1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 // For dce12_get_dp_ref_freq_khz
30 #include "dce100/dce_clk_mgr.h"
31 
32 // For dcn20_update_clocks_update_dpp_dto
33 #include "dcn20/dcn20_clk_mgr.h"
34 
35 #include "vg_clk_mgr.h"
36 #include "dcn301_smu.h"
37 #include "reg_helper.h"
38 #include "core_types.h"
39 #include "dm_helpers.h"
40 
41 #include "atomfirmware.h"
42 #include "vangogh_ip_offset.h"
43 #include "clk/clk_11_5_0_offset.h"
44 #include "clk/clk_11_5_0_sh_mask.h"
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 
50 /* Macros */
51 
52 #define TO_CLK_MGR_VGH(clk_mgr)\
53 	container_of(clk_mgr, struct clk_mgr_vgh, base)
54 
55 #define REG(reg_name) \
56 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
57 
58 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
59 static int vg_get_active_display_cnt_wa(
60 		struct dc *dc,
61 		struct dc_state *context)
62 {
63 	int i, display_count;
64 	bool tmds_present = false;
65 
66 	display_count = 0;
67 	for (i = 0; i < context->stream_count; i++) {
68 		const struct dc_stream_state *stream = context->streams[i];
69 
70 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
71 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
72 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
73 			tmds_present = true;
74 	}
75 
76 	for (i = 0; i < dc->link_count; i++) {
77 		const struct dc_link *link = dc->links[i];
78 
79 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
80 		if (link->link_enc->funcs->is_dig_enabled &&
81 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
82 			display_count++;
83 	}
84 
85 	/* WA for hang on HDMI after display off back back on*/
86 	if (display_count == 0 && tmds_present)
87 		display_count = 1;
88 
89 	return display_count;
90 }
91 
92 static void vg_update_clocks(struct clk_mgr *clk_mgr_base,
93 			     struct dc_state *context,
94 			     bool safe_to_lower)
95 {
96 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
97 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
98 	struct dc *dc = clk_mgr_base->ctx->dc;
99 	int display_count;
100 	bool update_dppclk = false;
101 	bool update_dispclk = false;
102 	bool dpp_clock_lowered = false;
103 
104 	if (dc->work_arounds.skip_clock_update)
105 		return;
106 
107 	/*
108 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
109 	 * also if safe to lower is false, we just go in the higher state
110 	 */
111 	if (safe_to_lower) {
112 		/* check that we're not already in lower */
113 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
114 
115 			display_count = vg_get_active_display_cnt_wa(dc, context);
116 			/* if we can go lower, go lower */
117 			if (display_count == 0 && !IS_DIAG_DC(dc->ctx->dce_environment)) {
118 				union display_idle_optimization_u idle_info = { 0 };
119 
120 				idle_info.idle_info.df_request_disabled = 1;
121 				idle_info.idle_info.phy_ref_clk_off = 1;
122 
123 				dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
124 				/* update power state */
125 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
126 			}
127 		}
128 	} else {
129 		/* check that we're not already in D0 */
130 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
131 			union display_idle_optimization_u idle_info = { 0 };
132 
133 			dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
134 			/* update power state */
135 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
136 		}
137 	}
138 
139 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) {
140 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
141 		dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
142 	}
143 
144 	if (should_set_clock(safe_to_lower,
145 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) {
146 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
147 		dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
148 	}
149 
150 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
151 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
152 		if (new_clocks->dppclk_khz < 100000)
153 			new_clocks->dppclk_khz = 100000;
154 	}
155 
156 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
157 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
158 			dpp_clock_lowered = true;
159 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
160 		update_dppclk = true;
161 	}
162 
163 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
