1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50 
51 /* Macros */
52 
53 #define REG(reg_name) \
54 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55 
56 
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
58 int rn_get_active_display_cnt_wa(
59 		struct dc *dc,
60 		struct dc_state *context)
61 {
62 	int i, display_count;
63 	bool tmds_present = false;
64 
65 	display_count = 0;
66 	for (i = 0; i < context->stream_count; i++) {
67 		const struct dc_stream_state *stream = context->streams[i];
68 
69 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
70 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
71 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
72 			tmds_present = true;
73 	}
74 
75 	for (i = 0; i < dc->link_count; i++) {
76 		const struct dc_link *link = dc->links[i];
77 
78 		/*
79 		 * Only notify active stream or virtual stream.
80 		 * Need to notify virtual stream to work around
81 		 * headless case. HPD does not fire when system is in
82 		 * S0i2.
83 		 */
84 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
85 		if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
86 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
87 			display_count++;
88 	}
89 
90 	/* WA for hang on HDMI after display off back back on*/
91 	if (display_count == 0 && tmds_present)
92 		display_count = 1;
93 
94 	return display_count;
95 }
96 
97 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
98 {
99 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100 
101 	rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
102 	/* update power state */
103 	clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
104 }
105 
106 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
107 			struct dc_state *context,
108 			bool safe_to_lower)
109 {
110 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
111 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
112 	struct dc *dc = clk_mgr_base->ctx->dc;
113 	int display_count;
114 	bool update_dppclk = false;
115 	bool update_dispclk = false;
116 	bool dpp_clock_lowered = false;
117 
118 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
119 
120 	if (dc->work_arounds.skip_clock_update)
121 		return;
122 
123 	/*
124 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
125 	 * also if safe to lower is false, we just go in the higher state
126 	 */
127 	if (safe_to_lower) {
128 		/* check that we're not already in lower */
129 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
130 
131 			display_count = rn_get_active_display_cnt_wa(dc, context);
132 			/* if we can go lower, go lower */
133 			if (display_count == 0) {
134 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
135 				/* update power state */
136 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
137 			}
138 		}
139 	} else {
140 		/* check that we're not already in D0 */
141 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
142 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
143 			/* update power state */
144 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
145 		}
146 	}
147 
148 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
149 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
150 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
151 	}
152 
153 	if (should_set_clock(safe_to_lower,
154 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
155 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
156 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
157 	}
158 
159 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
160 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
161 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
162 		if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
163 			new_clocks->dppclk_khz = 100000;
164 	}
165 
166 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
167 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
168 			dpp_clock_lowered = true;
169 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
170 		update_dppclk = true;
171 	}
172 
173 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
174 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
175 		rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
176 
177 		update_dispclk = true;
178 	}
179 
180 	if (dpp_clock_lowered) {
181 		// increase per DPP DTO before lowering global dppclk
182 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
183 		rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
184 	} else {
185 		// increase global DPPCLK before lowering per DPP DTO
186 		if (update_dppclk || update_dispclk)
187 			rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
188 		// always update dtos unless clock is lowered and not safe to lower
189 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
190 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
191 	}
192 
193 	if (update_dispclk &&
194 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
195 		/*update dmcu for wait_loop count*/
196 		dmcu->funcs->set_psr_wait_loop(dmcu,
197 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
198 	}
199 }
200 
201 
