1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 
28 #include "dccg.h"
29 #include "clk_mgr_internal.h"
30 
31 // For dce12_get_dp_ref_freq_khz
32 #include "dce100/dce_clk_mgr.h"
33 
34 // For dcn20_update_clocks_update_dpp_dto
35 #include "dcn20/dcn20_clk_mgr.h"
36 
37 
38 
39 #include "dcn31_clk_mgr.h"
40 
41 #include "reg_helper.h"
42 #include "core_types.h"
43 #include "dcn31_smu.h"
44 #include "dm_helpers.h"
45 
46 /* TODO: remove this include once we ported over remaining clk mgr functions*/
47 #include "dcn30/dcn30_clk_mgr.h"
48 
49 #include "dc_dmub_srv.h"
50 
51 #include "logger_types.h"
52 #undef DC_LOGGER
53 #define DC_LOGGER \
54 	clk_mgr->base.base.ctx->logger
55 
56 #include "yellow_carp_offset.h"
57 
58 #define regCLK1_CLK_PLL_REQ			0x0237
59 #define regCLK1_CLK_PLL_REQ_BASE_IDX		0
60 
61 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT	0x0
62 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT	0xc
63 #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT	0x10
64 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK	0x000001FFL
65 #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK	0x0000F000L
66 #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK	0xFFFF0000L
67 
68 #define REG(reg_name) \
69 	(CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
70 
71 #define TO_CLK_MGR_DCN31(clk_mgr)\
72 	container_of(clk_mgr, struct clk_mgr_dcn31, base)
73 
74 static int dcn31_get_active_display_cnt_wa(
75 		struct dc *dc,
76 		struct dc_state *context)
77 {
78 	int i, display_count;
79 	bool tmds_present = false;
80 
81 	display_count = 0;
82 	for (i = 0; i < context->stream_count; i++) {
83 		const struct dc_stream_state *stream = context->streams[i];
84 
85 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
86 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
87 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
88 			tmds_present = true;
89 	}
90 
91 	for (i = 0; i < dc->link_count; i++) {
92 		const struct dc_link *link = dc->links[i];
93 
94 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
95 		if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
96 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
97 			display_count++;
98 	}
99 
100 	/* WA for hang on HDMI after display off back back on*/
101 	if (display_count == 0 && tmds_present)
102 		display_count = 1;
103 
104 	return display_count;
105 }
106 
107 static void dcn31_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
108 {
109 	struct dc *dc = clk_mgr_base->ctx->dc;
110 	int i;
111 
112 	for (i = 0; i < dc->res_pool->pipe_count; ++i) {
113 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
114 
115 		if (pipe->top_pipe || pipe->prev_odm_pipe)
116 			continue;
117 		if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
118 			if (disable) {
119 				pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
120 				reset_sync_context_for_pipe(dc, context, i);
121 			} else
122 				pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
123 		}
124 	}
125 }
126 
127 void dcn31_update_clocks(struct clk_mgr *clk_mgr_base,
128 			struct dc_state *context,
129 			bool safe_to_lower)
130 {
131 	union dmub_rb_cmd cmd;
132 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
133 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
134 	struct dc *dc = clk_mgr_base->ctx->dc;
135 	int display_count;
136 	bool update_dppclk = false;
137 	bool update_dispclk = false;
138 	bool dpp_clock_lowered = false;
139 
140 	if (dc->work_arounds.skip_clock_update)
141 		return;
142 
143 	/*
144 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
145 	 * also if safe to lower is false, we just go in the higher state
146 	 */
147 	if (safe_to_lower) {
148 		if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW &&
149 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
150 			dcn31_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support);
151 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
152 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
153 		}
154 
155 		if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
156 			dcn31_smu_set_dtbclk(clk_mgr, false);
157 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
158 		}
159 		/* check that we're not already in lower */
160 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
161 			display_count = dcn31_get_active_display_cnt_wa(dc, context);
162 			/* if we can go lower, go lower */
163 			if (display_count == 0) {
