1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 
28 #include "dccg.h"
29 #include "clk_mgr_internal.h"
30 
31 // For dce12_get_dp_ref_freq_khz
32 #include "dce100/dce_clk_mgr.h"
33 
34 // For dcn20_update_clocks_update_dpp_dto
35 #include "dcn20/dcn20_clk_mgr.h"
36 
37 
38 
39 #include "dcn31_clk_mgr.h"
40 
41 #include "reg_helper.h"
42 #include "core_types.h"
43 #include "dcn31_smu.h"
44 #include "dm_helpers.h"
45 
46 /* TODO: remove this include once we ported over remaining clk mgr functions*/
47 #include "dcn30/dcn30_clk_mgr.h"
48 
49 #include "dc_dmub_srv.h"
50 
51 #include "yellow_carp_offset.h"
52 
53 #define regCLK1_CLK_PLL_REQ			0x0237
54 #define regCLK1_CLK_PLL_REQ_BASE_IDX		0
55 
56 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT	0x0
57 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT	0xc
58 #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT	0x10
59 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK	0x000001FFL
60 #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK	0x0000F000L
61 #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK	0xFFFF0000L
62 
63 #define REG(reg_name) \
64 	(CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
65 
66 #define TO_CLK_MGR_DCN31(clk_mgr)\
67 	container_of(clk_mgr, struct clk_mgr_dcn31, base)
68 
69 int dcn31_get_active_display_cnt_wa(
70 		struct dc *dc,
71 		struct dc_state *context)
72 {
73 	int i, display_count;
74 	bool tmds_present = false;
75 
76 	display_count = 0;
77 	for (i = 0; i < context->stream_count; i++) {
78 		const struct dc_stream_state *stream = context->streams[i];
79 
80 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
81 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
82 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
83 			tmds_present = true;
84 	}
85 
86 	for (i = 0; i < dc->link_count; i++) {
87 		const struct dc_link *link = dc->links[i];
88 
89 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
90 		if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
91 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
92 			display_count++;
93 	}
94 
95 	/* WA for hang on HDMI after display off back back on*/
96 	if (display_count == 0 && tmds_present)
97 		display_count = 1;
98 
99 	return display_count;
100 }
101 
102 static void dcn31_disable_otg_wa(struct clk_mgr *clk_mgr_base, bool disable)
103 {
104 	struct dc *dc = clk_mgr_base->ctx->dc;
105 	int i;
106 
107 	for (i = 0; i < dc->res_pool->pipe_count; ++i) {
108 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
109 
110 		if (pipe->top_pipe || pipe->prev_odm_pipe)
111 			continue;
112 		if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
113 			if (disable)
114 				pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
115 			else
116 				pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
117 		}
118 	}
119 }
120 
121 static void dcn31_update_clocks(struct clk_mgr *clk_mgr_base,
122 			struct dc_state *context,
123 			bool safe_to_lower)
124 {
125 	union dmub_rb_cmd cmd;
126 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
127 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
128 	struct dc *dc = clk_mgr_base->ctx->dc;
129 	int display_count;
130 	bool update_dppclk = false;
131 	bool update_dispclk = false;
132 	bool dpp_clock_lowered = false;
133 
134 	if (dc->work_arounds.skip_clock_update)
135 		return;
136 
137 	/*
138 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
139 	 * also if safe to lower is false, we just go in the higher state
140 	 */
141 	if (safe_to_lower) {
142 		if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_ALLOW &&
143 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
144 			dcn31_smu_set_Z9_support(clk_mgr, true);
145 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
146 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
147 		}
148 
149 		if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
150 			dcn31_smu_set_dtbclk(clk_mgr, false);
151 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
152 		}
153 		/* check that we're not already in lower */
154 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
155 			display_count = dcn31_get_active_display_cnt_wa(dc, context);
156 			/* if we can go lower, go lower */
157 			if (display_count == 0) {
158 				union display_idle_optimization_u idle_info = { 0 };
159 				idle_info.idle_info.df_request_disabled = 1;
160 				idle_info.idle_info.phy_ref_clk_off = 1;
161 				dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
162 				/* update power state */
163 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
164 			}
165 		}
166 	} else {