202 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
203 {
204 	/* get FbMult value */
205 	struct fixed31_32 pll_req;
206 	unsigned int fbmult_frac_val = 0;
207 	unsigned int fbmult_int_val = 0;
208 
209 
210 	/*
211 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
212 	 * to leverage the fix point operations available in driver
213 	 */
214 
215 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
216 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
217 
218 	pll_req = dc_fixpt_from_int(fbmult_int_val);
219 
220 	/*
221 	 * since fractional part is only 16 bit in register definition but is 32 bit
222 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
223 	 */
224 	pll_req.value |= fbmult_frac_val << 16;
225 
226 	/* multiply by REFCLK period */
227 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
228 
229 	/* integer part is now VCO frequency in kHz */
230 	return dc_fixpt_floor(pll_req);
231 }
232 
233 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
234 {
235 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
236 
237 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
238 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
239 
240 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
241 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
242 
243 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
244 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
245 
246 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
247 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
248 
249 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
250 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
251 }
252 
253 /* This function collect raw clk register values */
254 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
255 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
256 {
257 	struct rn_clk_internal internal = {0};
258 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
259 	unsigned int chars_printed = 0;
260 	unsigned int remaining_buffer = log_info->bufSize;
261 
262 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
263 
264 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
265 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
266 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
267 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
268 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
269 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
270 
271 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
272 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
273 		regs_and_bypass->dppclk_bypass = 0;
274 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
275 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
276 		regs_and_bypass->dcfclk_bypass = 0;
277 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
278 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
279 		regs_and_bypass->dispclk_bypass = 0;
280 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
281 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
282 		regs_and_bypass->dprefclk_bypass = 0;
283 
284 	if (log_info->enabled) {
285 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
286 		remaining_buffer -= chars_printed;
287 		*log_info->sum_chars_printed += chars_printed;
288 		log_info->pBuf += chars_printed;
289 
290 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
291 			regs_and_bypass->dcfclk,
292 			regs_and_bypass->dcf_deep_sleep_divider,
293 			regs_and_bypass->dcf_deep_sleep_allow,
294 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
295 		remaining_buffer -= chars_printed;
296 		*log_info->sum_chars_printed += chars_printed;
297 		log_info->pBuf += chars_printed;
298 
299 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
300 			regs_and_bypass->dprefclk,
301 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
302 		remaining_buffer -= chars_printed;
303 		*log_info->sum_chars_printed += chars_printed;
304 		log_info->pBuf += chars_printed;
305 
306 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
307 			regs_and_bypass->dispclk,
308 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
309 		remaining_buffer -= chars_printed;
310 		*log_info->sum_chars_printed += chars_printed;
311 		log_info->pBuf += chars_printed;
312 
313 		//split
314 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
315 		remaining_buffer -= chars_printed;
316 		*log_info->sum_chars_printed += chars_printed;
317 		log_info->pBuf += chars_printed;
318 
319 		// REGISTER VALUES
320 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
321 		remaining_buffer -= chars_printed;
322 		*log_info->sum_chars_printed += chars_printed;
323 		log_info->pBuf += chars_printed;
324 
325 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
326 				internal.CLK1_CLK3_CURRENT_CNT);
327 		remaining_buffer -= chars_printed;
328 		*log_info->sum_chars_printed += chars_printed;
329 		log_info->pBuf += chars_printed;
330 
331 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
332 					internal.CLK1_CLK3_DS_CNTL);
333 		remaining_buffer -= chars_printed;
334 		*log_info->sum_chars_printed += chars_printed;