164 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
165 		dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
166 
167 		update_dispclk = true;
168 	}
169 
170 	if (dpp_clock_lowered) {
171 		// increase per DPP DTO before lowering global dppclk
172 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
173 		dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
174 	} else {
175 		// increase global DPPCLK before lowering per DPP DTO
176 		if (update_dppclk || update_dispclk)
177 			dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
178 		// always update dtos unless clock is lowered and not safe to lower
179 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
180 	}
181 }
182 
183 
184 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
185 {
186 	/* get FbMult value */
187 	struct fixed31_32 pll_req;
188 	unsigned int fbmult_frac_val = 0;
189 	unsigned int fbmult_int_val = 0;
190 
191 
192 	/*
193 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
194 	 * to leverage the fix point operations available in driver
195 	 */
196 
197 	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
198 	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
199 
200 	pll_req = dc_fixpt_from_int(fbmult_int_val);
201 
202 	/*
203 	 * since fractional part is only 16 bit in register definition but is 32 bit
204 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
205 	 */
206 	pll_req.value |= fbmult_frac_val << 16;
207 
208 	/* multiply by REFCLK period */
209 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
210 
211 	/* integer part is now VCO frequency in kHz */
212 	return dc_fixpt_floor(pll_req);
213 }
214 
215 static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
216 {
217 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
218 
219 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
220 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
221 
222 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
223 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
224 
225 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
226 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
227 
228 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
229 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
230 
231 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
232 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
233 }
234 
235 /* This function collect raw clk register values */
236 static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
237 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
238 {
239 	struct dcn301_clk_internal internal = {0};
240 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
241 	unsigned int chars_printed = 0;
242 	unsigned int remaining_buffer = log_info->bufSize;
243 
244 	vg_dump_clk_registers_internal(&internal, clk_mgr_base);
245 
246 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
247 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
248 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
249 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
250 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
251 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
252 
253 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
254 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
255 		regs_and_bypass->dppclk_bypass = 0;
256 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
257 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
258 		regs_and_bypass->dcfclk_bypass = 0;
259 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
260 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
261 		regs_and_bypass->dispclk_bypass = 0;
262 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
263 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
264 		regs_and_bypass->dprefclk_bypass = 0;
265 
266 	if (log_info->enabled) {
267 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
268 		remaining_buffer -= chars_printed;
269 		*log_info->sum_chars_printed += chars_printed;
270 		log_info->pBuf += chars_printed;
271 
272 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
273 			regs_and_bypass->dcfclk,
274 			regs_and_bypass->dcf_deep_sleep_divider,
275 			regs_and_bypass->dcf_deep_sleep_allow,
276 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
277 		remaining_buffer -= chars_printed;