167 		if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
168 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
169 			dcn31_smu_set_Z9_support(clk_mgr, false);
170 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
171 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
172 		}
173 
174 		if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
175 			dcn31_smu_set_dtbclk(clk_mgr, true);
176 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
177 		}
178 
179 		/* check that we're not already in D0 */
180 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
181 			union display_idle_optimization_u idle_info = { 0 };
182 			dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
183 			/* update power state */
184 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
185 		}
186 	}
187 
188 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
189 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
190 		dcn31_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
191 	}
192 
193 	if (should_set_clock(safe_to_lower,
194 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
195 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
196 		dcn31_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
197 	}
198 
199 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
200 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
201 		if (new_clocks->dppclk_khz < 100000)
202 			new_clocks->dppclk_khz = 100000;
203 	}
204 
205 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
206 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
207 			dpp_clock_lowered = true;
208 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
209 		update_dppclk = true;
210 	}
211 
212 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
213 		dcn31_disable_otg_wa(clk_mgr_base, true);
214 
215 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
216 		dcn31_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
217 		dcn31_disable_otg_wa(clk_mgr_base, false);
218 
219 		update_dispclk = true;
220 	}
221 
222 	if (dpp_clock_lowered) {
223 		// increase per DPP DTO before lowering global dppclk
224 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
225 		dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
226 	} else {
227 		// increase global DPPCLK before lowering per DPP DTO
228 		if (update_dppclk || update_dispclk)
229 			dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
230 		// always update dtos unless clock is lowered and not safe to lower
231 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
232 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
233 	}
234 
235 	// notify DMCUB of latest clocks
236 	memset(&cmd, 0, sizeof(cmd));
237 	cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
238 	cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
239 	cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
240 	cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
241 		clk_mgr_base->clks.dcfclk_deep_sleep_khz;
242 	cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
243 	cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
244 
245 	dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
246 	dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
247 	dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
248 }
249 
250 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
251 {
252 	/* get FbMult value */
253 	struct fixed31_32 pll_req;
254 	unsigned int fbmult_frac_val = 0;
255 	unsigned int fbmult_int_val = 0;
256 
257 	/*
258 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
259 	 * to leverage the fix point operations available in driver
260 	 */
261 
262 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
263 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
264 
265 	pll_req = dc_fixpt_from_int(fbmult_int_val);
266 
267 	/*
268 	 * since fractional part is only 16 bit in register definition but is 32 bit
269 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
270 	 */
271 	pll_req.value |= fbmult_frac_val << 16;
272 
273 	/* multiply by REFCLK period */
274 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
275 
276 	/* integer part is now VCO frequency in kHz */
277 	return dc_fixpt_floor(pll_req);
278 }
279 
280 static void dcn31_enable_pme_wa(struct clk_mgr *clk_mgr_base)
281 {
282 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
283 
284 	dcn31_smu_enable_pme_wa(clk_mgr);
285 }
286 
287 static void dcn31_init_clocks(struct clk_mgr *clk_mgr)
288 {
289 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
290 	// Assumption is that boot state always supports pstate
291 	clk_mgr->clks.p_state_change_support = true;
