For each full update, remove all existing phantom pipes first.
3047 		 * Ensures that we have enough pipes for newly added MPO planes
3048 		 */
3049 		if (dc->res_pool->funcs->remove_phantom_pipes)
3050 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3051 
3052 		/*remove old surfaces from context */
3053 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3054 
3055 			BREAK_TO_DEBUGGER();
3056 			goto fail;
3057 		}
3058 
3059 		/* add surface to context */
3060 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3061 
3062 			BREAK_TO_DEBUGGER();
3063 			goto fail;
3064 		}
3065 	}
3066 
3067 	/* save update parameters into surface */
3068 	for (i = 0; i < surface_count; i++) {
3069 		struct dc_plane_state *surface = srf_updates[i].surface;
3070 
3071 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3072 
3073 		if (update_type >= UPDATE_TYPE_MED) {
3074 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3075 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3076 
3077 				if (pipe_ctx->plane_state != surface)
3078 					continue;
3079 
3080 				resource_build_scaling_params(pipe_ctx);
3081 			}
3082 		}
3083 	}
3084 
3085 	if (update_type == UPDATE_TYPE_FULL) {
3086 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3087 			/* For phantom pipes we remove and create a new set of phantom pipes
3088 			 * for each full update (because we don't know if we'll need phantom
3089 			 * pipes until after the first round of validation). However, if validation
3090 			 * fails we need to keep the existing phantom pipes (because we don't update
3091 			 * the dc->current_state).
3092 			 *
3093 			 * The phantom stream/plane refcount is decremented for validation because
3094 			 * we assume it'll be removed (the free comes when the dc_state is freed),
3095 			 * but if validation fails we have to increment back the refcount so it's
3096 			 * consistent.
3097 			 */
3098 			if (dc->res_pool->funcs->retain_phantom_pipes)
3099 				dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3100 			BREAK_TO_DEBUGGER();
3101 			goto fail;
3102 		}
3103 	}
3104 
3105 	*new_context = context;
3106 	*new_update_type = update_type;
3107 
3108 	return true;
3109 
3110 fail:
3111 	dc_release_state(context);
3112 
3113 	return false;
3114 
3115 }
3116 
3117 static void commit_planes_do_stream_update(struct dc *dc,
3118 		struct dc_stream_state *stream,
3119 		struct dc_stream_update *stream_update,
3120 		enum surface_update_type update_type,
3121 		struct dc_state *context)
3122 {
3123 	int j;
3124 
3125 	// Stream updates
3126 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3127 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3128 
3129 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3130 
3131 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3132 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3133 
3134 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3135 					stream_update->vrr_infopacket ||
3136 					stream_update->vsc_infopacket ||
3137 					stream_update->vsp_infopacket ||
3138 					stream_update->hfvsif_infopacket ||
3139 					stream_update->adaptive_sync_infopacket ||
3140 					stream_update->vtem_infopacket) {
3141 				resource_build_info_frame(pipe_ctx);
3142 				dc->hwss.update_info_frame(pipe_ctx);
3143 
3144 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3145 					dc->link_srv->dp_trace_source_sequence(
3146 							pipe_ctx->stream->link,
3147 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3148 			}
3149 
3150 			if (stream_update->hdr_static_metadata &&
3151 					stream->use_dynamic_meta &&
3152 					dc->hwss.set_dmdata_attributes &&
3153 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3154 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3155 
3156 			if (stream_update->gamut_remap)
3157 				dc_stream_set_gamut_remap(dc, stream);
3158 
3159 			if (stream_update->output_csc_transform)
3160 				dc_stream_program_csc_matrix(dc, stream);
3161 
3162 			if (stream_update->dither_option) {
3163 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3164 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3165 									&pipe_ctx->stream->bit_depth_params);
3166 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3167 						&stream->bit_depth_params,
3168 						&stream->clamping);
3169 				while (odm_pipe) {
3170 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3171 							&stream->bit_depth_params,
3172 							&stream->clamping);
3173 					odm_pipe = odm_pipe->next_odm_pipe;
3174 				}
3175 			}
3176 
3177 
3178 			/* Full fe update*/
3179 			if (update_type == UPDATE_TYPE_FAST)
3180 				continue;
3181 
3182 			if (stream_update->dsc_config)
3183 				dc->link_srv->update_dsc_config(pipe_ctx);
3184 
3185 			if (stream_update->mst_bw_update) {
3186 				if (stream_update->mst_bw_update->is_increase)
3187 					dc->link_srv->increase_mst_payload(pipe_ctx,
3188 							stream_update->mst_bw_update->mst_stream_bw);
3189  				else
3190 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3191 							stream_update->mst_bw_update->mst_stream_bw);
3192  			}
3193 
3194 			if (stream_update->pending_test_pattern) {
3195 				dc_link_dp_set_test_pattern(stream->link,
3196 					stream->test_pattern.type,
3197 					stream->test_pattern.color_space,
3198 					stream->test_pattern.p_link_settings,
3199 					stream->test_pattern.p_custom_pattern,
3200 					stream->test_pattern.cust_pattern_size);
3201 			}
3202 
3203 			if (stream_update->dpms_off) {
3204 				if (*stream_update->dpms_off) {
3205 					dc->link_srv->set_dpms_off(pipe_ctx);
3206 					/* for dpms, keep acquired resources*/
3207 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3208 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3209 
3210 					dc->optimized_required = true;
3211 
3212 				} else {
3213 					if (get_seamless_boot_stream_count(context) == 0)
3214 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3215 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3216 				}
3217 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3218 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3219 				/*
3220 				 * Workaround for firmware issue in some receivers where they don't pick up
3221 				 * correct output color space unless DP link is disabled/re-enabled
3222 				 */
3223 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3224 			}
3225 
3226 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3227 				bool should_program_abm = true;
3228 
3229 				// if otg funcs defined check if blanked before programming
3230 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3231 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3232 						should_program_abm = false;
3233 
3234 				if (should_program_abm) {
3235 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3236 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3237 					} else {
3238 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3239 							pipe_ctx->stream_res.abm, stream->abm_level);
3240 					}
3241 				}
3242 			}
3243 		}
3244 	}
3245 }
3246 
3247 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3248 {
3249 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3250 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3251 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3252 		return true;
3253 
3254 	if (stream->link->replay_settings.config.replay_supported)
3255 		return true;
3256 
3257 	return false;
3258 }
3259 
3260 void dc_dmub_update_dirty_rect(struct dc *dc,
3261 			       int surface_count,
3262 			       struct dc_stream_state *stream,
3263 			       struct dc_surface_update *srf_updates,
3264 			       struct dc_state *context)
3265 {
3266 	union dmub_rb_cmd cmd;
3267 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3268 	unsigned int i, j;
3269 	unsigned int panel_inst = 0;
3270 
3271 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3272 		return;
3273 
3274 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3275 		return;
3276 
3277 	memset(&cmd, 0x0, sizeof(cmd));
3278 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3279 	cmd.update_dirty_rect.header.sub_type = 0;
3280 	cmd.update_dirty_rect.header.payload_bytes =
3281 		sizeof(cmd.update_dirty_rect) -
3282 		sizeof(cmd.update_dirty_rect.header);
3283 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3284 	for (i = 0; i < surface_count; i++) {
3285 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3286 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3287 
3288 		if (!srf_updates[i].surface || !flip_addr)
3289 			continue;
3290 		/* Do not send in immediate flip mode */
3291 		if (srf_updates[i].surface->flip_immediate)
3292 			continue;
3293 
3294 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3295 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3296 				sizeof(flip_addr->dirty_rects));
3297 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3298 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3299 
3300 			if (pipe_ctx->stream != stream)
3301 				continue;
3302 			if (pipe_ctx->plane_state != plane_state)
3303 				continue;
3304 
3305 			update_dirty_rect->panel_inst = panel_inst;
3306 			update_dirty_rect->pipe_idx = j;
3307 			dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3308 		}
3309 	}
3310 }
3311 
3312 static void build_dmub_update_dirty_rect(
3313 		struct dc *dc,
3314 		int surface_count,
3315 		struct dc_stream_state *stream,
3316 		struct dc_surface_update *srf_updates,
3317 		struct dc_state *context,
3318 		struct dc_dmub_cmd dc_dmub_cmd[],
3319 		unsigned int *dmub_cmd_count)
3320 {
3321 	union dmub_rb_cmd cmd;
3322 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3323 	unsigned int i, j;
3324 	unsigned int panel_inst = 0;
3325 
3326 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3327 		return;
3328 
3329 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3330 		return;
3331 
3332 	memset(&cmd, 0x0, sizeof(cmd));
3333 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3334 	cmd.update_dirty_rect.header.sub_type = 0;
3335 	cmd.update_dirty_rect.header.payload_bytes =
3336 		sizeof(cmd.update_dirty_rect) -
3337 		sizeof(cmd.update_dirty_rect.header);
3338 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3339 	for (i = 0; i < surface_count; i++) {
3340 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3341 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3342 
3343 		if (!srf_updates[i].surface || !flip_addr)
3344 			continue;
3345 		/* Do not send in immediate flip mode */
3346 		if (srf_updates[i].surface->flip_immediate)
3347 			continue;
3348 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3349 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3350 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3351 				sizeof(flip_addr->dirty_rects));
3352 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3353 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3354 
3355 			if (pipe_ctx->stream != stream)
3356 				continue;
3357 			if (pipe_ctx->plane_state != plane_state)
3358 				continue;
3359 			update_dirty_rect->panel_inst = panel_inst;
3360 			update_dirty_rect->pipe_idx = j;
3361 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3362 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3363 			(*dmub_cmd_count)++;
3364 		}
3365 	}
3366 }
3367 
3368 
3369 /**
3370  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3371  *
3372  * @dc: Current DC state
3373  * @srf_updates: Array of surface updates
3374  * @surface_count: Number of surfaces that have an updated
3375  * @stream: Corresponding stream to be updated in the current flip
3376  * @context: New DC state to be programmed
3377  *
3378  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3379  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3380  *
3381  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3382  * to build an array of commands and have them sent while the OTG lock is acquired.
