xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision 6c8c1406)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "clk_mgr.h"
37 #include "clock_source.h"
38 #include "dc_bios_types.h"
39 
40 #include "bios_parser_interface.h"
41 #include "bios/bios_parser_helper.h"
42 #include "include/irq_service_interface.h"
43 #include "transform.h"
44 #include "dmcu.h"
45 #include "dpp.h"
46 #include "timing_generator.h"
47 #include "abm.h"
48 #include "virtual/virtual_link_encoder.h"
49 #include "hubp.h"
50 
51 #include "link_hwss.h"
52 #include "link_encoder.h"
53 #include "link_enc_cfg.h"
54 
55 #include "dc_link.h"
56 #include "dc_link_ddc.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62 
63 #include "dsc.h"
64 
65 #include "vm_helper.h"
66 
67 #include "dce/dce_i2c.h"
68 
69 #include "dmub/dmub_srv.h"
70 
71 #include "i2caux_interface.h"
72 
73 #include "dce/dmub_psr.h"
74 
75 #include "dce/dmub_hw_lock_mgr.h"
76 
77 #include "dc_trace.h"
78 
79 #include "dce/dmub_outbox.h"
80 
81 #define CTX \
82 	dc->ctx
83 
84 #define DC_LOGGER \
85 	dc->ctx->logger
86 
87 static const char DC_BUILD_ID[] = "production-build";
88 
89 /**
90  * DOC: Overview
91  *
92  * DC is the OS-agnostic component of the amdgpu DC driver.
93  *
94  * DC maintains and validates a set of structs representing the state of the
95  * driver and writes that state to AMD hardware
96  *
97  * Main DC HW structs:
98  *
99  * struct dc - The central struct.  One per driver.  Created on driver load,
100  * destroyed on driver unload.
101  *
102  * struct dc_context - One per driver.
103  * Used as a backpointer by most other structs in dc.
104  *
105  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
106  * plugpoints).  Created on driver load, destroyed on driver unload.
107  *
108  * struct dc_sink - One per display.  Created on boot or hotplug.
109  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
110  * (the display directly attached).  It may also have one or more remote
111  * sinks (in the Multi-Stream Transport case)
112  *
113  * struct resource_pool - One per driver.  Represents the hw blocks not in the
114  * main pipeline.  Not directly accessible by dm.
115  *
116  * Main dc state structs:
117  *
118  * These structs can be created and destroyed as needed.  There is a full set of
119  * these structs in dc->current_state representing the currently programmed state.
120  *
121  * struct dc_state - The global DC state to track global state information,
122  * such as bandwidth values.
123  *
124  * struct dc_stream_state - Represents the hw configuration for the pipeline from
125  * a framebuffer to a display.  Maps one-to-one with dc_sink.
126  *
127  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
128  * and may have more in the Multi-Plane Overlay case.
129  *
130  * struct resource_context - Represents the programmable state of everything in
131  * the resource_pool.  Not directly accessible by dm.
132  *
133  * struct pipe_ctx - A member of struct resource_context.  Represents the
134  * internal hardware pipeline components.  Each dc_plane_state has either
135  * one or two (in the pipe-split case).
136  */
137 
138 /*******************************************************************************
139  * Private functions
140  ******************************************************************************/
141 
142 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
143 {
144 	if (new > *original)
145 		*original = new;
146 }
147 
148 static void destroy_links(struct dc *dc)
149 {
150 	uint32_t i;
151 
152 	for (i = 0; i < dc->link_count; i++) {
153 		if (NULL != dc->links[i])
154 			link_destroy(&dc->links[i]);
155 	}
156 }
157 
158 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
159 {
160 	int i;
161 	uint32_t count = 0;
162 
163 	for (i = 0; i < num_links; i++) {
164 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
165 				links[i]->is_internal_display)
166 			count++;
167 	}
168 
169 	return count;
170 }
171 
172 static int get_seamless_boot_stream_count(struct dc_state *ctx)
173 {
174 	uint8_t i;
175 	uint8_t seamless_boot_stream_count = 0;
176 
177 	for (i = 0; i < ctx->stream_count; i++)
178 		if (ctx->streams[i]->apply_seamless_boot_optimization)
179 			seamless_boot_stream_count++;
180 
181 	return seamless_boot_stream_count;
182 }
183 
184 static bool create_links(
185 		struct dc *dc,
186 		uint32_t num_virtual_links)
187 {
188 	int i;
189 	int connectors_num;
190 	struct dc_bios *bios = dc->ctx->dc_bios;
191 
192 	dc->link_count = 0;
193 
194 	connectors_num = bios->funcs->get_connectors_number(bios);
195 
196 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
197 
198 	if (connectors_num > ENUM_ID_COUNT) {
199 		dm_error(
200 			"DC: Number of connectors %d exceeds maximum of %d!\n",
201 			connectors_num,
202 			ENUM_ID_COUNT);
203 		return false;
204 	}
205 
206 	dm_output_to_console(
207 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
208 		__func__,
209 		connectors_num,
210 		num_virtual_links);
211 
212 	for (i = 0; i < connectors_num; i++) {
213 		struct link_init_data link_init_params = {0};
214 		struct dc_link *link;
215 
216 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
217 
218 		link_init_params.ctx = dc->ctx;
219 		/* next BIOS object table connector */
220 		link_init_params.connector_index = i;
221 		link_init_params.link_index = dc->link_count;
222 		link_init_params.dc = dc;
223 		link = link_create(&link_init_params);
224 
225 		if (link) {
226 			dc->links[dc->link_count] = link;
227 			link->dc = dc;
228 			++dc->link_count;
229 		}
230 	}
231 
232 	DC_LOG_DC("BIOS object table - end");
233 
234 	/* Create a link for each usb4 dpia port */
235 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
236 		struct link_init_data link_init_params = {0};
237 		struct dc_link *link;
238 
239 		link_init_params.ctx = dc->ctx;
240 		link_init_params.connector_index = i;
241 		link_init_params.link_index = dc->link_count;
242 		link_init_params.dc = dc;
243 		link_init_params.is_dpia_link = true;
244 
245 		link = link_create(&link_init_params);
246 		if (link) {
247 			dc->links[dc->link_count] = link;
248 			link->dc = dc;
249 			++dc->link_count;
250 		}
251 	}
252 
253 	for (i = 0; i < num_virtual_links; i++) {
254 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
255 		struct encoder_init_data enc_init = {0};
256 
257 		if (link == NULL) {
258 			BREAK_TO_DEBUGGER();
259 			goto failed_alloc;
260 		}
261 
262 		link->link_index = dc->link_count;
263 		dc->links[dc->link_count] = link;
264 		dc->link_count++;
265 
266 		link->ctx = dc->ctx;
267 		link->dc = dc;
268 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
269 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
270 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
271 		link->link_id.enum_id = ENUM_ID_1;
272 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
273 
274 		if (!link->link_enc) {
275 			BREAK_TO_DEBUGGER();
276 			goto failed_alloc;
277 		}
278 
279 		link->link_status.dpcd_caps = &link->dpcd_caps;
280 
281 		enc_init.ctx = dc->ctx;
282 		enc_init.channel = CHANNEL_ID_UNKNOWN;
283 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
284 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
285 		enc_init.connector = link->link_id;
286 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
287 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
288 		enc_init.encoder.enum_id = ENUM_ID_1;
289 		virtual_link_encoder_construct(link->link_enc, &enc_init);
290 	}
291 
292 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
293 
294 	return true;
295 
296 failed_alloc:
297 	return false;
298 }
299 
300 /* Create additional DIG link encoder objects if fewer than the platform
301  * supports were created during link construction. This can happen if the
302  * number of physical connectors is less than the number of DIGs.
303  */
304 static bool create_link_encoders(struct dc *dc)
305 {
306 	bool res = true;
307 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
308 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
309 	int i;
310 
311 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
312 	 * link encoders and physical display endpoints and does not require
313 	 * additional link encoder objects.
314 	 */
315 	if (num_usb4_dpia == 0)
316 		return res;
317 
318 	/* Create as many link encoder objects as the platform supports. DPIA
319 	 * endpoints can be programmably mapped to any DIG.
320 	 */
321 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
322 		for (i = 0; i < num_dig_link_enc; i++) {
323 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
324 
325 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
326 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
327 						(enum engine_id)(ENGINE_ID_DIGA + i));
328 				if (link_enc) {
329 					dc->res_pool->link_encoders[i] = link_enc;
330 					dc->res_pool->dig_link_enc_count++;
331 				} else {
332 					res = false;
333 				}
334 			}
335 		}
336 	}
337 
338 	return res;
339 }
340 
341 /* Destroy any additional DIG link encoder objects created by
342  * create_link_encoders().
343  * NB: Must only be called after destroy_links().
344  */
345 static void destroy_link_encoders(struct dc *dc)
346 {
347 	unsigned int num_usb4_dpia;
348 	unsigned int num_dig_link_enc;
349 	int i;
350 
351 	if (!dc->res_pool)
352 		return;
353 
354 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
355 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
356 
357 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
358 	 * link encoders and physical display endpoints and does not require
359 	 * additional link encoder objects.
360 	 */
361 	if (num_usb4_dpia == 0)
362 		return;
363 
364 	for (i = 0; i < num_dig_link_enc; i++) {
365 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
366 
367 		if (link_enc) {
368 			link_enc->funcs->destroy(&link_enc);
369 			dc->res_pool->link_encoders[i] = NULL;
370 			dc->res_pool->dig_link_enc_count--;
371 		}
372 	}
373 }
374 
375 static struct dc_perf_trace *dc_perf_trace_create(void)
376 {
377 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
378 }
379 
380 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
381 {
382 	kfree(*perf_trace);
383 	*perf_trace = NULL;
384 }
385 
386 /**
387  *  dc_stream_adjust_vmin_vmax:
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  @dc:     dc reference
395  *  @stream: Initial dc stream state
396  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
397  */
398 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
399 		struct dc_stream_state *stream,
400 		struct dc_crtc_timing_adjust *adjust)
401 {
402 	int i;
403 
404 	if (memcmp(adjust, &stream->adjust, sizeof(struct dc_crtc_timing_adjust)) == 0)
405 		return true;
406 
407 	stream->adjust.v_total_max = adjust->v_total_max;
408 	stream->adjust.v_total_mid = adjust->v_total_mid;
409 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
410 	stream->adjust.v_total_min = adjust->v_total_min;
411 
412 	for (i = 0; i < MAX_PIPES; i++) {
413 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
414 
415 		if (pipe->stream == stream && pipe->stream_res.tg) {
416 			dc->hwss.set_drr(&pipe,
417 					1,
418 					*adjust);
419 
420 			return true;
421 		}
422 	}
423 	return false;
424 }
425 
426 /**
427  *****************************************************************************
428  *  Function: dc_stream_get_last_vrr_vtotal
429  *
430  *  @brief
431  *     Looks up the pipe context of dc_stream_state and gets the
432  *     last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  *  @param [in] dc: dc reference
435  *  @param [in] stream: Initial dc stream state
436  *  @param [in] adjust: Updated parameters for vertical_total_min and
437  *  vertical_total_max
438  *****************************************************************************
439  */
440 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
441 		struct dc_stream_state *stream,
442 		uint32_t *refresh_rate)
443 {
444 	bool status = false;
445 
446 	int i = 0;
447 
448 	for (i = 0; i < MAX_PIPES; i++) {
449 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
450 
451 		if (pipe->stream == stream && pipe->stream_res.tg) {
452 			/* Only execute if a function pointer has been defined for
453 			 * the DC version in question
454 			 */
455 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
456 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
457 
458 				status = true;
459 
460 				break;
461 			}
462 		}
463 	}
464 
465 	return status;
466 }
467 
468 bool dc_stream_get_crtc_position(struct dc *dc,
469 		struct dc_stream_state **streams, int num_streams,
470 		unsigned int *v_pos, unsigned int *nom_v_pos)
471 {
472 	/* TODO: Support multiple streams */
473 	const struct dc_stream_state *stream = streams[0];
474 	int i;
475 	bool ret = false;
476 	struct crtc_position position;
477 
478 	for (i = 0; i < MAX_PIPES; i++) {
479 		struct pipe_ctx *pipe =
480 				&dc->current_state->res_ctx.pipe_ctx[i];
481 
482 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
483 			dc->hwss.get_position(&pipe, 1, &position);
484 
485 			*v_pos = position.vertical_count;
486 			*nom_v_pos = position.nominal_vcount;
487 			ret = true;
488 		}
489 	}
490 	return ret;
491 }
492 
493 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
494 bool dc_stream_forward_dmcu_crc_window(struct dc *dc, struct dc_stream_state *stream,
495 			     struct crc_params *crc_window)
496 {
497 	int i;
498 	struct dmcu *dmcu = dc->res_pool->dmcu;
499 	struct pipe_ctx *pipe;
500 	struct crc_region tmp_win, *crc_win;
501 	struct otg_phy_mux mapping_tmp, *mux_mapping;
502 
503 	/*crc window can't be null*/
504 	if (!crc_window)
505 		return false;
506 
507 	if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
508 		crc_win = &tmp_win;
509 		mux_mapping = &mapping_tmp;
510 		/*set crc window*/
511 		tmp_win.x_start = crc_window->windowa_x_start;
512 		tmp_win.y_start = crc_window->windowa_y_start;
513 		tmp_win.x_end = crc_window->windowa_x_end;
514 		tmp_win.y_end = crc_window->windowa_y_end;
515 
516 		for (i = 0; i < MAX_PIPES; i++) {
517 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
518 			if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
519 				break;
520 		}
521 
522 		/* Stream not found */
523 		if (i == MAX_PIPES)
524 			return false;
525 
526 
527 		/*set mux routing info*/
528 		mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
529 		mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
530 
531 		dmcu->funcs->forward_crc_window(dmcu, crc_win, mux_mapping);
532 	} else {
533 		DC_LOG_DC("dmcu is not initialized");
534 		return false;
535 	}
536 
537 	return true;
538 }
539 
540 bool dc_stream_stop_dmcu_crc_win_update(struct dc *dc, struct dc_stream_state *stream)
541 {
542 	int i;
543 	struct dmcu *dmcu = dc->res_pool->dmcu;
544 	struct pipe_ctx *pipe;
545 	struct otg_phy_mux mapping_tmp, *mux_mapping;
546 
547 	if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
548 		mux_mapping = &mapping_tmp;
549 
550 		for (i = 0; i < MAX_PIPES; i++) {
551 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
552 			if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
553 				break;
554 		}
555 
556 		/* Stream not found */
557 		if (i == MAX_PIPES)
558 			return false;
559 
560 
561 		/*set mux routing info*/
562 		mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
563 		mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
564 
565 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
566 	} else {
567 		DC_LOG_DC("dmcu is not initialized");
568 		return false;
569 	}
570 
571 	return true;
572 }
573 #endif
574 
575 /**
576  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
577  * @dc: DC Object
578  * @stream: The stream to configure CRC on.
579  * @enable: Enable CRC if true, disable otherwise.
580  * @crc_window: CRC window (x/y start/end) information
581  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
582  *              once.
583  *
584  * By default, only CRC0 is configured, and the entire frame is used to
585  * calculate the crc.
586  */
587 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
588 			     struct crc_params *crc_window, bool enable, bool continuous)
589 {
590 	int i;
591 	struct pipe_ctx *pipe;
592 	struct crc_params param;
593 	struct timing_generator *tg;
594 
595 	for (i = 0; i < MAX_PIPES; i++) {
596 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
597 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
598 			break;
599 	}
600 	/* Stream not found */
601 	if (i == MAX_PIPES)
602 		return false;
603 
604 	/* By default, capture the full frame */
605 	param.windowa_x_start = 0;
606 	param.windowa_y_start = 0;
607 	param.windowa_x_end = pipe->stream->timing.h_addressable;
608 	param.windowa_y_end = pipe->stream->timing.v_addressable;
609 	param.windowb_x_start = 0;
610 	param.windowb_y_start = 0;
611 	param.windowb_x_end = pipe->stream->timing.h_addressable;
612 	param.windowb_y_end = pipe->stream->timing.v_addressable;
613 
614 	if (crc_window) {
615 		param.windowa_x_start = crc_window->windowa_x_start;
616 		param.windowa_y_start = crc_window->windowa_y_start;
617 		param.windowa_x_end = crc_window->windowa_x_end;
618 		param.windowa_y_end = crc_window->windowa_y_end;
619 		param.windowb_x_start = crc_window->windowb_x_start;
620 		param.windowb_y_start = crc_window->windowb_y_start;
621 		param.windowb_x_end = crc_window->windowb_x_end;
622 		param.windowb_y_end = crc_window->windowb_y_end;
623 	}
624 
625 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
626 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
627 
628 	/* Default to the union of both windows */
629 	param.selection = UNION_WINDOW_A_B;
630 	param.continuous_mode = continuous;
631 	param.enable = enable;
632 
633 	tg = pipe->stream_res.tg;
634 
635 	/* Only call if supported */
636 	if (tg->funcs->configure_crc)
637 		return tg->funcs->configure_crc(tg, &param);
638 	DC_LOG_WARNING("CRC capture not supported.");
639 	return false;
640 }
641 
642 /**
643  * dc_stream_get_crc() - Get CRC values for the given stream.
644  *
645  * @dc: DC object.
646  * @stream: The DC stream state of the stream to get CRCs from.
647  * @r_cr: CRC value for the red component.
648  * @g_y:  CRC value for the green component.
649  * @b_cb: CRC value for the blue component.
650  *
651  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
652  *
653  * Return:
654  * false if stream is not found, or if CRCs are not enabled.