278 		*log_info->sum_chars_printed += chars_printed;
279 		log_info->pBuf += chars_printed;
280 
281 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
282 			regs_and_bypass->dprefclk,
283 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
284 		remaining_buffer -= chars_printed;
285 		*log_info->sum_chars_printed += chars_printed;
286 		log_info->pBuf += chars_printed;
287 
288 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
289 			regs_and_bypass->dispclk,
290 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
291 		remaining_buffer -= chars_printed;
292 		*log_info->sum_chars_printed += chars_printed;
293 		log_info->pBuf += chars_printed;
294 
295 		//split
296 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
297 		remaining_buffer -= chars_printed;
298 		*log_info->sum_chars_printed += chars_printed;
299 		log_info->pBuf += chars_printed;
300 
301 		// REGISTER VALUES
302 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
303 		remaining_buffer -= chars_printed;
304 		*log_info->sum_chars_printed += chars_printed;
305 		log_info->pBuf += chars_printed;
306 
307 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
308 				internal.CLK1_CLK3_CURRENT_CNT);
309 		remaining_buffer -= chars_printed;
310 		*log_info->sum_chars_printed += chars_printed;
311 		log_info->pBuf += chars_printed;
312 
313 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
314 					internal.CLK1_CLK3_DS_CNTL);
315 		remaining_buffer -= chars_printed;
316 		*log_info->sum_chars_printed += chars_printed;
317 		log_info->pBuf += chars_printed;
318 
319 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
320 					internal.CLK1_CLK3_ALLOW_DS);
321 		remaining_buffer -= chars_printed;
322 		*log_info->sum_chars_printed += chars_printed;
323 		log_info->pBuf += chars_printed;
324 
325 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
326 					internal.CLK1_CLK2_CURRENT_CNT);
327 		remaining_buffer -= chars_printed;
328 		*log_info->sum_chars_printed += chars_printed;
329 		log_info->pBuf += chars_printed;
330 
331 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
332 					internal.CLK1_CLK0_CURRENT_CNT);
333 		remaining_buffer -= chars_printed;
334 		*log_info->sum_chars_printed += chars_printed;
335 		log_info->pBuf += chars_printed;
336 
337 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
338 					internal.CLK1_CLK1_CURRENT_CNT);
339 		remaining_buffer -= chars_printed;
340 		*log_info->sum_chars_printed += chars_printed;
341 		log_info->pBuf += chars_printed;
342 
343 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
344 					internal.CLK1_CLK3_BYPASS_CNTL);
345 		remaining_buffer -= chars_printed;
346 		*log_info->sum_chars_printed += chars_printed;
347 		log_info->pBuf += chars_printed;
348 
349 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
350 					internal.CLK1_CLK2_BYPASS_CNTL);
351 		remaining_buffer -= chars_printed;
352 		*log_info->sum_chars_printed += chars_printed;
353 		log_info->pBuf += chars_printed;
354 
355 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
356 					internal.CLK1_CLK0_BYPASS_CNTL);
357 		remaining_buffer -= chars_printed;
358 		*log_info->sum_chars_printed += chars_printed;
359 		log_info->pBuf += chars_printed;
360 
361 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
362 					internal.CLK1_CLK1_BYPASS_CNTL);
363 		remaining_buffer -= chars_printed;
364 		*log_info->sum_chars_printed += chars_printed;
365 		log_info->pBuf += chars_printed;
366 	}
367 }
368 
369 static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
370 {
371 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
372 
373 	dcn301_smu_enable_pme_wa(clk_mgr);
374 }
375 
376 static void vg_init_clocks(struct clk_mgr *clk_mgr)
377 {
378 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
379 	// Assumption is that boot state always supports pstate
380 	clk_mgr->clks.p_state_change_support = true;
381 	clk_mgr->clks.prev_p_state_change_support = true;
382 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
383 }
384 
385 static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
386 {
387 	int i, num_valid_sets;
388 
389 	num_valid_sets = 0;
390 
391 	for (i = 0; i < WM_SET_COUNT; i++) {
392 		/* skip empty entries, the smu array has no holes*/
393 		if (!bw_params->wm_table.entries[i].valid)
394 			continue;
395 
396 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