3383  *
3384  * Return: void
3385  */
3386 static void build_dmub_cmd_list(struct dc *dc,
3387 		struct dc_surface_update *srf_updates,
3388 		int surface_count,
3389 		struct dc_stream_state *stream,
3390 		struct dc_state *context,
3391 		struct dc_dmub_cmd dc_dmub_cmd[],
3392 		unsigned int *dmub_cmd_count)
3393 {
3394 	// Initialize cmd count to 0
3395 	*dmub_cmd_count = 0;
3396 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3397 }
3398 
3399 static void commit_planes_for_stream_fast(struct dc *dc,
3400 		struct dc_surface_update *srf_updates,
3401 		int surface_count,
3402 		struct dc_stream_state *stream,
3403 		struct dc_stream_update *stream_update,
3404 		enum surface_update_type update_type,
3405 		struct dc_state *context)
3406 {
3407 	int i, j;
3408 	struct pipe_ctx *top_pipe_to_program = NULL;
3409 	dc_z10_restore(dc);
3410 
3411 	top_pipe_to_program = resource_get_otg_master_for_stream(
3412 			&context->res_ctx,
3413 			stream);
3414 
3415 	if (dc->debug.visual_confirm) {
3416 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3417 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3418 
3419 			if (pipe->stream && pipe->plane_state)
3420 				dc_update_viusal_confirm_color(dc, context, pipe);
3421 		}
3422 	}
3423 
3424 	for (i = 0; i < surface_count; i++) {
3425 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3426 		/*set logical flag for lock/unlock use*/
3427 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3428 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3429 
3430 			if (!pipe_ctx->plane_state)
3431 				continue;
3432 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3433 				continue;
3434 			pipe_ctx->plane_state->triplebuffer_flips = false;
3435 			if (update_type == UPDATE_TYPE_FAST &&
3436 			    dc->hwss.program_triplebuffer &&
3437 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3438 				/*triple buffer for VUpdate  only*/
3439 				pipe_ctx->plane_state->triplebuffer_flips = true;
3440 			}
3441 		}
3442 	}
3443 
3444 	build_dmub_cmd_list(dc,
3445 			srf_updates,
3446 			surface_count,
3447 			stream,
3448 			context,
3449 			context->dc_dmub_cmd,
3450 			&(context->dmub_cmd_count));
3451 	hwss_build_fast_sequence(dc,
3452 			context->dc_dmub_cmd,
3453 			context->dmub_cmd_count,
3454 			context->block_sequence,
3455 			&(context->block_sequence_steps),
3456 			top_pipe_to_program);
3457 	hwss_execute_sequence(dc,
3458 			context->block_sequence,
3459 			context->block_sequence_steps);
3460 	/* Clear update flags so next flip doesn't have redundant programming
3461 	 * (if there's no stream update, the update flags are not cleared).
3462 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3463 	 * so no need to clear here.
3464 	 */
3465 	if (top_pipe_to_program->stream)
3466 		top_pipe_to_program->stream->update_flags.raw = 0;
3467 }
3468 
3469 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3470 {
3471 /*
3472  * This function calls HWSS to wait for any potentially double buffered
3473  * operations to complete. It should be invoked as a pre-amble prior
3474  * to full update programming before asserting any HW locks.
3475  */
3476 	int pipe_idx;
3477 	int opp_inst;
3478 	int opp_count = dc->res_pool->pipe_count;
3479 	struct hubp *hubp;
3480 	int mpcc_inst;
3481 	const struct pipe_ctx *pipe_ctx;
3482 
3483 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3484 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3485 
3486 		if (!pipe_ctx->stream)
3487 			continue;
3488 
3489 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3490 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3491 
3492 		hubp = pipe_ctx->plane_res.hubp;
3493 		if (!hubp)
3494 			continue;
3495 
3496 		mpcc_inst = hubp->inst;
3497 		// MPCC inst is equal to pipe index in practice
3498 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3499 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3500 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3501 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3502 				break;
3503 			}
3504 		}
3505 	}
3506 }
3507 
3508 static void commit_planes_for_stream(struct dc *dc,
3509 		struct dc_surface_update *srf_updates,
3510 		int surface_count,
3511 		struct dc_stream_state *stream,
3512 		struct dc_stream_update *stream_update,
3513 		enum surface_update_type update_type,
3514 		struct dc_state *context)
3515 {
3516 	int i, j;
3517 	struct pipe_ctx *top_pipe_to_program = NULL;
3518 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3519 	bool subvp_prev_use = false;
3520 	bool subvp_curr_use = false;
3521 
3522 	// Once we apply the new subvp context to hardware it won't be in the
3523 	// dc->current_state anymore, so we have to cache it before we apply
3524 	// the new SubVP context
3525 	subvp_prev_use = false;
3526 	dc_z10_restore(dc);
3527 	if (update_type == UPDATE_TYPE_FULL)
3528 		wait_for_outstanding_hw_updates(dc, context);
3529 
3530 	if (update_type == UPDATE_TYPE_FULL) {
3531 		dc_allow_idle_optimizations(dc, false);
3532 
3533 		if (get_seamless_boot_stream_count(context) == 0)
3534 			dc->hwss.prepare_bandwidth(dc, context);
3535 
3536 		if (dc->hwss.update_dsc_pg)
3537 			dc->hwss.update_dsc_pg(dc, context, false);
3538 
3539 		context_clock_trace(dc, context);
3540 	}
3541 
3542 	top_pipe_to_program = resource_get_otg_master_for_stream(
3543 				&context->res_ctx,
3544 				stream);
3545 
3546 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3547 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3548 
3549 		// Check old context for SubVP
3550 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3551 		if (subvp_prev_use)
3552 			break;
3553 	}
3554 
3555 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3556 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3557 
3558 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3559 			subvp_curr_use = true;
3560 			break;
3561 		}
3562 	}
3563 
3564 	if (dc->debug.visual_confirm)
3565 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3566 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3567 
3568 			if (pipe->stream && pipe->plane_state)
3569 				dc_update_viusal_confirm_color(dc, context, pipe);
3570 		}
3571 
3572 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3573 		struct pipe_ctx *mpcc_pipe;
3574 		struct pipe_ctx *odm_pipe;
3575 
3576 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3577 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3578 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3579 	}
3580 
3581 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3582 		if (top_pipe_to_program &&
3583 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3584 			if (should_use_dmub_lock(stream->link)) {
3585 				union dmub_hw_lock_flags hw_locks = { 0 };
3586 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3587 
3588 				hw_locks.bits.lock_dig = 1;
3589 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3590 
3591 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3592 							true,
3593 							&hw_locks,
3594 							&inst_flags);
3595 			} else
3596 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3597 						top_pipe_to_program->stream_res.tg);
3598 		}
3599 
3600 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3601 		if (dc->hwss.subvp_pipe_control_lock)
3602 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3603 		dc->hwss.interdependent_update_lock(dc, context, true);
3604 
3605 	} else {
3606 		if (dc->hwss.subvp_pipe_control_lock)
3607 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3608 		/* Lock the top pipe while updating plane addrs, since freesync requires
3609 		 *  plane addr update event triggers to be synchronized.