164 				union display_idle_optimization_u idle_info = { 0 };
165 				idle_info.idle_info.df_request_disabled = 1;
166 				idle_info.idle_info.phy_ref_clk_off = 1;
167 				idle_info.idle_info.s0i2_rdy = 1;
168 				dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
169 				/* update power state */
170 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
171 			}
172 		}
173 	} else {
174 		if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
175 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
176 			dcn31_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW);
177 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
178 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
179 		}
180 
181 		if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
182 			dcn31_smu_set_dtbclk(clk_mgr, true);
183 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
184 		}
185 
186 		/* check that we're not already in D0 */
187 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
188 			union display_idle_optimization_u idle_info = { 0 };
189 			dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
190 			/* update power state */
191 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
192 		}
193 	}
194 
195 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
196 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
197 		dcn31_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
198 	}
199 
200 	if (should_set_clock(safe_to_lower,
201 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
202 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
203 		dcn31_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
204 	}
205 
206 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
207 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
208 		if (new_clocks->dppclk_khz < 100000)
209 			new_clocks->dppclk_khz = 100000;
210 	}
211 
212 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
213 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
214 			dpp_clock_lowered = true;
215 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
216 		update_dppclk = true;
217 	}
218 
219 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
220 		dcn31_disable_otg_wa(clk_mgr_base, context, true);
221 
222 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
223 		dcn31_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
224 		dcn31_disable_otg_wa(clk_mgr_base, context, false);
225 
226 		update_dispclk = true;
227 	}
228 
229 	if (dpp_clock_lowered) {
230 		// increase per DPP DTO before lowering global dppclk
231 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
232 		dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
233 	} else {
234 		// increase global DPPCLK before lowering per DPP DTO
235 		if (update_dppclk || update_dispclk)
236 			dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
237 		// always update dtos unless clock is lowered and not safe to lower
238 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
239 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
240 	}
241 
242 	// notify DMCUB of latest clocks
243 	memset(&cmd, 0, sizeof(cmd));
244 	cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
245 	cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
246 	cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
247 	cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
248 		clk_mgr_base->clks.dcfclk_deep_sleep_khz;
249 	cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
250 	cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
251 
252 	dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
253 	dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
254 	dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
255 }
256 
257 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
258 {
259 	/* get FbMult value */
260 	struct fixed31_32 pll_req;
261 	unsigned int fbmult_frac_val = 0;
262 	unsigned int fbmult_int_val = 0;
263 
264 	/*
265 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
266 	 * to leverage the fix point operations available in driver
267 	 */
268 
269 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
270 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
271 
272 	pll_req = dc_fixpt_from_int(fbmult_int_val);
273 
274 	/*
275 	 * since fractional part is only 16 bit in register definition but is 32 bit
276 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
277 	 */
278 	pll_req.value |= fbmult_frac_val << 16;
279 
280 	/* multiply by REFCLK period */