655  */
656 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
657 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
658 {
659 	int i;
660 	struct pipe_ctx *pipe;
661 	struct timing_generator *tg;
662 
663 	for (i = 0; i < MAX_PIPES; i++) {
664 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
665 		if (pipe->stream == stream)
666 			break;
667 	}
668 	/* Stream not found */
669 	if (i == MAX_PIPES)
670 		return false;
671 
672 	tg = pipe->stream_res.tg;
673 
674 	if (tg->funcs->get_crc)
675 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
676 	DC_LOG_WARNING("CRC capture not supported.");
677 	return false;
678 }
679 
680 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
681 		enum dc_dynamic_expansion option)
682 {
683 	/* OPP FMT dyn expansion updates*/
684 	int i;
685 	struct pipe_ctx *pipe_ctx;
686 
687 	for (i = 0; i < MAX_PIPES; i++) {
688 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
689 				== stream) {
690 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
691 			pipe_ctx->stream_res.opp->dyn_expansion = option;
692 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
693 					pipe_ctx->stream_res.opp,
694 					COLOR_SPACE_YCBCR601,
695 					stream->timing.display_color_depth,
696 					stream->signal);
697 		}
698 	}
699 }
700 
701 void dc_stream_set_dither_option(struct dc_stream_state *stream,
702 		enum dc_dither_option option)
703 {
704 	struct bit_depth_reduction_params params;
705 	struct dc_link *link = stream->link;
706 	struct pipe_ctx *pipes = NULL;
707 	int i;
708 
709 	for (i = 0; i < MAX_PIPES; i++) {
710 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
711 				stream) {
712 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
713 			break;
714 		}
715 	}
716 
717 	if (!pipes)
718 		return;
719 	if (option > DITHER_OPTION_MAX)
720 		return;
721 
722 	stream->dither_option = option;
723 
724 	memset(&params, 0, sizeof(params));
725 	resource_build_bit_depth_reduction_params(stream, &params);
726 	stream->bit_depth_params = params;
727 
728 	if (pipes->plane_res.xfm &&
729 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
730 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
731 			pipes->plane_res.xfm,
732 			pipes->plane_res.scl_data.lb_params.depth,
733 			&stream->bit_depth_params);
734 	}
735 
736 	pipes->stream_res.opp->funcs->
737 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
738 }
739 
740 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
741 {
742 	int i;
743 	bool ret = false;
744 	struct pipe_ctx *pipes;
745 
746 	for (i = 0; i < MAX_PIPES; i++) {
747 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
748 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
749 			dc->hwss.program_gamut_remap(pipes);
750 			ret = true;
751 		}
752 	}
753 
754 	return ret;
755 }
756 
757 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
758 {
759 	int i;
760 	bool ret = false;
761 	struct pipe_ctx *pipes;
762 
763 	for (i = 0; i < MAX_PIPES; i++) {
764 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
765 				== stream) {
766 
767 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
768 			dc->hwss.program_output_csc(dc,
769 					pipes,
770 					stream->output_color_space,
771 					stream->csc_color_matrix.matrix,
772 					pipes->stream_res.opp->inst);
773 			ret = true;
774 		}
775 	}
776 
777 	return ret;
778 }
779 
780 void dc_stream_set_static_screen_params(struct dc *dc,
781 		struct dc_stream_state **streams,
782 		int num_streams,
783 		const struct dc_static_screen_params *params)
784 {
785 	int i, j;
786 	struct pipe_ctx *pipes_affected[MAX_PIPES];
787 	int num_pipes_affected = 0;
788 
789 	for (i = 0; i < num_streams; i++) {
790 		struct dc_stream_state *stream = streams[i];
791 
792 		for (j = 0; j < MAX_PIPES; j++) {
793 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
794 					== stream) {
795 				pipes_affected[num_pipes_affected++] =
796 						&dc->current_state->res_ctx.pipe_ctx[j];
797 			}
798 		}
799 	}
800 
801 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
802 }
803 
804 static void dc_destruct(struct dc *dc)
805 {
806 	// reset link encoder assignment table on destruct
807 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
808 		link_enc_cfg_init(dc, dc->current_state);
809 
810 	if (dc->current_state) {
811 		dc_release_state(dc->current_state);
812 		dc->current_state = NULL;
813 	}
814 
815 	destroy_links(dc);
816 
817 	destroy_link_encoders(dc);
818 
819 	if (dc->clk_mgr) {
820 		dc_destroy_clk_mgr(dc->clk_mgr);
821 		dc->clk_mgr = NULL;
822 	}
823 
824 	dc_destroy_resource_pool(dc);
825 
826 	if (dc->ctx->gpio_service)
827 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
828 
829 	if (dc->ctx->created_bios)
830 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
831 
832 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
833 
834 	kfree(dc->ctx);
835 	dc->ctx = NULL;
836 
837 	kfree(dc->bw_vbios);
838 	dc->bw_vbios = NULL;
839 
840 	kfree(dc->bw_dceip);
841 	dc->bw_dceip = NULL;
842 
843 	kfree(dc->dcn_soc);
844 	dc->dcn_soc = NULL;
845 
846 	kfree(dc->dcn_ip);
847 	dc->dcn_ip = NULL;
848 
849 	kfree(dc->vm_helper);
850 	dc->vm_helper = NULL;
851 
852 }
853 
854 static bool dc_construct_ctx(struct dc *dc,
855 		const struct dc_init_data *init_params)
856 {
857 	struct dc_context *dc_ctx;
858 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
859 
860 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
861 	if (!dc_ctx)
862 		return false;
863 
864 	dc_ctx->cgs_device = init_params->cgs_device;
865 	dc_ctx->driver_context = init_params->driver;
866 	dc_ctx->dc = dc;
867 	dc_ctx->asic_id = init_params->asic_id;
868 	dc_ctx->dc_sink_id_count = 0;
869 	dc_ctx->dc_stream_id_count = 0;
870 	dc_ctx->dce_environment = init_params->dce_environment;
871 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
872 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
873 
874 	/* Create logger */
875 
876 	dc_version = resource_parse_asic_id(init_params->asic_id);
877 	dc_ctx->dce_version = dc_version;
878 
879 	dc_ctx->perf_trace = dc_perf_trace_create();
880 	if (!dc_ctx->perf_trace) {
881 		ASSERT_CRITICAL(false);
882 		return false;
883 	}
884 
885 	dc->ctx = dc_ctx;
886 
887 	return true;
888 }
889 
890 static bool dc_construct(struct dc *dc,
891 		const struct dc_init_data *init_params)
892 {
893 	struct dc_context *dc_ctx;
894 	struct bw_calcs_dceip *dc_dceip;
895 	struct bw_calcs_vbios *dc_vbios;
896 	struct dcn_soc_bounding_box *dcn_soc;
897 	struct dcn_ip_params *dcn_ip;
898 
899 	dc->config = init_params->flags;
900 
901 	// Allocate memory for the vm_helper
902 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
903 	if (!dc->vm_helper) {
904 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
905 		goto fail;
906 	}
907 
908 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
909 
910 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
911 	if (!dc_dceip) {
912 		dm_error("%s: failed to create dceip\n", __func__);
913 		goto fail;
914 	}
915 
916 	dc->bw_dceip = dc_dceip;
917 
918 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
919 	if (!dc_vbios) {
920 		dm_error("%s: failed to create vbios\n", __func__);
921 		goto fail;
922 	}
923 
924 	dc->bw_vbios = dc_vbios;
925 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
926 	if (!dcn_soc) {
927 		dm_error("%s: failed to create dcn_soc\n", __func__);
928 		goto fail;
929 	}
930 
931 	dc->dcn_soc = dcn_soc;
932 
933 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
934 	if (!dcn_ip) {
935 		dm_error("%s: failed to create dcn_ip\n", __func__);
936 		goto fail;
937 	}
938 
939 	dc->dcn_ip = dcn_ip;
940 
941 	if (!dc_construct_ctx(dc, init_params)) {
942 		dm_error("%s: failed to create ctx\n", __func__);
943 		goto fail;
944 	}
945 
946         dc_ctx = dc->ctx;
947 
948 	/* Resource should construct all asic specific resources.
949 	 * This should be the only place where we need to parse the asic id
950 	 */
951 	if (init_params->vbios_override)
952 		dc_ctx->dc_bios = init_params->vbios_override;
953 	else {
954 		/* Create BIOS parser */
955 		struct bp_init_data bp_init_data;
956 
957 		bp_init_data.ctx = dc_ctx;
958 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
959 
960 		dc_ctx->dc_bios = dal_bios_parser_create(
961 				&bp_init_data, dc_ctx->dce_version);
962 
963 		if (!dc_ctx->dc_bios) {
964 			ASSERT_CRITICAL(false);
965 			goto fail;
966 		}
967 
968 		dc_ctx->created_bios = true;
969 	}
970 
971 	dc->vendor_signature = init_params->vendor_signature;
972 
973 	/* Create GPIO service */
974 	dc_ctx->gpio_service = dal_gpio_service_create(
975 			dc_ctx->dce_version,
976 			dc_ctx->dce_environment,
977 			dc_ctx);
978 
979 	if (!dc_ctx->gpio_service) {
980 		ASSERT_CRITICAL(false);
981 		goto fail;
982 	}
983 
984 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
985 	if (!dc->res_pool)
986 		goto fail;
987 
988 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
989 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
990 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
991 
992 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
993 	if (!dc->clk_mgr)
994 		goto fail;
995 #ifdef CONFIG_DRM_AMD_DC_DCN
996 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
997 
998 	if (dc->res_pool->funcs->update_bw_bounding_box) {
999 		DC_FP_START();
1000 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1001 		DC_FP_END();
1002 	}
1003 #endif
1004 
1005 	/* Creation of current_state must occur after dc->dml
1006 	 * is initialized in dc_create_resource_pool because
1007 	 * on creation it copies the contents of dc->dml
1008 	 */
1009 
1010 	dc->current_state = dc_create_state(dc);
1011 
1012 	if (!dc->current_state) {
1013 		dm_error("%s: failed to create validate ctx\n", __func__);
1014 		goto fail;
1015 	}
1016 
1017 	if (!create_links(dc, init_params->num_virtual_links))
1018 		goto fail;
1019 
1020 	/* Create additional DIG link encoder objects if fewer than the platform
1021 	 * supports were created during link construction.
1022 	 */
1023 	if (!create_link_encoders(dc))
1024 		goto fail;
1025 
1026 	dc_resource_state_construct(dc, dc->current_state);
1027 
1028 	return true;
1029 
1030 fail:
1031 	return false;
1032 }
1033 
1034 static void disable_all_writeback_pipes_for_stream(
1035 		const struct dc *dc,
1036 		struct dc_stream_state *stream,
1037 		struct dc_state *context)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < stream->num_wb_info; i++)
1042 		stream->writeback_info[i].wb_enabled = false;
1043 }
1044 
1045 static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context,
1046 					  struct dc_stream_state *stream, bool lock)
1047 {
1048 	int i;
1049 
1050 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1051 	if (dc->hwss.interdependent_update_lock)
1052 		dc->hwss.interdependent_update_lock(dc, context, lock);
1053 	else {
1054 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1055 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1056 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1057 
1058 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1059 			if (stream == pipe_ctx->stream) {
1060 				if (!pipe_ctx->top_pipe &&
1061 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1062 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1063 			}
1064 		}
1065 	}
1066 }
1067 
1068 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1069 {
1070 	int i, j;
1071 	struct dc_state *dangling_context = dc_create_state(dc);
1072 	struct dc_state *current_ctx;
1073 
1074 	if (dangling_context == NULL)
1075 		return;
1076 
1077 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1078 
1079 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1080 		struct dc_stream_state *old_stream =
1081 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1082 		bool should_disable = true;
1083 		bool pipe_split_change = false;
1084 
1085 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1086 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1087 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1088 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1089 		else
1090 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1091 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1092 
1093 		for (j = 0; j < context->stream_count; j++) {
1094 			if (old_stream == context->streams[j]) {
1095 				should_disable = false;
1096 				break;
1097 			}
1098 		}
1099 		if (!should_disable && pipe_split_change &&
1100 				dc->current_state->stream_count != context->stream_count)
1101 			should_disable = true;
1102 
1103 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1104 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1105 			struct pipe_ctx *old_pipe, *new_pipe;
1106 
1107 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1108 			new_pipe = &context->res_ctx.pipe_ctx[i];
1109 
1110 			if (old_pipe->plane_state && !new_pipe->plane_state)
1111 				should_disable = true;
1112 		}
1113 
1114 		if (should_disable && old_stream) {
1115 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1116 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1117 
1118 			if (dc->hwss.apply_ctx_for_surface) {
1119 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1120 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1121 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1122 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1123 			}
1124 			if (dc->hwss.program_front_end_for_ctx) {
1125 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1126 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1127 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1128 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1129 			}
1130 		}
1131 	}
1132 
1133 	current_ctx = dc->current_state;
1134 	dc->current_state = dangling_context;
1135 	dc_release_state(current_ctx);
1136 }
1137 
1138 static void disable_vbios_mode_if_required(
1139 		struct dc *dc,
1140 		struct dc_state *context)
1141 {
1142 	unsigned int i, j;
1143 
1144 	/* check if timing_changed, disable stream*/
1145 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1146 		struct dc_stream_state *stream = NULL;
1147 		struct dc_link *link = NULL;
1148 		struct pipe_ctx *pipe = NULL;
1149 
1150 		pipe = &context->res_ctx.pipe_ctx[i];
1151 		stream = pipe->stream;
1152 		if (stream == NULL)
1153 			continue;
1154 
1155 		// only looking for first odm pipe
1156 		if (pipe->prev_odm_pipe)
1157 			continue;
1158 
1159 		if (stream->link->local_sink &&
1160 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1161 			link = stream->link;
1162 		}
1163 
1164 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1165 			unsigned int enc_inst, tg_inst = 0;
1166 			unsigned int pix_clk_100hz;
1167 
1168 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1169 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1170 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1171 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1172 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1173 							dc->res_pool->stream_enc[j]);
1174 						break;
1175 					}
1176 				}
1177 
1178 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1179 					dc->res_pool->dp_clock_source,
1180 					tg_inst, &pix_clk_100hz);
1181 
1182 				if (link->link_status.link_active) {
1183 					uint32_t requested_pix_clk_100hz =
1184 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1185 
1186 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1187 						core_link_disable_stream(pipe);
1188 						pipe->stream->dpms_off = false;
1189 					}
1190 				}
1191 			}
1192 		}
1193 	}
1194 }
1195 
1196 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1197 {
1198 	int i;
1199 	PERF_TRACE();
1200 	for (i = 0; i < MAX_PIPES; i++) {
1201 		int count = 0;
1202 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1203 
1204 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1205 			continue;
1206 
1207 		/* Timeout 100 ms */
1208 		while (count < 100000) {
1209 			/* Must set to false to start with, due to OR in update function */
1210 			pipe->plane_state->status.is_flip_pending = false;
1211 			dc->hwss.update_pending_status(pipe);
1212 			if (!pipe->plane_state->status.is_flip_pending)
1213 				break;
1214 			udelay(1);
1215 			count++;
1216 		}
1217 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1218 	}
1219 	PERF_TRACE();
1220 }
1221 
1222 /*******************************************************************************
1223  * Public functions
1224  ******************************************************************************/
1225 
1226 struct dc *dc_create(const struct dc_init_data *init_params)
1227 {
1228 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1229 	unsigned int full_pipe_count;
1230 
1231 	if (!dc)
1232 		return NULL;
1233 
1234 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1235 		if (!dc_construct_ctx(dc, init_params))
1236 			goto destruct_dc;
1237 	} else {
1238 		if (!dc_construct(dc, init_params))
1239 			goto destruct_dc;
1240 
1241 		full_pipe_count = dc->res_pool->pipe_count;
1242 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1243 			full_pipe_count--;
1244 		dc->caps.max_streams = min(
1245 				full_pipe_count,
1246 				dc->res_pool->stream_enc_count);
1247 
1248 		dc->caps.max_links = dc->link_count;
1249 		dc->caps.max_audios = dc->res_pool->audio_count;
1250 		dc->caps.linear_pitch_alignment = 64;
1251 
1252 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1253 
1254 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1255 
1256 		if (dc->res_pool->dmcu != NULL)
1257 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1258 	}
1259 
1260 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1261 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1262 
1263 	/* Populate versioning information */
1264 	dc->versions.dc_ver = DC_VER;
1265 
1266 	dc->build_id = DC_BUILD_ID;
1267 
1268 	DC_LOG_DC("Display Core initialized\n");
1269 
1270 
1271 
1272 	return dc;
1273 
1274 destruct_dc:
1275 	dc_destruct(dc);
1276 	kfree(dc);
1277 	return NULL;
1278 }
1279 
1280 static void detect_edp_presence(struct dc *dc)
1281 {
1282 	struct dc_link *edp_links[MAX_NUM_EDP];
1283 	struct dc_link *edp_link = NULL;
1284 	enum dc_connection_type type;
1285 	int i;
1286 	int edp_num;
1287 
1288 	get_edp_links(dc, edp_links, &edp_num);
1289 	if (!edp_num)
1290 		return;
1291 
1292 	for (i = 0; i < edp_num; i++) {
1293 		edp_link = edp_links[i];
1294 		if (dc->config.edp_not_connected) {
1295 			edp_link->edp_sink_present = false;
1296 		} else {
1297 			dc_link_detect_sink(edp_link, &type);
