1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "ObjectID.h"
29 #include "atomfirmware.h"
30 
31 #include "dc_bios_types.h"
32 #include "include/grph_object_ctrl_defs.h"
33 #include "include/bios_parser_interface.h"
34 #include "include/i2caux_interface.h"
35 #include "include/logger_interface.h"
36 
37 #include "command_table2.h"
38 
39 #include "bios_parser_helper.h"
40 #include "command_table_helper2.h"
41 #include "bios_parser2.h"
42 #include "bios_parser_types_internal2.h"
43 #include "bios_parser_interface.h"
44 
45 #include "bios_parser_common.h"
46 
47 /* Temporarily add in defines until ObjectID.h patch is updated in a few days */
48 #ifndef GENERIC_OBJECT_ID_BRACKET_LAYOUT
49 #define GENERIC_OBJECT_ID_BRACKET_LAYOUT          0x05
50 #endif /* GENERIC_OBJECT_ID_BRACKET_LAYOUT */
51 
52 #ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1
53 #define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1	\
54 	(GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\
55 	GRAPH_OBJECT_ENUM_ID1 << ENUM_ID_SHIFT |\
56 	GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT)
57 #endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1 */
58 
59 #ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2
60 #define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2	\
61 	(GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\
62 	GRAPH_OBJECT_ENUM_ID2 << ENUM_ID_SHIFT |\
63 	GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT)
64 #endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2 */
65 
66 #define DC_LOGGER \
67 	bp->base.ctx->logger
68 
69 #define LAST_RECORD_TYPE 0xff
70 #define SMU9_SYSPLL0_ID  0
71 
72 struct i2c_id_config_access {
73 	uint8_t bfI2C_LineMux:4;
74 	uint8_t bfHW_EngineID:3;
75 	uint8_t bfHW_Capable:1;
76 	uint8_t ucAccess;
77 };
78 
79 static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
80 	struct atom_i2c_record *record,
81 	struct graphics_object_i2c_info *info);
82 
83 static enum bp_result bios_parser_get_firmware_info(
84 	struct dc_bios *dcb,
85 	struct dc_firmware_info *info);
86 
87 static enum bp_result bios_parser_get_encoder_cap_info(
88 	struct dc_bios *dcb,
89 	struct graphics_object_id object_id,
90 	struct bp_encoder_cap_info *info);
91 
92 static enum bp_result get_firmware_info_v3_1(
93 	struct bios_parser *bp,
94 	struct dc_firmware_info *info);
95 
96 static enum bp_result get_firmware_info_v3_2(
97 	struct bios_parser *bp,
98 	struct dc_firmware_info *info);
99 
100 static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp,
101 		struct atom_display_object_path_v2 *object);
102 
103 static struct atom_encoder_caps_record *get_encoder_cap_record(
104 	struct bios_parser *bp,
105 	struct atom_display_object_path_v2 *object);
106 
107 #define BIOS_IMAGE_SIZE_OFFSET 2
108 #define BIOS_IMAGE_SIZE_UNIT 512
109 
110 #define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table)
111 
112 static void destruct(struct bios_parser *bp)
113 {
114 	kfree(bp->base.bios_local_image);
115 	kfree(bp->base.integrated_info);
116 }
117 
118 static void firmware_parser_destroy(struct dc_bios **dcb)
119 {
120 	struct bios_parser *bp = BP_FROM_DCB(*dcb);
121 
122 	if (!bp) {
123 		BREAK_TO_DEBUGGER();
124 		return;
125 	}
126 
127 	destruct(bp);
128 
129 	kfree(bp);
130 	*dcb = NULL;
131 }
132 
133 static void get_atom_data_table_revision(
134 	struct atom_common_table_header *atom_data_tbl,
135 	struct atom_data_revision *tbl_revision)
136 {
137 	if (!tbl_revision)
138 		return;
139 
140 	/* initialize the revision to 0 which is invalid revision */
141 	tbl_revision->major = 0;
142 	tbl_revision->minor = 0;
143 
144 	if (!atom_data_tbl)
145 		return;
146 
147 	tbl_revision->major =
148 			(uint32_t) atom_data_tbl->format_revision & 0x3f;
149 	tbl_revision->minor =
150 			(uint32_t) atom_data_tbl->content_revision & 0x3f;
151 }
152 
153 /* BIOS oject table displaypath is per connector.
154  * There is extra path not for connector. BIOS fill its encoderid as 0
155  */
156 static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
157 {
158 	struct bios_parser *bp = BP_FROM_DCB(dcb);
159 	unsigned int count = 0;
160 	unsigned int i;
161 
162 	for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
163 		if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0)
164 			count++;
165 	}
166 	return count;
167 }
168 
169 static struct graphics_object_id bios_parser_get_connector_id(
170 	struct dc_bios *dcb,
171 	uint8_t i)
172 {
173 	struct bios_parser *bp = BP_FROM_DCB(dcb);
174 	struct graphics_object_id object_id = dal_graphics_object_id_init(
175 		0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
176 	struct object_info_table *tbl = &bp->object_info_tbl;
177 	struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4;
178 
179 	if (v1_4->number_of_path > i) {
180 		/* If display_objid is generic object id,  the encoderObj
181 		 * /extencoderobjId should be 0
182 		 */
183 		if (v1_4->display_path[i].encoderobjid != 0 &&
184 				v1_4->display_path[i].display_objid != 0)
185 			object_id = object_id_from_bios_object_id(
186 					v1_4->display_path[i].display_objid);
187 	}
188 
189 	return object_id;
190 }
191 
192 static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
193 	struct graphics_object_id object_id, uint32_t index,
194 	struct graphics_object_id *src_object_id)
195 {
196 	struct bios_parser *bp = BP_FROM_DCB(dcb);
197 	unsigned int i;
198 	enum bp_result  bp_result = BP_RESULT_BADINPUT;
199 	struct graphics_object_id obj_id = {0};
200 	struct object_info_table *tbl = &bp->object_info_tbl;
201 
202 	if (!src_object_id)
203 		return bp_result;
204 
205 	switch (object_id.type) {
206 	/* Encoder's Source is GPU.  BIOS does not provide GPU, since all
207 	 * displaypaths point to same GPU (0x1100).  Hardcode GPU object type
208 	 */
209 	case OBJECT_TYPE_ENCODER:
210 		/* TODO: since num of src must be less than 2.
