1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 
28 #include "dccg.h"
29 #include "clk_mgr_internal.h"
30 
31 // For dce12_get_dp_ref_freq_khz
32 #include "dce100/dce_clk_mgr.h"
33 
34 // For dcn20_update_clocks_update_dpp_dto
35 #include "dcn20/dcn20_clk_mgr.h"
36 
37 
38 
39 #include "dcn31_clk_mgr.h"
40 
41 #include "reg_helper.h"
42 #include "core_types.h"
43 #include "dcn31_smu.h"
44 #include "dm_helpers.h"
45 
46 /* TODO: remove this include once we ported over remaining clk mgr functions*/
47 #include "dcn30/dcn30_clk_mgr.h"
48 
49 #include "dc_dmub_srv.h"
50 #include "link.h"
51 
52 #include "logger_types.h"
53 #undef DC_LOGGER
54 #define DC_LOGGER \
55 	clk_mgr->base.base.ctx->logger
56 
57 #include "yellow_carp_offset.h"
58 
59 #define regCLK1_CLK_PLL_REQ			0x0237
60 #define regCLK1_CLK_PLL_REQ_BASE_IDX		0
61 
62 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT	0x0
63 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT	0xc
64 #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT	0x10
65 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK	0x000001FFL
66 #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK	0x0000F000L
67 #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK	0xFFFF0000L
68 
69 #define REG(reg_name) \
70 	(CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
71 
72 #define TO_CLK_MGR_DCN31(clk_mgr)\
73 	container_of(clk_mgr, struct clk_mgr_dcn31, base)
74 
75 static int dcn31_get_active_display_cnt_wa(
76 		struct dc *dc,
77 		struct dc_state *context)
78 {
79 	int i, display_count;
80 	bool tmds_present = false;
81 
82 	display_count = 0;
83 	for (i = 0; i < context->stream_count; i++) {
84 		const struct dc_stream_state *stream = context->streams[i];
85 
86 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
87 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
88 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
89 			tmds_present = true;
90 	}
91 
92 	for (i = 0; i < dc->link_count; i++) {
93 		const struct dc_link *link = dc->links[i];
94 
95 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
96 		if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
97 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
98 			display_count++;
99 	}
100 
101 	/* WA for hang on HDMI after display off back back on*/
102 	if (display_count == 0 && tmds_present)
103 		display_count = 1;
104 
105 	return display_count;
106 }
107 
108 static void dcn31_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
109 {
110 	struct dc *dc = clk_mgr_base->ctx->dc;
111 	int i;
112 
113 	for (i = 0; i < dc->res_pool->pipe_count; ++i) {
114 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
115 
116 		if (pipe->top_pipe || pipe->prev_odm_pipe)
117 			continue;
118 		if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
119 			if (disable) {
120 				pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
121 				reset_sync_context_for_pipe(dc, context, i);
122 			} else
123 				pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
124 		}
125 	}
126 }
127 
128 void dcn31_update_clocks(struct clk_mgr *clk_mgr_base,
129 			struct dc_state *context,
130 			bool safe_to_lower)
131 {
132 	union dmub_rb_cmd cmd;
133 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
134 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
135 	struct dc *dc = clk_mgr_base->ctx->dc;
136 	int display_count;
137 	bool update_dppclk = false;
138 	bool update_dispclk = false;
139 	bool dpp_clock_lowered = false;
140 
141 	if (dc->work_arounds.skip_clock_update)
142 		return;
143 
144 	/*
145 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
146 	 * also if safe to lower is false, we just go in the higher state
147 	 */
148 	if (safe_to_lower) {
149 		if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW &&
150 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
151 			dcn31_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support);
152 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
153 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
154 		}
155 
156 		if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
157 			dcn31_smu_set_dtbclk(clk_mgr, false);
158 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
159 		}
160 		/* check that we're not already in lower */
161 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
162 			display_count = dcn31_get_active_display_cnt_wa(dc, context);
163 			/* if we can go lower, go lower */
164 			if (display_count == 0) {