1298 			edp_link->edp_sink_present = (type != dc_connection_none);
1299 		}
1300 	}
1301 }
1302 
1303 void dc_hardware_init(struct dc *dc)
1304 {
1305 
1306 	detect_edp_presence(dc);
1307 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1308 		dc->hwss.init_hw(dc);
1309 }
1310 
1311 void dc_init_callbacks(struct dc *dc,
1312 		const struct dc_callback_init *init_params)
1313 {
1314 #ifdef CONFIG_DRM_AMD_DC_HDCP
1315 	dc->ctx->cp_psp = init_params->cp_psp;
1316 #endif
1317 }
1318 
1319 void dc_deinit_callbacks(struct dc *dc)
1320 {
1321 #ifdef CONFIG_DRM_AMD_DC_HDCP
1322 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1323 #endif
1324 }
1325 
1326 void dc_destroy(struct dc **dc)
1327 {
1328 	dc_destruct(*dc);
1329 	kfree(*dc);
1330 	*dc = NULL;
1331 }
1332 
1333 static void enable_timing_multisync(
1334 		struct dc *dc,
1335 		struct dc_state *ctx)
1336 {
1337 	int i, multisync_count = 0;
1338 	int pipe_count = dc->res_pool->pipe_count;
1339 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1340 
1341 	for (i = 0; i < pipe_count; i++) {
1342 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1343 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1344 			continue;
1345 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1346 			continue;
1347 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1348 		multisync_count++;
1349 	}
1350 
1351 	if (multisync_count > 0) {
1352 		dc->hwss.enable_per_frame_crtc_position_reset(
1353 			dc, multisync_count, multisync_pipes);
1354 	}
1355 }
1356 
1357 static void program_timing_sync(
1358 		struct dc *dc,
1359 		struct dc_state *ctx)
1360 {
1361 	int i, j, k;
1362 	int group_index = 0;
1363 	int num_group = 0;
1364 	int pipe_count = dc->res_pool->pipe_count;
1365 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1366 
1367 	for (i = 0; i < pipe_count; i++) {
1368 		if (!ctx->res_ctx.pipe_ctx[i].stream
1369 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1370 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1371 			continue;
1372 
1373 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1374 	}
1375 
1376 	for (i = 0; i < pipe_count; i++) {
1377 		int group_size = 1;
1378 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1379 		struct pipe_ctx *pipe_set[MAX_PIPES];
1380 
1381 		if (!unsynced_pipes[i])
1382 			continue;
1383 
1384 		pipe_set[0] = unsynced_pipes[i];
1385 		unsynced_pipes[i] = NULL;
1386 
1387 		/* Add tg to the set, search rest of the tg's for ones with
1388 		 * same timing, add all tgs with same timing to the group
1389 		 */
1390 		for (j = i + 1; j < pipe_count; j++) {
1391 			if (!unsynced_pipes[j])
1392 				continue;
1393 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1394 				dc->hwss.enable_vblanks_synchronization &&
1395 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1396 				resource_are_vblanks_synchronizable(
1397 					unsynced_pipes[j]->stream,
1398 					pipe_set[0]->stream)) {
1399 				sync_type = VBLANK_SYNCHRONIZABLE;
1400 				pipe_set[group_size] = unsynced_pipes[j];
1401 				unsynced_pipes[j] = NULL;
1402 				group_size++;
1403 			} else
1404 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1405 				resource_are_streams_timing_synchronizable(
1406 					unsynced_pipes[j]->stream,
1407 					pipe_set[0]->stream)) {
1408 				sync_type = TIMING_SYNCHRONIZABLE;
1409 				pipe_set[group_size] = unsynced_pipes[j];
1410 				unsynced_pipes[j] = NULL;
1411 				group_size++;
1412 			}
1413 		}
1414 
1415 		/* set first unblanked pipe as master */
1416 		for (j = 0; j < group_size; j++) {
1417 			bool is_blanked;
1418 
1419 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1420 				is_blanked =
1421 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1422 			else
1423 				is_blanked =
1424 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1425 			if (!is_blanked) {
1426 				if (j == 0)
1427 					break;
1428 
1429 				swap(pipe_set[0], pipe_set[j]);
1430 				break;
1431 			}
1432 		}
1433 
1434 		for (k = 0; k < group_size; k++) {
1435 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1436 
1437 			status->timing_sync_info.group_id = num_group;
1438 			status->timing_sync_info.group_size = group_size;
1439 			if (k == 0)
1440 				status->timing_sync_info.master = true;
1441 			else
1442 				status->timing_sync_info.master = false;
1443 
1444 		}
1445 
1446 		/* remove any other pipes that are already been synced */
1447 		if (dc->config.use_pipe_ctx_sync_logic) {
1448 			/* check pipe's syncd to decide which pipe to be removed */
1449 			for (j = 1; j < group_size; j++) {
1450 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1451 					group_size--;
1452 					pipe_set[j] = pipe_set[group_size];
1453 					j--;
1454 				} else
1455 					/* link slave pipe's syncd with master pipe */
1456 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1457 			}
1458 		} else {
1459 			for (j = j + 1; j < group_size; j++) {
1460 				bool is_blanked;
1461 
1462 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1463 					is_blanked =
1464 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1465 				else
1466 					is_blanked =
1467 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1468 				if (!is_blanked) {
1469 					group_size--;
1470 					pipe_set[j] = pipe_set[group_size];
1471 					j--;
1472 				}
1473 			}
1474 		}
1475 
1476 		if (group_size > 1) {
1477 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1478 				dc->hwss.enable_timing_synchronization(
1479 					dc, group_index, group_size, pipe_set);
1480 			} else
1481 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1482 				dc->hwss.enable_vblanks_synchronization(
1483 					dc, group_index, group_size, pipe_set);
1484 				}
1485 			group_index++;
1486 		}
1487 		num_group++;
1488 	}
1489 }
1490 
1491 static bool context_changed(
1492 		struct dc *dc,
1493 		struct dc_state *context)
1494 {
1495 	uint8_t i;
1496 
1497 	if (context->stream_count != dc->current_state->stream_count)
1498 		return true;
1499 
1500 	for (i = 0; i < dc->current_state->stream_count; i++) {
1501 		if (dc->current_state->streams[i] != context->streams[i])
1502 			return true;
1503 	}
1504 
1505 	return false;
1506 }
1507 
1508 bool dc_validate_boot_timing(const struct dc *dc,
1509 				const struct dc_sink *sink,
1510 				struct dc_crtc_timing *crtc_timing)
1511 {
1512 	struct timing_generator *tg;
1513 	struct stream_encoder *se = NULL;
1514 
1515 	struct dc_crtc_timing hw_crtc_timing = {0};
1516 
1517 	struct dc_link *link = sink->link;
1518 	unsigned int i, enc_inst, tg_inst = 0;
1519 
1520 	/* Support seamless boot on EDP displays only */
1521 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1522 		return false;
1523 	}
1524 
1525 	/* Check for enabled DIG to identify enabled display */
1526 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1527 		return false;
1528 
1529 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1530 
1531 	if (enc_inst == ENGINE_ID_UNKNOWN)
1532 		return false;
1533 
1534 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1535 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1536 
1537 			se = dc->res_pool->stream_enc[i];
1538 
1539 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1540 				dc->res_pool->stream_enc[i]);
1541 			break;
1542 		}
1543 	}
1544 
1545 	// tg_inst not found
1546 	if (i == dc->res_pool->stream_enc_count)
1547 		return false;
1548 
1549 	if (tg_inst >= dc->res_pool->timing_generator_count)
1550 		return false;
1551 
1552 	tg = dc->res_pool->timing_generators[tg_inst];
1553 
1554 	if (!tg->funcs->get_hw_timing)
1555 		return false;
1556 
1557 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1558 		return false;
1559 
1560 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1561 		return false;
1562 
1563 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1564 		return false;
1565 
1566 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1567 		return false;
1568 
1569 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1570 		return false;
1571 
1572 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1573 		return false;
1574 
1575 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1576 		return false;
1577 
1578 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1579 		return false;
1580 
1581 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1582 		return false;
1583 
1584 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1585 		return false;
1586 
1587 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1588 		return false;
1589 
1590 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1591 		return false;
1592 
1593 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1594 		return false;
1595 
1596 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1597 	if (crtc_timing->flags.DSC)
1598 		return false;
1599 
1600 	if (dc_is_dp_signal(link->connector_signal)) {
1601 		unsigned int pix_clk_100hz;
1602 		uint32_t numOdmPipes = 1;
1603 		uint32_t id_src[4] = {0};
1604 
1605 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1606 			dc->res_pool->dp_clock_source,
1607 			tg_inst, &pix_clk_100hz);
1608 
1609 		if (tg->funcs->get_optc_source)
1610 			tg->funcs->get_optc_source(tg,
1611 						&numOdmPipes, &id_src[0], &id_src[1]);
1612 
1613 		if (numOdmPipes == 2)
1614 			pix_clk_100hz *= 2;
1615 		if (numOdmPipes == 4)
1616 			pix_clk_100hz *= 4;
1617 
1618 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1619 		// slightly due to rounding issues in 10 kHz units.
1620 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1621 			return false;
1622 
1623 		if (!se->funcs->dp_get_pixel_format)
1624 			return false;
1625 
1626 		if (!se->funcs->dp_get_pixel_format(
1627 			se,
1628 			&hw_crtc_timing.pixel_encoding,
1629 			&hw_crtc_timing.display_color_depth))
1630 			return false;
1631 
1632 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1633 			return false;
1634 
1635 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1636 			return false;
1637 	}
1638 
1639 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1640 		return false;
1641 	}
1642 
1643 	if (is_edp_ilr_optimization_required(link, crtc_timing)) {
1644 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1645 		return false;
1646 	}
1647 
1648 	return true;
1649 }
1650 
1651 static inline bool should_update_pipe_for_stream(
1652 		struct dc_state *context,
1653 		struct pipe_ctx *pipe_ctx,
1654 		struct dc_stream_state *stream)
1655 {
1656 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1657 }
1658 
1659 static inline bool should_update_pipe_for_plane(
1660 		struct dc_state *context,
1661 		struct pipe_ctx *pipe_ctx,
1662 		struct dc_plane_state *plane_state)
1663 {
1664 	return (pipe_ctx->plane_state == plane_state);
1665 }
1666 
1667 void dc_enable_stereo(
1668 	struct dc *dc,
1669 	struct dc_state *context,
1670 	struct dc_stream_state *streams[],
1671 	uint8_t stream_count)
1672 {
1673 	int i, j;
1674 	struct pipe_ctx *pipe;
1675 
1676 	for (i = 0; i < MAX_PIPES; i++) {
1677 		if (context != NULL) {
1678 			pipe = &context->res_ctx.pipe_ctx[i];
1679 		} else {
1680 			context = dc->current_state;
1681 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1682 		}
1683 
1684 		for (j = 0; pipe && j < stream_count; j++)  {
1685 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1686 				dc->hwss.setup_stereo)
1687 				dc->hwss.setup_stereo(pipe, dc);
1688 		}
1689 	}
1690 }
1691 
1692 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1693 {
1694 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1695 		enable_timing_multisync(dc, context);
1696 		program_timing_sync(dc, context);
1697 	}
1698 }
1699 
1700 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1701 {
1702 	int i;
1703 	unsigned int stream_mask = 0;
1704 
1705 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1706 		if (context->res_ctx.pipe_ctx[i].stream)
1707 			stream_mask |= 1 << i;
1708 	}
1709 
1710 	return stream_mask;
1711 }
1712 
1713 void dc_z10_restore(const struct dc *dc)
1714 {
1715 	if (dc->hwss.z10_restore)
1716 		dc->hwss.z10_restore(dc);
1717 }
1718 
1719 void dc_z10_save_init(struct dc *dc)
1720 {
1721 	if (dc->hwss.z10_save_init)
1722 		dc->hwss.z10_save_init(dc);
1723 }
1724 
1725 /*
1726  * Applies given context to HW and copy it into current context.
1727  * It's up to the user to release the src context afterwards.
1728  */
1729 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1730 {
1731 	struct dc_bios *dcb = dc->ctx->dc_bios;
1732 	enum dc_status result = DC_ERROR_UNEXPECTED;
1733 	struct pipe_ctx *pipe;
1734 	int i, k, l;
1735 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1736 	struct dc_state *old_state;
1737 	bool subvp_prev_use = false;
1738 
1739 	dc_z10_restore(dc);
1740 	dc_allow_idle_optimizations(dc, false);
1741 
1742 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1743 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1744 
1745 		/* Check old context for SubVP */
1746 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1747 		if (subvp_prev_use)
1748 			break;
1749 	}
1750 
1751 	for (i = 0; i < context->stream_count; i++)
1752 		dc_streams[i] =  context->streams[i];
1753 
1754 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1755 		disable_vbios_mode_if_required(dc, context);
1756 		dc->hwss.enable_accelerated_mode(dc, context);
1757 	}
1758 
1759 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1760 		context->stream_count == 0)
1761 		dc->hwss.prepare_bandwidth(dc, context);
1762 
1763 	if (dc->debug.enable_double_buffered_dsc_pg_support)
1764 		dc->hwss.update_dsc_pg(dc, context, false);
1765 
1766 	disable_dangling_plane(dc, context);
1767 	/* re-program planes for existing stream, in case we need to
1768 	 * free up plane resource for later use
1769 	 */
1770 	if (dc->hwss.apply_ctx_for_surface) {
1771 		for (i = 0; i < context->stream_count; i++) {
1772 			if (context->streams[i]->mode_changed)
1773 				continue;
1774 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1775 			dc->hwss.apply_ctx_for_surface(
1776 				dc, context->streams[i],
1777 				context->stream_status[i].plane_count,
1778 				context); /* use new pipe config in new context */
1779 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1780 			dc->hwss.post_unlock_program_front_end(dc, context);
1781 		}
1782 	}
1783 
1784 	/* Program hardware */
1785 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1786 		pipe = &context->res_ctx.pipe_ctx[i];
1787 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1788 	}
1789 
1790 	if (dc->hwss.subvp_pipe_control_lock)
1791 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1792 
1793 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1794 
1795 	if (result != DC_OK) {
1796 		/* Application of dc_state to hardware stopped. */
1797 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1798 		return result;
1799 	}
1800 
1801 	dc_trigger_sync(dc, context);
1802 
1803 	/* Program all planes within new context*/
1804 	if (dc->hwss.program_front_end_for_ctx) {
1805 		dc->hwss.interdependent_update_lock(dc, context, true);
1806 		dc->hwss.program_front_end_for_ctx(dc, context);
1807 		dc->hwss.interdependent_update_lock(dc, context, false);
1808 		dc->hwss.post_unlock_program_front_end(dc, context);
1809 	}
1810 
1811 	if (dc->hwss.commit_subvp_config)
1812 		dc->hwss.commit_subvp_config(dc, context);
1813 	if (dc->hwss.subvp_pipe_control_lock)
1814 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1815 
1816 	for (i = 0; i < context->stream_count; i++) {
1817 		const struct dc_link *link = context->streams[i]->link;
1818 
1819 		if (!context->streams[i]->mode_changed)
1820 			continue;
1821 
1822 		if (dc->hwss.apply_ctx_for_surface) {
1823 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1824 			dc->hwss.apply_ctx_for_surface(
1825 					dc, context->streams[i],
1826 					context->stream_status[i].plane_count,
1827 					context);
1828 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1829 			dc->hwss.post_unlock_program_front_end(dc, context);
1830 		}
1831 
1832 		/*
1833 		 * enable stereo
1834 		 * TODO rework dc_enable_stereo call to work with validation sets?
1835 		 */
1836 		for (k = 0; k < MAX_PIPES; k++) {
1837 			pipe = &context->res_ctx.pipe_ctx[k];
1838 
1839 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1840 				if (context->streams[l] &&
1841 					context->streams[l] == pipe->stream &&
1842 					dc->hwss.setup_stereo)
1843 					dc->hwss.setup_stereo(pipe, dc);
1844 			}
1845 		}
1846 
1847 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1848 				context->streams[i]->timing.h_addressable,
1849 				context->streams[i]->timing.v_addressable,
1850 				context->streams[i]->timing.h_total,
1851 				context->streams[i]->timing.v_total,
1852 				context->streams[i]->timing.pix_clk_100hz / 10);
1853 	}
1854 
1855 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1856 
1857 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1858 		context->stream_count == 0) {
1859 		/* Must wait for no flips to be pending before doing optimize bw */
1860 		wait_for_no_pipes_pending(dc, context);
1861 		/* pplib is notified if disp_num changed */
1862 		dc->hwss.optimize_bandwidth(dc, context);
1863 	}
1864 
1865 	if (dc->debug.enable_double_buffered_dsc_pg_support)
1866 		dc->hwss.update_dsc_pg(dc, context, true);
1867 
1868 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1869 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1870 	else
1871 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1872 
1873 	context->stream_mask = get_stream_mask(dc, context);
1874 
1875 	if (context->stream_mask != dc->current_state->stream_mask)
1876 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1877 
1878 	for (i = 0; i < context->stream_count; i++)
1879 		context->streams[i]->mode_changed = false;
1880 
1881 	old_state = dc->current_state;
1882 	dc->current_state = context;
1883 
1884 	dc_release_state(old_state);
1885 
1886 	dc_retain_state(dc->current_state);
1887 
1888 	return result;
1889 }
1890 
1891 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1892 {
1893 	enum dc_status result = DC_ERROR_UNEXPECTED;
1894 	int i;
1895 
1896 	if (!context_changed(dc, context))
1897 		return DC_OK;
1898 
1899 	DC_LOG_DC("%s: %d streams\n",
1900 				__func__, context->stream_count);
1901 
1902 	for (i = 0; i < context->stream_count; i++) {
1903 		struct dc_stream_state *stream = context->streams[i];
1904 
1905 		dc_stream_log(dc, stream);
1906 	}
1907 
1908 	/*
1909 	 * Previous validation was perfomred with fast_validation = true and
1910 	 * the full DML state required for hardware programming was skipped.