335 		log_info->pBuf += chars_printed;
336 
337 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
338 					internal.CLK1_CLK3_ALLOW_DS);
339 		remaining_buffer -= chars_printed;
340 		*log_info->sum_chars_printed += chars_printed;
341 		log_info->pBuf += chars_printed;
342 
343 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
344 					internal.CLK1_CLK2_CURRENT_CNT);
345 		remaining_buffer -= chars_printed;
346 		*log_info->sum_chars_printed += chars_printed;
347 		log_info->pBuf += chars_printed;
348 
349 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
350 					internal.CLK1_CLK0_CURRENT_CNT);
351 		remaining_buffer -= chars_printed;
352 		*log_info->sum_chars_printed += chars_printed;
353 		log_info->pBuf += chars_printed;
354 
355 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
356 					internal.CLK1_CLK1_CURRENT_CNT);
357 		remaining_buffer -= chars_printed;
358 		*log_info->sum_chars_printed += chars_printed;
359 		log_info->pBuf += chars_printed;
360 
361 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
362 					internal.CLK1_CLK3_BYPASS_CNTL);
363 		remaining_buffer -= chars_printed;
364 		*log_info->sum_chars_printed += chars_printed;
365 		log_info->pBuf += chars_printed;
366 
367 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
368 					internal.CLK1_CLK2_BYPASS_CNTL);
369 		remaining_buffer -= chars_printed;
370 		*log_info->sum_chars_printed += chars_printed;
371 		log_info->pBuf += chars_printed;
372 
373 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
374 					internal.CLK1_CLK0_BYPASS_CNTL);
375 		remaining_buffer -= chars_printed;
376 		*log_info->sum_chars_printed += chars_printed;
377 		log_info->pBuf += chars_printed;
378 
379 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
380 					internal.CLK1_CLK1_BYPASS_CNTL);
381 		remaining_buffer -= chars_printed;
382 		*log_info->sum_chars_printed += chars_printed;
383 		log_info->pBuf += chars_printed;
384 	}
385 }
386 
387 /* This function produce translated logical clk state values*/
388 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
389 {
390 	struct clk_state_registers_and_bypass sb = { 0 };
391 	struct clk_log_info log_info = { 0 };
392 
393 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
394 
395 	s->dprefclk_khz = sb.dprefclk * 1000;
396 }
397 
398 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
399 {
400 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
401 
402 	rn_vbios_smu_enable_pme_wa(clk_mgr);
403 }
404 
405 void rn_init_clocks(struct clk_mgr *clk_mgr)
406 {
407 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
408 	// Assumption is that boot state always supports pstate
409 	clk_mgr->clks.p_state_change_support = true;
410 	clk_mgr->clks.prev_p_state_change_support = true;
411 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
412 }
413 
414 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
415 {
416 	int i, num_valid_sets;
417 
418 	num_valid_sets = 0;
419 
420 	for (i = 0; i < WM_SET_COUNT; i++) {
421 		/* skip empty entries, the smu array has no holes*/
422 		if (!bw_params->wm_table.entries[i].valid)
423 			continue;
424 
425 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
426 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
427 		/* We will not select WM based on fclk, so leave it as unconstrained */
428 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
429 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
430 		/* dcfclk wil be used to select WM*/
431 
432 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
433 			if (i == 0)
434 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
435 			else {
436 				/* add 1 to make it non-overlapping with next lvl */
437 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
438 			}
439 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
440 
441 		} else {
442 			/* unconstrained for memory retraining */
443 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
444 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
445 
446 			/* Modify previous watermark range to cover up to max */
447 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
448 		}
449 		num_valid_sets++;
450 	}
451 
452 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
453 	ranges->num_reader_wm_sets = num_valid_sets;
454 
455 	/* modify the min and max to make sure we cover the whole range*/
456 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
457 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
458 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
459 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
460 
461 	/* This is for writeback only, does not matter currently as no writeback support*/
462 	ranges->num_writer_wm_sets = 1;
463 	ranges->writer_wm_sets[0].wm_inst = WM_A;
464 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
465 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
466 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
467 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
468 
469 }
470 
471 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
472 {