165 				union display_idle_optimization_u idle_info = { 0 };
166 				idle_info.idle_info.df_request_disabled = 1;
167 				idle_info.idle_info.phy_ref_clk_off = 1;
168 				idle_info.idle_info.s0i2_rdy = 1;
169 				dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
170 				/* update power state */
171 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
172 			}
173 		}
174 	} else {
175 		if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
176 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
177 			dcn31_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW);
178 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
179 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
180 		}
181 
182 		if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
183 			dcn31_smu_set_dtbclk(clk_mgr, true);
184 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
185 		}
186 
187 		/* check that we're not already in D0 */
188 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
189 			union display_idle_optimization_u idle_info = { 0 };
190 			dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
191 			/* update power state */
192 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
193 		}
194 	}
195 
196 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
197 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
198 		dcn31_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
199 	}
200 
201 	if (should_set_clock(safe_to_lower,
202 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
203 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
204 		dcn31_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
205 	}
206 
207 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
208 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
209 		if (new_clocks->dppclk_khz < 100000)
210 			new_clocks->dppclk_khz = 100000;
211 	}
212 
213 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
214 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
215 			dpp_clock_lowered = true;
216 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
217 		update_dppclk = true;
218 	}
219 
220 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
221 		dcn31_disable_otg_wa(clk_mgr_base, context, true);
222 
223 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
224 		dcn31_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
225 		dcn31_disable_otg_wa(clk_mgr_base, context, false);
226 
227 		update_dispclk = true;
228 	}
229 
230 	if (dpp_clock_lowered) {
231 		// increase per DPP DTO before lowering global dppclk
232 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
233 		dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
234 	} else {
235 		// increase global DPPCLK before lowering per DPP DTO
236 		if (update_dppclk || update_dispclk)
237 			dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
238 		// always update dtos unless clock is lowered and not safe to lower
239 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
240 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
241 	}
242 
243 	// notify DMCUB of latest clocks
244 	memset(&cmd, 0, sizeof(cmd));
245 	cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
246 	cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
247 	cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
248 	cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
249 		clk_mgr_base->clks.dcfclk_deep_sleep_khz;
250 	cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
251 	cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
252 
253 	dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
254 	dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
255 	dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
256 }
257 
258 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
259 {
260 	/* get FbMult value */
261 	struct fixed31_32 pll_req;
262 	unsigned int fbmult_frac_val = 0;
263 	unsigned int fbmult_int_val = 0;
264 
265 	/*
266 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
267 	 * to leverage the fix point operations available in driver
268 	 */
269 
270 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
271 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
272 
273 	pll_req = dc_fixpt_from_int(fbmult_int_val);
274 
275 	/*
276 	 * since fractional part is only 16 bit in register definition but is 32 bit
277 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
278 	 */
279 	pll_req.value |= fbmult_frac_val << 16;
280 
281 	/* multiply by REFCLK period */