3610 		 *  top_pipe_to_program is expected to never be NULL
3611 		 */
3612 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3613 	}
3614 
3615 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3616 
3617 	// Stream updates
3618 	if (stream_update)
3619 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3620 
3621 	if (surface_count == 0) {
3622 		/*
3623 		 * In case of turning off screen, no need to program front end a second time.
3624 		 * just return after program blank.
3625 		 */
3626 		if (dc->hwss.apply_ctx_for_surface)
3627 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3628 		if (dc->hwss.program_front_end_for_ctx)
3629 			dc->hwss.program_front_end_for_ctx(dc, context);
3630 
3631 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3632 			dc->hwss.interdependent_update_lock(dc, context, false);
3633 		} else {
3634 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3635 		}
3636 		dc->hwss.post_unlock_program_front_end(dc, context);
3637 
3638 		if (update_type != UPDATE_TYPE_FAST)
3639 			if (dc->hwss.commit_subvp_config)
3640 				dc->hwss.commit_subvp_config(dc, context);
3641 
3642 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3643 		 * move the SubVP lock to after the phantom pipes have been setup
3644 		 */
3645 		if (dc->hwss.subvp_pipe_control_lock)
3646 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3647 							 NULL, subvp_prev_use);
3648 		return;
3649 	}
3650 
3651 	if (update_type != UPDATE_TYPE_FAST) {
3652 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3653 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3654 
3655 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3656 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3657 				pipe_ctx->stream && pipe_ctx->plane_state) {
3658 				/* Only update visual confirm for SUBVP and Mclk switching here.
3659 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3660 				 * so the information doesn't get stale.
3661 				 */
3662 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3663 						pipe_ctx->plane_res.hubp->inst);
3664 			}
3665 		}
3666 	}
3667 
3668 	for (i = 0; i < surface_count; i++) {
3669 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3670 		/*set logical flag for lock/unlock use*/
3671 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3672 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3673 			if (!pipe_ctx->plane_state)
3674 				continue;
3675 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3676 				continue;
3677 			pipe_ctx->plane_state->triplebuffer_flips = false;
3678 			if (update_type == UPDATE_TYPE_FAST &&
3679 				dc->hwss.program_triplebuffer != NULL &&
3680 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3681 					/*triple buffer for VUpdate  only*/
3682 					pipe_ctx->plane_state->triplebuffer_flips = true;
3683 			}
3684 		}
3685 		if (update_type == UPDATE_TYPE_FULL) {
3686 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3687 			plane_state->flip_immediate = false;
3688 		}
3689 	}
3690 
3691 	// Update Type FULL, Surface updates
3692 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3693 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3694 
3695 		if (!pipe_ctx->top_pipe &&
3696 			!pipe_ctx->prev_odm_pipe &&
3697 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3698 			struct dc_stream_status *stream_status = NULL;
3699 
3700 			if (!pipe_ctx->plane_state)
3701 				continue;
3702 
3703 			/* Full fe update*/
3704 			if (update_type == UPDATE_TYPE_FAST)
3705 				continue;
3706 
3707 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3708 
3709 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3710 				/*turn off triple buffer for full update*/
3711 				dc->hwss.program_triplebuffer(
3712 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3713 			}
3714 			stream_status =
3715 				stream_get_status(context, pipe_ctx->stream);
3716 
3717 			if (dc->hwss.apply_ctx_for_surface)
3718 				dc->hwss.apply_ctx_for_surface(
3719 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3720 		}
3721 	}
3722 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3723 		dc->hwss.program_front_end_for_ctx(dc, context);
3724 		if (dc->debug.validate_dml_output) {
3725 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3726 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3727 				if (cur_pipe->stream == NULL)
3728 					continue;
3729 
3730 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3731 						cur_pipe->plane_res.hubp, dc->ctx,
3732 						&context->res_ctx.pipe_ctx[i].rq_regs,
3733 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3734 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3735 			}
3736 		}
3737 	}
3738 
3739 	// Update Type FAST, Surface updates
3740 	if (update_type == UPDATE_TYPE_FAST) {
3741 		if (dc->hwss.set_flip_control_gsl)
3742 			for (i = 0; i < surface_count; i++) {
3743 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3744 
3745 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3746 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3747 
3748 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3749 						continue;
3750 
3751 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3752 						continue;
3753 
3754 					// GSL has to be used for flip immediate
3755 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3756 							pipe_ctx->plane_state->flip_immediate);
3757 				}
3758 			}
3759 
3760 		/* Perform requested Updates */
3761 		for (i = 0; i < surface_count; i++) {
3762 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3763 
3764 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3765 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3766 
3767 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3768 					continue;
3769 
3770 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3771 					continue;
3772 
3773 				/*program triple buffer after lock based on flip type*/
3774 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3775 					/*only enable triplebuffer for  fast_update*/
3776 					dc->hwss.program_triplebuffer(
3777 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3778 				}
3779 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3780 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3781 			}
3782 		}
3783 	}
3784 
3785 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3786 		dc->hwss.interdependent_update_lock(dc, context, false);
3787 	} else {
3788 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3789 	}
3790 
3791 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3792 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3793 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3794 				top_pipe_to_program->stream_res.tg,
3795 				CRTC_STATE_VACTIVE);
3796 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3797 				top_pipe_to_program->stream_res.tg,
3798 				CRTC_STATE_VBLANK);
3799 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3800 				top_pipe_to_program->stream_res.tg,
3801 				CRTC_STATE_VACTIVE);
3802 
3803 			if (should_use_dmub_lock(stream->link)) {
3804 				union dmub_hw_lock_flags hw_locks = { 0 };
3805 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3806 
3807 				hw_locks.bits.lock_dig = 1;
3808 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3809 
3810 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3811 							false,
3812 							&hw_locks,
3813 							&inst_flags);
3814 			} else
3815 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3816 					top_pipe_to_program->stream_res.tg);
3817 		}
3818 
3819 	if (subvp_curr_use) {
3820 		/* If enabling subvp or transitioning from subvp->subvp, enable the
3821 		 * phantom streams before we program front end for the phantom pipes.
3822 		 */
3823 		if (update_type != UPDATE_TYPE_FAST) {
3824 			if (dc->hwss.enable_phantom_streams)
3825 				dc->hwss.enable_phantom_streams(dc, context);
3826 		}
3827 	}
3828 
3829 	if (update_type != UPDATE_TYPE_FAST)
3830 		dc->hwss.post_unlock_program_front_end(dc, context);
3831 
3832 	if (subvp_prev_use && !subvp_curr_use) {
3833 		/* If disabling subvp, disable phantom streams after front end
3834 		 * programming has completed (we turn on phantom OTG in order
3835 		 * to complete the plane disable for phantom pipes).
3836 		 */
3837 		dc->hwss.apply_ctx_to_hw(dc, context);
3838 	}
3839 
3840 	if (update_type != UPDATE_TYPE_FAST)
3841 		if (dc->hwss.commit_subvp_config)
3842 			dc->hwss.commit_subvp_config(dc, context);
3843 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3844 	 * move the SubVP lock to after the phantom pipes have been setup
3845 	 */
3846 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3847 		if (dc->hwss.subvp_pipe_control_lock)
3848 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3849 	} else {
3850 		if (dc->hwss.subvp_pipe_control_lock)
3851 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3852 	}
3853 
3854 	// Fire manual trigger only when bottom plane is flipped
3855 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3856 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3857 
3858 		if (!pipe_ctx->plane_state)
3859 			continue;
3860 
3861 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3862 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3863 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3864 				pipe_ctx->plane_state->skip_manual_trigger)
3865 			continue;
3866 
3867 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3868 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3869 	}
3870 }
3871 
3872 /**
3873  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3874  *
3875  * @dc: Used to get the current state status
3876  * @stream: Target stream, which we want to remove the attached planes
3877  * @surface_count: Number of surface update
3878  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3879  *
3880  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3881  * the MPO if used simultaneously in some specific configurations (e.g.,
3882  * 4k@144). This function checks if the incoming context requires applying a
3883  * transition state with unnecessary pipe splitting and ODM disabled to
3884  * circumvent our hardware limitations to prevent this edge case. If the OPP
3885  * associated with an MPCC might change due to plane additions, this function
3886  * returns true.