292 	clk_mgr->clks.prev_p_state_change_support = true;
293 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
294 	clk_mgr->clks.zstate_support = DCN_ZSTATE_SUPPORT_UNKNOWN;
295 }
296 
297 static bool dcn31_are_clock_states_equal(struct dc_clocks *a,
298 		struct dc_clocks *b)
299 {
300 	if (a->dispclk_khz != b->dispclk_khz)
301 		return false;
302 	else if (a->dppclk_khz != b->dppclk_khz)
303 		return false;
304 	else if (a->dcfclk_khz != b->dcfclk_khz)
305 		return false;
306 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
307 		return false;
308 	else if (a->zstate_support != b->zstate_support)
309 		return false;
310 	else if (a->dtbclk_en != b->dtbclk_en)
311 		return false;
312 
313 	return true;
314 }
315 
316 static void dcn31_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
317 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
318 {
319 	return;
320 }
321 
322 static struct clk_bw_params dcn31_bw_params = {
323 	.vram_type = Ddr4MemType,
324 	.num_channels = 1,
325 	.clk_table = {
326 		.num_entries = 4,
327 	},
328 
329 };
330 
331 static struct wm_table ddr4_wm_table = {
332 	.entries = {
333 		{
334 			.wm_inst = WM_A,
335 			.wm_type = WM_TYPE_PSTATE_CHG,
336 			.pstate_latency_us = 11.72,
337 			.sr_exit_time_us = 6.09,
338 			.sr_enter_plus_exit_time_us = 7.14,
339 			.valid = true,
340 		},
341 		{
342 			.wm_inst = WM_B,
343 			.wm_type = WM_TYPE_PSTATE_CHG,
344 			.pstate_latency_us = 11.72,
345 			.sr_exit_time_us = 10.12,
346 			.sr_enter_plus_exit_time_us = 11.48,
347 			.valid = true,
348 		},
349 		{
350 			.wm_inst = WM_C,
351 			.wm_type = WM_TYPE_PSTATE_CHG,
352 			.pstate_latency_us = 11.72,
353 			.sr_exit_time_us = 10.12,
354 			.sr_enter_plus_exit_time_us = 11.48,
355 			.valid = true,
356 		},
357 		{
358 			.wm_inst = WM_D,
359 			.wm_type = WM_TYPE_PSTATE_CHG,
360 			.pstate_latency_us = 11.72,
361 			.sr_exit_time_us = 10.12,
362 			.sr_enter_plus_exit_time_us = 11.48,
363 			.valid = true,
364 		},
365 	}
366 };
367 
368 static struct wm_table lpddr5_wm_table = {
369 	.entries = {
370 		{
371 			.wm_inst = WM_A,
372 			.wm_type = WM_TYPE_PSTATE_CHG,
373 			.pstate_latency_us = 11.65333,
374 			.sr_exit_time_us = 11.5,
375 			.sr_enter_plus_exit_time_us = 14.5,
376 			.valid = true,
377 		},
378 		{
379 			.wm_inst = WM_B,
380 			.wm_type = WM_TYPE_PSTATE_CHG,
381 			.pstate_latency_us = 11.65333,
382 			.sr_exit_time_us = 11.5,
383 			.sr_enter_plus_exit_time_us = 14.5,
384 			.valid = true,
385 		},
386 		{
387 			.wm_inst = WM_C,
388 			.wm_type = WM_TYPE_PSTATE_CHG,
389 			.pstate_latency_us = 11.65333,
390 			.sr_exit_time_us = 11.5,
391 			.sr_enter_plus_exit_time_us = 14.5,
392 			.valid = true,
393 		},
394 		{
395 			.wm_inst = WM_D,
396 			.wm_type = WM_TYPE_PSTATE_CHG,
397 			.pstate_latency_us = 11.65333,
398 			.sr_exit_time_us = 11.5,
399 			.sr_enter_plus_exit_time_us = 14.5,
400 			.valid = true,
401 		},
402 	}
403 };
404 
405 static DpmClocks_t dummy_clocks;
406 
407 static struct dcn31_watermarks dummy_wms = { 0 };
408 
409 static void dcn31_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn31_watermarks *table)
410 {
411 	int i, num_valid_sets;
412 
413 	num_valid_sets = 0;
414 
415 	for (i = 0; i < WM_SET_COUNT; i++) {
416 		/* skip empty entries, the smu array has no holes*/
417 		if (!bw_params->wm_table.entries[i].valid)
418 			continue;
419 
420 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
421 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
422 		/* We will not select WM based on fclk, so leave it as unconstrained */
423 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
424 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
425 
426 		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
427 			if (i == 0)
428 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
429 			else {
430 				/* add 1 to make it non-overlapping with next lvl */
431 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
432 						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
433 			}
434 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
435 					bw_params->clk_table.entries[i].dcfclk_mhz;
436 
437 		} else {
438 			/* unconstrained for memory retraining */
439 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
440 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
441 
442 			/* Modify previous watermark range to cover up to max */
443 			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
444 		}
445 		num_valid_sets++;
446 	}
447 
448 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
449 
450 	/* modify the min and max to make sure we cover the whole range*/