282 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
283 
284 	/* integer part is now VCO frequency in kHz */
285 	return dc_fixpt_floor(pll_req);
286 }
287 
288 static void dcn31_enable_pme_wa(struct clk_mgr *clk_mgr_base)
289 {
290 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
291 
292 	dcn31_smu_enable_pme_wa(clk_mgr);
293 }
294 
295 void dcn31_init_clocks(struct clk_mgr *clk_mgr)
296 {
297 	uint32_t ref_dtbclk = clk_mgr->clks.ref_dtbclk_khz;
298 
299 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
300 	// Assumption is that boot state always supports pstate
301 	clk_mgr->clks.ref_dtbclk_khz = ref_dtbclk;	// restore ref_dtbclk
302 	clk_mgr->clks.p_state_change_support = true;
303 	clk_mgr->clks.prev_p_state_change_support = true;
304 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
305 	clk_mgr->clks.zstate_support = DCN_ZSTATE_SUPPORT_UNKNOWN;
306 }
307 
308 bool dcn31_are_clock_states_equal(struct dc_clocks *a,
309 		struct dc_clocks *b)
310 {
311 	if (a->dispclk_khz != b->dispclk_khz)
312 		return false;
313 	else if (a->dppclk_khz != b->dppclk_khz)
314 		return false;
315 	else if (a->dcfclk_khz != b->dcfclk_khz)
316 		return false;
317 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
318 		return false;
319 	else if (a->zstate_support != b->zstate_support)
320 		return false;
321 	else if (a->dtbclk_en != b->dtbclk_en)
322 		return false;
323 
324 	return true;
325 }
326 
327 static void dcn31_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
328 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
329 {
330 	return;
331 }
332 
333 static struct clk_bw_params dcn31_bw_params = {
334 	.vram_type = Ddr4MemType,
335 	.num_channels = 1,
336 	.clk_table = {
337 		.num_entries = 4,
338 	},
339 
340 };
341 
342 static struct wm_table ddr5_wm_table = {
343 	.entries = {
344 		{
345 			.wm_inst = WM_A,
346 			.wm_type = WM_TYPE_PSTATE_CHG,
347 			.pstate_latency_us = 11.72,
348 			.sr_exit_time_us = 9,
349 			.sr_enter_plus_exit_time_us = 11,
350 			.valid = true,
351 		},
352 		{
353 			.wm_inst = WM_B,
354 			.wm_type = WM_TYPE_PSTATE_CHG,
355 			.pstate_latency_us = 11.72,
356 			.sr_exit_time_us = 9,
357 			.sr_enter_plus_exit_time_us = 11,
358 			.valid = true,
359 		},
360 		{
361 			.wm_inst = WM_C,
362 			.wm_type = WM_TYPE_PSTATE_CHG,
363 			.pstate_latency_us = 11.72,
364 			.sr_exit_time_us = 9,
365 			.sr_enter_plus_exit_time_us = 11,
366 			.valid = true,
367 		},
368 		{
369 			.wm_inst = WM_D,
370 			.wm_type = WM_TYPE_PSTATE_CHG,
371 			.pstate_latency_us = 11.72,
372 			.sr_exit_time_us = 9,
373 			.sr_enter_plus_exit_time_us = 11,
374 			.valid = true,
375 		},
376 	}
377 };
378 
379 static struct wm_table lpddr5_wm_table = {
380 	.entries = {
381 		{
382 			.wm_inst = WM_A,
383 			.wm_type = WM_TYPE_PSTATE_CHG,
384 			.pstate_latency_us = 11.65333,
385 			.sr_exit_time_us = 11.5,
386 			.sr_enter_plus_exit_time_us = 14.5,
387 			.valid = true,
388 		},
389 		{
390 			.wm_inst = WM_B,
391 			.wm_type = WM_TYPE_PSTATE_CHG,
392 			.pstate_latency_us = 11.65333,
393 			.sr_exit_time_us = 11.5,
394 			.sr_enter_plus_exit_time_us = 14.5,
395 			.valid = true,
396 		},
397 		{
398 			.wm_inst = WM_C,
399 			.wm_type = WM_TYPE_PSTATE_CHG,
400 			.pstate_latency_us = 11.65333,
401 			.sr_exit_time_us = 11.5,
402 			.sr_enter_plus_exit_time_us = 14.5,
403 			.valid = true,
404 		},
405 		{
406 			.wm_inst = WM_D,
407 			.wm_type = WM_TYPE_PSTATE_CHG,
408 			.pstate_latency_us = 11.65333,
409 			.sr_exit_time_us = 11.5,
410 			.sr_enter_plus_exit_time_us = 14.5,
411 			.valid = true,
412 		},
413 	}
414 };
415 
416 static DpmClocks_t dummy_clocks;
417 
418 static struct dcn31_watermarks dummy_wms = { 0 };
419 
420 static void dcn31_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn31_watermarks *table)
421 {
422 	int i, num_valid_sets;
423 
424 	num_valid_sets = 0;
425 
426 	for (i = 0; i < WM_SET_COUNT; i++) {
427 		/* skip empty entries, the smu array has no holes*/
428 		if (!bw_params->wm_table.entries[i].valid)
429 			continue;
430 
431 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
432 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
433 		/* We will not select WM based on fclk, so leave it as unconstrained */
434 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
435 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
436 
437 		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
438 			if (i == 0)
439 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