3887  *
3888  * Return:
3889  * Return true if OPP and MPCC might change, otherwise, return false.
3890  */
3891 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3892 		struct dc_stream_state *stream,
3893 		int surface_count,
3894 		bool *is_plane_addition)
3895 {
3896 
3897 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3898 	bool force_minimal_pipe_splitting = false;
3899 	bool subvp_active = false;
3900 	uint32_t i;
3901 
3902 	*is_plane_addition = false;
3903 
3904 	if (cur_stream_status &&
3905 			dc->current_state->stream_count > 0 &&
3906 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3907 		/* determine if minimal transition is required due to MPC*/
3908 		if (surface_count > 0) {
3909 			if (cur_stream_status->plane_count > surface_count) {
3910 				force_minimal_pipe_splitting = true;
3911 			} else if (cur_stream_status->plane_count < surface_count) {
3912 				force_minimal_pipe_splitting = true;
3913 				*is_plane_addition = true;
3914 			}
3915 		}
3916 	}
3917 
3918 	if (cur_stream_status &&
3919 			dc->current_state->stream_count == 1 &&
3920 			dc->debug.enable_single_display_2to1_odm_policy) {
3921 		/* determine if minimal transition is required due to dynamic ODM*/
3922 		if (surface_count > 0) {
3923 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3924 				force_minimal_pipe_splitting = true;
3925 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3926 				force_minimal_pipe_splitting = true;
3927 				*is_plane_addition = true;
3928 			}
3929 		}
3930 	}
3931 
3932 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3933 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3934 
3935 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3936 			subvp_active = true;
3937 			break;
3938 		}
3939 	}
3940 
3941 	/* For SubVP when adding or removing planes we need to add a minimal transition
3942 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3943 	 * must use the minimal transition path to disable the pipe correctly.
3944 	 *
3945 	 * We want to use the minimal transition whenever subvp is active, not only if
3946 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
3947 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3948 	 * a min transition to disable subvp.
3949 	 */
3950 	if (cur_stream_status && subvp_active) {
3951 		/* determine if minimal transition is required due to SubVP*/
3952 		if (cur_stream_status->plane_count > surface_count) {
3953 			force_minimal_pipe_splitting = true;
3954 		} else if (cur_stream_status->plane_count < surface_count) {
3955 			force_minimal_pipe_splitting = true;
3956 			*is_plane_addition = true;
3957 		}
3958 	}
3959 
3960 	return force_minimal_pipe_splitting;
3961 }
3962 
3963 /**
3964  * commit_minimal_transition_state - Create a transition pipe split state
3965  *
3966  * @dc: Used to get the current state status
3967  * @transition_base_context: New transition state
3968  *
3969  * In some specific configurations, such as pipe split on multi-display with
3970  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3971  * programming when moving to new planes. To mitigate those types of problems,
3972  * this function adds a transition state that minimizes pipe usage before
3973  * programming the new configuration. When adding a new plane, the current
3974  * state requires the least pipes, so it is applied without splitting. When
3975  * removing a plane, the new state requires the least pipes, so it is applied
3976  * without splitting.
3977  *
3978  * Return:
3979  * Return false if something is wrong in the transition state.
3980  */
3981 static bool commit_minimal_transition_state(struct dc *dc,
3982 		struct dc_state *transition_base_context)
3983 {
3984 	struct dc_state *transition_context = dc_create_state(dc);
3985 	enum pipe_split_policy tmp_mpc_policy = 0;
3986 	bool temp_dynamic_odm_policy = 0;
3987 	bool temp_subvp_policy = 0;
3988 	enum dc_status ret = DC_ERROR_UNEXPECTED;
3989 	unsigned int i, j;
3990 	unsigned int pipe_in_use = 0;
3991 	bool subvp_in_use = false;
3992 	bool odm_in_use = false;
3993 
3994 	if (!transition_context)
3995 		return false;
3996 	/* Setup:
3997 	 * Store the current ODM and MPC config in some temp variables to be
3998 	 * restored after we commit the transition state.
3999 	 */
4000 
4001 	/* check current pipes in use*/
4002 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4003 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4004 
4005 		if (pipe->plane_state)
4006 			pipe_in_use++;
4007 	}
4008 
4009 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4010 	 * pipe, we must use the minimal transition.
4011 	 */
4012 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4013 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4014 
4015 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4016 			subvp_in_use = true;
4017 			break;
4018 		}
4019 	}
4020 
4021 	/* If ODM is enabled and we are adding or removing planes from any ODM
4022 	 * pipe, we must use the minimal transition.
4023 	 */
4024 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4025 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4026 
4027 		if (pipe->stream && pipe->next_odm_pipe) {
4028 			odm_in_use = true;
4029 			break;
4030 		}
4031 	}
4032 
4033 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4034 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4035 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4036 	 * call it again. Otherwise return true to skip.
4037 	 *
4038 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4039 	 * enter/exit MPO when DCN still have enough resources.
4040 	 */
4041 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4042 		dc_release_state(transition_context);
4043 		return true;
4044 	}
4045 
4046 	if (!dc->config.is_vmin_only_asic) {
4047 		tmp_mpc_policy = dc->debug.pipe_split_policy;
4048 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4049 	}
4050 
4051 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4052 	dc->debug.enable_single_display_2to1_odm_policy = false;
4053 
4054 	temp_subvp_policy = dc->debug.force_disable_subvp;
4055 	dc->debug.force_disable_subvp = true;
4056 
4057 	dc_resource_state_copy_construct(transition_base_context, transition_context);
4058 
4059 	/* commit minimal state */
4060 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4061 		for (i = 0; i < transition_context->stream_count; i++) {
4062 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4063 
4064 			for (j = 0; j < stream_status->plane_count; j++) {
4065 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4066 
4067 				/* force vsync flip when reconfiguring pipes to prevent underflow
4068 				 * and corruption
4069 				 */
4070 				plane_state->flip_immediate = false;
4071 			}
4072 		}
4073 
4074 		ret = dc_commit_state_no_check(dc, transition_context);
4075 	}
4076 
4077 	/* always release as dc_commit_state_no_check retains in good case */
4078 	dc_release_state(transition_context);
4079 
4080 	/* TearDown:
4081 	 * Restore original configuration for ODM and MPO.
4082 	 */
4083 	if (!dc->config.is_vmin_only_asic)
4084 		dc->debug.pipe_split_policy = tmp_mpc_policy;
4085 
4086 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4087 	dc->debug.force_disable_subvp = temp_subvp_policy;
4088 
4089 	if (ret != DC_OK) {
4090 		/* this should never happen */
4091 		BREAK_TO_DEBUGGER();
4092 		return false;
4093 	}
4094 
4095 	/* force full surface update */
4096 	for (i = 0; i < dc->current_state->stream_count; i++) {
4097 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4098 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4099 		}
4100 	}
4101 
4102 	return true;
4103 }
4104 
4105 /**
4106  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4107  *
4108  * @dc: Current DC state
4109  * @context: New DC state to be programmed
4110  * @surface_count: Number of surfaces that have an updated
4111  * @stream: Corresponding stream to be updated in the current flip
4112  *
4113  * Updating seamless boot flags do not need to be part of the commit sequence. This
4114  * helper function will update the seamless boot flags on each flip (if required)
4115  * outside of the HW commit sequence (fast or slow).