211 		 * If found in for loop, should break.
212 		 * DAL2 implementation may be changed too
213 		 */
214 		for (i = 0; i < tbl->v1_4->number_of_path; i++) {
215 			obj_id = object_id_from_bios_object_id(
216 			tbl->v1_4->display_path[i].encoderobjid);
217 			if (object_id.type == obj_id.type &&
218 					object_id.id == obj_id.id &&
219 						object_id.enum_id ==
220 							obj_id.enum_id) {
221 				*src_object_id =
222 				object_id_from_bios_object_id(0x1100);
223 				/* break; */
224 			}
225 		}
226 		bp_result = BP_RESULT_OK;
227 		break;
228 	case OBJECT_TYPE_CONNECTOR:
229 		for (i = 0; i < tbl->v1_4->number_of_path; i++) {
230 			obj_id = object_id_from_bios_object_id(
231 				tbl->v1_4->display_path[i].display_objid);
232 
233 			if (object_id.type == obj_id.type &&
234 				object_id.id == obj_id.id &&
235 					object_id.enum_id == obj_id.enum_id) {
236 				*src_object_id =
237 				object_id_from_bios_object_id(
238 				tbl->v1_4->display_path[i].encoderobjid);
239 				/* break; */
240 			}
241 		}
242 		bp_result = BP_RESULT_OK;
243 		break;
244 	default:
245 		break;
246 	}
247 
248 	return bp_result;
249 }
250 
251 /* from graphics_object_id, find display path which includes the object_id */
252 static struct atom_display_object_path_v2 *get_bios_object(
253 		struct bios_parser *bp,
254 		struct graphics_object_id id)
255 {
256 	unsigned int i;
257 	struct graphics_object_id obj_id = {0};
258 
259 	switch (id.type) {
260 	case OBJECT_TYPE_ENCODER:
261 		for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
262 			obj_id = object_id_from_bios_object_id(
263 					bp->object_info_tbl.v1_4->display_path[i].encoderobjid);
264 			if (id.type == obj_id.type && id.id == obj_id.id
265 					&& id.enum_id == obj_id.enum_id)
266 				return &bp->object_info_tbl.v1_4->display_path[i];
267 		}
268 	case OBJECT_TYPE_CONNECTOR:
269 	case OBJECT_TYPE_GENERIC:
270 		/* Both Generic and Connector Object ID
271 		 * will be stored on display_objid
272 		 */
273 		for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
274 			obj_id = object_id_from_bios_object_id(
275 					bp->object_info_tbl.v1_4->display_path[i].display_objid);
276 			if (id.type == obj_id.type && id.id == obj_id.id
277 					&& id.enum_id == obj_id.enum_id)
278 				return &bp->object_info_tbl.v1_4->display_path[i];
279 		}
280 	default:
281 		return NULL;
282 	}
283 }
284 
285 static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
286 	struct graphics_object_id id,
287 	struct graphics_object_i2c_info *info)
288 {
289 	uint32_t offset;
290 	struct atom_display_object_path_v2 *object;
291 	struct atom_common_record_header *header;
292 	struct atom_i2c_record *record;
293 	struct bios_parser *bp = BP_FROM_DCB(dcb);
294 
295 	if (!info)
296 		return BP_RESULT_BADINPUT;
297 
298 	object = get_bios_object(bp, id);
299 
300 	if (!object)
301 		return BP_RESULT_BADINPUT;
302 
303 	offset = object->disp_recordoffset + bp->object_info_tbl_offset;
304 
305 	for (;;) {
306 		header = GET_IMAGE(struct atom_common_record_header, offset);
307 
308 		if (!header)
309 			return BP_RESULT_BADBIOSTABLE;
310 
311 		if (header->record_type == LAST_RECORD_TYPE ||
312 			!header->record_size)
313 			break;
314 
315 		if (header->record_type == ATOM_I2C_RECORD_TYPE
316 			&& sizeof(struct atom_i2c_record) <=
317 							header->record_size) {
318 			/* get the I2C info */
319 			record = (struct atom_i2c_record *) header;
320 
321 			if (get_gpio_i2c_info(bp, record, info) ==
322 								BP_RESULT_OK)
323 				return BP_RESULT_OK;
324 		}
325 
326 		offset += header->record_size;
327 	}
328 
329 	return BP_RESULT_NORECORD;
330 }
331 
332 static enum bp_result get_gpio_i2c_info(
333 	struct bios_parser *bp,
334 	struct atom_i2c_record *record,
335 	struct graphics_object_i2c_info *info)
336 {
337 	struct atom_gpio_pin_lut_v2_1 *header;
338 	uint32_t count = 0;
339 	unsigned int table_index = 0;
340 
341 	if (!info)
342 		return BP_RESULT_BADINPUT;
343 
344 	/* get the GPIO_I2C info */
345 	if (!DATA_TABLES(gpio_pin_lut))
346 		return BP_RESULT_BADBIOSTABLE;
347 
348 	header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
349 					DATA_TABLES(gpio_pin_lut));
350 	if (!header)
351 		return BP_RESULT_BADBIOSTABLE;
352 
353 	if (sizeof(struct atom_common_table_header) +
354 			sizeof(struct atom_gpio_pin_assignment)	>
355 			le16_to_cpu(header->table_header.structuresize))