440 			else {
441 				/* add 1 to make it non-overlapping with next lvl */
442 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
443 						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
444 			}
445 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
446 					bw_params->clk_table.entries[i].dcfclk_mhz;
447 
448 		} else {
449 			/* unconstrained for memory retraining */
450 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
451 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
452 
453 			/* Modify previous watermark range to cover up to max */
454 			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
455 		}
456 		num_valid_sets++;
457 	}
458 
459 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
460 
461 	/* modify the min and max to make sure we cover the whole range*/
462 	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
463 	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
464 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
465 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
466 
467 	/* This is for writeback only, does not matter currently as no writeback support*/
468 	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
469 	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
470 	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
471 	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
472 	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
473 }
474 
475 static void dcn31_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
476 {
477 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
478 	struct clk_mgr_dcn31 *clk_mgr_dcn31 = TO_CLK_MGR_DCN31(clk_mgr);
479 	struct dcn31_watermarks *table = clk_mgr_dcn31->smu_wm_set.wm_set;
480 
481 	if (!clk_mgr->smu_ver)
482 		return;
483 
484 	if (!table || clk_mgr_dcn31->smu_wm_set.mc_address.quad_part == 0)
485 		return;
486 
487 	memset(table, 0, sizeof(*table));
488 
489 	dcn31_build_watermark_ranges(clk_mgr_base->bw_params, table);
490 
491 	dcn31_smu_set_dram_addr_high(clk_mgr,
492 			clk_mgr_dcn31->smu_wm_set.mc_address.high_part);
493 	dcn31_smu_set_dram_addr_low(clk_mgr,
494 			clk_mgr_dcn31->smu_wm_set.mc_address.low_part);
495 	dcn31_smu_transfer_wm_table_dram_2_smu(clk_mgr);
496 }
497 
498 static void dcn31_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
499 		struct dcn31_smu_dpm_clks *smu_dpm_clks)
500 {
501 	DpmClocks_t *table = smu_dpm_clks->dpm_clks;
502 
503 	if (!clk_mgr->smu_ver)
504 		return;
505 
506 	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
507 		return;
508 
509 	memset(table, 0, sizeof(*table));
510 
511 	dcn31_smu_set_dram_addr_high(clk_mgr,
512 			smu_dpm_clks->mc_address.high_part);
513 	dcn31_smu_set_dram_addr_low(clk_mgr,
514 			smu_dpm_clks->mc_address.low_part);
515 	dcn31_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
516 }
517 
518 static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
519 {
520 	uint32_t max = 0;
521 	int i;
522 
523 	for (i = 0; i < num_clocks; ++i) {
524 		if (clocks[i] > max)
525 			max = clocks[i];
526 	}
527 
528 	return max;
529 }
530 
531 static unsigned int find_clk_for_voltage(
532 		const DpmClocks_t *clock_table,
533 		const uint32_t clocks[],
534 		unsigned int voltage)
535 {
536 	int i;
537 	int max_voltage = 0;
538 	int clock = 0;
539 
540 	for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++) {
541 		if (clock_table->SocVoltage[i] == voltage) {
542 			return clocks[i];
543 		} else if (clock_table->SocVoltage[i] >= max_voltage &&
544 				clock_table->SocVoltage[i] < voltage) {
545 			max_voltage = clock_table->SocVoltage[i];
546 			clock = clocks[i];
547 		}
548 	}
549 
550 	ASSERT(clock);
551 	return clock;
552 }
553 
554 static void dcn31_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr,
555 						    struct integrated_info *bios_info,
556 						    const DpmClocks_t *clock_table)
557 {
558 	int i, j;
559 	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
560 	uint32_t max_dispclk = 0, max_dppclk = 0;
561 
562 	j = -1;
563 
564 	ASSERT(NUM_DF_PSTATE_LEVELS <= MAX_NUM_DPM_LVL);
565 
566 	/* Find lowest DPM, FCLK is filled in reverse order*/
567 
568 	for (i = NUM_DF_PSTATE_LEVELS - 1; i >= 0; i--) {
569 		if (clock_table->DfPstateTable[i].FClk != 0) {
570 			j = i;
571 			break;
572 		}
573 	}
574 
575 	if (j == -1) {
576 		/* clock table is all 0s, just use our own hardcode */
577 		ASSERT(0);
578 		return;
579 	}
580 
581 	bw_params->clk_table.num_entries = j + 1;
582 