4116  *
4117  * Return: void
4118  */
4119 static void update_seamless_boot_flags(struct dc *dc,
4120 		struct dc_state *context,
4121 		int surface_count,
4122 		struct dc_stream_state *stream)
4123 {
4124 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4125 		/* Optimize seamless boot flag keeps clocks and watermarks high until
4126 		 * first flip. After first flip, optimization is required to lower
4127 		 * bandwidth. Important to note that it is expected UEFI will
4128 		 * only light up a single display on POST, therefore we only expect
4129 		 * one stream with seamless boot flag set.
4130 		 */
4131 		if (stream->apply_seamless_boot_optimization) {
4132 			stream->apply_seamless_boot_optimization = false;
4133 
4134 			if (get_seamless_boot_stream_count(context) == 0)
4135 				dc->optimized_required = true;
4136 		}
4137 	}
4138 }
4139 
4140 static void populate_fast_updates(struct dc_fast_update *fast_update,
4141 		struct dc_surface_update *srf_updates,
4142 		int surface_count,
4143 		struct dc_stream_update *stream_update)
4144 {
4145 	int i = 0;
4146 
4147 	if (stream_update) {
4148 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4149 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4150 	}
4151 
4152 	for (i = 0; i < surface_count; i++) {
4153 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4154 		fast_update[i].gamma = srf_updates[i].gamma;
4155 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4156 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4157 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4158 	}
4159 }
4160 
4161 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4162 {
4163 	int i;
4164 
4165 	if (fast_update[0].out_transfer_func ||
4166 		fast_update[0].output_csc_transform)
4167 		return true;
4168 
4169 	for (i = 0; i < surface_count; i++) {
4170 		if (fast_update[i].flip_addr ||
4171 				fast_update[i].gamma ||
4172 				fast_update[i].gamut_remap_matrix ||
4173 				fast_update[i].input_csc_color_matrix ||
4174 				fast_update[i].coeff_reduction_factor)
4175 			return true;
4176 	}
4177 
4178 	return false;
4179 }
4180 
4181 static bool full_update_required(struct dc *dc,
4182 		struct dc_surface_update *srf_updates,
4183 		int surface_count,
4184 		struct dc_stream_update *stream_update,
4185 		struct dc_stream_state *stream)
4186 {
4187 
4188 	int i;
4189 	struct dc_stream_status *stream_status;
4190 	const struct dc_state *context = dc->current_state;
4191 
4192 	for (i = 0; i < surface_count; i++) {
4193 		if (srf_updates &&
4194 				(srf_updates[i].plane_info ||
4195 				srf_updates[i].scaling_info ||
4196 				(srf_updates[i].hdr_mult.value &&
4197 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4198 				srf_updates[i].in_transfer_func ||
4199 				srf_updates[i].func_shaper ||
4200 				srf_updates[i].lut3d_func ||
4201 				srf_updates[i].blend_tf ||
4202 				srf_updates[i].surface->force_full_update ||
4203 				(srf_updates[i].flip_addr &&
4204 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4205 				!is_surface_in_context(context, srf_updates[i].surface)))
4206 			return true;
4207 	}
4208 
4209 	if (stream_update &&
4210 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4211 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4212 			stream_update->integer_scaling_update) ||
4213 			stream_update->hdr_static_metadata ||
4214 			stream_update->abm_level ||
4215 			stream_update->periodic_interrupt ||
4216 			stream_update->vrr_infopacket ||
4217 			stream_update->vsc_infopacket ||
4218 			stream_update->vsp_infopacket ||
4219 			stream_update->hfvsif_infopacket ||
4220 			stream_update->vtem_infopacket ||
4221 			stream_update->adaptive_sync_infopacket ||
4222 			stream_update->dpms_off ||
4223 			stream_update->allow_freesync ||
4224 			stream_update->vrr_active_variable ||
4225 			stream_update->vrr_active_fixed ||
4226 			stream_update->gamut_remap ||
4227 			stream_update->output_color_space ||
4228 			stream_update->dither_option ||
4229 			stream_update->wb_update ||
4230 			stream_update->dsc_config ||
4231 			stream_update->mst_bw_update ||
4232 			stream_update->func_shaper ||
4233 			stream_update->lut3d_func ||
4234 			stream_update->pending_test_pattern ||
4235 			stream_update->crtc_timing_adjust))
4236 		return true;
4237 
4238 	if (stream) {
4239 		stream_status = dc_stream_get_status(stream);
4240 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4241 			return true;
4242 	}
4243 	if (dc->idle_optimizations_allowed)
4244 		return true;
4245 
4246 	return false;
4247 }
4248 
4249 static bool fast_update_only(struct dc *dc,
4250 		struct dc_fast_update *fast_update,
4251 		struct dc_surface_update *srf_updates,
4252 		int surface_count,
4253 		struct dc_stream_update *stream_update,
4254 		struct dc_stream_state *stream)
4255 {
4256 	return fast_updates_exist(fast_update, surface_count)
4257 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4258 }
4259 
4260 bool dc_update_planes_and_stream(struct dc *dc,
4261 		struct dc_surface_update *srf_updates, int surface_count,
4262 		struct dc_stream_state *stream,
4263 		struct dc_stream_update *stream_update)
4264 {
4265 	struct dc_state *context;
4266 	enum surface_update_type update_type;
4267 	int i;
4268 	struct mall_temp_config mall_temp_config;
4269 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4270 
4271 	/* In cases where MPO and split or ODM are used transitions can
4272 	 * cause underflow. Apply stream configuration with minimal pipe
4273 	 * split first to avoid unsupported transitions for active pipes.
4274 	 */
4275 	bool force_minimal_pipe_splitting = 0;
4276 	bool is_plane_addition = 0;
4277 
4278 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4279 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4280 			dc,
4281 			stream,
4282 			surface_count,
4283 			&is_plane_addition);
4284 
4285 	/* on plane addition, minimal state is the current one */
4286 	if (force_minimal_pipe_splitting && is_plane_addition &&
4287 		!commit_minimal_transition_state(dc, dc->current_state))
4288 				return false;
4289 
4290 	if (!update_planes_and_stream_state(
4291 			dc,
4292 			srf_updates,
4293 			surface_count,
4294 			stream,
4295 			stream_update,
4296 			&update_type,
4297 			&context))
4298 		return false;
4299 
4300 	/* on plane removal, minimal state is the new one */
4301 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4302 		/* Since all phantom pipes are removed in full validation,
4303 		 * we have to save and restore the subvp/mall config when
4304 		 * we do a minimal transition since the flags marking the
4305 		 * pipe as subvp/phantom will be cleared (dc copy constructor
4306 		 * creates a shallow copy).
4307 		 */
4308 		if (dc->res_pool->funcs->save_mall_state)
4309 			dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4310 		if (!commit_minimal_transition_state(dc, context)) {
4311 			dc_release_state(context);
4312 			return false;
4313 		}
4314 		if (dc->res_pool->funcs->restore_mall_state)
4315 			dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4316 
4317 		/* If we do a minimal transition with plane removal and the context
4318 		 * has subvp we also have to retain back the phantom stream / planes
4319 		 * since the refcount is decremented as part of the min transition
4320 		 * (we commit a state with no subvp, so the phantom streams / planes
4321 		 * had to be removed).
4322 		 */
4323 		if (dc->res_pool->funcs->retain_phantom_pipes)
4324 			dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4325 		update_type = UPDATE_TYPE_FULL;
4326 	}
4327 
4328 	update_seamless_boot_flags(dc, context, surface_count, stream);
4329 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4330 			!dc->debug.enable_legacy_fast_update) {
4331 		commit_planes_for_stream_fast(dc,
4332 				srf_updates,
4333 				surface_count,
4334 				stream,
4335 				stream_update,
4336 				update_type,
4337 				context);
4338 	} else {
4339 		if (!stream_update &&
4340 				dc->hwss.is_pipe_topology_transition_seamless &&
4341 				!dc->hwss.is_pipe_topology_transition_seamless(
4342 						dc, dc->current_state, context)) {
4343 
4344 			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4345 			BREAK_TO_DEBUGGER();
4346 		}
4347 		commit_planes_for_stream(
4348 				dc,
4349 				srf_updates,
4350 				surface_count,
4351 				stream,
4352 				stream_update,
4353 				update_type,
4354 				context);
4355 	}
4356 
4357 	if (dc->current_state != context) {
4358 
4359 		/* Since memory free requires elevated IRQL, an interrupt
4360 		 * request is generated by mem free. If this happens
4361 		 * between freeing and reassigning the context, our vsync
4362 		 * interrupt will call into dc and cause a memory
4363 		 * corruption BSOD. Hence, we first reassign the context,
4364 		 * then free the old context.