281 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
282 
283 	/* integer part is now VCO frequency in kHz */
284 	return dc_fixpt_floor(pll_req);
285 }
286 
287 static void dcn31_enable_pme_wa(struct clk_mgr *clk_mgr_base)
288 {
289 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
290 
291 	dcn31_smu_enable_pme_wa(clk_mgr);
292 }
293 
294 void dcn31_init_clocks(struct clk_mgr *clk_mgr)
295 {
296 	uint32_t ref_dtbclk = clk_mgr->clks.ref_dtbclk_khz;
297 
298 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
299 	// Assumption is that boot state always supports pstate
300 	clk_mgr->clks.ref_dtbclk_khz = ref_dtbclk;	// restore ref_dtbclk
301 	clk_mgr->clks.p_state_change_support = true;
302 	clk_mgr->clks.prev_p_state_change_support = true;
303 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
304 	clk_mgr->clks.zstate_support = DCN_ZSTATE_SUPPORT_UNKNOWN;
305 }
306 
307 bool dcn31_are_clock_states_equal(struct dc_clocks *a,
308 		struct dc_clocks *b)
309 {
310 	if (a->dispclk_khz != b->dispclk_khz)
311 		return false;
312 	else if (a->dppclk_khz != b->dppclk_khz)
313 		return false;
314 	else if (a->dcfclk_khz != b->dcfclk_khz)
315 		return false;
316 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
317 		return false;
318 	else if (a->zstate_support != b->zstate_support)
319 		return false;
320 	else if (a->dtbclk_en != b->dtbclk_en)
321 		return false;
322 
323 	return true;
324 }
325 
326 static void dcn31_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
327 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
328 {
329 	return;
330 }
331 
332 static struct clk_bw_params dcn31_bw_params = {
333 	.vram_type = Ddr4MemType,
334 	.num_channels = 1,
335 	.clk_table = {
336 		.num_entries = 4,
337 	},
338 
339 };
340 
341 static struct wm_table ddr5_wm_table = {
342 	.entries = {
343 		{
344 			.wm_inst = WM_A,
345 			.wm_type = WM_TYPE_PSTATE_CHG,
346 			.pstate_latency_us = 11.72,
347 			.sr_exit_time_us = 9,
348 			.sr_enter_plus_exit_time_us = 11,
349 			.valid = true,
350 		},
351 		{
352 			.wm_inst = WM_B,
353 			.wm_type = WM_TYPE_PSTATE_CHG,
354 			.pstate_latency_us = 11.72,
355 			.sr_exit_time_us = 9,
356 			.sr_enter_plus_exit_time_us = 11,
357 			.valid = true,
358 		},
359 		{
360 			.wm_inst = WM_C,
361 			.wm_type = WM_TYPE_PSTATE_CHG,
362 			.pstate_latency_us = 11.72,
363 			.sr_exit_time_us = 9,
364 			.sr_enter_plus_exit_time_us = 11,
365 			.valid = true,
366 		},
367 		{
368 			.wm_inst = WM_D,
369 			.wm_type = WM_TYPE_PSTATE_CHG,
370 			.pstate_latency_us = 11.72,
371 			.sr_exit_time_us = 9,
372 			.sr_enter_plus_exit_time_us = 11,
373 			.valid = true,
374 		},
375 	}
376 };
377 
378 static struct wm_table lpddr5_wm_table = {
379 	.entries = {
380 		{
381 			.wm_inst = WM_A,
382 			.wm_type = WM_TYPE_PSTATE_CHG,
383 			.pstate_latency_us = 11.65333,
384 			.sr_exit_time_us = 11.5,
385 			.sr_enter_plus_exit_time_us = 14.5,
386 			.valid = true,
387 		},
388 		{
389 			.wm_inst = WM_B,
390 			.wm_type = WM_TYPE_PSTATE_CHG,
391 			.pstate_latency_us = 11.65333,
392 			.sr_exit_time_us = 11.5,
393 			.sr_enter_plus_exit_time_us = 14.5,
394 			.valid = true,
395 		},
396 		{
397 			.wm_inst = WM_C,
398 			.wm_type = WM_TYPE_PSTATE_CHG,
399 			.pstate_latency_us = 11.65333,
400 			.sr_exit_time_us = 11.5,
401 			.sr_enter_plus_exit_time_us = 14.5,
402 			.valid = true,
403 		},
404 		{
405 			.wm_inst = WM_D,
406 			.wm_type = WM_TYPE_PSTATE_CHG,
407 			.pstate_latency_us = 11.65333,
408 			.sr_exit_time_us = 11.5,
409 			.sr_enter_plus_exit_time_us = 14.5,
410 			.valid = true,
411 		},
412 	}
413 };
414 
415 static DpmClocks_t dummy_clocks;
416 
417 static struct dcn31_watermarks dummy_wms = { 0 };
418 
419 static void dcn31_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn31_watermarks *table)
420 {
421 	int i, num_valid_sets;
422 
423 	num_valid_sets = 0;
424 
425 	for (i = 0; i < WM_SET_COUNT; i++) {
426 		/* skip empty entries, the smu array has no holes*/
427 		if (!bw_params->wm_table.entries[i].valid)
428 			continue;
429 
430 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
431 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
432 		/* We will not select WM based on fclk, so leave it as unconstrained */
433 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
434 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
435 
436 		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
437 			if (i == 0)
438 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