356 		return BP_RESULT_BADBIOSTABLE;
357 
358 	/* TODO: is version change? */
359 	if (header->table_header.content_revision != 1)
360 		return BP_RESULT_UNSUPPORTED;
361 
362 	/* get data count */
363 	count = (le16_to_cpu(header->table_header.structuresize)
364 			- sizeof(struct atom_common_table_header))
365 				/ sizeof(struct atom_gpio_pin_assignment);
366 
367 	table_index = record->i2c_id  & I2C_HW_LANE_MUX;
368 
369 	if (count < table_index) {
370 		bool find_valid = false;
371 
372 		for (table_index = 0; table_index < count; table_index++) {
373 			if (((record->i2c_id & I2C_HW_CAP) == (
374 			header->gpio_pin[table_index].gpio_id &
375 							I2C_HW_CAP)) &&
376 			((record->i2c_id & I2C_HW_ENGINE_ID_MASK)  ==
377 			(header->gpio_pin[table_index].gpio_id &
378 						I2C_HW_ENGINE_ID_MASK)) &&
379 			((record->i2c_id & I2C_HW_LANE_MUX) ==
380 			(header->gpio_pin[table_index].gpio_id &
381 							I2C_HW_LANE_MUX))) {
382 				/* still valid */
383 				find_valid = true;
384 				break;
385 			}
386 		}
387 		/* If we don't find the entry that we are looking for then
388 		 *  we will return BP_Result_BadBiosTable.
389 		 */
390 		if (find_valid == false)
391 			return BP_RESULT_BADBIOSTABLE;
392 	}
393 
394 	/* get the GPIO_I2C_INFO */
395 	info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false;
396 	info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX;
397 	info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4;
398 	info->i2c_slave_address = record->i2c_slave_addr;
399 
400 	/* TODO: check how to get register offset for en, Y, etc. */
401 	info->gpio_info.clk_a_register_index =
402 			le16_to_cpu(
403 			header->gpio_pin[table_index].data_a_reg_index);
404 	info->gpio_info.clk_a_shift =
405 			header->gpio_pin[table_index].gpio_bitshift;
406 
407 	return BP_RESULT_OK;
408 }
409 
410 static enum bp_result bios_parser_get_hpd_info(
411 	struct dc_bios *dcb,
412 	struct graphics_object_id id,
413 	struct graphics_object_hpd_info *info)
414 {
415 	struct bios_parser *bp = BP_FROM_DCB(dcb);
416 	struct atom_display_object_path_v2 *object;
417 	struct atom_hpd_int_record *record = NULL;
418 
419 	if (!info)
420 		return BP_RESULT_BADINPUT;
421 
422 	object = get_bios_object(bp, id);
423 
424 	if (!object)
425 		return BP_RESULT_BADINPUT;
426 
427 	record = get_hpd_record(bp, object);
428 
429 	if (record != NULL) {
430 		info->hpd_int_gpio_uid = record->pin_id;
431 		info->hpd_active = record->plugin_pin_state;
432 		return BP_RESULT_OK;
433 	}
434 
435 	return BP_RESULT_NORECORD;
436 }
437 
438 static struct atom_hpd_int_record *get_hpd_record(
439 	struct bios_parser *bp,
440 	struct atom_display_object_path_v2 *object)
441 {
442 	struct atom_common_record_header *header;
443 	uint32_t offset;
444 
445 	if (!object) {
446 		BREAK_TO_DEBUGGER(); /* Invalid object */
447 		return NULL;
448 	}
449 
450 	offset = le16_to_cpu(object->disp_recordoffset)
451 			+ bp->object_info_tbl_offset;
452 
453 	for (;;) {
454 		header = GET_IMAGE(struct atom_common_record_header, offset);
455 
456 		if (!header)
457 			return NULL;
458 
459 		if (header->record_type == LAST_RECORD_TYPE ||
460 			!header->record_size)
461 			break;
462 
463 		if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
464 			&& sizeof(struct atom_hpd_int_record) <=
465 							header->record_size)
466 			return (struct atom_hpd_int_record *) header;
467 
468 		offset += header->record_size;
469 	}
470 
471 	return NULL;
472 }
473 
474 /**
475  * bios_parser_get_gpio_pin_info
476  * Get GpioPin information of input gpio id
477  *
478  * @param gpio_id, GPIO ID
479  * @param info, GpioPin information structure
480  * @return Bios parser result code
481  * @note
482  *  to get the GPIO PIN INFO, we need:
483  *  1. get the GPIO_ID from other object table, see GetHPDInfo()
484  *  2. in DATA_TABLE.GPIO_Pin_LUT, search all records,
485  *	to get the registerA  offset/mask
486  */
487 static enum bp_result bios_parser_get_gpio_pin_info(
488 	struct dc_bios *dcb,
489 	uint32_t gpio_id,
490 	struct gpio_pin_info *info)
491 {
492 	struct bios_parser *bp = BP_FROM_DCB(dcb);
493 	struct atom_gpio_pin_lut_v2_1 *header;
494 	uint32_t count = 0;
495 	uint32_t i = 0;
496 
497 	if (!DATA_TABLES(gpio_pin_lut))
498 		return BP_RESULT_BADBIOSTABLE;
499 
500 	header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