397 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
398 		/* We will not select WM based on fclk, so leave it as unconstrained */
399 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
400 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
401 
402 		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
403 			if (i == 0)
404 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
405 			else {
406 				/* add 1 to make it non-overlapping with next lvl */
407 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
408 						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
409 			}
410 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
411 					bw_params->clk_table.entries[i].dcfclk_mhz;
412 
413 		} else {
414 			/* unconstrained for memory retraining */
415 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
416 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
417 
418 			/* Modify previous watermark range to cover up to max */
419 			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
420 		}
421 		num_valid_sets++;
422 	}
423 
424 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
425 
426 	/* modify the min and max to make sure we cover the whole range*/
427 	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
428 	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
429 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
430 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
431 
432 	/* This is for writeback only, does not matter currently as no writeback support*/
433 	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
434 	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
435 	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
436 	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
437 	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
438 }
439 
440 
441 static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
442 {
443 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
444 	struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr);
445 	struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set;
446 
447 	if (!clk_mgr->smu_ver)
448 		return;
449 
450 	if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0)
451 		return;
452 
453 	memset(table, 0, sizeof(*table));
454 
455 	vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
456 
457 	dcn301_smu_set_dram_addr_high(clk_mgr,
458 			clk_mgr_vgh->smu_wm_set.mc_address.high_part);
459 	dcn301_smu_set_dram_addr_low(clk_mgr,
460 			clk_mgr_vgh->smu_wm_set.mc_address.low_part);
461 	dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
462 }
463 
464 static bool vg_are_clock_states_equal(struct dc_clocks *a,
465 		struct dc_clocks *b)
466 {
467 	if (a->dispclk_khz != b->dispclk_khz)
468 		return false;
469 	else if (a->dppclk_khz != b->dppclk_khz)
470 		return false;
471 	else if (a->dcfclk_khz != b->dcfclk_khz)
472 		return false;
473 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
474 		return false;
475 
476 	return true;
477 }
478 
479 
480 static struct clk_mgr_funcs vg_funcs = {
481 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
482 	.update_clocks = vg_update_clocks,
483 	.init_clocks = vg_init_clocks,
484 	.enable_pme_wa = vg_enable_pme_wa,
485 	.are_clock_states_equal = vg_are_clock_states_equal,
486 	.notify_wm_ranges = vg_notify_wm_ranges
487 };
488 
489 static struct clk_bw_params vg_bw_params = {
490 	.vram_type = Ddr4MemType,
491 	.num_channels = 1,
492 	.clk_table = {
493 		.entries = {
494 			{
495 				.voltage = 0,
496 				.dcfclk_mhz = 400,
497 				.fclk_mhz = 400,
498 				.memclk_mhz = 800,
499 				.socclk_mhz = 0,
500 			},
501 			{
502 				.voltage = 0,
503 				.dcfclk_mhz = 483,
504 				.fclk_mhz = 800,
505 				.memclk_mhz = 1600,
506 				.socclk_mhz = 0,
507 			},
508 			{
509 				.voltage = 0,
510 				.dcfclk_mhz = 602,
511 				.fclk_mhz = 1067,
512 				.memclk_mhz = 1067,
513 				.socclk_mhz = 0,
514 			},
515 			{
516 				.voltage = 0,
517 				.dcfclk_mhz = 738,
518 				.fclk_mhz = 1333,
519 				.memclk_mhz = 1600,
520 				.socclk_mhz = 0,
521 			},
522 		},
523 
524 		.num_entries = 4,
525 	},
526 
527 };
528 
529 static struct wm_table ddr4_wm_table = {
530 	.entries = {
531 		{
532 			.wm_inst = WM_A,
533 			.wm_type = WM_TYPE_PSTATE_CHG,
534 			.pstate_latency_us = 11.72,
535 			.sr_exit_time_us = 6.09,