439 			else {
440 				/* add 1 to make it non-overlapping with next lvl */
441 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
442 						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
443 			}
444 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
445 					bw_params->clk_table.entries[i].dcfclk_mhz;
446 
447 		} else {
448 			/* unconstrained for memory retraining */
449 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
450 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
451 
452 			/* Modify previous watermark range to cover up to max */
453 			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
454 		}
455 		num_valid_sets++;
456 	}
457 
458 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
459 
460 	/* modify the min and max to make sure we cover the whole range*/
461 	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
462 	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
463 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
464 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
465 
466 	/* This is for writeback only, does not matter currently as no writeback support*/
467 	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
468 	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
469 	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
470 	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
471 	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
472 }
473 
474 static void dcn31_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
475 {
476 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
477 	struct clk_mgr_dcn31 *clk_mgr_dcn31 = TO_CLK_MGR_DCN31(clk_mgr);
478 	struct dcn31_watermarks *table = clk_mgr_dcn31->smu_wm_set.wm_set;
479 
480 	if (!clk_mgr->smu_ver)
481 		return;
482 
483 	if (!table || clk_mgr_dcn31->smu_wm_set.mc_address.quad_part == 0)
484 		return;
485 
486 	memset(table, 0, sizeof(*table));
487 
488 	dcn31_build_watermark_ranges(clk_mgr_base->bw_params, table);
489 
490 	dcn31_smu_set_dram_addr_high(clk_mgr,
491 			clk_mgr_dcn31->smu_wm_set.mc_address.high_part);
492 	dcn31_smu_set_dram_addr_low(clk_mgr,
493 			clk_mgr_dcn31->smu_wm_set.mc_address.low_part);
494 	dcn31_smu_transfer_wm_table_dram_2_smu(clk_mgr);
495 }
496 
497 static void dcn31_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
498 		struct dcn31_smu_dpm_clks *smu_dpm_clks)
499 {
500 	DpmClocks_t *table = smu_dpm_clks->dpm_clks;
501 
502 	if (!clk_mgr->smu_ver)
503 		return;
504 
505 	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
506 		return;
507 
508 	memset(table, 0, sizeof(*table));
509 
510 	dcn31_smu_set_dram_addr_high(clk_mgr,
511 			smu_dpm_clks->mc_address.high_part);
512 	dcn31_smu_set_dram_addr_low(clk_mgr,
513 			smu_dpm_clks->mc_address.low_part);
514 	dcn31_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
515 }
516 
517 static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
518 {
519 	uint32_t max = 0;
520 	int i;
521 
522 	for (i = 0; i < num_clocks; ++i) {
523 		if (clocks[i] > max)
524 			max = clocks[i];
525 	}
526 
527 	return max;
528 }
529 
530 static unsigned int find_clk_for_voltage(
531 		const DpmClocks_t *clock_table,
532 		const uint32_t clocks[],
533 		unsigned int voltage)
534 {
535 	int i;
536 	int max_voltage = 0;
537 	int clock = 0;
538 
539 	for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++) {
540 		if (clock_table->SocVoltage[i] == voltage) {
541 			return clocks[i];
542 		} else if (clock_table->SocVoltage[i] >= max_voltage &&
543 				clock_table->SocVoltage[i] < voltage) {
544 			max_voltage = clock_table->SocVoltage[i];
545 			clock = clocks[i];
546 		}
547 	}
548 
549 	ASSERT(clock);
550 	return clock;
551 }
552 
553 static void dcn31_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr,
554 						    struct integrated_info *bios_info,
555 						    const DpmClocks_t *clock_table)
556 {
557 	int i, j;
558 	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
559 	uint32_t max_dispclk = 0, max_dppclk = 0;
560 
561 	j = -1;
562 
563 	ASSERT(NUM_DF_PSTATE_LEVELS <= MAX_NUM_DPM_LVL);
564 
565 	/* Find lowest DPM, FCLK is filled in reverse order*/
566 
567 	for (i = NUM_DF_PSTATE_LEVELS - 1; i >= 0; i--) {
568 		if (clock_table->DfPstateTable[i].FClk != 0) {
569 			j = i;
570 			break;
571 		}
572 	}
573 
574 	if (j == -1) {
575 		/* clock table is all 0s, just use our own hardcode */
576 		ASSERT(0);
577 		return;
578 	}
579 
580 	bw_params->clk_table.num_entries = j + 1;
581 