451 	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
452 	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
453 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
454 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
455 
456 	/* This is for writeback only, does not matter currently as no writeback support*/
457 	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
458 	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
459 	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
460 	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
461 	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
462 }
463 
464 static void dcn31_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
465 {
466 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
467 	struct clk_mgr_dcn31 *clk_mgr_dcn31 = TO_CLK_MGR_DCN31(clk_mgr);
468 	struct dcn31_watermarks *table = clk_mgr_dcn31->smu_wm_set.wm_set;
469 
470 	if (!clk_mgr->smu_ver)
471 		return;
472 
473 	if (!table || clk_mgr_dcn31->smu_wm_set.mc_address.quad_part == 0)
474 		return;
475 
476 	memset(table, 0, sizeof(*table));
477 
478 	dcn31_build_watermark_ranges(clk_mgr_base->bw_params, table);
479 
480 	dcn31_smu_set_dram_addr_high(clk_mgr,
481 			clk_mgr_dcn31->smu_wm_set.mc_address.high_part);
482 	dcn31_smu_set_dram_addr_low(clk_mgr,
483 			clk_mgr_dcn31->smu_wm_set.mc_address.low_part);
484 	dcn31_smu_transfer_wm_table_dram_2_smu(clk_mgr);
485 }
486 
487 static void dcn31_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
488 		struct dcn31_smu_dpm_clks *smu_dpm_clks)
489 {
490 	DpmClocks_t *table = smu_dpm_clks->dpm_clks;
491 
492 	if (!clk_mgr->smu_ver)
493 		return;
494 
495 	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
496 		return;
497 
498 	memset(table, 0, sizeof(*table));
499 
500 	dcn31_smu_set_dram_addr_high(clk_mgr,
501 			smu_dpm_clks->mc_address.high_part);
502 	dcn31_smu_set_dram_addr_low(clk_mgr,
503 			smu_dpm_clks->mc_address.low_part);
504 	dcn31_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
505 }
506 
507 static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
508 {
509 	uint32_t max = 0;
510 	int i;
511 
512 	for (i = 0; i < num_clocks; ++i) {
513 		if (clocks[i] > max)
514 			max = clocks[i];
515 	}
516 
517 	return max;
518 }
519 
520 static unsigned int find_clk_for_voltage(
521 		const DpmClocks_t *clock_table,
522 		const uint32_t clocks[],
523 		unsigned int voltage)
524 {
525 	int i;
526 	int max_voltage = 0;
527 	int clock = 0;
528 
529 	for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++) {
530 		if (clock_table->SocVoltage[i] == voltage) {
531 			return clocks[i];
532 		} else if (clock_table->SocVoltage[i] >= max_voltage &&
533 				clock_table->SocVoltage[i] < voltage) {
534 			max_voltage = clock_table->SocVoltage[i];
535 			clock = clocks[i];
536 		}
537 	}
538 
539 	ASSERT(clock);
540 	return clock;
541 }
542 
543 void dcn31_clk_mgr_helper_populate_bw_params(
544 		struct clk_mgr_internal *clk_mgr,
545 		struct integrated_info *bios_info,
546 		const DpmClocks_t *clock_table)
547 {
548 	int i, j;
549 	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
550 	uint32_t max_dispclk = 0, max_dppclk = 0;
551 
552 	j = -1;
553 
554 	ASSERT(NUM_DF_PSTATE_LEVELS <= MAX_NUM_DPM_LVL);
555 
556 	/* Find lowest DPM, FCLK is filled in reverse order*/
557 
558 	for (i = NUM_DF_PSTATE_LEVELS - 1; i >= 0; i--) {
559 		if (clock_table->DfPstateTable[i].FClk != 0) {
560 			j = i;
561 			break;
562 		}
563 	}
564 
565 	if (j == -1) {
566 		/* clock table is all 0s, just use our own hardcode */
567 		ASSERT(0);
568 		return;
569 	}
570 
571 	bw_params->clk_table.num_entries = j + 1;
572 
573 	/* dispclk and dppclk can be max at any voltage, same number of levels for both */
574 	if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
575 	    clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
576 		max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
577 		max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
578 	} else {
579 		ASSERT(0);
580 	}
581 
582 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
583 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].FClk;
584 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].MemClk;
585 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].Voltage;
586 		switch (clock_table->DfPstateTable[j].WckRatio) {
587 		case WCK_RATIO_1_2:
588 			bw_params->clk_table.entries[i].wck_ratio = 2;
589 			break;
590 		case WCK_RATIO_1_4:
591 			bw_params->clk_table.entries[i].wck_ratio = 4;
592 			break;
593 		default:
594 			bw_params->clk_table.entries[i].wck_ratio = 1;
595 		}