1911 	 *
1912 	 * Re-validate here to calculate these parameters / watermarks.
1913 	 */
1914 	result = dc_validate_global_state(dc, context, false);
1915 	if (result != DC_OK) {
1916 		DC_LOG_ERROR("DC commit global validation failure: %s (%d)",
1917 			     dc_status_to_str(result), result);
1918 		return result;
1919 	}
1920 
1921 	result = dc_commit_state_no_check(dc, context);
1922 
1923 	return (result == DC_OK);
1924 }
1925 
1926 bool dc_acquire_release_mpc_3dlut(
1927 		struct dc *dc, bool acquire,
1928 		struct dc_stream_state *stream,
1929 		struct dc_3dlut **lut,
1930 		struct dc_transfer_func **shaper)
1931 {
1932 	int pipe_idx;
1933 	bool ret = false;
1934 	bool found_pipe_idx = false;
1935 	const struct resource_pool *pool = dc->res_pool;
1936 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
1937 	int mpcc_id = 0;
1938 
1939 	if (pool && res_ctx) {
1940 		if (acquire) {
1941 			/*find pipe idx for the given stream*/
1942 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1943 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1944 					found_pipe_idx = true;
1945 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1946 					break;
1947 				}
1948 			}
1949 		} else
1950 			found_pipe_idx = true;/*for release pipe_idx is not required*/
1951 
1952 		if (found_pipe_idx) {
1953 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1954 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1955 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
1956 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1957 		}
1958 	}
1959 	return ret;
1960 }
1961 
1962 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1963 {
1964 	int i;
1965 	struct pipe_ctx *pipe;
1966 
1967 	for (i = 0; i < MAX_PIPES; i++) {
1968 		pipe = &context->res_ctx.pipe_ctx[i];
1969 
1970 		// Don't check flip pending on phantom pipes
1971 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
1972 			continue;
1973 
1974 		/* Must set to false to start with, due to OR in update function */
1975 		pipe->plane_state->status.is_flip_pending = false;
1976 		dc->hwss.update_pending_status(pipe);
1977 		if (pipe->plane_state->status.is_flip_pending)
1978 			return true;
1979 	}
1980 	return false;
1981 }
1982 
1983 /* Perform updates here which need to be deferred until next vupdate
1984  *
1985  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
1986  * but forcing lut memory to shutdown state is immediate. This causes
1987  * single frame corruption as lut gets disabled mid-frame unless shutdown
1988  * is deferred until after entering bypass.
1989  */
1990 static void process_deferred_updates(struct dc *dc)
1991 {
1992 	int i = 0;
1993 
1994 	if (dc->debug.enable_mem_low_power.bits.cm) {
1995 		ASSERT(dc->dcn_ip->max_num_dpp);
1996 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
1997 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
1998 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
1999 	}
2000 }
2001 
2002 void dc_post_update_surfaces_to_stream(struct dc *dc)
2003 {
2004 	int i;
2005 	struct dc_state *context = dc->current_state;
2006 
2007 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2008 		return;
2009 
2010 	post_surface_trace(dc);
2011 
2012 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2013 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2014 	else
2015 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2016 
2017 	if (is_flip_pending_in_pipes(dc, context))
2018 		return;
2019 
2020 	for (i = 0; i < dc->res_pool->pipe_count; i++)
2021 		if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2022 		    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2023 			context->res_ctx.pipe_ctx[i].pipe_idx = i;
2024 			dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2025 		}
2026 
2027 	process_deferred_updates(dc);
2028 
2029 	dc->hwss.optimize_bandwidth(dc, context);
2030 
2031 	if (dc->debug.enable_double_buffered_dsc_pg_support)
2032 		dc->hwss.update_dsc_pg(dc, context, true);
2033 
2034 	dc->optimized_required = false;
2035 	dc->wm_optimized_required = false;
2036 }
2037 
2038 static void init_state(struct dc *dc, struct dc_state *context)
2039 {
2040 	/* Each context must have their own instance of VBA and in order to
2041 	 * initialize and obtain IP and SOC the base DML instance from DC is
2042 	 * initially copied into every context
2043 	 */
2044 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2045 }
2046 
2047 struct dc_state *dc_create_state(struct dc *dc)
2048 {
2049 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2050 					    GFP_KERNEL);
2051 
2052 	if (!context)
2053 		return NULL;
2054 
2055 	init_state(dc, context);
2056 
2057 	kref_init(&context->refcount);
2058 
2059 	return context;
2060 }
2061 
2062 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2063 {
2064 	int i, j;
2065 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2066 
2067 	if (!new_ctx)
2068 		return NULL;
2069 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2070 
2071 	for (i = 0; i < MAX_PIPES; i++) {
2072 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2073 
2074 			if (cur_pipe->top_pipe)
2075 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2076 
2077 			if (cur_pipe->bottom_pipe)
2078 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2079 
2080 			if (cur_pipe->prev_odm_pipe)
2081 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2082 
2083 			if (cur_pipe->next_odm_pipe)
2084 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2085 
2086 	}
2087 
2088 	for (i = 0; i < new_ctx->stream_count; i++) {
2089 			dc_stream_retain(new_ctx->streams[i]);
2090 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2091 				dc_plane_state_retain(
2092 					new_ctx->stream_status[i].plane_states[j]);
2093 	}
2094 
2095 	kref_init(&new_ctx->refcount);
2096 
2097 	return new_ctx;
2098 }
2099 
2100 void dc_retain_state(struct dc_state *context)
2101 {
2102 	kref_get(&context->refcount);
2103 }
2104 
2105 static void dc_state_free(struct kref *kref)
2106 {
2107 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2108 	dc_resource_state_destruct(context);
2109 	kvfree(context);
2110 }
2111 
2112 void dc_release_state(struct dc_state *context)
2113 {
2114 	kref_put(&context->refcount, dc_state_free);
2115 }
2116 
2117 bool dc_set_generic_gpio_for_stereo(bool enable,
2118 		struct gpio_service *gpio_service)
2119 {
2120 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2121 	struct gpio_pin_info pin_info;
2122 	struct gpio *generic;
2123 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2124 			   GFP_KERNEL);
2125 
2126 	if (!config)
2127 		return false;
2128 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2129 
2130 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2131 		kfree(config);
2132 		return false;
2133 	} else {
2134 		generic = dal_gpio_service_create_generic_mux(
2135 			gpio_service,
2136 			pin_info.offset,
2137 			pin_info.mask);
2138 	}
2139 
2140 	if (!generic) {
2141 		kfree(config);
2142 		return false;
2143 	}
2144 
2145 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2146 
2147 	config->enable_output_from_mux = enable;
2148 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2149 
2150 	if (gpio_result == GPIO_RESULT_OK)
2151 		gpio_result = dal_mux_setup_config(generic, config);
2152 
2153 	if (gpio_result == GPIO_RESULT_OK) {
2154 		dal_gpio_close(generic);
2155 		dal_gpio_destroy_generic_mux(&generic);
2156 		kfree(config);
2157 		return true;
2158 	} else {
2159 		dal_gpio_close(generic);
2160 		dal_gpio_destroy_generic_mux(&generic);
2161 		kfree(config);
2162 		return false;
2163 	}
2164 }
2165 
2166 static bool is_surface_in_context(
2167 		const struct dc_state *context,
2168 		const struct dc_plane_state *plane_state)
2169 {
2170 	int j;
2171 
2172 	for (j = 0; j < MAX_PIPES; j++) {
2173 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2174 
2175 		if (plane_state == pipe_ctx->plane_state) {
2176 			return true;
2177 		}
2178 	}
2179 
2180 	return false;
2181 }
2182 
2183 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2184 {
2185 	union surface_update_flags *update_flags = &u->surface->update_flags;
2186 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2187 
2188 	if (!u->plane_info)
2189 		return UPDATE_TYPE_FAST;
2190 
2191 	if (u->plane_info->color_space != u->surface->color_space) {
2192 		update_flags->bits.color_space_change = 1;
2193 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2194 	}
2195 
2196 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2197 		update_flags->bits.horizontal_mirror_change = 1;
2198 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2199 	}
2200 
2201 	if (u->plane_info->rotation != u->surface->rotation) {
2202 		update_flags->bits.rotation_change = 1;
2203 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2204 	}
2205 
2206 	if (u->plane_info->format != u->surface->format) {
2207 		update_flags->bits.pixel_format_change = 1;
2208 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2209 	}
2210 
2211 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2212 		update_flags->bits.stereo_format_change = 1;
2213 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2214 	}
2215 
2216 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2217 		update_flags->bits.per_pixel_alpha_change = 1;
2218 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2219 	}
2220 
2221 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2222 		update_flags->bits.global_alpha_change = 1;
2223 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2224 	}
2225 
2226 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2227 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2228 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2229 		/* During DCC on/off, stutter period is calculated before
2230 		 * DCC has fully transitioned. This results in incorrect
2231 		 * stutter period calculation. Triggering a full update will
2232 		 * recalculate stutter period.
2233 		 */
2234 		update_flags->bits.dcc_change = 1;
2235 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2236 	}
2237 
2238 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2239 			resource_pixel_format_to_bpp(u->surface->format)) {
2240 		/* different bytes per element will require full bandwidth
2241 		 * and DML calculation
2242 		 */
2243 		update_flags->bits.bpp_change = 1;
2244 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2245 	}
2246 
2247 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2248 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2249 		update_flags->bits.plane_size_change = 1;
2250 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2251 	}
2252 
2253 
2254 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2255 			sizeof(union dc_tiling_info)) != 0) {
2256 		update_flags->bits.swizzle_change = 1;
2257 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2258 
2259 		/* todo: below are HW dependent, we should add a hook to
2260 		 * DCE/N resource and validated there.
2261 		 */
2262 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2263 			/* swizzled mode requires RQ to be setup properly,
2264 			 * thus need to run DML to calculate RQ settings
2265 			 */
2266 			update_flags->bits.bandwidth_change = 1;
2267 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2268 		}
2269 	}
2270 
2271 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2272 	return update_type;
2273 }
2274 
2275 static enum surface_update_type get_scaling_info_update_type(
2276 		const struct dc_surface_update *u)
2277 {
2278 	union surface_update_flags *update_flags = &u->surface->update_flags;
2279 
2280 	if (!u->scaling_info)
2281 		return UPDATE_TYPE_FAST;
2282 
2283 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2284 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2285 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2286 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2287 			|| u->scaling_info->scaling_quality.integer_scaling !=
2288 				u->surface->scaling_quality.integer_scaling
2289 			) {
2290 		update_flags->bits.scaling_change = 1;
2291 
2292 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2293 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2294 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2295 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2296 			/* Making dst rect smaller requires a bandwidth change */
2297 			update_flags->bits.bandwidth_change = 1;
2298 	}
2299 
2300 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2301 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2302 
2303 		update_flags->bits.scaling_change = 1;
2304 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2305 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2306 			/* Making src rect bigger requires a bandwidth change */
2307 			update_flags->bits.clock_change = 1;
2308 	}
2309 
2310 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2311 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2312 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2313 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2314 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2315 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2316 		update_flags->bits.position_change = 1;
2317 
2318 	if (update_flags->bits.clock_change
2319 			|| update_flags->bits.bandwidth_change
2320 			|| update_flags->bits.scaling_change)
2321 		return UPDATE_TYPE_FULL;
2322 
2323 	if (update_flags->bits.position_change)
2324 		return UPDATE_TYPE_MED;
2325 
2326 	return UPDATE_TYPE_FAST;
2327 }
2328 
2329 static enum surface_update_type det_surface_update(const struct dc *dc,
2330 		const struct dc_surface_update *u)
2331 {
2332 	const struct dc_state *context = dc->current_state;
2333 	enum surface_update_type type;
2334 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2335 	union surface_update_flags *update_flags = &u->surface->update_flags;
2336 
2337 	if (u->flip_addr)
2338 		update_flags->bits.addr_update = 1;
2339 
2340 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2341 		update_flags->raw = 0xFFFFFFFF;
2342 		return UPDATE_TYPE_FULL;
2343 	}
2344 
2345 	update_flags->raw = 0; // Reset all flags
2346 
2347 	type = get_plane_info_update_type(u);
2348 	elevate_update_type(&overall_type, type);
2349 
2350 	type = get_scaling_info_update_type(u);
2351 	elevate_update_type(&overall_type, type);
2352 
2353 	if (u->flip_addr) {
2354 		update_flags->bits.addr_update = 1;
2355 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2356 			update_flags->bits.tmz_changed = 1;
2357 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2358 		}
2359 	}
2360 	if (u->in_transfer_func)
2361 		update_flags->bits.in_transfer_func_change = 1;
2362 
2363 	if (u->input_csc_color_matrix)
2364 		update_flags->bits.input_csc_change = 1;
2365 
2366 	if (u->coeff_reduction_factor)
2367 		update_flags->bits.coeff_reduction_change = 1;
2368 
2369 	if (u->gamut_remap_matrix)
2370 		update_flags->bits.gamut_remap_change = 1;
2371 
2372 	if (u->gamma) {
2373 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2374 
2375 		if (u->plane_info)
2376 			format = u->plane_info->format;
2377 		else if (u->surface)
2378 			format = u->surface->format;
2379 
2380 		if (dce_use_lut(format))
2381 			update_flags->bits.gamma_change = 1;
2382 	}
2383 
2384 	if (u->lut3d_func || u->func_shaper)
2385 		update_flags->bits.lut_3d = 1;
2386 
2387 	if (u->hdr_mult.value)
2388 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2389 			update_flags->bits.hdr_mult = 1;
2390 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2391 		}
2392 
2393 	if (update_flags->bits.in_transfer_func_change) {
2394 		type = UPDATE_TYPE_MED;
2395 		elevate_update_type(&overall_type, type);
2396 	}
2397 
2398 	if (update_flags->bits.input_csc_change
2399 			|| update_flags->bits.coeff_reduction_change
2400 			|| update_flags->bits.lut_3d
2401 			|| update_flags->bits.gamma_change
2402 			|| update_flags->bits.gamut_remap_change) {
2403 		type = UPDATE_TYPE_FULL;
2404 		elevate_update_type(&overall_type, type);
2405 	}
2406 
2407 	return overall_type;
2408 }
2409 
2410 static enum surface_update_type check_update_surfaces_for_stream(
2411 		struct dc *dc,
2412 		struct dc_surface_update *updates,
2413 		int surface_count,
2414 		struct dc_stream_update *stream_update,
2415 		const struct dc_stream_status *stream_status)
2416 {
2417 	int i;
2418 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2419 
2420 	if (dc->idle_optimizations_allowed)
2421 		overall_type = UPDATE_TYPE_FULL;
2422 
2423 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2424 		overall_type = UPDATE_TYPE_FULL;
2425 
2426 	if (stream_update && stream_update->pending_test_pattern) {
2427 		overall_type = UPDATE_TYPE_FULL;
2428 	}
2429 
2430 	/* some stream updates require passive update */
2431 	if (stream_update) {
2432 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2433 
2434 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2435 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2436 			stream_update->integer_scaling_update)
2437 			su_flags->bits.scaling = 1;
2438 
2439 		if (stream_update->out_transfer_func)
2440 			su_flags->bits.out_tf = 1;
2441 
2442 		if (stream_update->abm_level)
2443 			su_flags->bits.abm_level = 1;
2444 
2445 		if (stream_update->dpms_off)
2446 			su_flags->bits.dpms_off = 1;
2447 
2448 		if (stream_update->gamut_remap)
2449 			su_flags->bits.gamut_remap = 1;
2450 
2451 		if (stream_update->wb_update)
2452 			su_flags->bits.wb_update = 1;
2453 
2454 		if (stream_update->dsc_config)
2455 			su_flags->bits.dsc_changed = 1;
2456 
2457 		if (stream_update->mst_bw_update)
2458 			su_flags->bits.mst_bw = 1;
2459 		if (stream_update->crtc_timing_adjust && dc_extended_blank_supported(dc))
2460 			su_flags->bits.crtc_timing_adjust = 1;
2461 
2462 		if (su_flags->raw != 0)
2463 			overall_type = UPDATE_TYPE_FULL;
2464 
2465 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2466 			su_flags->bits.out_csc = 1;
2467 	}
2468 
2469 	for (i = 0 ; i < surface_count; i++) {
2470 		enum surface_update_type type =
2471 				det_surface_update(dc, &updates[i]);
2472 
2473 		elevate_update_type(&overall_type, type);
2474 	}
2475 
2476 	return overall_type;
2477 }
2478 
2479 static bool dc_check_is_fullscreen_video(struct rect src, struct rect clip_rect)
2480 {
2481 	int view_height, view_width, clip_x, clip_y, clip_width, clip_height;
2482 
2483 	view_height = src.height;
2484 	view_width = src.width;
2485 
2486 	clip_x = clip_rect.x;
2487 	clip_y = clip_rect.y;
2488 
2489 	clip_width = clip_rect.width;
2490 	clip_height = clip_rect.height;
2491 
2492 	/* check for centered video accounting for off by 1 scaling truncation */
2493 	if ((view_height - clip_y - clip_height <= clip_y + 1) &&
2494 			(view_width - clip_x - clip_width <= clip_x + 1) &&
2495 			(view_height - clip_y - clip_height >= clip_y - 1) &&
2496 			(view_width - clip_x - clip_width >= clip_x - 1)) {
2497 
2498 		/* when OS scales up/down to letter box, it may end up
2499 		 * with few blank pixels on the border due to truncating.