501 						DATA_TABLES(gpio_pin_lut));
502 	if (!header)
503 		return BP_RESULT_BADBIOSTABLE;
504 
505 	if (sizeof(struct atom_common_table_header) +
506 			sizeof(struct atom_gpio_pin_assignment)
507 			> le16_to_cpu(header->table_header.structuresize))
508 		return BP_RESULT_BADBIOSTABLE;
509 
510 	if (header->table_header.content_revision != 1)
511 		return BP_RESULT_UNSUPPORTED;
512 
513 	/* Temporary hard code gpio pin info */
514 #if defined(FOR_SIMNOW_BOOT)
515 	{
516 		struct  atom_gpio_pin_assignment  gpio_pin[8] = {
517 				{0x5db5, 0, 0, 1, 0},
518 				{0x5db5, 8, 8, 2, 0},
519 				{0x5db5, 0x10, 0x10, 3, 0},
520 				{0x5db5, 0x18, 0x14, 4, 0},
521 				{0x5db5, 0x1A, 0x18, 5, 0},
522 				{0x5db5, 0x1C, 0x1C, 6, 0},
523 		};
524 
525 		count = 6;
526 		memmove(header->gpio_pin, gpio_pin, sizeof(gpio_pin));
527 	}
528 #else
529 	count = (le16_to_cpu(header->table_header.structuresize)
530 			- sizeof(struct atom_common_table_header))
531 				/ sizeof(struct atom_gpio_pin_assignment);
532 #endif
533 	for (i = 0; i < count; ++i) {
534 		if (header->gpio_pin[i].gpio_id != gpio_id)
535 			continue;
536 
537 		info->offset =
538 			(uint32_t) le16_to_cpu(
539 					header->gpio_pin[i].data_a_reg_index);
540 		info->offset_y = info->offset + 2;
541 		info->offset_en = info->offset + 1;
542 		info->offset_mask = info->offset - 1;
543 
544 		info->mask = (uint32_t) (1 <<
545 			header->gpio_pin[i].gpio_bitshift);
546 		info->mask_y = info->mask + 2;
547 		info->mask_en = info->mask + 1;
548 		info->mask_mask = info->mask - 1;
549 
550 		return BP_RESULT_OK;
551 	}
552 
553 	return BP_RESULT_NORECORD;
554 }
555 
556 static struct device_id device_type_from_device_id(uint16_t device_id)
557 {
558 
559 	struct device_id result_device_id;
560 
561 	result_device_id.raw_device_tag = device_id;
562 
563 	switch (device_id) {
564 	case ATOM_DISPLAY_LCD1_SUPPORT:
565 		result_device_id.device_type = DEVICE_TYPE_LCD;
566 		result_device_id.enum_id = 1;
567 		break;
568 
569 	case ATOM_DISPLAY_DFP1_SUPPORT:
570 		result_device_id.device_type = DEVICE_TYPE_DFP;
571 		result_device_id.enum_id = 1;
572 		break;
573 
574 	case ATOM_DISPLAY_DFP2_SUPPORT:
575 		result_device_id.device_type = DEVICE_TYPE_DFP;
576 		result_device_id.enum_id = 2;
577 		break;
578 
579 	case ATOM_DISPLAY_DFP3_SUPPORT:
580 		result_device_id.device_type = DEVICE_TYPE_DFP;
581 		result_device_id.enum_id = 3;
582 		break;
583 
584 	case ATOM_DISPLAY_DFP4_SUPPORT:
585 		result_device_id.device_type = DEVICE_TYPE_DFP;
586 		result_device_id.enum_id = 4;
587 		break;
588 
589 	case ATOM_DISPLAY_DFP5_SUPPORT:
590 		result_device_id.device_type = DEVICE_TYPE_DFP;
591 		result_device_id.enum_id = 5;
592 		break;
593 
594 	case ATOM_DISPLAY_DFP6_SUPPORT:
595 		result_device_id.device_type = DEVICE_TYPE_DFP;
596 		result_device_id.enum_id = 6;
597 		break;
598 
599 	default:
600 		BREAK_TO_DEBUGGER(); /* Invalid device Id */
601 		result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
602 		result_device_id.enum_id = 0;
603 	}
604 	return result_device_id;
605 }
606 
607 static enum bp_result bios_parser_get_device_tag(
608 	struct dc_bios *dcb,
609 	struct graphics_object_id connector_object_id,
610 	uint32_t device_tag_index,
611 	struct connector_device_tag_info *info)
612 {
613 	struct bios_parser *bp = BP_FROM_DCB(dcb);
614 	struct atom_display_object_path_v2 *object;
615 
616 	if (!info)
617 		return BP_RESULT_BADINPUT;
618 
619 	/* getBiosObject will return MXM object */
620 	object = get_bios_object(bp, connector_object_id);
621 
622 	if (!object) {
623 		BREAK_TO_DEBUGGER(); /* Invalid object id */
624 		return BP_RESULT_BADINPUT;
625 	}
626 
627 	info->acpi_device = 0; /* BIOS no longer provides this */
628 	info->dev_id = device_type_from_device_id(object->device_tag);
629 
630 	return BP_RESULT_OK;
631 }
632 
633 static enum bp_result get_ss_info_v4_1(
634 	struct bios_parser *bp,
635 	uint32_t id,
636 	uint32_t index,
637 	struct spread_spectrum_info *ss_info)
638 {
639 	enum bp_result result = BP_RESULT_OK;
640 	struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
641 	struct atom_smu_info_v3_3 *smu_info = NULL;
642 
643 	if (!ss_info)
644 		return BP_RESULT_BADINPUT;
645 
646 	if (!DATA_TABLES(dce_info))
647 		return BP_RESULT_BADBIOSTABLE;
648 
649 	disp_cntl_tbl =  GET_IMAGE(struct atom_display_controller_info_v4_1,