596 		bw_params->clk_table.entries[i].dcfclk_mhz = find_clk_for_voltage(clock_table, clock_table->DcfClocks, clock_table->DfPstateTable[j].Voltage);
597 		bw_params->clk_table.entries[i].socclk_mhz = find_clk_for_voltage(clock_table, clock_table->SocClocks, clock_table->DfPstateTable[j].Voltage);
598 		bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
599 		bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
600 	}
601 
602 	bw_params->vram_type = bios_info->memory_type;
603 	bw_params->num_channels = bios_info->ma_channel_number;
604 
605 	for (i = 0; i < WM_SET_COUNT; i++) {
606 		bw_params->wm_table.entries[i].wm_inst = i;
607 
608 		if (i >= bw_params->clk_table.num_entries) {
609 			bw_params->wm_table.entries[i].valid = false;
610 			continue;
611 		}
612 
613 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
614 		bw_params->wm_table.entries[i].valid = true;
615 	}
616 }
617 
618 static struct clk_mgr_funcs dcn31_funcs = {
619 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
620 	.update_clocks = dcn31_update_clocks,
621 	.init_clocks = dcn31_init_clocks,
622 	.enable_pme_wa = dcn31_enable_pme_wa,
623 	.are_clock_states_equal = dcn31_are_clock_states_equal,
624 	.notify_wm_ranges = dcn31_notify_wm_ranges
625 };
626 extern struct clk_mgr_funcs dcn3_fpga_funcs;
627 
628 void dcn31_clk_mgr_construct(
629 		struct dc_context *ctx,
630 		struct clk_mgr_dcn31 *clk_mgr,
631 		struct pp_smu_funcs *pp_smu,
632 		struct dccg *dccg)
633 {
634 	struct dcn31_smu_dpm_clks smu_dpm_clks = { 0 };
635 
636 	clk_mgr->base.base.ctx = ctx;
637 	clk_mgr->base.base.funcs = &dcn31_funcs;
638 
639 	clk_mgr->base.pp_smu = pp_smu;
640 
641 	clk_mgr->base.dccg = dccg;
642 	clk_mgr->base.dfs_bypass_disp_clk = 0;
643 
644 	clk_mgr->base.dprefclk_ss_percentage = 0;
645 	clk_mgr->base.dprefclk_ss_divider = 1000;
646 	clk_mgr->base.ss_on_dprefclk = false;
647 	clk_mgr->base.dfs_ref_freq_khz = 48000;
648 
649 	clk_mgr->smu_wm_set.wm_set = (struct dcn31_watermarks *)dm_helpers_allocate_gpu_mem(
650 				clk_mgr->base.base.ctx,
651 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
652 				sizeof(struct dcn31_watermarks),
653 				&clk_mgr->smu_wm_set.mc_address.quad_part);
654 
655 	if (!clk_mgr->smu_wm_set.wm_set) {
656 		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
657 		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
658 	}
659 	ASSERT(clk_mgr->smu_wm_set.wm_set);
660 
661 	smu_dpm_clks.dpm_clks = (DpmClocks_t *)dm_helpers_allocate_gpu_mem(
662 				clk_mgr->base.base.ctx,
663 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
664 				sizeof(DpmClocks_t),
665 				&smu_dpm_clks.mc_address.quad_part);
666 
667 	if (smu_dpm_clks.dpm_clks == NULL) {
668 		smu_dpm_clks.dpm_clks = &dummy_clocks;
669 		smu_dpm_clks.mc_address.quad_part = 0;
670 	}
671 
672 	ASSERT(smu_dpm_clks.dpm_clks);
673 
674 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
675 		clk_mgr->base.base.funcs = &dcn3_fpga_funcs;
676 	} else {
677 		struct clk_log_info log_info = {0};
678 
679 		clk_mgr->base.smu_ver = dcn31_smu_get_smu_version(&clk_mgr->base);
680 
681 		if (clk_mgr->base.smu_ver)
682 			clk_mgr->base.smu_present = true;
683 
684 		/* TODO: Check we get what we expect during bringup */
685 		clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
686 
687 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
688 			dcn31_bw_params.wm_table = lpddr5_wm_table;
689 		} else {
690 			dcn31_bw_params.wm_table = ddr4_wm_table;
691 		}
692 		/* Saved clocks configured at boot for debug purposes */
693 		 dcn31_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
694 
695 	}
696 
697 	clk_mgr->base.base.dprefclk_khz = 600000;
698 	clk_mgr->base.dccg->ref_dtbclk_khz = 600000;
699 	dce_clock_read_ss_info(&clk_mgr->base);
700 
701 	clk_mgr->base.base.bw_params = &dcn31_bw_params;
702 
703 	if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
704 		dcn31_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
705 
706 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
707 			dcn31_clk_mgr_helper_populate_bw_params(
708 					&clk_mgr->base,
709 					ctx->dc_bios->integrated_info,
710 					smu_dpm_clks.dpm_clks);
711 		}
712 	}
713 
714 	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
715 		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
716 				smu_dpm_clks.dpm_clks);
717 }
718 
719 void dcn31_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
720 {
721 	struct clk_mgr_dcn31 *clk_mgr = TO_CLK_MGR_DCN31(clk_mgr_int);
722 
723 	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
724 		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
725 				clk_mgr->smu_wm_set.wm_set);
726 }
727