536 			.sr_enter_plus_exit_time_us = 7.14,
537 			.valid = true,
538 		},
539 		{
540 			.wm_inst = WM_B,
541 			.wm_type = WM_TYPE_PSTATE_CHG,
542 			.pstate_latency_us = 11.72,
543 			.sr_exit_time_us = 10.12,
544 			.sr_enter_plus_exit_time_us = 11.48,
545 			.valid = true,
546 		},
547 		{
548 			.wm_inst = WM_C,
549 			.wm_type = WM_TYPE_PSTATE_CHG,
550 			.pstate_latency_us = 11.72,
551 			.sr_exit_time_us = 10.12,
552 			.sr_enter_plus_exit_time_us = 11.48,
553 			.valid = true,
554 		},
555 		{
556 			.wm_inst = WM_D,
557 			.wm_type = WM_TYPE_PSTATE_CHG,
558 			.pstate_latency_us = 11.72,
559 			.sr_exit_time_us = 10.12,
560 			.sr_enter_plus_exit_time_us = 11.48,
561 			.valid = true,
562 		},
563 	}
564 };
565 
566 static struct wm_table lpddr5_wm_table = {
567 	.entries = {
568 		{
569 			.wm_inst = WM_A,
570 			.wm_type = WM_TYPE_PSTATE_CHG,
571 			.pstate_latency_us = 11.65333,
572 			.sr_exit_time_us = 13.5,
573 			.sr_enter_plus_exit_time_us = 16.5,
574 			.valid = true,
575 		},
576 		{
577 			.wm_inst = WM_B,
578 			.wm_type = WM_TYPE_PSTATE_CHG,
579 			.pstate_latency_us = 11.65333,
580 			.sr_exit_time_us = 13.5,
581 			.sr_enter_plus_exit_time_us = 16.5,
582 			.valid = true,
583 		},
584 		{
585 			.wm_inst = WM_C,
586 			.wm_type = WM_TYPE_PSTATE_CHG,
587 			.pstate_latency_us = 11.65333,
588 			.sr_exit_time_us = 13.5,
589 			.sr_enter_plus_exit_time_us = 16.5,
590 			.valid = true,
591 		},
592 		{
593 			.wm_inst = WM_D,
594 			.wm_type = WM_TYPE_PSTATE_CHG,
595 			.pstate_latency_us = 11.65333,
596 			.sr_exit_time_us = 13.5,
597 			.sr_enter_plus_exit_time_us = 16.5,
598 			.valid = true,
599 		},
600 	}
601 };
602 
603 
604 static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
605 		unsigned int voltage)
606 {
607 	int i;
608 
609 	for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
610 		if (clock_table->SocVoltage[i] == voltage)
611 			return clock_table->DcfClocks[i];
612 	}
613 
614 	ASSERT(0);
615 	return 0;
616 }
617 
618 static void vg_clk_mgr_helper_populate_bw_params(
619 		struct clk_mgr_internal *clk_mgr,
620 		struct integrated_info *bios_info,
621 		const struct vg_dpm_clocks *clock_table)
622 {
623 	int i, j;
624 	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
625 
626 	j = -1;
627 
628 	ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
629 
630 	/* Find lowest DPM, FCLK is filled in reverse order*/
631 
632 	for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
633 		if (clock_table->DfPstateTable[i].fclk != 0) {
634 			j = i;
635 			break;
636 		}
637 	}
638 
639 	if (j == -1) {
640 		/* clock table is all 0s, just use our own hardcode */
641 		ASSERT(0);
642 		return;
643 	}
644 
645 	bw_params->clk_table.num_entries = j + 1;
646 
647 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
648 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
649 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
650 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
651 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
652 	}
653 
654 	bw_params->vram_type = bios_info->memory_type;
655 	bw_params->num_channels = bios_info->ma_channel_number;
656 
657 	for (i = 0; i < WM_SET_COUNT; i++) {
658 		bw_params->wm_table.entries[i].wm_inst = i;
659 
660 		if (i >= bw_params->clk_table.num_entries) {
661 			bw_params->wm_table.entries[i].valid = false;
662 			continue;
663 		}
664 
665 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
666 		bw_params->wm_table.entries[i].valid = true;
667 	}
668 
669 	if (bw_params->vram_type == LpDdr4MemType) {
670 		/*
671 		 * WM set D will be re-purposed for memory retraining
672 		 */
673 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
674 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
675 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
676 		bw_params->wm_table.entries[WM_D].valid = true;
677 	}
678 
679 }
680 
681 /* Temporary Place holder until we can get them from fuse */
682 static struct vg_dpm_clocks dummy_clocks = {
683 		.DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
684 		.SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
685 		.SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
686 		.DfPstateTable = {
687 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
688 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
689 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