2500 		 * Add offset margin to account for this
2501 		 */
2502 		if (clip_x <= 4 || clip_y <= 4)
2503 			return true;
2504 	}
2505 
2506 	return false;
2507 }
2508 
2509 static enum surface_update_type check_boundary_crossing_for_windowed_mpo_with_odm(struct dc *dc,
2510 		struct dc_surface_update *srf_updates, int surface_count,
2511 		enum surface_update_type update_type)
2512 {
2513 	enum surface_update_type new_update_type = update_type;
2514 	int i, j;
2515 	struct pipe_ctx *pipe = NULL;
2516 	struct dc_stream_state *stream;
2517 
2518 	/* Check that we are in windowed MPO with ODM
2519 	 * - look for MPO pipe by scanning pipes for first pipe matching
2520 	 *   surface that has moved ( position change )
2521 	 * - MPO pipe will have top pipe
2522 	 * - check that top pipe has ODM pointer
2523 	 */
2524 	if ((surface_count > 1) && dc->config.enable_windowed_mpo_odm) {
2525 		for (i = 0; i < surface_count; i++) {
2526 			if (srf_updates[i].surface && srf_updates[i].scaling_info
2527 					&& srf_updates[i].surface->update_flags.bits.position_change) {
2528 
2529 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
2530 					if (srf_updates[i].surface == dc->current_state->res_ctx.pipe_ctx[j].plane_state) {
2531 						pipe = &dc->current_state->res_ctx.pipe_ctx[j];
2532 						stream = pipe->stream;
2533 						break;
2534 					}
2535 				}
2536 
2537 				if (pipe && pipe->top_pipe && (get_num_odm_splits(pipe->top_pipe) > 0) && stream
2538 						&& !dc_check_is_fullscreen_video(stream->src, srf_updates[i].scaling_info->clip_rect)) {
2539 					struct rect old_clip_rect, new_clip_rect;
2540 					bool old_clip_rect_left, old_clip_rect_right, old_clip_rect_middle;
2541 					bool new_clip_rect_left, new_clip_rect_right, new_clip_rect_middle;
2542 
2543 					old_clip_rect = srf_updates[i].surface->clip_rect;
2544 					new_clip_rect = srf_updates[i].scaling_info->clip_rect;
2545 
2546 					old_clip_rect_left = ((old_clip_rect.x + old_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
2547 					old_clip_rect_right = (old_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
2548 					old_clip_rect_middle = !old_clip_rect_left && !old_clip_rect_right;
2549 
2550 					new_clip_rect_left = ((new_clip_rect.x + new_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
2551 					new_clip_rect_right = (new_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
2552 					new_clip_rect_middle = !new_clip_rect_left && !new_clip_rect_right;
2553 
2554 					if (old_clip_rect_left && new_clip_rect_middle)
2555 						new_update_type = UPDATE_TYPE_FULL;
2556 					else if (old_clip_rect_middle && new_clip_rect_right)
2557 						new_update_type = UPDATE_TYPE_FULL;
2558 					else if (old_clip_rect_right && new_clip_rect_middle)
2559 						new_update_type = UPDATE_TYPE_FULL;
2560 					else if (old_clip_rect_middle && new_clip_rect_left)
2561 						new_update_type = UPDATE_TYPE_FULL;
2562 				}
2563 			}
2564 		}
2565 	}
2566 	return new_update_type;
2567 }
2568 
2569 /*
2570  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2571  *
2572  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2573  */
2574 enum surface_update_type dc_check_update_surfaces_for_stream(
2575 		struct dc *dc,
2576 		struct dc_surface_update *updates,
2577 		int surface_count,
2578 		struct dc_stream_update *stream_update,
2579 		const struct dc_stream_status *stream_status)
2580 {
2581 	int i;
2582 	enum surface_update_type type;
2583 
2584 	if (stream_update)
2585 		stream_update->stream->update_flags.raw = 0;
2586 	for (i = 0; i < surface_count; i++)
2587 		updates[i].surface->update_flags.raw = 0;
2588 
2589 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2590 	if (type == UPDATE_TYPE_FULL) {
2591 		if (stream_update) {
2592 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2593 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2594 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2595 		}
2596 		for (i = 0; i < surface_count; i++)
2597 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2598 	}
2599 
2600 	if (type == UPDATE_TYPE_MED)
2601 		type = check_boundary_crossing_for_windowed_mpo_with_odm(dc,
2602 				updates, surface_count, type);
2603 
2604 	if (type == UPDATE_TYPE_FAST) {
2605 		// If there's an available clock comparator, we use that.
2606 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2607 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2608 				dc->optimized_required = true;
2609 		// Else we fallback to mem compare.
2610 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2611 			dc->optimized_required = true;
2612 		}
2613 
2614 		dc->optimized_required |= dc->wm_optimized_required;
2615 	}
2616 
2617 	return type;
2618 }
2619 
2620 static struct dc_stream_status *stream_get_status(
2621 	struct dc_state *ctx,
2622 	struct dc_stream_state *stream)
2623 {
2624 	uint8_t i;
2625 
2626 	for (i = 0; i < ctx->stream_count; i++) {
2627 		if (stream == ctx->streams[i]) {
2628 			return &ctx->stream_status[i];
2629 		}
2630 	}
2631 
2632 	return NULL;
2633 }
2634 
2635 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2636 
2637 static void copy_surface_update_to_plane(
2638 		struct dc_plane_state *surface,
2639 		struct dc_surface_update *srf_update)
2640 {
2641 	if (srf_update->flip_addr) {
2642 		surface->address = srf_update->flip_addr->address;
2643 		surface->flip_immediate =
2644 			srf_update->flip_addr->flip_immediate;
2645 		surface->time.time_elapsed_in_us[surface->time.index] =
2646 			srf_update->flip_addr->flip_timestamp_in_us -
2647 				surface->time.prev_update_time_in_us;
2648 		surface->time.prev_update_time_in_us =
2649 			srf_update->flip_addr->flip_timestamp_in_us;
2650 		surface->time.index++;
2651 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2652 			surface->time.index = 0;
2653 
2654 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2655 	}
2656 
2657 	if (srf_update->scaling_info) {
2658 		surface->scaling_quality =
2659 				srf_update->scaling_info->scaling_quality;
2660 		surface->dst_rect =
2661 				srf_update->scaling_info->dst_rect;
2662 		surface->src_rect =
2663 				srf_update->scaling_info->src_rect;
2664 		surface->clip_rect =
2665 				srf_update->scaling_info->clip_rect;
2666 	}
2667 
2668 	if (srf_update->plane_info) {
2669 		surface->color_space =
2670 				srf_update->plane_info->color_space;
2671 		surface->format =
2672 				srf_update->plane_info->format;
2673 		surface->plane_size =
2674 				srf_update->plane_info->plane_size;
2675 		surface->rotation =
2676 				srf_update->plane_info->rotation;
2677 		surface->horizontal_mirror =
2678 				srf_update->plane_info->horizontal_mirror;
2679 		surface->stereo_format =
2680 				srf_update->plane_info->stereo_format;
2681 		surface->tiling_info =
2682 				srf_update->plane_info->tiling_info;
2683 		surface->visible =
2684 				srf_update->plane_info->visible;
2685 		surface->per_pixel_alpha =
2686 				srf_update->plane_info->per_pixel_alpha;
2687 		surface->global_alpha =
2688 				srf_update->plane_info->global_alpha;
2689 		surface->global_alpha_value =
2690 				srf_update->plane_info->global_alpha_value;
2691 		surface->dcc =
2692 				srf_update->plane_info->dcc;
2693 		surface->layer_index =
2694 				srf_update->plane_info->layer_index;
2695 	}
2696 
2697 	if (srf_update->gamma &&
2698 			(surface->gamma_correction !=
2699 					srf_update->gamma)) {
2700 		memcpy(&surface->gamma_correction->entries,
2701 			&srf_update->gamma->entries,
2702 			sizeof(struct dc_gamma_entries));
2703 		surface->gamma_correction->is_identity =
2704 			srf_update->gamma->is_identity;
2705 		surface->gamma_correction->num_entries =
2706 			srf_update->gamma->num_entries;
2707 		surface->gamma_correction->type =
2708 			srf_update->gamma->type;
2709 	}
2710 
2711 	if (srf_update->in_transfer_func &&
2712 			(surface->in_transfer_func !=
2713 				srf_update->in_transfer_func)) {
2714 		surface->in_transfer_func->sdr_ref_white_level =
2715 			srf_update->in_transfer_func->sdr_ref_white_level;
2716 		surface->in_transfer_func->tf =
2717 			srf_update->in_transfer_func->tf;
2718 		surface->in_transfer_func->type =
2719 			srf_update->in_transfer_func->type;
2720 		memcpy(&surface->in_transfer_func->tf_pts,
2721 			&srf_update->in_transfer_func->tf_pts,
2722 			sizeof(struct dc_transfer_func_distributed_points));
2723 	}
2724 
2725 	if (srf_update->func_shaper &&
2726 			(surface->in_shaper_func !=
2727 			srf_update->func_shaper))
2728 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2729 		sizeof(*surface->in_shaper_func));
2730 
2731 	if (srf_update->lut3d_func &&
2732 			(surface->lut3d_func !=
2733 			srf_update->lut3d_func))
2734 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2735 		sizeof(*surface->lut3d_func));
2736 
2737 	if (srf_update->hdr_mult.value)
2738 		surface->hdr_mult =
2739 				srf_update->hdr_mult;
2740 
2741 	if (srf_update->blend_tf &&
2742 			(surface->blend_tf !=
2743 			srf_update->blend_tf))
2744 		memcpy(surface->blend_tf, srf_update->blend_tf,
2745 		sizeof(*surface->blend_tf));
2746 
2747 	if (srf_update->input_csc_color_matrix)
2748 		surface->input_csc_color_matrix =
2749 			*srf_update->input_csc_color_matrix;
2750 
2751 	if (srf_update->coeff_reduction_factor)
2752 		surface->coeff_reduction_factor =
2753 			*srf_update->coeff_reduction_factor;
2754 
2755 	if (srf_update->gamut_remap_matrix)
2756 		surface->gamut_remap_matrix =
2757 			*srf_update->gamut_remap_matrix;
2758 }
2759 
2760 static void copy_stream_update_to_stream(struct dc *dc,
2761 					 struct dc_state *context,
2762 					 struct dc_stream_state *stream,
2763 					 struct dc_stream_update *update)
2764 {
2765 	struct dc_context *dc_ctx = dc->ctx;
2766 
2767 	if (update == NULL || stream == NULL)
2768 		return;
2769 
2770 	if (update->src.height && update->src.width)
2771 		stream->src = update->src;
2772 
2773 	if (update->dst.height && update->dst.width)
2774 		stream->dst = update->dst;
2775 
2776 	if (update->out_transfer_func &&
2777 	    stream->out_transfer_func != update->out_transfer_func) {
2778 		stream->out_transfer_func->sdr_ref_white_level =
2779 			update->out_transfer_func->sdr_ref_white_level;
2780 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2781 		stream->out_transfer_func->type =
2782 			update->out_transfer_func->type;
2783 		memcpy(&stream->out_transfer_func->tf_pts,
2784 		       &update->out_transfer_func->tf_pts,
2785 		       sizeof(struct dc_transfer_func_distributed_points));
2786 	}
2787 
2788 	if (update->hdr_static_metadata)
2789 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2790 
2791 	if (update->abm_level)
2792 		stream->abm_level = *update->abm_level;
2793 
2794 	if (update->periodic_interrupt)
2795 		stream->periodic_interrupt = *update->periodic_interrupt;
2796 
2797 	if (update->gamut_remap)
2798 		stream->gamut_remap_matrix = *update->gamut_remap;
2799 
2800 	/* Note: this being updated after mode set is currently not a use case
2801 	 * however if it arises OCSC would need to be reprogrammed at the
2802 	 * minimum
2803 	 */
2804 	if (update->output_color_space)
2805 		stream->output_color_space = *update->output_color_space;
2806 
2807 	if (update->output_csc_transform)
2808 		stream->csc_color_matrix = *update->output_csc_transform;
2809 
2810 	if (update->vrr_infopacket)
2811 		stream->vrr_infopacket = *update->vrr_infopacket;
2812 
2813 	if (update->allow_freesync)
2814 		stream->allow_freesync = *update->allow_freesync;
2815 
2816 	if (update->vrr_active_variable)
2817 		stream->vrr_active_variable = *update->vrr_active_variable;
2818 
2819 	if (update->crtc_timing_adjust)
2820 		stream->adjust = *update->crtc_timing_adjust;
2821 
2822 	if (update->dpms_off)
2823 		stream->dpms_off = *update->dpms_off;
2824 
2825 	if (update->hfvsif_infopacket)
2826 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2827 
2828 	if (update->vtem_infopacket)
2829 		stream->vtem_infopacket = *update->vtem_infopacket;
2830 
2831 	if (update->vsc_infopacket)
2832 		stream->vsc_infopacket = *update->vsc_infopacket;
2833 
2834 	if (update->vsp_infopacket)
2835 		stream->vsp_infopacket = *update->vsp_infopacket;
2836 
2837 	if (update->dither_option)
2838 		stream->dither_option = *update->dither_option;
2839 
2840 	if (update->pending_test_pattern)
2841 		stream->test_pattern = *update->pending_test_pattern;
2842 	/* update current stream with writeback info */
2843 	if (update->wb_update) {
2844 		int i;
2845 
2846 		stream->num_wb_info = update->wb_update->num_wb_info;
2847 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2848 		for (i = 0; i < stream->num_wb_info; i++)
2849 			stream->writeback_info[i] =
2850 				update->wb_update->writeback_info[i];
2851 	}
2852 	if (update->dsc_config) {
2853 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2854 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2855 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2856 				       update->dsc_config->num_slices_v != 0);
2857 
2858 		/* Use temporarry context for validating new DSC config */
2859 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2860 
2861 		if (dsc_validate_context) {
2862 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2863 
2864 			stream->timing.dsc_cfg = *update->dsc_config;
2865 			stream->timing.flags.DSC = enable_dsc;
2866 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2867 				stream->timing.dsc_cfg = old_dsc_cfg;
2868 				stream->timing.flags.DSC = old_dsc_enabled;
2869 				update->dsc_config = NULL;
2870 			}
2871 
2872 			dc_release_state(dsc_validate_context);
2873 		} else {
2874 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2875 			update->dsc_config = NULL;
2876 		}
2877 	}
2878 }
2879 
2880 static bool update_planes_and_stream_state(struct dc *dc,
2881 		struct dc_surface_update *srf_updates, int surface_count,
2882 		struct dc_stream_state *stream,
2883 		struct dc_stream_update *stream_update,
2884 		enum surface_update_type *new_update_type,
2885 		struct dc_state **new_context)
2886 {
2887 	struct dc_state *context;
2888 	int i, j;
2889 	enum surface_update_type update_type;
2890 	const struct dc_stream_status *stream_status;
2891 	struct dc_context *dc_ctx = dc->ctx;
2892 
2893 	stream_status = dc_stream_get_status(stream);
2894 
2895 	if (!stream_status) {
2896 		if (surface_count) /* Only an error condition if surf_count non-zero*/
2897 			ASSERT(false);
2898 
2899 		return false; /* Cannot commit surface to stream that is not committed */
2900 	}
2901 
2902 	context = dc->current_state;
2903 
2904 	update_type = dc_check_update_surfaces_for_stream(
2905 			dc, srf_updates, surface_count, stream_update, stream_status);
2906 
2907 	/* update current stream with the new updates */
2908 	copy_stream_update_to_stream(dc, context, stream, stream_update);
2909 
2910 	/* do not perform surface update if surface has invalid dimensions
2911 	 * (all zero) and no scaling_info is provided
2912 	 */
2913 	if (surface_count > 0) {
2914 		for (i = 0; i < surface_count; i++) {
2915 			if ((srf_updates[i].surface->src_rect.width == 0 ||
2916 				 srf_updates[i].surface->src_rect.height == 0 ||
2917 				 srf_updates[i].surface->dst_rect.width == 0 ||
2918 				 srf_updates[i].surface->dst_rect.height == 0) &&
2919 				(!srf_updates[i].scaling_info ||
2920 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
2921 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
2922 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
2923 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
2924 				DC_ERROR("Invalid src/dst rects in surface update!\n");
2925 				return false;
2926 			}
2927 		}
2928 	}
2929 
2930 	if (update_type >= update_surface_trace_level)
2931 		update_surface_trace(dc, srf_updates, surface_count);
2932 
2933 	if (update_type >= UPDATE_TYPE_FULL) {
2934 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
2935 
2936 		for (i = 0; i < surface_count; i++)
2937 			new_planes[i] = srf_updates[i].surface;
2938 
2939 		/* initialize scratch memory for building context */
2940 		context = dc_create_state(dc);
2941 		if (context == NULL) {
2942 			DC_ERROR("Failed to allocate new validate context!\n");
2943 			return false;
2944 		}
2945 
2946 		dc_resource_state_copy_construct(
2947 				dc->current_state, context);
2948 
2949 		/* For each full update, remove all existing phantom pipes first.