583 	/* dispclk and dppclk can be max at any voltage, same number of levels for both */
584 	if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
585 	    clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
586 		max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
587 		max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
588 	} else {
589 		ASSERT(0);
590 	}
591 
592 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
593 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].FClk;
594 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].MemClk;
595 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].Voltage;
596 		switch (clock_table->DfPstateTable[j].WckRatio) {
597 		case WCK_RATIO_1_2:
598 			bw_params->clk_table.entries[i].wck_ratio = 2;
599 			break;
600 		case WCK_RATIO_1_4:
601 			bw_params->clk_table.entries[i].wck_ratio = 4;
602 			break;
603 		default:
604 			bw_params->clk_table.entries[i].wck_ratio = 1;
605 		}
606 		bw_params->clk_table.entries[i].dcfclk_mhz = find_clk_for_voltage(clock_table, clock_table->DcfClocks, clock_table->DfPstateTable[j].Voltage);
607 		bw_params->clk_table.entries[i].socclk_mhz = find_clk_for_voltage(clock_table, clock_table->SocClocks, clock_table->DfPstateTable[j].Voltage);
608 		bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
609 		bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
610 	}
611 
612 	bw_params->vram_type = bios_info->memory_type;
613 
614 	bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
615 	//bw_params->dram_channel_width_bytes = dc->ctx->asic_id.vram_width;
616 	bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4;
617 	for (i = 0; i < WM_SET_COUNT; i++) {
618 		bw_params->wm_table.entries[i].wm_inst = i;
619 
620 		if (i >= bw_params->clk_table.num_entries) {
621 			bw_params->wm_table.entries[i].valid = false;
622 			continue;
623 		}
624 
625 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
626 		bw_params->wm_table.entries[i].valid = true;
627 	}
628 }
629 
630 static void dcn31_set_low_power_state(struct clk_mgr *clk_mgr_base)
631 {
632 	int display_count;
633 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
634 	struct dc *dc = clk_mgr_base->ctx->dc;
635 	struct dc_state *context = dc->current_state;
636 
637 	if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
638 		display_count = dcn31_get_active_display_cnt_wa(dc, context);
639 		/* if we can go lower, go lower */
640 		if (display_count == 0) {
641 			union display_idle_optimization_u idle_info = { 0 };
642 
643 			idle_info.idle_info.df_request_disabled = 1;
644 			idle_info.idle_info.phy_ref_clk_off = 1;
645 			idle_info.idle_info.s0i2_rdy = 1;
646 			dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
647 			/* update power state */
648 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
649 		}
650 	}
651 }
652 
653 int dcn31_get_dtb_ref_freq_khz(struct clk_mgr *clk_mgr_base)
654 {
655 	return clk_mgr_base->clks.ref_dtbclk_khz;
656 }
657 
658 static struct clk_mgr_funcs dcn31_funcs = {
659 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
660 	.get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
661 	.update_clocks = dcn31_update_clocks,
662 	.init_clocks = dcn31_init_clocks,
663 	.enable_pme_wa = dcn31_enable_pme_wa,
664 	.are_clock_states_equal = dcn31_are_clock_states_equal,
665 	.notify_wm_ranges = dcn31_notify_wm_ranges,
666 	.set_low_power_state = dcn31_set_low_power_state
667 };
668 extern struct clk_mgr_funcs dcn3_fpga_funcs;
669 
670 void dcn31_clk_mgr_construct(
671 		struct dc_context *ctx,
672 		struct clk_mgr_dcn31 *clk_mgr,
673 		struct pp_smu_funcs *pp_smu,
674 		struct dccg *dccg)
675 {
676 	struct dcn31_smu_dpm_clks smu_dpm_clks = { 0 };
677 
678 	clk_mgr->base.base.ctx = ctx;
679 	clk_mgr->base.base.funcs = &dcn31_funcs;
680 
681 	clk_mgr->base.pp_smu = pp_smu;
682 
683 	clk_mgr->base.dccg = dccg;
684 	clk_mgr->base.dfs_bypass_disp_clk = 0;
685 
686 	clk_mgr->base.dprefclk_ss_percentage = 0;
687 	clk_mgr->base.dprefclk_ss_divider = 1000;
688 	clk_mgr->base.ss_on_dprefclk = false;
689 	clk_mgr->base.dfs_ref_freq_khz = 48000;
690 
691 	clk_mgr->smu_wm_set.wm_set = (struct dcn31_watermarks *)dm_helpers_allocate_gpu_mem(
692 				clk_mgr->base.base.ctx,
693 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
694 				sizeof(struct dcn31_watermarks),
695 				&clk_mgr->smu_wm_set.mc_address.quad_part);
696 
697 	if (!clk_mgr->smu_wm_set.wm_set) {
698 		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