650 							DATA_TABLES(dce_info));
651 	if (!disp_cntl_tbl)
652 		return BP_RESULT_BADBIOSTABLE;
653 
654 
655 	ss_info->type.STEP_AND_DELAY_INFO = false;
656 	ss_info->spread_percentage_divider = 1000;
657 	/* BIOS no longer uses target clock.  Always enable for now */
658 	ss_info->target_clock_range = 0xffffffff;
659 
660 	switch (id) {
661 	case AS_SIGNAL_TYPE_DVI:
662 		ss_info->spread_spectrum_percentage =
663 				disp_cntl_tbl->dvi_ss_percentage;
664 		ss_info->spread_spectrum_range =
665 				disp_cntl_tbl->dvi_ss_rate_10hz * 10;
666 		if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
667 			ss_info->type.CENTER_MODE = true;
668 		break;
669 	case AS_SIGNAL_TYPE_HDMI:
670 		ss_info->spread_spectrum_percentage =
671 				disp_cntl_tbl->hdmi_ss_percentage;
672 		ss_info->spread_spectrum_range =
673 				disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
674 		if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
675 			ss_info->type.CENTER_MODE = true;
676 		break;
677 	/* TODO LVDS not support anymore? */
678 	case AS_SIGNAL_TYPE_DISPLAY_PORT:
679 		ss_info->spread_spectrum_percentage =
680 				disp_cntl_tbl->dp_ss_percentage;
681 		ss_info->spread_spectrum_range =
682 				disp_cntl_tbl->dp_ss_rate_10hz * 10;
683 		if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
684 			ss_info->type.CENTER_MODE = true;
685 		break;
686 	case AS_SIGNAL_TYPE_GPU_PLL:
687 		/* atom_firmware: DAL only get data from dce_info table.
688 		 * if data within smu_info is needed for DAL, VBIOS should
689 		 * copy it into dce_info
690 		 */
691 		result = BP_RESULT_UNSUPPORTED;
692 		break;
693 	case AS_SIGNAL_TYPE_XGMI:
694 		smu_info =  GET_IMAGE(struct atom_smu_info_v3_3,
695 				      DATA_TABLES(smu_info));
696 		if (!smu_info)
697 			return BP_RESULT_BADBIOSTABLE;
698 
699 		ss_info->spread_spectrum_percentage =
700 				smu_info->waflclk_ss_percentage;
701 		ss_info->spread_spectrum_range =
702 				smu_info->gpuclk_ss_rate_10hz * 10;
703 		if (smu_info->waflclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
704 			ss_info->type.CENTER_MODE = true;
705 		break;
706 	default:
707 		result = BP_RESULT_UNSUPPORTED;
708 	}
709 
710 	return result;
711 }
712 
713 static enum bp_result get_ss_info_v4_2(
714 	struct bios_parser *bp,
715 	uint32_t id,
716 	uint32_t index,
717 	struct spread_spectrum_info *ss_info)
718 {
719 	enum bp_result result = BP_RESULT_OK;
720 	struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
721 	struct atom_smu_info_v3_1 *smu_info = NULL;
722 
723 	if (!ss_info)
724 		return BP_RESULT_BADINPUT;
725 
726 	if (!DATA_TABLES(dce_info))
727 		return BP_RESULT_BADBIOSTABLE;
728 
729 	if (!DATA_TABLES(smu_info))
730 		return BP_RESULT_BADBIOSTABLE;
731 
732 	disp_cntl_tbl =  GET_IMAGE(struct atom_display_controller_info_v4_2,
733 							DATA_TABLES(dce_info));
734 	if (!disp_cntl_tbl)
735 		return BP_RESULT_BADBIOSTABLE;
736 
737 	smu_info =  GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info));
738 	if (!smu_info)
739 		return BP_RESULT_BADBIOSTABLE;
740 
741 	ss_info->type.STEP_AND_DELAY_INFO = false;
742 	ss_info->spread_percentage_divider = 1000;
743 	/* BIOS no longer uses target clock.  Always enable for now */
744 	ss_info->target_clock_range = 0xffffffff;
745 
746 	switch (id) {
747 	case AS_SIGNAL_TYPE_DVI:
748 		ss_info->spread_spectrum_percentage =
749 				disp_cntl_tbl->dvi_ss_percentage;
750 		ss_info->spread_spectrum_range =
751 				disp_cntl_tbl->dvi_ss_rate_10hz * 10;
752 		if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
753 			ss_info->type.CENTER_MODE = true;
754 		break;
755 	case AS_SIGNAL_TYPE_HDMI:
756 		ss_info->spread_spectrum_percentage =
757 				disp_cntl_tbl->hdmi_ss_percentage;
758 		ss_info->spread_spectrum_range =
759 				disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
760 		if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
761 			ss_info->type.CENTER_MODE = true;
762 		break;
763 	/* TODO LVDS not support anymore? */
764 	case AS_SIGNAL_TYPE_DISPLAY_PORT:
765 		ss_info->spread_spectrum_percentage =
766 				smu_info->gpuclk_ss_percentage;
767 		ss_info->spread_spectrum_range =
768 				smu_info->gpuclk_ss_rate_10hz * 10;
769 		if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
770 			ss_info->type.CENTER_MODE = true;
771 		break;
772 	case AS_SIGNAL_TYPE_GPU_PLL:
773 		/* atom_firmware: DAL only get data from dce_info table.