582 	/* dispclk and dppclk can be max at any voltage, same number of levels for both */
583 	if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
584 	    clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
585 		max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
586 		max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
587 	} else {
588 		ASSERT(0);
589 	}
590 
591 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
592 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].FClk;
593 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].MemClk;
594 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].Voltage;
595 		switch (clock_table->DfPstateTable[j].WckRatio) {
596 		case WCK_RATIO_1_2:
597 			bw_params->clk_table.entries[i].wck_ratio = 2;
598 			break;
599 		case WCK_RATIO_1_4:
600 			bw_params->clk_table.entries[i].wck_ratio = 4;
601 			break;
602 		default:
603 			bw_params->clk_table.entries[i].wck_ratio = 1;
604 		}
605 		bw_params->clk_table.entries[i].dcfclk_mhz = find_clk_for_voltage(clock_table, clock_table->DcfClocks, clock_table->DfPstateTable[j].Voltage);
606 		bw_params->clk_table.entries[i].socclk_mhz = find_clk_for_voltage(clock_table, clock_table->SocClocks, clock_table->DfPstateTable[j].Voltage);
607 		bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
608 		bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
609 	}
610 
611 	bw_params->vram_type = bios_info->memory_type;
612 
613 	bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
614 	//bw_params->dram_channel_width_bytes = dc->ctx->asic_id.vram_width;
615 	bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4;
616 	for (i = 0; i < WM_SET_COUNT; i++) {
617 		bw_params->wm_table.entries[i].wm_inst = i;
618 
619 		if (i >= bw_params->clk_table.num_entries) {
620 			bw_params->wm_table.entries[i].valid = false;
621 			continue;
622 		}
623 
624 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
625 		bw_params->wm_table.entries[i].valid = true;
626 	}
627 }
628 
629 static void dcn31_set_low_power_state(struct clk_mgr *clk_mgr_base)
630 {
631 	int display_count;
632 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
633 	struct dc *dc = clk_mgr_base->ctx->dc;
634 	struct dc_state *context = dc->current_state;
635 
636 	if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
637 		display_count = dcn31_get_active_display_cnt_wa(dc, context);
638 		/* if we can go lower, go lower */
639 		if (display_count == 0) {
640 			union display_idle_optimization_u idle_info = { 0 };
641 
642 			idle_info.idle_info.df_request_disabled = 1;
643 			idle_info.idle_info.phy_ref_clk_off = 1;
644 			idle_info.idle_info.s0i2_rdy = 1;
645 			dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
646 			/* update power state */
647 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
648 		}
649 	}
650 }
651 
652 int dcn31_get_dtb_ref_freq_khz(struct clk_mgr *clk_mgr_base)
653 {
654 	return clk_mgr_base->clks.ref_dtbclk_khz;
655 }
656 
657 static struct clk_mgr_funcs dcn31_funcs = {
658 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
659 	.get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
660 	.update_clocks = dcn31_update_clocks,
661 	.init_clocks = dcn31_init_clocks,
662 	.enable_pme_wa = dcn31_enable_pme_wa,
663 	.are_clock_states_equal = dcn31_are_clock_states_equal,
664 	.notify_wm_ranges = dcn31_notify_wm_ranges,
665 	.set_low_power_state = dcn31_set_low_power_state
666 };
667 extern struct clk_mgr_funcs dcn3_fpga_funcs;
668 
669 void dcn31_clk_mgr_construct(
670 		struct dc_context *ctx,
671 		struct clk_mgr_dcn31 *clk_mgr,
672 		struct pp_smu_funcs *pp_smu,
673 		struct dccg *dccg)
674 {
675 	struct dcn31_smu_dpm_clks smu_dpm_clks = { 0 };
676 
677 	clk_mgr->base.base.ctx = ctx;
678 	clk_mgr->base.base.funcs = &dcn31_funcs;
679 
680 	clk_mgr->base.pp_smu = pp_smu;
681 
682 	clk_mgr->base.dccg = dccg;
683 	clk_mgr->base.dfs_bypass_disp_clk = 0;
684 
685 	clk_mgr->base.dprefclk_ss_percentage = 0;
686 	clk_mgr->base.dprefclk_ss_divider = 1000;
687 	clk_mgr->base.ss_on_dprefclk = false;
688 	clk_mgr->base.dfs_ref_freq_khz = 48000;
689 
690 	clk_mgr->smu_wm_set.wm_set = (struct dcn31_watermarks *)dm_helpers_allocate_gpu_mem(
691 				clk_mgr->base.base.ctx,
692 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
693 				sizeof(struct dcn31_watermarks),
694 				&clk_mgr->smu_wm_set.mc_address.quad_part);
695 
696 	if (!clk_mgr->smu_wm_set.wm_set) {
697 		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