473 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
474 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
475 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
476 
477 	if (!debug->disable_pplib_wm_range) {
478 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
479 
480 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
481 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
482 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
483 	}
484 
485 }
486 
487 static bool rn_are_clock_states_equal(struct dc_clocks *a,
488 		struct dc_clocks *b)
489 {
490 	if (a->dispclk_khz != b->dispclk_khz)
491 		return false;
492 	else if (a->dppclk_khz != b->dppclk_khz)
493 		return false;
494 	else if (a->dcfclk_khz != b->dcfclk_khz)
495 		return false;
496 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
497 		return false;
498 
499 	return true;
500 }
501 
502 
503 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
504 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
505 {
506 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
507 	unsigned int i, max_phyclk_req = 0;
508 
509 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
510 
511 	for (i = 0; i < MAX_PIPES * 2; i++) {
512 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
513 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
514 	}
515 
516 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
517 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
518 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
519 	}
520 }
521 
522 static struct clk_mgr_funcs dcn21_funcs = {
523 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
524 	.update_clocks = rn_update_clocks,
525 	.init_clocks = rn_init_clocks,
526 	.enable_pme_wa = rn_enable_pme_wa,
527 	.are_clock_states_equal = rn_are_clock_states_equal,
528 	.set_low_power_state = rn_set_low_power_state,
529 	.notify_wm_ranges = rn_notify_wm_ranges,
530 	.notify_link_rate_change = rn_notify_link_rate_change,
531 };
532 
533 static struct clk_bw_params rn_bw_params = {
534 	.vram_type = Ddr4MemType,
535 	.num_channels = 1,
536 	.clk_table = {
537 		.entries = {
538 			{
539 				.voltage = 0,
540 				.dcfclk_mhz = 400,
541 				.fclk_mhz = 400,
542 				.memclk_mhz = 800,
543 				.socclk_mhz = 0,
544 			},
545 			{
546 				.voltage = 0,
547 				.dcfclk_mhz = 483,
548 				.fclk_mhz = 800,
549 				.memclk_mhz = 1600,
550 				.socclk_mhz = 0,
551 			},
552 			{
553 				.voltage = 0,
554 				.dcfclk_mhz = 602,
555 				.fclk_mhz = 1067,
556 				.memclk_mhz = 1067,
557 				.socclk_mhz = 0,
558 			},
559 			{
560 				.voltage = 0,
561 				.dcfclk_mhz = 738,
562 				.fclk_mhz = 1333,
563 				.memclk_mhz = 1600,
564 				.socclk_mhz = 0,
565 			},
566 		},
567 
568 		.num_entries = 4,
569 	},
570 
571 };
572 
573 static struct wm_table ddr4_wm_table = {
574 	.entries = {
575 		{
576 			.wm_inst = WM_A,
577 			.wm_type = WM_TYPE_PSTATE_CHG,
578 			.pstate_latency_us = 11.72,
579 			.sr_exit_time_us = 6.09,
580 			.sr_enter_plus_exit_time_us = 7.14,
581 			.valid = true,
582 		},
583 		{
584 			.wm_inst = WM_B,
585 			.wm_type = WM_TYPE_PSTATE_CHG,
586 			.pstate_latency_us = 11.72,
587 			.sr_exit_time_us = 10.12,
588 			.sr_enter_plus_exit_time_us = 11.48,
589 			.valid = true,
590 		},
591 		{
592 			.wm_inst = WM_C,
593 			.wm_type = WM_TYPE_PSTATE_CHG,
594 			.pstate_latency_us = 11.72,
595 			.sr_exit_time_us = 10.12,
596 			.sr_enter_plus_exit_time_us = 11.48,
597 			.valid = true,
598 		},
599 		{
600 			.wm_inst = WM_D,
601 			.wm_type = WM_TYPE_PSTATE_CHG,
602 			.pstate_latency_us = 11.72,
603 			.sr_exit_time_us = 10.12,
604 			.sr_enter_plus_exit_time_us = 11.48,
605 			.valid = true,
606 		},
607 	}
608 };
609 
610 static struct wm_table lpddr4_wm_table = {
611 	.entries = {
612 		{
613 			.wm_inst = WM_A,
614 			.wm_type = WM_TYPE_PSTATE_CHG,
615 			.pstate_latency_us = 11.65333,
616 			.sr_exit_time_us = 5.32,
617 			.sr_enter_plus_exit_time_us = 6.38,
618 			.valid = true,
619 		},
620 		{
621 			.wm_inst = WM_B,
622 			.wm_type = WM_TYPE_PSTATE_CHG,
623 			.pstate_latency_us = 11.65333,
624 			.sr_exit_time_us = 9.82,
625 			.sr_enter_plus_exit_time_us = 11.196,
626 			.valid = true,
627 		},
628 		{
629 			.wm_inst = WM_C,
630 			.wm_type = WM_TYPE_PSTATE_CHG,
631 			.pstate_latency_us = 11.65333,
632 			.sr_exit_time_us = 9.89,
633 			.sr_enter_plus_exit_time_us = 11.24,
634 			.valid = true,
635 		},
636 		{
637 			.wm_inst = WM_D,
638 			.wm_type = WM_TYPE_PSTATE_CHG,
639 			.pstate_latency_us = 11.65333,
640 			.sr_exit_time_us = 9.748,
641 			.sr_enter_plus_exit_time_us = 11.102,
642 			.valid = true,
643 		},
644 	}
645 };
646 
647 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
648 	.entries = {
649 		{
650 			.wm_inst = WM_A,
651 			.wm_type = WM_TYPE_PSTATE_CHG,
652 			.pstate_latency_us = 11.65333,
653 			.sr_exit_time_us = 8.32,
654 			.sr_enter_plus_exit_time_us = 9.38,
655 			.valid = true,
656 		},
657 		{
658 			.wm_inst = WM_B,
659 			.wm_type = WM_TYPE_PSTATE_CHG,
660 			.pstate_latency_us = 11.65333,
661 			.sr_exit_time_us = 9.82,
662 			.sr_enter_plus_exit_time_us = 11.196,