774 		 * if data within smu_info is needed for DAL, VBIOS should
775 		 * copy it into dce_info
776 		 */
777 		result = BP_RESULT_UNSUPPORTED;
778 		break;
779 	default:
780 		result = BP_RESULT_UNSUPPORTED;
781 	}
782 
783 	return result;
784 }
785 
786 /**
787  * bios_parser_get_spread_spectrum_info
788  * Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
789  * ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
790  * ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info
791  * ver 3.1,
792  * there is only one entry for each signal /ss id.  However, there is
793  * no planning of supporting multiple spread Sprectum entry for EverGreen
794  * @param [in] this
795  * @param [in] signal, ASSignalType to be converted to info index
796  * @param [in] index, number of entries that match the converted info index
797  * @param [out] ss_info, sprectrum information structure,
798  * @return Bios parser result code
799  */
800 static enum bp_result bios_parser_get_spread_spectrum_info(
801 	struct dc_bios *dcb,
802 	enum as_signal_type signal,
803 	uint32_t index,
804 	struct spread_spectrum_info *ss_info)
805 {
806 	struct bios_parser *bp = BP_FROM_DCB(dcb);
807 	enum bp_result result = BP_RESULT_UNSUPPORTED;
808 	struct atom_common_table_header *header;
809 	struct atom_data_revision tbl_revision;
810 
811 	if (!ss_info) /* check for bad input */
812 		return BP_RESULT_BADINPUT;
813 
814 	if (!DATA_TABLES(dce_info))
815 		return BP_RESULT_UNSUPPORTED;
816 
817 	header = GET_IMAGE(struct atom_common_table_header,
818 						DATA_TABLES(dce_info));
819 	get_atom_data_table_revision(header, &tbl_revision);
820 
821 	switch (tbl_revision.major) {
822 	case 4:
823 		switch (tbl_revision.minor) {
824 		case 1:
825 			return get_ss_info_v4_1(bp, signal, index, ss_info);
826 		case 2:
827 			return get_ss_info_v4_2(bp, signal, index, ss_info);
828 		default:
829 			break;
830 		}
831 		break;
832 	default:
833 		break;
834 	}
835 	/* there can not be more then one entry for SS Info table */
836 	return result;
837 }
838 
839 static enum bp_result get_embedded_panel_info_v2_1(
840 		struct bios_parser *bp,
841 		struct embedded_panel_info *info)
842 {
843 	struct lcd_info_v2_1 *lvds;
844 
845 	if (!info)
846 		return BP_RESULT_BADINPUT;
847 
848 	if (!DATA_TABLES(lcd_info))
849 		return BP_RESULT_UNSUPPORTED;
850 
851 	lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info));
852 
853 	if (!lvds)
854 		return BP_RESULT_BADBIOSTABLE;
855 
856 	/* TODO: previous vv1_3, should v2_1 */
857 	if (!((lvds->table_header.format_revision == 2)
858 			&& (lvds->table_header.content_revision >= 1)))
859 		return BP_RESULT_UNSUPPORTED;
860 
861 	memset(info, 0, sizeof(struct embedded_panel_info));
862 
863 	/* We need to convert from 10KHz units into KHz units */
864 	info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10;
865 	/* usHActive does not include borders, according to VBIOS team */
866 	info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active);
867 	/* usHBlanking_Time includes borders, so we should really be
868 	 * subtractingborders duing this translation, but LVDS generally
869 	 * doesn't have borders, so we should be okay leaving this as is for
870 	 * now.  May need to revisit if we ever have LVDS with borders
871 	 */
872 	info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time);
873 	/* usVActive does not include borders, according to VBIOS team*/
874 	info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active);
875 	/* usVBlanking_Time includes borders, so we should really be
876 	 * subtracting borders duing this translation, but LVDS generally
877 	 * doesn't have borders, so we should be okay leaving this as is for
878 	 * now. May need to revisit if we ever have LVDS with borders
879 	 */
880 	info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time);
881 	info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset);
882 	info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width);
883 	info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset);
884 	info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth);
885 	info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border;
886 	info->lcd_timing.vertical_border = lvds->lcd_timing.v_border;
887 
888 	/* not provided by VBIOS */
889 	info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0;
890 
891 	info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
892 			& ATOM_HSYNC_POLARITY);
893 	info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
894 			& ATOM_VSYNC_POLARITY);
895 
896 	/* not provided by VBIOS */
897 	info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0;
898 
899 	info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
900 			& ATOM_H_REPLICATIONBY2);
901 	info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
902 			& ATOM_V_REPLICATIONBY2);