690 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 }
691 		}
692 };
693 
694 static struct watermarks dummy_wms = { 0 };
695 
696 static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
697 		struct smu_dpm_clks *smu_dpm_clks)
698 {
699 	struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
700 
701 	if (!clk_mgr->smu_ver)
702 		return;
703 
704 	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
705 		return;
706 
707 	memset(table, 0, sizeof(*table));
708 
709 	dcn301_smu_set_dram_addr_high(clk_mgr,
710 			smu_dpm_clks->mc_address.high_part);
711 	dcn301_smu_set_dram_addr_low(clk_mgr,
712 			smu_dpm_clks->mc_address.low_part);
713 	dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
714 }
715 
716 void vg_clk_mgr_construct(
717 		struct dc_context *ctx,
718 		struct clk_mgr_vgh *clk_mgr,
719 		struct pp_smu_funcs *pp_smu,
720 		struct dccg *dccg)
721 {
722 	struct smu_dpm_clks smu_dpm_clks = { 0 };
723 
724 	clk_mgr->base.base.ctx = ctx;
725 	clk_mgr->base.base.funcs = &vg_funcs;
726 
727 	clk_mgr->base.pp_smu = pp_smu;
728 
729 	clk_mgr->base.dccg = dccg;
730 	clk_mgr->base.dfs_bypass_disp_clk = 0;
731 
732 	clk_mgr->base.dprefclk_ss_percentage = 0;
733 	clk_mgr->base.dprefclk_ss_divider = 1000;
734 	clk_mgr->base.ss_on_dprefclk = false;
735 	clk_mgr->base.dfs_ref_freq_khz = 48000;
736 
737 	clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
738 				clk_mgr->base.base.ctx,
739 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
740 				sizeof(struct watermarks),
741 				&clk_mgr->smu_wm_set.mc_address.quad_part);
742 
743 	if (!clk_mgr->smu_wm_set.wm_set) {
744 		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
745 		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
746 	}
747 	ASSERT(clk_mgr->smu_wm_set.wm_set);
748 
749 	smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
750 				clk_mgr->base.base.ctx,
751 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
752 				sizeof(struct vg_dpm_clocks),
753 				&smu_dpm_clks.mc_address.quad_part);
754 
755 	if (smu_dpm_clks.dpm_clks == NULL) {
756 		smu_dpm_clks.dpm_clks = &dummy_clocks;
757 		smu_dpm_clks.mc_address.quad_part = 0;
758 	}
759 
760 	ASSERT(smu_dpm_clks.dpm_clks);
761 
762 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
763 		vg_funcs.update_clocks = dcn2_update_clocks_fpga;
764 		clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
765 	} else {
766 		struct clk_log_info log_info = {0};
767 
768 		clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(&clk_mgr->base);
769 
770 		if (clk_mgr->base.smu_ver)
771 			clk_mgr->base.smu_present = true;
772 
773 		/* TODO: Check we get what we expect during bringup */
774 		clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
775 
776 		/* in case we don't get a value from the register, use default */
777 		if (clk_mgr->base.base.dentist_vco_freq_khz == 0)
778 			clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
779 
780 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
781 			vg_bw_params.wm_table = lpddr5_wm_table;
782 		} else {
783 			vg_bw_params.wm_table = ddr4_wm_table;
784 		}
785 		/* Saved clocks configured at boot for debug purposes */
786 		vg_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
787 	}
788 
789 	clk_mgr->base.base.dprefclk_khz = 600000;
790 	dce_clock_read_ss_info(&clk_mgr->base);
791 
792 	clk_mgr->base.base.bw_params = &vg_bw_params;
793 
794 	vg_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
795 	if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
796 		vg_clk_mgr_helper_populate_bw_params(
797 				&clk_mgr->base,
798 				ctx->dc_bios->integrated_info,
799 				smu_dpm_clks.dpm_clks);
800 	}
801 
802 	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
803 		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
804 				smu_dpm_clks.dpm_clks);
805 /*
806 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->base.smu_ver) {
807 		 enable powerfeatures when displaycount goes to 0
808 		dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
809 	}
810 */
811 }
812 
813 void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
814 {
815 	struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int);
816 
817 	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
818 		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
819 				clk_mgr->smu_wm_set.wm_set);
820 }
821