4365 		 */
4366 
4367 		struct dc_state *old = dc->current_state;
4368 
4369 		dc->current_state = context;
4370 		dc_release_state(old);
4371 
4372 		// clear any forced full updates
4373 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4374 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4375 
4376 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4377 				pipe_ctx->plane_state->force_full_update = false;
4378 		}
4379 	}
4380 	return true;
4381 }
4382 
4383 void dc_commit_updates_for_stream(struct dc *dc,
4384 		struct dc_surface_update *srf_updates,
4385 		int surface_count,
4386 		struct dc_stream_state *stream,
4387 		struct dc_stream_update *stream_update,
4388 		struct dc_state *state)
4389 {
4390 	const struct dc_stream_status *stream_status;
4391 	enum surface_update_type update_type;
4392 	struct dc_state *context;
4393 	struct dc_context *dc_ctx = dc->ctx;
4394 	int i, j;
4395 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4396 
4397 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4398 	stream_status = dc_stream_get_status(stream);
4399 	context = dc->current_state;
4400 
4401 	update_type = dc_check_update_surfaces_for_stream(
4402 				dc, srf_updates, surface_count, stream_update, stream_status);
4403 
4404 	/* TODO: Since change commit sequence can have a huge impact,
4405 	 * we decided to only enable it for DCN3x. However, as soon as
4406 	 * we get more confident about this change we'll need to enable
4407 	 * the new sequence for all ASICs.
4408 	 */
4409 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4410 		/*
4411 		 * Previous frame finished and HW is ready for optimization.
4412 		 */
4413 		if (update_type == UPDATE_TYPE_FAST)
4414 			dc_post_update_surfaces_to_stream(dc);
4415 
4416 		dc_update_planes_and_stream(dc, srf_updates,
4417 					    surface_count, stream,
4418 					    stream_update);
4419 		return;
4420 	}
4421 
4422 	if (update_type >= update_surface_trace_level)
4423 		update_surface_trace(dc, srf_updates, surface_count);
4424 
4425 
4426 	if (update_type >= UPDATE_TYPE_FULL) {
4427 
4428 		/* initialize scratch memory for building context */
4429 		context = dc_create_state(dc);
4430 		if (context == NULL) {
4431 			DC_ERROR("Failed to allocate new validate context!\n");
4432 			return;
4433 		}
4434 
4435 		dc_resource_state_copy_construct(state, context);
4436 
4437 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4438 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4439 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4440 
4441 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4442 				new_pipe->plane_state->force_full_update = true;
4443 		}
4444 	} else if (update_type == UPDATE_TYPE_FAST) {
4445 		/*
4446 		 * Previous frame finished and HW is ready for optimization.
4447 		 */
4448 		dc_post_update_surfaces_to_stream(dc);
4449 	}
4450 
4451 
4452 	for (i = 0; i < surface_count; i++) {
4453 		struct dc_plane_state *surface = srf_updates[i].surface;
4454 
4455 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4456 
4457 		if (update_type >= UPDATE_TYPE_MED) {
4458 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4459 				struct pipe_ctx *pipe_ctx =
4460 					&context->res_ctx.pipe_ctx[j];
4461 
4462 				if (pipe_ctx->plane_state != surface)
4463 					continue;
4464 
4465 				resource_build_scaling_params(pipe_ctx);
4466 			}
4467 		}
4468 	}
4469 
4470 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4471 
4472 	if (update_type >= UPDATE_TYPE_FULL) {
4473 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4474 			DC_ERROR("Mode validation failed for stream update!\n");
4475 			dc_release_state(context);
4476 			return;
4477 		}
4478 	}
4479 
4480 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4481 
4482 	update_seamless_boot_flags(dc, context, surface_count, stream);
4483 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4484 			!dc->debug.enable_legacy_fast_update) {
4485 		commit_planes_for_stream_fast(dc,
4486 				srf_updates,
4487 				surface_count,
4488 				stream,
4489 				stream_update,
4490 				update_type,
4491 				context);
4492 	} else {
4493 		commit_planes_for_stream(
4494 				dc,
4495 				srf_updates,
4496 				surface_count,
4497 				stream,
4498 				stream_update,
4499 				update_type,
4500 				context);
4501 	}
4502 	/*update current_State*/
4503 	if (dc->current_state != context) {
4504 
4505 		struct dc_state *old = dc->current_state;
4506 
4507 		dc->current_state = context;
4508 		dc_release_state(old);
4509 
4510 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4511 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4512 
4513 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4514 				pipe_ctx->plane_state->force_full_update = false;
4515 		}
4516 	}
4517 
4518 	/* Legacy optimization path for DCE. */
4519 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4520 		dc_post_update_surfaces_to_stream(dc);
4521 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4522 	}
4523 
4524 	return;
4525 
4526 }
4527 
4528 uint8_t dc_get_current_stream_count(struct dc *dc)
4529 {
4530 	return dc->current_state->stream_count;
4531 }
4532 
4533 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4534 {
4535 	if (i < dc->current_state->stream_count)
4536 		return dc->current_state->streams[i];
4537 	return NULL;
4538 }
4539 
4540 enum dc_irq_source dc_interrupt_to_irq_source(
4541 		struct dc *dc,
4542 		uint32_t src_id,
4543 		uint32_t ext_id)
4544 {
4545 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4546 }
4547 
4548 /*
4549  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4550  */
4551 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4552 {
4553 
4554 	if (dc == NULL)
4555 		return false;
4556 
4557 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4558 }
4559 
4560 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4561 {
4562 	dal_irq_service_ack(dc->res_pool->irqs, src);
4563 }
4564 
4565 void dc_power_down_on_boot(struct dc *dc)
4566 {
4567 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4568 			dc->hwss.power_down_on_boot)
4569 		dc->hwss.power_down_on_boot(dc);
4570 }
4571 
4572 void dc_set_power_state(
4573 	struct dc *dc,
4574 	enum dc_acpi_cm_power_state power_state)
4575 {
4576 	struct kref refcount;
4577 	struct display_mode_lib *dml;
4578 
4579 	if (!dc->current_state)
4580 		return;
4581 
4582 	switch (power_state) {
4583 	case DC_ACPI_CM_POWER_STATE_D0:
4584 		dc_resource_state_construct(dc, dc->current_state);
4585 
4586 		dc_z10_restore(dc);
4587 
4588 		dc->hwss.init_hw(dc);
4589 
4590 		if (dc->hwss.init_sys_ctx != NULL &&
4591 			dc->vm_pa_config.valid) {
4592 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4593 		}
4594 
4595 		break;
4596 	default:
4597 		ASSERT(dc->current_state->stream_count == 0);
4598 		/* Zero out the current context so that on resume we start with
4599 		 * clean state, and dc hw programming optimizations will not
4600 		 * cause any trouble.