2950 		 * Ensures that we have enough pipes for newly added MPO planes
2951 		 */
2952 		if (dc->res_pool->funcs->remove_phantom_pipes)
2953 			dc->res_pool->funcs->remove_phantom_pipes(dc, context);
2954 
2955 		/*remove old surfaces from context */
2956 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
2957 
2958 			BREAK_TO_DEBUGGER();
2959 			goto fail;
2960 		}
2961 
2962 		/* add surface to context */
2963 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
2964 
2965 			BREAK_TO_DEBUGGER();
2966 			goto fail;
2967 		}
2968 	}
2969 
2970 	/* save update parameters into surface */
2971 	for (i = 0; i < surface_count; i++) {
2972 		struct dc_plane_state *surface = srf_updates[i].surface;
2973 
2974 		copy_surface_update_to_plane(surface, &srf_updates[i]);
2975 
2976 		if (update_type >= UPDATE_TYPE_MED) {
2977 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2978 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2979 
2980 				if (pipe_ctx->plane_state != surface)
2981 					continue;
2982 
2983 				resource_build_scaling_params(pipe_ctx);
2984 			}
2985 		}
2986 	}
2987 
2988 	if (update_type == UPDATE_TYPE_FULL) {
2989 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2990 			BREAK_TO_DEBUGGER();
2991 			goto fail;
2992 		}
2993 	}
2994 
2995 	*new_context = context;
2996 	*new_update_type = update_type;
2997 
2998 	return true;
2999 
3000 fail:
3001 	dc_release_state(context);
3002 
3003 	return false;
3004 
3005 }
3006 
3007 static void commit_planes_do_stream_update(struct dc *dc,
3008 		struct dc_stream_state *stream,
3009 		struct dc_stream_update *stream_update,
3010 		enum surface_update_type update_type,
3011 		struct dc_state *context)
3012 {
3013 	int j;
3014 
3015 	// Stream updates
3016 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3017 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3018 
3019 		if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
3020 
3021 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3022 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3023 
3024 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3025 					stream_update->vrr_infopacket ||
3026 					stream_update->vsc_infopacket ||
3027 					stream_update->vsp_infopacket ||
3028 					stream_update->hfvsif_infopacket ||
3029 					stream_update->vtem_infopacket) {
3030 				resource_build_info_frame(pipe_ctx);
3031 				dc->hwss.update_info_frame(pipe_ctx);
3032 
3033 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3034 					dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3035 			}
3036 
3037 			if (stream_update->hdr_static_metadata &&
3038 					stream->use_dynamic_meta &&
3039 					dc->hwss.set_dmdata_attributes &&
3040 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3041 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3042 
3043 			if (stream_update->gamut_remap)
3044 				dc_stream_set_gamut_remap(dc, stream);
3045 
3046 			if (stream_update->output_csc_transform)
3047 				dc_stream_program_csc_matrix(dc, stream);
3048 
3049 			if (stream_update->dither_option) {
3050 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3051 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3052 									&pipe_ctx->stream->bit_depth_params);
3053 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3054 						&stream->bit_depth_params,
3055 						&stream->clamping);
3056 				while (odm_pipe) {
3057 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3058 							&stream->bit_depth_params,
3059 							&stream->clamping);
3060 					odm_pipe = odm_pipe->next_odm_pipe;
3061 				}
3062 			}
3063 
3064 
3065 			/* Full fe update*/
3066 			if (update_type == UPDATE_TYPE_FAST)
3067 				continue;
3068 
3069 			if (stream_update->dsc_config)
3070 				dp_update_dsc_config(pipe_ctx);
3071 
3072 			if (stream_update->mst_bw_update) {
3073 				if (stream_update->mst_bw_update->is_increase)
3074 					dc_link_increase_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw);
3075 				else
3076 					dc_link_reduce_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw);
3077 			}
3078 
3079 			if (stream_update->pending_test_pattern) {
3080 				dc_link_dp_set_test_pattern(stream->link,
3081 					stream->test_pattern.type,
3082 					stream->test_pattern.color_space,
3083 					stream->test_pattern.p_link_settings,
3084 					stream->test_pattern.p_custom_pattern,
3085 					stream->test_pattern.cust_pattern_size);
3086 			}
3087 
3088 			if (stream_update->dpms_off) {
3089 				if (*stream_update->dpms_off) {
3090 					core_link_disable_stream(pipe_ctx);
3091 					/* for dpms, keep acquired resources*/
3092 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3093 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3094 
3095 					dc->optimized_required = true;
3096 
3097 				} else {
3098 					if (get_seamless_boot_stream_count(context) == 0)
3099 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3100 					core_link_enable_stream(dc->current_state, pipe_ctx);
3101 				}
3102 			}
3103 
3104 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3105 				bool should_program_abm = true;
3106 
3107 				// if otg funcs defined check if blanked before programming
3108 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3109 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3110 						should_program_abm = false;
3111 
3112 				if (should_program_abm) {
3113 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3114 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3115 					} else {
3116 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3117 							pipe_ctx->stream_res.abm, stream->abm_level);
3118 					}
3119 				}
3120 			}
3121 		}
3122 	}
3123 }
3124 
3125 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3126 {
3127 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3128 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3129 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3130 		return true;
3131 
3132 	return false;
3133 }
3134 
3135 void dc_dmub_update_dirty_rect(struct dc *dc,
3136 			       int surface_count,
3137 			       struct dc_stream_state *stream,
3138 			       struct dc_surface_update *srf_updates,
3139 			       struct dc_state *context)
3140 {
3141 	union dmub_rb_cmd cmd;
3142 	struct dc_context *dc_ctx = dc->ctx;
3143 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3144 	unsigned int i, j;
3145 	unsigned int panel_inst = 0;
3146 
3147 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3148 		return;
3149 
3150 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3151 		return;
3152 
3153 	memset(&cmd, 0x0, sizeof(cmd));
3154 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3155 	cmd.update_dirty_rect.header.sub_type = 0;
3156 	cmd.update_dirty_rect.header.payload_bytes =
3157 		sizeof(cmd.update_dirty_rect) -
3158 		sizeof(cmd.update_dirty_rect.header);
3159 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3160 	for (i = 0; i < surface_count; i++) {
3161 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3162 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3163 
3164 		if (!srf_updates[i].surface || !flip_addr)
3165 			continue;
3166 		/* Do not send in immediate flip mode */
3167 		if (srf_updates[i].surface->flip_immediate)
3168 			continue;
3169 
3170 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3171 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3172 				sizeof(flip_addr->dirty_rects));
3173 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3174 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3175 
3176 			if (pipe_ctx->stream != stream)
3177 				continue;
3178 			if (pipe_ctx->plane_state != plane_state)
3179 				continue;
3180 
3181 			update_dirty_rect->panel_inst = panel_inst;
3182 			update_dirty_rect->pipe_idx = j;
3183 			dc_dmub_srv_cmd_queue(dc_ctx->dmub_srv, &cmd);
3184 			dc_dmub_srv_cmd_execute(dc_ctx->dmub_srv);
3185 		}
3186 	}
3187 }
3188 
3189 static void commit_planes_for_stream(struct dc *dc,
3190 		struct dc_surface_update *srf_updates,
3191 		int surface_count,
3192 		struct dc_stream_state *stream,
3193 		struct dc_stream_update *stream_update,
3194 		enum surface_update_type update_type,
3195 		struct dc_state *context)
3196 {
3197 	int i, j;
3198 	struct pipe_ctx *top_pipe_to_program = NULL;
3199 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3200 	bool subvp_prev_use = false;
3201 
3202 	// Once we apply the new subvp context to hardware it won't be in the
3203 	// dc->current_state anymore, so we have to cache it before we apply
3204 	// the new SubVP context
3205 	subvp_prev_use = false;
3206 
3207 
3208 	dc_z10_restore(dc);
3209 
3210 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3211 		/* Optimize seamless boot flag keeps clocks and watermarks high until
3212 		 * first flip. After first flip, optimization is required to lower
3213 		 * bandwidth. Important to note that it is expected UEFI will
3214 		 * only light up a single display on POST, therefore we only expect
3215 		 * one stream with seamless boot flag set.
3216 		 */
3217 		if (stream->apply_seamless_boot_optimization) {
3218 			stream->apply_seamless_boot_optimization = false;
3219 
3220 			if (get_seamless_boot_stream_count(context) == 0)
3221 				dc->optimized_required = true;
3222 		}
3223 	}
3224 
3225 	if (update_type == UPDATE_TYPE_FULL) {
3226 		dc_allow_idle_optimizations(dc, false);
3227 
3228 		if (get_seamless_boot_stream_count(context) == 0)
3229 			dc->hwss.prepare_bandwidth(dc, context);
3230 
3231 		if (dc->debug.enable_double_buffered_dsc_pg_support)
3232 			dc->hwss.update_dsc_pg(dc, context, false);
3233 
3234 		context_clock_trace(dc, context);
3235 	}
3236 
3237 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3238 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3239 
3240 		if (!pipe_ctx->top_pipe &&
3241 			!pipe_ctx->prev_odm_pipe &&
3242 			pipe_ctx->stream &&
3243 			pipe_ctx->stream == stream) {
3244 			top_pipe_to_program = pipe_ctx;
3245 		}
3246 	}
3247 
3248 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3249 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3250 
3251 		// Check old context for SubVP
3252 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3253 		if (subvp_prev_use)
3254 			break;
3255 	}
3256 
3257 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3258 		struct pipe_ctx *mpcc_pipe;
3259 		struct pipe_ctx *odm_pipe;
3260 
3261 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3262 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3263 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3264 	}
3265 
3266 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3267 		if (top_pipe_to_program &&
3268 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3269 			if (should_use_dmub_lock(stream->link)) {
3270 				union dmub_hw_lock_flags hw_locks = { 0 };
3271 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3272 
3273 				hw_locks.bits.lock_dig = 1;
3274 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3275 
3276 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3277 							true,
3278 							&hw_locks,
3279 							&inst_flags);
3280 			} else
3281 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3282 						top_pipe_to_program->stream_res.tg);
3283 		}
3284 
3285 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3286 		if (dc->hwss.subvp_pipe_control_lock)
3287 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3288 		dc->hwss.interdependent_update_lock(dc, context, true);
3289 
3290 	} else {
3291 		if (dc->hwss.subvp_pipe_control_lock)
3292 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3293 		/* Lock the top pipe while updating plane addrs, since freesync requires
3294 		 *  plane addr update event triggers to be synchronized.
3295 		 *  top_pipe_to_program is expected to never be NULL
3296 		 */
3297 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3298 	}
3299 
3300 	if (update_type != UPDATE_TYPE_FAST) {
3301 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3302 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
3303 
3304 			if ((new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) ||
3305 					subvp_prev_use) {
3306 				// If old context or new context has phantom pipes, apply
3307 				// the phantom timings now. We can't change the phantom
3308 				// pipe configuration safely without driver acquiring
3309 				// the DMCUB lock first.
3310 				dc->hwss.apply_ctx_to_hw(dc, context);
3311 				break;
3312 			}
3313 		}
3314 	}
3315 
3316 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3317 
3318 	if (update_type != UPDATE_TYPE_FAST) {
3319 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3320 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
3321 
3322 			if ((new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) ||
3323 					subvp_prev_use) {
3324 				// If old context or new context has phantom pipes, apply
3325 				// the phantom timings now. We can't change the phantom
3326 				// pipe configuration safely without driver acquiring
3327 				// the DMCUB lock first.
3328 				dc->hwss.apply_ctx_to_hw(dc, context);
3329 				break;
3330 			}
3331 		}
3332 	}
3333 
3334 	// Stream updates
3335 	if (stream_update)
3336 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3337 
3338 	if (surface_count == 0) {
3339 		/*
3340 		 * In case of turning off screen, no need to program front end a second time.
3341 		 * just return after program blank.
3342 		 */
3343 		if (dc->hwss.apply_ctx_for_surface)
3344 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3345 		if (dc->hwss.program_front_end_for_ctx)
3346 			dc->hwss.program_front_end_for_ctx(dc, context);
3347 
3348 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3349 			dc->hwss.interdependent_update_lock(dc, context, false);
3350 		} else {
3351 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3352 		}
3353 		dc->hwss.post_unlock_program_front_end(dc, context);
3354 
3355 		if (update_type != UPDATE_TYPE_FAST)
3356 			if (dc->hwss.commit_subvp_config)
3357 				dc->hwss.commit_subvp_config(dc, context);
3358 
3359 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3360 		 * move the SubVP lock to after the phantom pipes have been setup
3361 		 */
3362 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3363 			if (dc->hwss.subvp_pipe_control_lock)
3364 				dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3365 		} else {
3366 			if (dc->hwss.subvp_pipe_control_lock)
3367 				dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3368 		}
3369 
3370 		return;
3371 	}
3372 
3373 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
3374 		for (i = 0; i < surface_count; i++) {
3375 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3376 			/*set logical flag for lock/unlock use*/
3377 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3378 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3379 				if (!pipe_ctx->plane_state)
3380 					continue;
3381 				if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3382 					continue;
3383 				pipe_ctx->plane_state->triplebuffer_flips = false;
3384 				if (update_type == UPDATE_TYPE_FAST &&
3385 					dc->hwss.program_triplebuffer != NULL &&
3386 					!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3387 						/*triple buffer for VUpdate  only*/
3388 						pipe_ctx->plane_state->triplebuffer_flips = true;
3389 				}
3390 			}
3391 			if (update_type == UPDATE_TYPE_FULL) {
3392 				/* force vsync flip when reconfiguring pipes to prevent underflow */
3393 				plane_state->flip_immediate = false;
3394 			}
3395 		}
3396 	}
3397 
3398 	// Update Type FULL, Surface updates
3399 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3400 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3401 
3402 		if (!pipe_ctx->top_pipe &&
3403 			!pipe_ctx->prev_odm_pipe &&
3404 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3405 			struct dc_stream_status *stream_status = NULL;
3406 
3407 			if (!pipe_ctx->plane_state)
3408 				continue;
3409 
3410 			/* Full fe update*/
3411 			if (update_type == UPDATE_TYPE_FAST)
3412 				continue;
3413 
3414 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3415 
3416 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3417 				/*turn off triple buffer for full update*/
3418 				dc->hwss.program_triplebuffer(
3419 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3420 			}
3421 			stream_status =
3422 				stream_get_status(context, pipe_ctx->stream);
3423 
3424 			if (dc->hwss.apply_ctx_for_surface)
3425 				dc->hwss.apply_ctx_for_surface(
3426 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3427 		}
3428 	}
3429 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3430 		dc->hwss.program_front_end_for_ctx(dc, context);
3431 		if (dc->debug.validate_dml_output) {
3432 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3433 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3434 				if (cur_pipe->stream == NULL)
3435 					continue;
3436 
3437 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3438 						cur_pipe->plane_res.hubp, dc->ctx,
3439 						&context->res_ctx.pipe_ctx[i].rq_regs,
3440 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3441 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3442 			}
3443 		}
3444 	}
3445 
3446 	// Update Type FAST, Surface updates
3447 	if (update_type == UPDATE_TYPE_FAST) {
3448 		if (dc->hwss.set_flip_control_gsl)
3449 			for (i = 0; i < surface_count; i++) {
3450 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3451 
3452 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3453 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3454 
3455 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3456 						continue;
3457 
3458 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3459 						continue;
3460 
3461 					// GSL has to be used for flip immediate
3462 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3463 							pipe_ctx->plane_state->flip_immediate);
3464 				}
3465 			}
3466 
3467 		/* Perform requested Updates */
3468 		for (i = 0; i < surface_count; i++) {
3469 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3470 
3471 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3472 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3473 
3474 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3475 					continue;
3476 
3477 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3478 					continue;
3479 
3480 				/*program triple buffer after lock based on flip type*/
3481 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3482 					/*only enable triplebuffer for  fast_update*/
3483 					dc->hwss.program_triplebuffer(
3484 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3485 				}
3486 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3487 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3488 			}
3489 		}
3490 
3491 	}
3492 
3493 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3494 		dc->hwss.interdependent_update_lock(dc, context, false);
3495 	} else {
3496 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3497 	}
3498 
3499 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3500 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3501 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3502 				top_pipe_to_program->stream_res.tg,
3503 				CRTC_STATE_VACTIVE);
3504 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3505 				top_pipe_to_program->stream_res.tg,
3506 				CRTC_STATE_VBLANK);
3507 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3508 				top_pipe_to_program->stream_res.tg,
3509 				CRTC_STATE_VACTIVE);
3510 
3511 			if (should_use_dmub_lock(stream->link)) {
3512 				union dmub_hw_lock_flags hw_locks = { 0 };
3513 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3514 
3515 				hw_locks.bits.lock_dig = 1;
3516 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3517 
3518 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3519 							false,
3520 							&hw_locks,
3521 							&inst_flags);
3522 			} else
3523 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3524 					top_pipe_to_program->stream_res.tg);
3525 		}
3526 
3527 	if (update_type != UPDATE_TYPE_FAST)
3528 		dc->hwss.post_unlock_program_front_end(dc, context);
3529 	if (update_type != UPDATE_TYPE_FAST)
3530 		if (dc->hwss.commit_subvp_config)
3531 			dc->hwss.commit_subvp_config(dc, context);
3532 
3533 	if (update_type != UPDATE_TYPE_FAST)
3534 		if (dc->hwss.commit_subvp_config)
3535 			dc->hwss.commit_subvp_config(dc, context);
3536 
3537 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3538 	 * move the SubVP lock to after the phantom pipes have been setup
3539 	 */
3540 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3541 		if (dc->hwss.subvp_pipe_control_lock)
3542 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3543 	} else {
3544 		if (dc->hwss.subvp_pipe_control_lock)
3545 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3546 	}
3547 
3548 	// Fire manual trigger only when bottom plane is flipped
3549 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3550 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3551 
3552 		if (!pipe_ctx->plane_state)
3553 			continue;
3554 
3555 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3556 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3557 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3558 				pipe_ctx->plane_state->skip_manual_trigger)
3559 			continue;
3560 
3561 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3562 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3563 	}
3564 }
3565 
3566 /* Determines if the incoming context requires a applying transition state with unnecessary
3567  * pipe splitting and ODM disabled, due to hardware limitations. In a case where
3568  * the OPP associated with an MPCC might change due to plane additions, this function
3569  * returns true.