903 	info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo
904 			& ATOM_COMPOSITESYNC);
905 	info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE);
906 
907 	/* not provided by VBIOS*/
908 	info->lcd_timing.misc_info.DOUBLE_CLOCK = 0;
909 	/* not provided by VBIOS*/
910 	info->ss_id = 0;
911 
912 	info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID);
913 
914 	return BP_RESULT_OK;
915 }
916 
917 static enum bp_result bios_parser_get_embedded_panel_info(
918 		struct dc_bios *dcb,
919 		struct embedded_panel_info *info)
920 {
921 	struct bios_parser
922 	*bp = BP_FROM_DCB(dcb);
923 	struct atom_common_table_header *header;
924 	struct atom_data_revision tbl_revision;
925 
926 	if (!DATA_TABLES(lcd_info))
927 		return BP_RESULT_FAILURE;
928 
929 	header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info));
930 
931 	if (!header)
932 		return BP_RESULT_BADBIOSTABLE;
933 
934 	get_atom_data_table_revision(header, &tbl_revision);
935 
936 	switch (tbl_revision.major) {
937 	case 2:
938 		switch (tbl_revision.minor) {
939 		case 1:
940 			return get_embedded_panel_info_v2_1(bp, info);
941 		default:
942 			break;
943 		}
944 	default:
945 		break;
946 	}
947 
948 	return BP_RESULT_FAILURE;
949 }
950 
951 static uint32_t get_support_mask_for_device_id(struct device_id device_id)
952 {
953 	enum dal_device_type device_type = device_id.device_type;
954 	uint32_t enum_id = device_id.enum_id;
955 
956 	switch (device_type) {
957 	case DEVICE_TYPE_LCD:
958 		switch (enum_id) {
959 		case 1:
960 			return ATOM_DISPLAY_LCD1_SUPPORT;
961 		default:
962 			break;
963 		}
964 		break;
965 	case DEVICE_TYPE_DFP:
966 		switch (enum_id) {
967 		case 1:
968 			return ATOM_DISPLAY_DFP1_SUPPORT;
969 		case 2:
970 			return ATOM_DISPLAY_DFP2_SUPPORT;
971 		case 3:
972 			return ATOM_DISPLAY_DFP3_SUPPORT;
973 		case 4:
974 			return ATOM_DISPLAY_DFP4_SUPPORT;
975 		case 5:
976 			return ATOM_DISPLAY_DFP5_SUPPORT;
977 		case 6:
978 			return ATOM_DISPLAY_DFP6_SUPPORT;
979 		default:
980 			break;
981 		}
982 		break;
983 	default:
984 		break;
985 	};
986 
987 	/* Unidentified device ID, return empty support mask. */
988 	return 0;
989 }
990 
991 static bool bios_parser_is_device_id_supported(
992 	struct dc_bios *dcb,
993 	struct device_id id)
994 {
995 	struct bios_parser *bp = BP_FROM_DCB(dcb);
996 
997 	uint32_t mask = get_support_mask_for_device_id(id);
998 
999 	return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) &
1000 								mask) != 0;
1001 }
1002 
1003 static uint32_t bios_parser_get_ss_entry_number(
1004 	struct dc_bios *dcb,
1005 	enum as_signal_type signal)
1006 {
1007 	/* TODO: DAL2 atomfirmware implementation does not need this.
1008 	 * why DAL3 need this?
1009 	 */
1010 	return 1;
1011 }
1012 
1013 static enum bp_result bios_parser_transmitter_control(
1014 	struct dc_bios *dcb,
1015 	struct bp_transmitter_control *cntl)
1016 {
1017 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1018 
1019 	if (!bp->cmd_tbl.transmitter_control)
1020 		return BP_RESULT_FAILURE;
1021 
1022 	return bp->cmd_tbl.transmitter_control(bp, cntl);
1023 }
1024 
1025 static enum bp_result bios_parser_encoder_control(
1026 	struct dc_bios *dcb,
1027 	struct bp_encoder_control *cntl)
1028 {
1029 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1030 
1031 	if (!bp->cmd_tbl.dig_encoder_control)
1032 		return BP_RESULT_FAILURE;
1033 
1034 	return bp->cmd_tbl.dig_encoder_control(bp, cntl);
1035 }
1036 
1037 static enum bp_result bios_parser_set_pixel_clock(
1038 	struct dc_bios *dcb,
1039 	struct bp_pixel_clock_parameters *bp_params)
1040 {
1041 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1042 
1043 	if (!bp->cmd_tbl.set_pixel_clock)
1044 		return BP_RESULT_FAILURE;
1045 
1046 	return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
1047 }
1048 
1049 static enum bp_result bios_parser_set_dce_clock(
1050 	struct dc_bios *dcb,
1051 	struct bp_set_dce_clock_parameters *bp_params)
1052 {
1053 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1054 
1055 	if (!bp->cmd_tbl.set_dce_clock)
1056 		return BP_RESULT_FAILURE;
1057 
1058 	return bp->cmd_tbl.set_dce_clock(bp, bp_params);
1059 }
1060 
1061 static enum bp_result bios_parser_program_crtc_timing(
1062 	struct dc_bios *dcb,
1063 	struct bp_hw_crtc_timing_parameters *bp_params)
1064 {
1065 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1066 
1067 	if (!bp->cmd_tbl.set_crtc_timing)
1068 		return BP_RESULT_FAILURE;
1069 
1070 	return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
1071 }
1072 
1073 static enum bp_result bios_parser_enable_crtc(
1074 	struct dc_bios *dcb,
1075 	enum controller_id id,
1076 	bool enable)
1077 {
1078 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1079 
1080 	if (!bp->cmd_tbl.enable_crtc)
1081 		return BP_RESULT_FAILURE;
1082 
1083 	return bp->cmd_tbl.enable_crtc(bp, id, enable);
1084 }
1085 