4601 		 */
4602 		dml = kzalloc(sizeof(struct display_mode_lib),
4603 				GFP_KERNEL);
4604 
4605 		ASSERT(dml);
4606 		if (!dml)
4607 			return;
4608 
4609 		/* Preserve refcount */
4610 		refcount = dc->current_state->refcount;
4611 		/* Preserve display mode lib */
4612 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4613 
4614 		dc_resource_state_destruct(dc->current_state);
4615 		memset(dc->current_state, 0,
4616 				sizeof(*dc->current_state));
4617 
4618 		dc->current_state->refcount = refcount;
4619 		dc->current_state->bw_ctx.dml = *dml;
4620 
4621 		kfree(dml);
4622 
4623 		break;
4624 	}
4625 }
4626 
4627 void dc_resume(struct dc *dc)
4628 {
4629 	uint32_t i;
4630 
4631 	for (i = 0; i < dc->link_count; i++)
4632 		dc->link_srv->resume(dc->links[i]);
4633 }
4634 
4635 bool dc_is_dmcu_initialized(struct dc *dc)
4636 {
4637 	struct dmcu *dmcu = dc->res_pool->dmcu;
4638 
4639 	if (dmcu)
4640 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4641 	return false;
4642 }
4643 
4644 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4645 {
4646 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4647 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4648 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4649 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4650 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4651 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4652 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4653 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4654 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4655 }
4656 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4657 {
4658 	if (dc->hwss.set_clock)
4659 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4660 	return DC_ERROR_UNEXPECTED;
4661 }
4662 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4663 {
4664 	if (dc->hwss.get_clock)
4665 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4666 }
4667 
4668 /* enable/disable eDP PSR without specify stream for eDP */
4669 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4670 {
4671 	int i;
4672 	bool allow_active;
4673 
4674 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4675 		struct dc_link *link;
4676 		struct dc_stream_state *stream = dc->current_state->streams[i];
4677 
4678 		link = stream->link;
4679 		if (!link)
4680 			continue;
4681 
4682 		if (link->psr_settings.psr_feature_enabled) {
4683 			if (enable && !link->psr_settings.psr_allow_active) {
4684 				allow_active = true;
4685 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4686 					return false;
4687 			} else if (!enable && link->psr_settings.psr_allow_active) {
4688 				allow_active = false;
4689 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4690 					return false;
4691 			}
4692 		}
4693 	}
4694 
4695 	return true;
4696 }
4697 
4698 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4699 {
4700 	if (dc->debug.disable_idle_power_optimizations)
4701 		return;
4702 
4703 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4704 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4705 			return;
4706 
4707 	if (allow == dc->idle_optimizations_allowed)
4708 		return;
4709 
4710 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4711 		dc->idle_optimizations_allowed = allow;
4712 }
4713 
4714 /* set min and max memory clock to lowest and highest DPM level, respectively */
4715 void dc_unlock_memory_clock_frequency(struct dc *dc)
4716 {
4717 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4718 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4719 
4720 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4721 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4722 }
4723 
4724 /* set min memory clock to the min required for current mode, max to maxDPM */
4725 void dc_lock_memory_clock_frequency(struct dc *dc)
4726 {
4727 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4728 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4729 
4730 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4731 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4732 
4733 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4734 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4735 }
4736 
4737 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4738 {
4739 	struct dc_state *context = dc->current_state;
4740 	struct hubp *hubp;
4741 	struct pipe_ctx *pipe;
4742 	int i;
4743 
4744 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4745 		pipe = &context->res_ctx.pipe_ctx[i];
4746 
4747 		if (pipe->stream != NULL) {
4748 			dc->hwss.disable_pixel_data(dc, pipe, true);
4749 
4750 			// wait for double buffer
4751 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4752 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4753 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4754 
4755 			hubp = pipe->plane_res.hubp;
4756 			hubp->funcs->set_blank_regs(hubp, true);
4757 		}
4758 	}
4759 
4760 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4761 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4762 
4763 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4764 		pipe = &context->res_ctx.pipe_ctx[i];
4765 
4766 		if (pipe->stream != NULL) {
4767 			dc->hwss.disable_pixel_data(dc, pipe, false);
4768 
4769 			hubp = pipe->plane_res.hubp;
4770 			hubp->funcs->set_blank_regs(hubp, false);
4771 		}
4772 	}
4773 }
4774 
4775 
4776 /**
4777  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4778  * @dc: pointer to dc of the dm calling this
4779  * @enable: True = transition to DC mode, false = transition back to AC mode
4780  *
4781  * Some SoCs define additional clock limits when in DC mode, DM should
4782  * invoke this function when the platform undergoes a power source transition
4783  * so DC can apply/unapply the limit. This interface may be disruptive to
4784  * the onscreen content.
4785  *
4786  * Context: Triggered by OS through DM interface, or manually by escape calls.
4787  * Need to hold a dclock when doing so.
4788  *
4789  * Return: none (void function)
4790  *
4791  */
4792 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4793 {
4794 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4795 	bool p_state_change_support;
4796 
4797 	if (!dc->config.dc_mode_clk_limit_support)
4798 		return;
4799 
4800 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4801 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4802 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4803 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4804 	}
4805 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4806 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4807 
4808 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4809 		if (p_state_change_support) {
4810 			if (funcMin <= softMax)
4811 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4812 			// else: No-Op
4813 		} else {
4814 			if (funcMin <= softMax)
4815 				blank_and_force_memclk(dc, true, softMax);
4816 			// else: No-Op
4817 		}
4818 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4819 		if (p_state_change_support) {
4820 			if (funcMin <= softMax)
4821 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4822 			// else: No-Op
4823 		} else {
4824 			if (funcMin <= softMax)
4825 				blank_and_force_memclk(dc, true, maxDPM);
4826 			// else: No-Op
4827 		}
4828 	}
4829 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4830 }
4831 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4832 		struct dc_cursor_attributes *cursor_attr)
4833 {
4834 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4835 		return true;
4836 	return false;
4837 }
4838 
4839 /* cleanup on driver unload */
4840 void dc_hardware_release(struct dc *dc)
4841 {
4842 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4843 
4844 	if (dc->hwss.hardware_release)
4845 		dc->hwss.hardware_release(dc);
4846 }
4847 
4848 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4849 {
4850 	if (dc->current_state)
4851 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4852 }
4853 
4854 /**
4855  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4856  *
4857  * @dc: [in] dc structure
4858  *
4859  * Checks whether DMUB FW supports outbox notifications, if supported DM
4860  * should register outbox interrupt prior to actually enabling interrupts
4861  * via dc_enable_dmub_outbox
4862  *
4863  * Return:
4864  * True if DMUB FW supports outbox notifications, False otherwise
4865  */
4866 bool dc_is_dmub_outbox_supported(struct dc *dc)
4867 {
4868 	switch (dc->ctx->asic_id.chip_family) {
4869 
4870 	case FAMILY_YELLOW_CARP:
4871 		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4872 		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4873 		    !dc->debug.dpia_debug.bits.disable_dpia)
4874 			return true;
4875 	break;
4876 
4877 	case AMDGPU_FAMILY_GC_11_0_1:
4878 	case AMDGPU_FAMILY_GC_11_5_0:
4879 		if (!dc->debug.dpia_debug.bits.disable_dpia)
4880 			return true;
4881 	break;
4882 
4883 	default:
4884 		break;
4885 	}
4886 
4887 	/* dmub aux needs dmub notifications to be enabled */
4888 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4889 
4890 }
4891 
4892 /**
4893  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4894  *
4895  * @dc: [in] dc structure
4896  *
4897  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4898  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4899  * API shall be removed after switching.
4900  *
4901  * Return:
4902  * True if DMUB FW supports outbox notifications, False otherwise
4903  */
4904 bool dc_enable_dmub_notifications(struct dc *dc)
4905 {
4906 	return dc_is_dmub_outbox_supported(dc);
4907 }
4908 
4909 /**
4910  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4911  *
4912  * @dc: [in] dc structure
4913  *
4914  * Enables DMUB unsolicited notifications to x86 via outbox.
4915  */
4916 void dc_enable_dmub_outbox(struct dc *dc)
4917 {
4918 	struct dc_context *dc_ctx = dc->ctx;
4919 
4920 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4921 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4922 }
4923 
4924 /**
4925  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4926  *                                      Sets port index appropriately for legacy DDC
4927  * @dc: dc structure
4928  * @link_index: link index
4929  * @payload: aux payload
4930  *
4931  * Returns: True if successful, False if failure
4932  */
4933 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4934 				uint32_t link_index,
4935 				struct aux_payload *payload)
4936 {
4937 	uint8_t action;
4938 	union dmub_rb_cmd cmd = {0};
4939 
4940 	ASSERT(payload->length <= 16);
4941 
4942 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4943 	cmd.dp_aux_access.header.payload_bytes = 0;
4944 	/* For dpia, ddc_pin is set to NULL */
4945 	if (!dc->links[link_index]->ddc->ddc_pin)
4946 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4947 	else
4948 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4949 
4950 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4951 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4952 	cmd.dp_aux_access.aux_control.timeout = 0;
4953 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4954 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4955 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4956 
4957 	/* set aux action */
4958 	if (payload->i2c_over_aux) {
4959 		if (payload->write) {
4960 			if (payload->mot)
4961 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4962 			else
4963 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4964 		} else {
4965 			if (payload->mot)
4966 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4967 			else
4968 				action = DP_AUX_REQ_ACTION_I2C_READ;
4969 			}
4970 	} else {
4971 		if (payload->write)
4972 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4973 		else
4974 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4975 	}
4976 
4977 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4978 
4979 	if (payload->length && payload->write) {
4980 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4981 			payload->data,
4982 			payload->length
4983 			);
4984 	}
4985 
4986 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
4987 
4988 	return true;
4989 }
4990 
4991 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4992 					    uint8_t dpia_port_index)
4993 {
4994 	uint8_t index, link_index = 0xFF;
4995 
4996 	for (index = 0; index < dc->link_count; index++) {
4997 		/* ddc_hw_inst has dpia port index for dpia links
4998 		 * and ddc instance for legacy links
4999 		 */
5000 		if (!dc->links[index]->ddc->ddc_pin) {
5001 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5002 				link_index = index;
5003 				break;
5004 			}
5005 		}
5006 	}
5007 	ASSERT(link_index != 0xFF);
5008 	return link_index;
5009 }
5010 
5011 /**
5012  * dc_process_dmub_set_config_async - Submits set_config command
5013  *
5014  * @dc: [in] dc structure
5015  * @link_index: [in] link_index: link index
5016  * @payload: [in] aux payload
5017  * @notify: [out] set_config immediate reply
5018  *
5019  * Submits set_config command to dmub via inbox message.