699 		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
700 	}
701 	ASSERT(clk_mgr->smu_wm_set.wm_set);
702 
703 	smu_dpm_clks.dpm_clks = (DpmClocks_t *)dm_helpers_allocate_gpu_mem(
704 				clk_mgr->base.base.ctx,
705 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
706 				sizeof(DpmClocks_t),
707 				&smu_dpm_clks.mc_address.quad_part);
708 
709 	if (smu_dpm_clks.dpm_clks == NULL) {
710 		smu_dpm_clks.dpm_clks = &dummy_clocks;
711 		smu_dpm_clks.mc_address.quad_part = 0;
712 	}
713 
714 	ASSERT(smu_dpm_clks.dpm_clks);
715 
716 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
717 		clk_mgr->base.base.funcs = &dcn3_fpga_funcs;
718 	} else {
719 		struct clk_log_info log_info = {0};
720 
721 		clk_mgr->base.smu_ver = dcn31_smu_get_smu_version(&clk_mgr->base);
722 
723 		if (clk_mgr->base.smu_ver)
724 			clk_mgr->base.smu_present = true;
725 
726 		/* TODO: Check we get what we expect during bringup */
727 		clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
728 
729 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
730 			dcn31_bw_params.wm_table = lpddr5_wm_table;
731 		} else {
732 			dcn31_bw_params.wm_table = ddr5_wm_table;
733 		}
734 		/* Saved clocks configured at boot for debug purposes */
735 		dcn31_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
736 					 &clk_mgr->base.base, &log_info);
737 
738 	}
739 
740 	clk_mgr->base.base.dprefclk_khz = 600000;
741 	clk_mgr->base.base.clks.ref_dtbclk_khz = 600000;
742 	dce_clock_read_ss_info(&clk_mgr->base);
743 	/*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/
744 	//clk_mgr->base.dccg->ref_dtbclk_khz = dce_adjust_dp_ref_freq_for_ss(clk_mgr_internal, clk_mgr->base.base.dprefclk_khz);
745 
746 	clk_mgr->base.base.bw_params = &dcn31_bw_params;
747 
748 	if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
749 		int i;
750 
751 		dcn31_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
752 
753 		DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
754 				   "NumDispClkLevelsEnabled: %d\n"
755 				   "NumSocClkLevelsEnabled: %d\n"
756 				   "VcnClkLevelsEnabled: %d\n"
757 				   "NumDfPst atesEnabled: %d\n"
758 				   "MinGfxClk: %d\n"
759 				   "MaxGfxClk: %d\n",
760 				   smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
761 				   smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
762 				   smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
763 				   smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
764 				   smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
765 				   smu_dpm_clks.dpm_clks->MinGfxClk,
766 				   smu_dpm_clks.dpm_clks->MaxGfxClk);
767 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
768 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
769 					   i,
770 					   smu_dpm_clks.dpm_clks->DcfClocks[i]);
771 		}
772 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
773 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
774 					   i, smu_dpm_clks.dpm_clks->DispClocks[i]);
775 		}
776 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
777 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
778 					   i, smu_dpm_clks.dpm_clks->SocClocks[i]);
779 		}
780 		for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
781 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
782 					   i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
783 
784 		for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
785 			DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
786 					   "smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
787 					   "smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
788 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
789 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
790 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
791 		}
792 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
793 			dcn31_clk_mgr_helper_populate_bw_params(
794 					&clk_mgr->base,
795 					ctx->dc_bios->integrated_info,
796 					smu_dpm_clks.dpm_clks);
797 		}
798 	}
799 
800 	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
801 		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
802 				smu_dpm_clks.dpm_clks);
803 }
804 
805 void dcn31_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
806 {
807 	struct clk_mgr_dcn31 *clk_mgr = TO_CLK_MGR_DCN31(clk_mgr_int);
808 
809 	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
810 		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
811 				clk_mgr->smu_wm_set.wm_set);
812 }
813