698 		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
699 	}
700 	ASSERT(clk_mgr->smu_wm_set.wm_set);
701 
702 	smu_dpm_clks.dpm_clks = (DpmClocks_t *)dm_helpers_allocate_gpu_mem(
703 				clk_mgr->base.base.ctx,
704 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
705 				sizeof(DpmClocks_t),
706 				&smu_dpm_clks.mc_address.quad_part);
707 
708 	if (smu_dpm_clks.dpm_clks == NULL) {
709 		smu_dpm_clks.dpm_clks = &dummy_clocks;
710 		smu_dpm_clks.mc_address.quad_part = 0;
711 	}
712 
713 	ASSERT(smu_dpm_clks.dpm_clks);
714 
715 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
716 		clk_mgr->base.base.funcs = &dcn3_fpga_funcs;
717 	} else {
718 		struct clk_log_info log_info = {0};
719 
720 		clk_mgr->base.smu_ver = dcn31_smu_get_smu_version(&clk_mgr->base);
721 
722 		if (clk_mgr->base.smu_ver)
723 			clk_mgr->base.smu_present = true;
724 
725 		/* TODO: Check we get what we expect during bringup */
726 		clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
727 
728 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
729 			dcn31_bw_params.wm_table = lpddr5_wm_table;
730 		} else {
731 			dcn31_bw_params.wm_table = ddr5_wm_table;
732 		}
733 		/* Saved clocks configured at boot for debug purposes */
734 		dcn31_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
735 					 &clk_mgr->base.base, &log_info);
736 
737 	}
738 
739 	clk_mgr->base.base.dprefclk_khz = 600000;
740 	clk_mgr->base.base.clks.ref_dtbclk_khz = 600000;
741 	dce_clock_read_ss_info(&clk_mgr->base);
742 	/*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/
743 	//clk_mgr->base.dccg->ref_dtbclk_khz = dce_adjust_dp_ref_freq_for_ss(clk_mgr_internal, clk_mgr->base.base.dprefclk_khz);
744 
745 	clk_mgr->base.base.bw_params = &dcn31_bw_params;
746 
747 	if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
748 		int i;
749 
750 		dcn31_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
751 
752 		DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
753 				   "NumDispClkLevelsEnabled: %d\n"
754 				   "NumSocClkLevelsEnabled: %d\n"
755 				   "VcnClkLevelsEnabled: %d\n"
756 				   "NumDfPst atesEnabled: %d\n"
757 				   "MinGfxClk: %d\n"
758 				   "MaxGfxClk: %d\n",
759 				   smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
760 				   smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
761 				   smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
762 				   smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
763 				   smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
764 				   smu_dpm_clks.dpm_clks->MinGfxClk,
765 				   smu_dpm_clks.dpm_clks->MaxGfxClk);
766 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
767 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
768 					   i,
769 					   smu_dpm_clks.dpm_clks->DcfClocks[i]);
770 		}
771 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
772 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
773 					   i, smu_dpm_clks.dpm_clks->DispClocks[i]);
774 		}
775 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
776 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
777 					   i, smu_dpm_clks.dpm_clks->SocClocks[i]);
778 		}
779 		for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
780 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
781 					   i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
782 
783 		for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
784 			DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
785 					   "smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
786 					   "smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
787 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
788 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
789 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
790 		}
791 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
792 			dcn31_clk_mgr_helper_populate_bw_params(
793 					&clk_mgr->base,
794 					ctx->dc_bios->integrated_info,
795 					smu_dpm_clks.dpm_clks);
796 		}
797 	}
798 
799 	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
800 		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
801 				smu_dpm_clks.dpm_clks);
802 }
803 
804 void dcn31_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
805 {
806 	struct clk_mgr_dcn31 *clk_mgr = TO_CLK_MGR_DCN31(clk_mgr_int);
807 
808 	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
809 		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
810 				clk_mgr->smu_wm_set.wm_set);
811 }
812