663 			.valid = true,
664 		},
665 		{
666 			.wm_inst = WM_C,
667 			.wm_type = WM_TYPE_PSTATE_CHG,
668 			.pstate_latency_us = 11.65333,
669 			.sr_exit_time_us = 9.89,
670 			.sr_enter_plus_exit_time_us = 11.24,
671 			.valid = true,
672 		},
673 		{
674 			.wm_inst = WM_D,
675 			.wm_type = WM_TYPE_PSTATE_CHG,
676 			.pstate_latency_us = 11.65333,
677 			.sr_exit_time_us = 9.748,
678 			.sr_enter_plus_exit_time_us = 11.102,
679 			.valid = true,
680 		},
681 	}
682 };
683 
684 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
685 {
686 	int i;
687 
688 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
689 		if (clock_table->DcfClocks[i].Vol == voltage)
690 			return clock_table->DcfClocks[i].Freq;
691 	}
692 
693 	ASSERT(0);
694 	return 0;
695 }
696 
697 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
698 {
699 	int i, j = 0;
700 
701 	j = -1;
702 
703 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
704 
705 	/* Find lowest DPM, FCLK is filled in reverse order*/
706 
707 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
708 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
709 			j = i;
710 			break;
711 		}
712 	}
713 
714 	if (j == -1) {
715 		/* clock table is all 0s, just use our own hardcode */
716 		ASSERT(0);
717 		return;
718 	}
719 
720 	bw_params->clk_table.num_entries = j + 1;
721 
722 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
723 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
724 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
725 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
726 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
727 	}
728 
729 	bw_params->vram_type = bios_info->memory_type;
730 	bw_params->num_channels = bios_info->ma_channel_number;
731 
732 	for (i = 0; i < WM_SET_COUNT; i++) {
733 		bw_params->wm_table.entries[i].wm_inst = i;
734 
735 		if (i >= bw_params->clk_table.num_entries) {
736 			bw_params->wm_table.entries[i].valid = false;
737 			continue;
738 		}
739 
740 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
741 		bw_params->wm_table.entries[i].valid = true;
742 	}
743 
744 	if (bw_params->vram_type == LpDdr4MemType) {
745 		/*
746 		 * WM set D will be re-purposed for memory retraining
747 		 */
748 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
749 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
750 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
751 		bw_params->wm_table.entries[WM_D].valid = true;
752 	}
753 
754 }
755 
756 void rn_clk_mgr_construct(
757 		struct dc_context *ctx,
758 		struct clk_mgr_internal *clk_mgr,
759 		struct pp_smu_funcs *pp_smu,
760 		struct dccg *dccg)
761 {
762 	struct dc_debug_options *debug = &ctx->dc->debug;
763 	struct dpm_clocks clock_table = { 0 };
764 
765 	clk_mgr->base.ctx = ctx;
766 	clk_mgr->base.funcs = &dcn21_funcs;
767 
768 	clk_mgr->pp_smu = pp_smu;
769 
770 	clk_mgr->dccg = dccg;
771 	clk_mgr->dfs_bypass_disp_clk = 0;
772 
773 	clk_mgr->dprefclk_ss_percentage = 0;
774 	clk_mgr->dprefclk_ss_divider = 1000;
775 	clk_mgr->ss_on_dprefclk = false;
776 	clk_mgr->dfs_ref_freq_khz = 48000;
777 
778 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
779 
780 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
781 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
782 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
783 	} else {
784 		struct clk_log_info log_info = {0};
785 
786 		clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
787 		clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
788 
789 		/* SMU Version 55.51.0 and up no longer have an issue
790 		 * that needs to limit minimum dispclk */
791 		if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
792 			debug->min_disp_clk_khz = 0;
793 
794 		/* TODO: Check we get what we expect during bringup */
795 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
796 
797 		/* in case we don't get a value from the register, use default */
798 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
799 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
800 
801 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
802 			if (clk_mgr->periodic_retraining_disabled) {
803 				rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
804 			} else {
805 				rn_bw_params.wm_table = lpddr4_wm_table;
806 			}
807 		} else {
808 			rn_bw_params.wm_table = ddr4_wm_table;
809 		}
810 		/* Saved clocks configured at boot for debug purposes */
811 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
812 	}
813 
814 	clk_mgr->base.dprefclk_khz = 600000;
815 	dce_clock_read_ss_info(clk_mgr);
816 
817 
818 	clk_mgr->base.bw_params = &rn_bw_params;
819 
820 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
821 		pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
822 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
823 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
824 		}
825 	}
826 
827 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
828 		/* enable powerfeatures when displaycount goes to 0 */
829 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
830 	}
831 }
832 
833