3570  */
3571 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3572 		struct dc_stream_state *stream,
3573 		int surface_count,
3574 		bool *is_plane_addition)
3575 {
3576 
3577 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3578 	bool force_minimal_pipe_splitting = false;
3579 	uint32_t i;
3580 
3581 	*is_plane_addition = false;
3582 
3583 	if (cur_stream_status &&
3584 			dc->current_state->stream_count > 0 &&
3585 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3586 		/* determine if minimal transition is required due to MPC*/
3587 		if (surface_count > 0) {
3588 			if (cur_stream_status->plane_count > surface_count) {
3589 				force_minimal_pipe_splitting = true;
3590 			} else if (cur_stream_status->plane_count < surface_count) {
3591 				force_minimal_pipe_splitting = true;
3592 				*is_plane_addition = true;
3593 			}
3594 		}
3595 	}
3596 
3597 	if (cur_stream_status &&
3598 			dc->current_state->stream_count == 1 &&
3599 			dc->debug.enable_single_display_2to1_odm_policy) {
3600 		/* determine if minimal transition is required due to dynamic ODM*/
3601 		if (surface_count > 0) {
3602 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3603 				force_minimal_pipe_splitting = true;
3604 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3605 				force_minimal_pipe_splitting = true;
3606 				*is_plane_addition = true;
3607 			}
3608 		}
3609 	}
3610 
3611 	/* For SubVP pipe split case when adding MPO video
3612 	 * we need to add a minimal transition. In this case
3613 	 * there will be 2 streams (1 main stream, 1 phantom
3614 	 * stream).
3615 	 */
3616 	if (cur_stream_status &&
3617 			dc->current_state->stream_count == 2 &&
3618 			stream->mall_stream_config.type == SUBVP_MAIN) {
3619 		bool is_pipe_split = false;
3620 
3621 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3622 			if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream &&
3623 					(dc->current_state->res_ctx.pipe_ctx[i].bottom_pipe ||
3624 					dc->current_state->res_ctx.pipe_ctx[i].next_odm_pipe)) {
3625 				is_pipe_split = true;
3626 				break;
3627 			}
3628 		}
3629 
3630 		/* determine if minimal transition is required due to SubVP*/
3631 		if (surface_count > 0 && is_pipe_split) {
3632 			if (cur_stream_status->plane_count > surface_count) {
3633 				force_minimal_pipe_splitting = true;
3634 			} else if (cur_stream_status->plane_count < surface_count) {
3635 				force_minimal_pipe_splitting = true;
3636 				*is_plane_addition = true;
3637 			}
3638 		}
3639 	}
3640 
3641 	return force_minimal_pipe_splitting;
3642 }
3643 
3644 static bool commit_minimal_transition_state(struct dc *dc,
3645 		struct dc_state *transition_base_context)
3646 {
3647 	struct dc_state *transition_context = dc_create_state(dc);
3648 	enum pipe_split_policy tmp_mpc_policy;
3649 	bool temp_dynamic_odm_policy;
3650 	bool temp_subvp_policy;
3651 	enum dc_status ret = DC_ERROR_UNEXPECTED;
3652 	unsigned int i, j;
3653 
3654 	if (!transition_context)
3655 		return false;
3656 
3657 	if (!dc->config.is_vmin_only_asic) {
3658 		tmp_mpc_policy = dc->debug.pipe_split_policy;
3659 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
3660 	}
3661 
3662 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
3663 	dc->debug.enable_single_display_2to1_odm_policy = false;
3664 
3665 	temp_subvp_policy = dc->debug.force_disable_subvp;
3666 	dc->debug.force_disable_subvp = true;
3667 
3668 	dc_resource_state_copy_construct(transition_base_context, transition_context);
3669 
3670 	//commit minimal state
3671 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
3672 		for (i = 0; i < transition_context->stream_count; i++) {
3673 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
3674 
3675 			for (j = 0; j < stream_status->plane_count; j++) {
3676 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
3677 
3678 				/* force vsync flip when reconfiguring pipes to prevent underflow
3679 				 * and corruption
3680 				 */
3681 				plane_state->flip_immediate = false;
3682 			}
3683 		}
3684 
3685 		ret = dc_commit_state_no_check(dc, transition_context);
3686 	}
3687 
3688 	/*always release as dc_commit_state_no_check retains in good case*/
3689 	dc_release_state(transition_context);
3690 
3691 	/*restore previous pipe split and odm policy*/
3692 	if (!dc->config.is_vmin_only_asic)
3693 		dc->debug.pipe_split_policy = tmp_mpc_policy;
3694 
3695 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
3696 	dc->debug.force_disable_subvp = temp_subvp_policy;
3697 
3698 	if (ret != DC_OK) {
3699 		/*this should never happen*/
3700 		BREAK_TO_DEBUGGER();
3701 		return false;
3702 	}
3703 
3704 	/*force full surface update*/
3705 	for (i = 0; i < dc->current_state->stream_count; i++) {
3706 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
3707 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
3708 		}
3709 	}
3710 
3711 	return true;
3712 }
3713 
3714 bool dc_update_planes_and_stream(struct dc *dc,
3715 		struct dc_surface_update *srf_updates, int surface_count,
3716 		struct dc_stream_state *stream,
3717 		struct dc_stream_update *stream_update)
3718 {
3719 	struct dc_state *context;
3720 	enum surface_update_type update_type;
3721 	int i;
3722 
3723 	/* In cases where MPO and split or ODM are used transitions can
3724 	 * cause underflow. Apply stream configuration with minimal pipe
3725 	 * split first to avoid unsupported transitions for active pipes.
3726 	 */
3727 	bool force_minimal_pipe_splitting;
3728 	bool is_plane_addition;
3729 
3730 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
3731 			dc,
3732 			stream,
3733 			surface_count,
3734 			&is_plane_addition);
3735 
3736 	/* on plane addition, minimal state is the current one */
3737 	if (force_minimal_pipe_splitting && is_plane_addition &&
3738 		!commit_minimal_transition_state(dc, dc->current_state))
3739 				return false;
3740 
3741 	if (!update_planes_and_stream_state(
3742 			dc,
3743 			srf_updates,
3744 			surface_count,
3745 			stream,
3746 			stream_update,
3747 			&update_type,
3748 			&context))
3749 		return false;
3750 
3751 	/* on plane removal, minimal state is the new one */
3752 	if (force_minimal_pipe_splitting && !is_plane_addition) {
3753 		if (!commit_minimal_transition_state(dc, context)) {
3754 			dc_release_state(context);
3755 			return false;
3756 		}
3757 
3758 		update_type = UPDATE_TYPE_FULL;
3759 	}
3760 
3761 	commit_planes_for_stream(
3762 			dc,
3763 			srf_updates,
3764 			surface_count,
3765 			stream,
3766 			stream_update,
3767 			update_type,
3768 			context);
3769 
3770 	if (dc->current_state != context) {
3771 
3772 		/* Since memory free requires elevated IRQL, an interrupt
3773 		 * request is generated by mem free. If this happens
3774 		 * between freeing and reassigning the context, our vsync
3775 		 * interrupt will call into dc and cause a memory
3776 		 * corruption BSOD. Hence, we first reassign the context,
3777 		 * then free the old context.
3778 		 */
3779 
3780 		struct dc_state *old = dc->current_state;
3781 
3782 		dc->current_state = context;
3783 		dc_release_state(old);
3784 
3785 		// clear any forced full updates
3786 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3787 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3788 
3789 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
3790 				pipe_ctx->plane_state->force_full_update = false;
3791 		}
3792 	}
3793 	return true;
3794 }
3795 
3796 void dc_commit_updates_for_stream(struct dc *dc,
3797 		struct dc_surface_update *srf_updates,
3798 		int surface_count,
3799 		struct dc_stream_state *stream,
3800 		struct dc_stream_update *stream_update,
3801 		struct dc_state *state)
3802 {
3803 	const struct dc_stream_status *stream_status;
3804 	enum surface_update_type update_type;
3805 	struct dc_state *context;
3806 	struct dc_context *dc_ctx = dc->ctx;
3807 	int i, j;
3808 
3809 	stream_status = dc_stream_get_status(stream);
3810 	context = dc->current_state;
3811 
3812 	update_type = dc_check_update_surfaces_for_stream(
3813 				dc, srf_updates, surface_count, stream_update, stream_status);
3814 
3815 	if (update_type >= update_surface_trace_level)
3816 		update_surface_trace(dc, srf_updates, surface_count);
3817 
3818 
3819 	if (update_type >= UPDATE_TYPE_FULL) {
3820 
3821 		/* initialize scratch memory for building context */
3822 		context = dc_create_state(dc);
3823 		if (context == NULL) {
3824 			DC_ERROR("Failed to allocate new validate context!\n");
3825 			return;
3826 		}
3827 
3828 		dc_resource_state_copy_construct(state, context);
3829 
3830 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3831 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
3832 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3833 
3834 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
3835 				new_pipe->plane_state->force_full_update = true;
3836 		}
3837 	} else if (update_type == UPDATE_TYPE_FAST && dc_ctx->dce_version >= DCE_VERSION_MAX) {
3838 		/*
3839 		 * Previous frame finished and HW is ready for optimization.
3840 		 *
3841 		 * Only relevant for DCN behavior where we can guarantee the optimization
3842 		 * is safe to apply - retain the legacy behavior for DCE.
3843 		 */
3844 		dc_post_update_surfaces_to_stream(dc);
3845 	}
3846 
3847 
3848 	for (i = 0; i < surface_count; i++) {
3849 		struct dc_plane_state *surface = srf_updates[i].surface;
3850 
3851 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3852 
3853 		if (update_type >= UPDATE_TYPE_MED) {
3854 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3855 				struct pipe_ctx *pipe_ctx =
3856 					&context->res_ctx.pipe_ctx[j];
3857 
3858 				if (pipe_ctx->plane_state != surface)
3859 					continue;
3860 
3861 				resource_build_scaling_params(pipe_ctx);
3862 			}
3863 		}
3864 	}
3865 
3866 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3867 
3868 	if (update_type >= UPDATE_TYPE_FULL) {
3869 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3870 			DC_ERROR("Mode validation failed for stream update!\n");
3871 			dc_release_state(context);
3872 			return;
3873 		}
3874 	}
3875 
3876 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
3877 
3878 	commit_planes_for_stream(
3879 				dc,
3880 				srf_updates,
3881 				surface_count,
3882 				stream,
3883 				stream_update,
3884 				update_type,
3885 				context);
3886 	/*update current_State*/
3887 	if (dc->current_state != context) {
3888 
3889 		struct dc_state *old = dc->current_state;
3890 
3891 		dc->current_state = context;
3892 		dc_release_state(old);
3893 
3894 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3895 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3896 
3897 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
3898 				pipe_ctx->plane_state->force_full_update = false;
3899 		}
3900 	}
3901 
3902 	/* Legacy optimization path for DCE. */
3903 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
3904 		dc_post_update_surfaces_to_stream(dc);
3905 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
3906 	}
3907 
3908 	return;
3909 
3910 }
3911 
3912 uint8_t dc_get_current_stream_count(struct dc *dc)
3913 {
3914 	return dc->current_state->stream_count;
3915 }
3916 
3917 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
3918 {
3919 	if (i < dc->current_state->stream_count)
3920 		return dc->current_state->streams[i];
3921 	return NULL;
3922 }
3923 
3924 enum dc_irq_source dc_interrupt_to_irq_source(
3925 		struct dc *dc,
3926 		uint32_t src_id,
3927 		uint32_t ext_id)
3928 {
3929 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
3930 }
3931 
3932 /*
3933  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
3934  */
3935 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
3936 {
3937 
3938 	if (dc == NULL)
3939 		return false;
3940 
3941 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
3942 }
3943 
3944 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
3945 {
3946 	dal_irq_service_ack(dc->res_pool->irqs, src);
3947 }
3948 
3949 void dc_power_down_on_boot(struct dc *dc)
3950 {
3951 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
3952 			dc->hwss.power_down_on_boot)
3953 		dc->hwss.power_down_on_boot(dc);
3954 }
3955 
3956 void dc_set_power_state(
3957 	struct dc *dc,
3958 	enum dc_acpi_cm_power_state power_state)
3959 {
3960 	struct kref refcount;
3961 	struct display_mode_lib *dml;
3962 
3963 	if (!dc->current_state)
3964 		return;
3965 
3966 	switch (power_state) {
3967 	case DC_ACPI_CM_POWER_STATE_D0:
3968 		dc_resource_state_construct(dc, dc->current_state);
3969 
3970 		dc_z10_restore(dc);
3971 
3972 		if (dc->ctx->dmub_srv)
3973 			dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
3974 
3975 		dc->hwss.init_hw(dc);
3976 
3977 		if (dc->hwss.init_sys_ctx != NULL &&
3978 			dc->vm_pa_config.valid) {
3979 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
3980 		}
3981 
3982 		break;
3983 	default:
3984 		ASSERT(dc->current_state->stream_count == 0);
3985 		/* Zero out the current context so that on resume we start with
3986 		 * clean state, and dc hw programming optimizations will not
3987 		 * cause any trouble.