5020  *
5021  * Return:
5022  * True if successful, False if failure
5023  */
5024 bool dc_process_dmub_set_config_async(struct dc *dc,
5025 				uint32_t link_index,
5026 				struct set_config_cmd_payload *payload,
5027 				struct dmub_notification *notify)
5028 {
5029 	union dmub_rb_cmd cmd = {0};
5030 	bool is_cmd_complete = true;
5031 
5032 	/* prepare SET_CONFIG command */
5033 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5034 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5035 
5036 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5037 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5038 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5039 
5040 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5041 		/* command is not processed by dmub */
5042 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5043 		return is_cmd_complete;
5044 	}
5045 
5046 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5047 	if (cmd.set_config_access.header.ret_status == 1)
5048 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5049 	else
5050 		/* cmd pending, will receive notification via outbox */
5051 		is_cmd_complete = false;
5052 
5053 	return is_cmd_complete;
5054 }
5055 
5056 /**
5057  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5058  *
5059  * @dc: [in] dc structure
5060  * @link_index: [in] link index
5061  * @mst_alloc_slots: [in] mst slots to be allotted
5062  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5063  *
5064  * Submits mst slot allocation command to dmub via inbox message
5065  *
5066  * Return:
5067  * DC_OK if successful, DC_ERROR if failure
5068  */
5069 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5070 				uint32_t link_index,
5071 				uint8_t mst_alloc_slots,
5072 				uint8_t *mst_slots_in_use)
5073 {
5074 	union dmub_rb_cmd cmd = {0};
5075 
5076 	/* prepare MST_ALLOC_SLOTS command */
5077 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5078 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5079 
5080 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5081 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5082 
5083 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5084 		/* command is not processed by dmub */
5085 		return DC_ERROR_UNEXPECTED;
5086 
5087 	/* command processed by dmub, if ret_status is 1 */
5088 	if (cmd.set_config_access.header.ret_status != 1)
5089 		/* command processing error */
5090 		return DC_ERROR_UNEXPECTED;
5091 
5092 	/* command processed and we have a status of 2, mst not enabled in dpia */
5093 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5094 		return DC_FAIL_UNSUPPORTED_1;
5095 
5096 	/* previously configured mst alloc and used slots did not match */
5097 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5098 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5099 		return DC_NOT_SUPPORTED;
5100 	}
5101 
5102 	return DC_OK;
5103 }
5104 
5105 /**
5106  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5107  *
5108  * @dc: [in] dc structure
5109  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5110  *
5111  * Submits dpia hpd int enable command to dmub via inbox message
5112  */
5113 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5114 				uint32_t hpd_int_enable)
5115 {
5116 	union dmub_rb_cmd cmd = {0};
5117 
5118 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5119 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5120 
5121 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5122 
5123 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5124 }
5125 
5126 /**
5127  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5128  *
5129  * @dc: [in] dc structure
5130  *
5131  *
5132  */
5133 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5134 {
5135 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5136 }
5137 
5138 /**
5139  * dc_disable_accelerated_mode - disable accelerated mode
5140  * @dc: dc structure
5141  */
5142 void dc_disable_accelerated_mode(struct dc *dc)
5143 {
5144 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5145 }
5146 
5147 
5148 /**
5149  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5150  *  @dc: dc structure
5151  *  @stream: stream where vsync int state changed
5152  *  @enable: whether vsync is enabled or disabled
5153  *
5154  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5155  *  interrupts after steady state is reached.
5156  */
5157 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5158 {
5159 	int i;
5160 	int edp_num;
5161 	struct pipe_ctx *pipe = NULL;
5162 	struct dc_link *link = stream->sink->link;
5163 	struct dc_link *edp_links[MAX_NUM_EDP];
5164 
5165 
5166 	if (link->psr_settings.psr_feature_enabled)
5167 		return;
5168 
5169 	if (link->replay_settings.replay_feature_enabled)
5170 		return;
5171 
5172 	/*find primary pipe associated with stream*/
5173 	for (i = 0; i < MAX_PIPES; i++) {
5174 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5175 
5176 		if (pipe->stream == stream && pipe->stream_res.tg)
5177 			break;
5178 	}
5179 
5180 	if (i == MAX_PIPES) {
5181 		ASSERT(0);
5182 		return;
5183 	}
5184 
5185 	dc_get_edp_links(dc, edp_links, &edp_num);
5186 
5187 	/* Determine panel inst */
5188 	for (i = 0; i < edp_num; i++) {
5189 		if (edp_links[i] == link)
5190 			break;
5191 	}
5192 
5193 	if (i == edp_num) {
5194 		return;
5195 	}
5196 
5197 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5198 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5199 }
5200 
5201 /*****************************************************************************
5202  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5203  *                          ABM
5204  *  @dc: dc structure
5205  *	@stream: stream where vsync int state changed
5206  *  @pData: abm hw states
5207  *
5208  ****************************************************************************/
5209 bool dc_abm_save_restore(
5210 		struct dc *dc,
5211 		struct dc_stream_state *stream,
5212 		struct abm_save_restore *pData)
5213 {
5214 	int i;
5215 	int edp_num;
5216 	struct pipe_ctx *pipe = NULL;
5217 	struct dc_link *link = stream->sink->link;
5218 	struct dc_link *edp_links[MAX_NUM_EDP];
5219 
5220 
5221 	/*find primary pipe associated with stream*/
5222 	for (i = 0; i < MAX_PIPES; i++) {
5223 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5224 
5225 		if (pipe->stream == stream && pipe->stream_res.tg)
5226 			break;
5227 	}
5228 
5229 	if (i == MAX_PIPES) {
5230 		ASSERT(0);
5231 		return false;
5232 	}
5233 
5234 	dc_get_edp_links(dc, edp_links, &edp_num);
5235 
5236 	/* Determine panel inst */
5237 	for (i = 0; i < edp_num; i++)
5238 		if (edp_links[i] == link)
5239 			break;
5240 
5241 	if (i == edp_num)
5242 		return false;
5243 
5244 	if (pipe->stream_res.abm &&
5245 		pipe->stream_res.abm->funcs->save_restore)
5246 		return pipe->stream_res.abm->funcs->save_restore(
5247 				pipe->stream_res.abm,
5248 				i,
5249 				pData);
5250 	return false;
5251 }
5252 
5253 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5254 {
5255 	unsigned int i;
5256 	bool subvp_in_use = false;
5257 
5258 	for (i = 0; i < dc->current_state->stream_count; i++) {
5259 		if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5260 			subvp_in_use = true;
5261 			break;
5262 		}
5263 	}
5264 	properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5265 }
5266 
5267 /**
5268  *****************************************************************************
5269  * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5270  *
5271  * Called when DM wants to power on/off eDP.
5272  *     Only work on links with flag skip_implict_edp_power_control is set.
5273  *
5274  *****************************************************************************
5275  */
5276 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5277 				 bool powerOn)
5278 {
5279 	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5280 		return;
5281 
5282 	if (edp_link->skip_implict_edp_power_control == false)
5283 		return;
5284 
5285 	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5286 }
5287 
5288