3988 		 */
3989 		dml = kzalloc(sizeof(struct display_mode_lib),
3990 				GFP_KERNEL);
3991 
3992 		ASSERT(dml);
3993 		if (!dml)
3994 			return;
3995 
3996 		/* Preserve refcount */
3997 		refcount = dc->current_state->refcount;
3998 		/* Preserve display mode lib */
3999 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4000 
4001 		dc_resource_state_destruct(dc->current_state);
4002 		memset(dc->current_state, 0,
4003 				sizeof(*dc->current_state));
4004 
4005 		dc->current_state->refcount = refcount;
4006 		dc->current_state->bw_ctx.dml = *dml;
4007 
4008 		kfree(dml);
4009 
4010 		break;
4011 	}
4012 }
4013 
4014 void dc_resume(struct dc *dc)
4015 {
4016 	uint32_t i;
4017 
4018 	for (i = 0; i < dc->link_count; i++)
4019 		core_link_resume(dc->links[i]);
4020 }
4021 
4022 bool dc_is_dmcu_initialized(struct dc *dc)
4023 {
4024 	struct dmcu *dmcu = dc->res_pool->dmcu;
4025 
4026 	if (dmcu)
4027 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4028 	return false;
4029 }
4030 
4031 bool dc_is_oem_i2c_device_present(
4032 	struct dc *dc,
4033 	size_t slave_address)
4034 {
4035 	if (dc->res_pool->oem_device)
4036 		return dce_i2c_oem_device_present(
4037 			dc->res_pool,
4038 			dc->res_pool->oem_device,
4039 			slave_address);
4040 
4041 	return false;
4042 }
4043 
4044 bool dc_submit_i2c(
4045 		struct dc *dc,
4046 		uint32_t link_index,
4047 		struct i2c_command *cmd)
4048 {
4049 
4050 	struct dc_link *link = dc->links[link_index];
4051 	struct ddc_service *ddc = link->ddc;
4052 	return dce_i2c_submit_command(
4053 		dc->res_pool,
4054 		ddc->ddc_pin,
4055 		cmd);
4056 }
4057 
4058 bool dc_submit_i2c_oem(
4059 		struct dc *dc,
4060 		struct i2c_command *cmd)
4061 {
4062 	struct ddc_service *ddc = dc->res_pool->oem_device;
4063 	if (ddc)
4064 		return dce_i2c_submit_command(
4065 			dc->res_pool,
4066 			ddc->ddc_pin,
4067 			cmd);
4068 
4069 	return false;
4070 }
4071 
4072 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
4073 {
4074 	if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
4075 		BREAK_TO_DEBUGGER();
4076 		return false;
4077 	}
4078 
4079 	dc_sink_retain(sink);
4080 
4081 	dc_link->remote_sinks[dc_link->sink_count] = sink;
4082 	dc_link->sink_count++;
4083 
4084 	return true;
4085 }
4086 
4087 /*
4088  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
4089  *
4090  * EDID length is in bytes
4091  */
4092 struct dc_sink *dc_link_add_remote_sink(
4093 		struct dc_link *link,
4094 		const uint8_t *edid,
4095 		int len,
4096 		struct dc_sink_init_data *init_data)
4097 {
4098 	struct dc_sink *dc_sink;
4099 	enum dc_edid_status edid_status;
4100 
4101 	if (len > DC_MAX_EDID_BUFFER_SIZE) {
4102 		dm_error("Max EDID buffer size breached!\n");
4103 		return NULL;
4104 	}
4105 
4106 	if (!init_data) {
4107 		BREAK_TO_DEBUGGER();
4108 		return NULL;
4109 	}
4110 
4111 	if (!init_data->link) {
4112 		BREAK_TO_DEBUGGER();
4113 		return NULL;
4114 	}
4115 
4116 	dc_sink = dc_sink_create(init_data);
4117 
4118 	if (!dc_sink)
4119 		return NULL;
4120 
4121 	memmove(dc_sink->dc_edid.raw_edid, edid, len);
4122 	dc_sink->dc_edid.length = len;
4123 
4124 	if (!link_add_remote_sink_helper(
4125 			link,
4126 			dc_sink))
4127 		goto fail_add_sink;
4128 
4129 	edid_status = dm_helpers_parse_edid_caps(
4130 			link,
4131 			&dc_sink->dc_edid,
4132 			&dc_sink->edid_caps);
4133 
4134 	/*
4135 	 * Treat device as no EDID device if EDID
4136 	 * parsing fails
4137 	 */
4138 	if (edid_status != EDID_OK && edid_status != EDID_PARTIAL_VALID) {
4139 		dc_sink->dc_edid.length = 0;
4140 		dm_error("Bad EDID, status%d!\n", edid_status);
4141 	}
4142 
4143 	return dc_sink;
4144 
4145 fail_add_sink:
4146 	dc_sink_release(dc_sink);
4147 	return NULL;
4148 }
4149 
4150 /*
4151  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
4152  *
4153  * Note that this just removes the struct dc_sink - it doesn't
4154  * program hardware or alter other members of dc_link
4155  */
4156 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
4157 {
4158 	int i;
4159 
4160 	if (!link->sink_count) {
4161 		BREAK_TO_DEBUGGER();
4162 		return;
4163 	}
4164 
4165 	for (i = 0; i < link->sink_count; i++) {
4166 		if (link->remote_sinks[i] == sink) {
4167 			dc_sink_release(sink);
4168 			link->remote_sinks[i] = NULL;
4169 
4170 			/* shrink array to remove empty place */
4171 			while (i < link->sink_count - 1) {
4172 				link->remote_sinks[i] = link->remote_sinks[i+1];
4173 				i++;
4174 			}
4175 			link->remote_sinks[i] = NULL;
4176 			link->sink_count--;
4177 			return;
4178 		}
4179 	}
4180 }
4181 
4182 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4183 {
4184 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4185 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4186 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4187 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4188 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4189 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4190 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4191 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4192 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4193 }
4194 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4195 {
4196 	if (dc->hwss.set_clock)
4197 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4198 	return DC_ERROR_UNEXPECTED;
4199 }
4200 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4201 {
4202 	if (dc->hwss.get_clock)
4203 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4204 }
4205 
4206 /* enable/disable eDP PSR without specify stream for eDP */
4207 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4208 {
4209 	int i;
4210 	bool allow_active;
4211 
4212 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4213 		struct dc_link *link;
4214 		struct dc_stream_state *stream = dc->current_state->streams[i];
4215 
4216 		link = stream->link;
4217 		if (!link)
4218 			continue;
4219 
4220 		if (link->psr_settings.psr_feature_enabled) {
4221 			if (enable && !link->psr_settings.psr_allow_active) {
4222 				allow_active = true;
4223 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4224 					return false;
4225 			} else if (!enable && link->psr_settings.psr_allow_active) {
4226 				allow_active = false;
4227 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4228 					return false;
4229 			}
4230 		}
4231 	}
4232 
4233 	return true;
4234 }
4235 
4236 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4237 {
4238 	if (dc->debug.disable_idle_power_optimizations)
4239 		return;
4240 
4241 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4242 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4243 			return;
4244 
4245 	if (allow == dc->idle_optimizations_allowed)
4246 		return;
4247 
4248 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4249 		dc->idle_optimizations_allowed = allow;
4250 }
4251 
4252 /* set min and max memory clock to lowest and highest DPM level, respectively */
4253 void dc_unlock_memory_clock_frequency(struct dc *dc)
4254 {
4255 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4256 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4257 
4258 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4259 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4260 }
4261 
4262 /* set min memory clock to the min required for current mode, max to maxDPM */
4263 void dc_lock_memory_clock_frequency(struct dc *dc)
4264 {
4265 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4266 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4267 
4268 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4269 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4270 
4271 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4272 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4273 }
4274 
4275 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4276 {
4277 	struct dc_state *context = dc->current_state;
4278 	struct hubp *hubp;
4279 	struct pipe_ctx *pipe;
4280 	int i;
4281 
4282 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4283 		pipe = &context->res_ctx.pipe_ctx[i];
4284 
4285 		if (pipe->stream != NULL) {
4286 			dc->hwss.disable_pixel_data(dc, pipe, true);
4287 
4288 			// wait for double buffer
4289 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4290 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4291 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4292 
4293 			hubp = pipe->plane_res.hubp;
4294 			hubp->funcs->set_blank_regs(hubp, true);
4295 		}
4296 	}
4297 
4298 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4299 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4300 
4301 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4302 		pipe = &context->res_ctx.pipe_ctx[i];
4303 
4304 		if (pipe->stream != NULL) {
4305 			dc->hwss.disable_pixel_data(dc, pipe, false);
4306 
4307 			hubp = pipe->plane_res.hubp;
4308 			hubp->funcs->set_blank_regs(hubp, false);
4309 		}
4310 	}
4311 }
4312 
4313 
4314 /**
4315  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4316  * @dc: pointer to dc of the dm calling this
4317  * @enable: True = transition to DC mode, false = transition back to AC mode
4318  *
4319  * Some SoCs define additional clock limits when in DC mode, DM should
4320  * invoke this function when the platform undergoes a power source transition
4321  * so DC can apply/unapply the limit. This interface may be disruptive to
4322  * the onscreen content.
4323  *
4324  * Context: Triggered by OS through DM interface, or manually by escape calls.
4325  * Need to hold a dclock when doing so.
4326  *
4327  * Return: none (void function)
4328  *
4329  */
4330 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4331 {
4332 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
4333 	unsigned int softMax, maxDPM, funcMin;
4334 	bool p_state_change_support;
4335 
4336 	if (!ASICREV_IS_BEIGE_GOBY_P(hw_internal_rev))
4337 		return;
4338 
4339 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4340 	maxDPM = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz;
4341 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4342 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4343 
4344 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4345 		if (p_state_change_support) {
4346 			if (funcMin <= softMax)
4347 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4348 			// else: No-Op
4349 		} else {
4350 			if (funcMin <= softMax)
4351 				blank_and_force_memclk(dc, true, softMax);
4352 			// else: No-Op
4353 		}
4354 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4355 		if (p_state_change_support) {
4356 			if (funcMin <= softMax)
4357 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4358 			// else: No-Op
4359 		} else {
4360 			if (funcMin <= softMax)
4361 				blank_and_force_memclk(dc, true, maxDPM);
4362 			// else: No-Op
4363 		}
4364 	}
4365 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4366 }
4367 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4368 		struct dc_cursor_attributes *cursor_attr)
4369 {
4370 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4371 		return true;
4372 	return false;
4373 }
4374 
4375 /* cleanup on driver unload */
4376 void dc_hardware_release(struct dc *dc)
4377 {
4378 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4379 
4380 	if (dc->hwss.hardware_release)
4381 		dc->hwss.hardware_release(dc);
4382 }
4383 
4384 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4385 {
4386 	if (dc->current_state)
4387 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4388 }
4389 
4390 /*
4391  *****************************************************************************
4392  * Function: dc_is_dmub_outbox_supported -
4393  *
4394  * @brief
4395  *      Checks whether DMUB FW supports outbox notifications, if supported
4396  *		DM should register outbox interrupt prior to actually enabling interrupts
4397  *		via dc_enable_dmub_outbox
4398  *
4399  *  @param
4400  *		[in] dc: dc structure
4401  *
4402  *  @return
4403  *		True if DMUB FW supports outbox notifications, False otherwise
4404  *****************************************************************************
4405  */
4406 bool dc_is_dmub_outbox_supported(struct dc *dc)
4407 {
4408 	/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4409 	if (dc->ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
4410 	    dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4411 	    !dc->debug.dpia_debug.bits.disable_dpia)
4412 		return true;
4413 
4414 	if (dc->ctx->asic_id.chip_family == AMDGPU_FAMILY_GC_11_0_1 &&
4415 	    !dc->debug.dpia_debug.bits.disable_dpia)
4416 		return true;
4417 
4418 	/* dmub aux needs dmub notifications to be enabled */
4419 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4420 }
4421 
4422 /*
4423  *****************************************************************************
4424  *  Function: dc_enable_dmub_notifications
4425  *
4426  *  @brief
4427  *		Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4428  *		notifications. All DMs shall switch to dc_is_dmub_outbox_supported.
4429  *		This API shall be removed after switching.
4430  *
4431  *  @param
4432  *		[in] dc: dc structure
4433  *
4434  *  @return
4435  *		True if DMUB FW supports outbox notifications, False otherwise
4436  *****************************************************************************
4437  */
4438 bool dc_enable_dmub_notifications(struct dc *dc)
4439 {
4440 	return dc_is_dmub_outbox_supported(dc);
4441 }
4442 
4443 /**
4444  *****************************************************************************
4445  *  Function: dc_enable_dmub_outbox
4446  *
4447  *  @brief
4448  *		Enables DMUB unsolicited notifications to x86 via outbox
4449  *
4450  *  @param
4451  *		[in] dc: dc structure
4452  *
4453  *  @return
4454  *		None
4455  *****************************************************************************
4456  */
4457 void dc_enable_dmub_outbox(struct dc *dc)
4458 {
4459 	struct dc_context *dc_ctx = dc->ctx;
4460 
4461 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4462 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4463 }
4464 
4465 /**
4466  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4467  *                                      Sets port index appropriately for legacy DDC
4468  * @dc: dc structure
4469  * @link_index: link index
4470  * @payload: aux payload
4471  *
4472  * Returns: True if successful, False if failure
4473  */
4474 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4475 				uint32_t link_index,
4476 				struct aux_payload *payload)
4477 {
4478 	uint8_t action;
4479 	union dmub_rb_cmd cmd = {0};
4480 	struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4481 
4482 	ASSERT(payload->length <= 16);
4483 
4484 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4485 	cmd.dp_aux_access.header.payload_bytes = 0;
4486 	/* For dpia, ddc_pin is set to NULL */
4487 	if (!dc->links[link_index]->ddc->ddc_pin)
4488 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4489 	else
4490 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4491 
4492 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4493 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4494 	cmd.dp_aux_access.aux_control.timeout = 0;
4495 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4496 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4497 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4498 
4499 	/* set aux action */
4500 	if (payload->i2c_over_aux) {
4501 		if (payload->write) {
4502 			if (payload->mot)
4503 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4504 			else
4505 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4506 		} else {
4507 			if (payload->mot)
4508 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4509 			else
4510 				action = DP_AUX_REQ_ACTION_I2C_READ;
4511 			}
4512 	} else {
4513 		if (payload->write)
4514 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4515 		else
4516 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4517 	}
4518 
4519 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4520 
4521 	if (payload->length && payload->write) {
4522 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4523 			payload->data,
4524 			payload->length
4525 			);
4526 	}
4527 
4528 	dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
4529 	dc_dmub_srv_cmd_execute(dmub_srv);
4530 	dc_dmub_srv_wait_idle(dmub_srv);
4531 
4532 	return true;
4533 }
4534 
4535 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4536 					    uint8_t dpia_port_index)
4537 {
4538 	uint8_t index, link_index = 0xFF;
4539 
4540 	for (index = 0; index < dc->link_count; index++) {
4541 		/* ddc_hw_inst has dpia port index for dpia links
4542 		 * and ddc instance for legacy links
4543 		 */
4544 		if (!dc->links[index]->ddc->ddc_pin) {
4545 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
4546 				link_index = index;
4547 				break;
4548 			}
4549 		}
4550 	}
4551 	ASSERT(link_index != 0xFF);
4552 	return link_index;
4553 }
4554 
4555 /**
4556  *****************************************************************************
4557  *  Function: dc_process_dmub_set_config_async
4558  *
4559  *  @brief
4560  *		Submits set_config command to dmub via inbox message
4561  *
4562  *  @param
4563  *		[in] dc: dc structure
4564  *		[in] link_index: link index
4565  *		[in] payload: aux payload
4566  *		[out] notify: set_config immediate reply
4567  *
4568  *  @return
4569  *		True if successful, False if failure
4570  *****************************************************************************
4571  */
4572 bool dc_process_dmub_set_config_async(struct dc *dc,
4573 				uint32_t link_index,
4574 				struct set_config_cmd_payload *payload,
4575 				struct dmub_notification *notify)
4576 {
4577 	union dmub_rb_cmd cmd = {0};
4578 	struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4579 	bool is_cmd_complete = true;
4580 
4581 	/* prepare SET_CONFIG command */
4582 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
4583 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
4584 
4585 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
4586 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
4587 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
4588 
4589 	if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd)) {
4590 		/* command is not processed by dmub */
4591 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
4592 		return is_cmd_complete;
4593 	}
4594 
4595 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
4596 	if (cmd.set_config_access.header.ret_status == 1)
4597 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
4598 	else
4599 		/* cmd pending, will receive notification via outbox */
4600 		is_cmd_complete = false;
4601 
4602 	return is_cmd_complete;
4603 }
4604 
4605 /**
4606  *****************************************************************************
4607  *  Function: dc_process_dmub_set_mst_slots
4608  *
4609  *  @brief
4610  *		Submits mst slot allocation command to dmub via inbox message
4611  *
4612  *  @param
4613  *		[in] dc: dc structure
4614  *		[in] link_index: link index
4615  *		[in] mst_alloc_slots: mst slots to be allotted
4616  *		[out] mst_slots_in_use: mst slots in use returned in failure case
4617  *
4618  *	@return
4619  *		DC_OK if successful, DC_ERROR if failure
4620  *****************************************************************************
4621  */
4622 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
4623 				uint32_t link_index,
4624 				uint8_t mst_alloc_slots,
4625 				uint8_t *mst_slots_in_use)
4626 {
4627 	union dmub_rb_cmd cmd = {0};
4628 	struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4629 
4630 	/* prepare MST_ALLOC_SLOTS command */
4631 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
4632 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
4633 
4634 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
4635 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
4636 
4637 	if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd))
4638 		/* command is not processed by dmub */
4639 		return DC_ERROR_UNEXPECTED;
4640 
4641 	/* command processed by dmub, if ret_status is 1 */
4642 	if (cmd.set_config_access.header.ret_status != 1)
4643 		/* command processing error */
4644 		return DC_ERROR_UNEXPECTED;
4645 
4646 	/* command processed and we have a status of 2, mst not enabled in dpia */
4647 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
4648 		return DC_FAIL_UNSUPPORTED_1;
4649 
4650 	/* previously configured mst alloc and used slots did not match */
4651 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
4652 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
4653 		return DC_NOT_SUPPORTED;
4654 	}
4655 
4656 	return DC_OK;
4657 }
4658 
4659 /**
4660  *****************************************************************************
4661  *  Function: dc_process_dmub_dpia_hpd_int_enable
4662  *
4663  *  @brief
4664  *		Submits dpia hpd int enable command to dmub via inbox message
4665  *
4666  *  @param
4667  *		[in] dc: dc structure
4668  *		[in] hpd_int_enable: 1 for hpd int enable, 0 to disable
4669  *
4670  *	@return
4671  *		None
4672  *****************************************************************************
4673  */
4674 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
4675 				uint32_t hpd_int_enable)
4676 {
4677 	union dmub_rb_cmd cmd = {0};
4678 	struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4679 
4680 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
4681 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
4682 
4683 	dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
4684 	dc_dmub_srv_cmd_execute(dmub_srv);
4685 	dc_dmub_srv_wait_idle(dmub_srv);
4686 
4687 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
4688 }
4689 
4690 /**
4691  * dc_disable_accelerated_mode - disable accelerated mode
4692  * @dc: dc structure
4693  */
4694 void dc_disable_accelerated_mode(struct dc *dc)
4695 {
4696 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
4697 }
4698 
4699 
4700 /**
4701  *****************************************************************************
4702  *  dc_notify_vsync_int_state() - notifies vsync enable/disable state
4703  *  @dc: dc structure
4704  *	@stream: stream where vsync int state changed
4705  *	@enable: whether vsync is enabled or disabled
4706  *
4707  *  Called when vsync is enabled/disabled
4708  *	Will notify DMUB to start/stop ABM interrupts after steady state is reached
4709  *
4710  *****************************************************************************
4711  */
4712 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
4713 {
4714 	int i;
4715 	int edp_num;
4716 	struct pipe_ctx *pipe = NULL;
4717 	struct dc_link *link = stream->sink->link;
4718 	struct dc_link *edp_links[MAX_NUM_EDP];
4719 
4720 
4721 	if (link->psr_settings.psr_feature_enabled)
4722 		return;
4723 
4724 	/*find primary pipe associated with stream*/
4725 	for (i = 0; i < MAX_PIPES; i++) {
4726 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4727 
4728 		if (pipe->stream == stream && pipe->stream_res.tg)
4729 			break;
4730 	}
4731 
4732 	if (i == MAX_PIPES) {
4733 		ASSERT(0);
4734 		return;
4735 	}
4736 
4737 	get_edp_links(dc, edp_links, &edp_num);
4738 
4739 	/* Determine panel inst */
4740 	for (i = 0; i < edp_num; i++) {
4741 		if (edp_links[i] == link)
4742 			break;
4743 	}
4744 
4745 	if (i == edp_num) {
4746 		return;
4747 	}
4748 
4749 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
4750 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
4751 }
4752 /*
4753  * dc_extended_blank_supported: Decide whether extended blank is supported
4754  *
4755  * Extended blank is a freesync optimization feature to be enabled in the future.
4756  * During the extra vblank period gained from freesync, we have the ability to enter z9/z10.
4757  *
4758  * @param [in] dc: Current DC state
4759  * @return: Indicate whether extended blank is supported (true or false)
4760  */
4761 bool dc_extended_blank_supported(struct dc *dc)
4762 {
4763 	return dc->debug.extended_blank_optimization && !dc->debug.disable_z10
4764 		&& dc->caps.zstate_support && dc->caps.is_apu;
4765 }
4766