1086 static enum bp_result bios_parser_crtc_source_select(
1087 	struct dc_bios *dcb,
1088 	struct bp_crtc_source_select *bp_params)
1089 {
1090 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1091 
1092 	if (!bp->cmd_tbl.select_crtc_source)
1093 		return BP_RESULT_FAILURE;
1094 
1095 	return bp->cmd_tbl.select_crtc_source(bp, bp_params);
1096 }
1097 
1098 static enum bp_result bios_parser_enable_disp_power_gating(
1099 	struct dc_bios *dcb,
1100 	enum controller_id controller_id,
1101 	enum bp_pipe_control_action action)
1102 {
1103 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1104 
1105 	if (!bp->cmd_tbl.enable_disp_power_gating)
1106 		return BP_RESULT_FAILURE;
1107 
1108 	return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
1109 		action);
1110 }
1111 
1112 static bool bios_parser_is_accelerated_mode(
1113 	struct dc_bios *dcb)
1114 {
1115 	return bios_is_accelerated_mode(dcb);
1116 }
1117 
1118 /**
1119  * bios_parser_set_scratch_critical_state
1120  *
1121  * @brief
1122  *  update critical state bit in VBIOS scratch register
1123  *
1124  * @param
1125  *  bool - to set or reset state
1126  */
1127 static void bios_parser_set_scratch_critical_state(
1128 	struct dc_bios *dcb,
1129 	bool state)
1130 {
1131 	bios_set_scratch_critical_state(dcb, state);
1132 }
1133 
1134 static enum bp_result bios_parser_get_firmware_info(
1135 	struct dc_bios *dcb,
1136 	struct dc_firmware_info *info)
1137 {
1138 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1139 	enum bp_result result = BP_RESULT_BADBIOSTABLE;
1140 	struct atom_common_table_header *header;
1141 
1142 	struct atom_data_revision revision;
1143 
1144 	if (info && DATA_TABLES(firmwareinfo)) {
1145 		header = GET_IMAGE(struct atom_common_table_header,
1146 				DATA_TABLES(firmwareinfo));
1147 		get_atom_data_table_revision(header, &revision);
1148 		switch (revision.major) {
1149 		case 3:
1150 			switch (revision.minor) {
1151 			case 1:
1152 				result = get_firmware_info_v3_1(bp, info);
1153 				break;
1154 			case 2:
1155 				result = get_firmware_info_v3_2(bp, info);
1156 				break;
1157 			case 3:
1158 				result = get_firmware_info_v3_2(bp, info);
1159 				break;
1160 			default:
1161 				break;
1162 			}
1163 			break;
1164 		default:
1165 			break;
1166 		}
1167 	}
1168 
1169 	return result;
1170 }
1171 
1172 static enum bp_result get_firmware_info_v3_1(
1173 	struct bios_parser *bp,
1174 	struct dc_firmware_info *info)
1175 {
1176 	struct atom_firmware_info_v3_1 *firmware_info;
1177 	struct atom_display_controller_info_v4_1 *dce_info = NULL;
1178 
1179 	if (!info)
1180 		return BP_RESULT_BADINPUT;
1181 
1182 	firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1,
1183 			DATA_TABLES(firmwareinfo));
1184 
1185 	dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
1186 			DATA_TABLES(dce_info));
1187 
1188 	if (!firmware_info || !dce_info)
1189 		return BP_RESULT_BADBIOSTABLE;
1190 
1191 	memset(info, 0, sizeof(*info));
1192 
1193 	/* Pixel clock pll information. */
1194 	 /* We need to convert from 10KHz units into KHz units */
1195 	info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
1196 	info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10;
1197 
1198 	 /* 27MHz for Vega10: */
1199 	info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
1200 
1201 	/* Hardcode frequency if BIOS gives no DCE Ref Clk */
1202 	if (info->pll_info.crystal_frequency == 0)
1203 		info->pll_info.crystal_frequency = 27000;
1204 	/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
1205 	info->dp_phy_ref_clk     = dce_info->dpphy_refclk_10khz * 10;
1206 	info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;
1207 
1208 	/* Get GPU PLL VCO Clock */
1209 
1210 	if (bp->cmd_tbl.get_smu_clock_info != NULL) {
1211 		/* VBIOS gives in 10KHz */
1212 		info->smu_gpu_pll_output_freq =
1213 				bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
1214 	}
1215 
1216 	return BP_RESULT_OK;
1217 }
1218 
1219 static enum bp_result get_firmware_info_v3_2(
1220 	struct bios_parser *bp,
1221 	struct dc_firmware_info *info)
1222 {
1223 	struct atom_firmware_info_v3_2 *firmware_info;
1224 	struct atom_display_controller_info_v4_1 *dce_info = NULL;
1225 	struct atom_common_table_header *header;
1226 	struct atom_data_revision revision;
1227 	struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL;
1228 	struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL;
1229 
1230 	if (!info)
1231 		return BP_RESULT_BADINPUT;
1232 
1233 	firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2,
1234 			DATA_TABLES(firmwareinfo));
1235 
1236 	dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
1237 			DATA_TABLES(dce_info));
1238 
1239 	if (!firmware_info || !dce_info)
1240 		return BP_RESULT_BADBIOSTABLE;
1241 
1242 	memset(info, 0, sizeof(*info));
1243 
1244 	header = GET_IMAGE(struct atom_common_table_header,
1245 					DATA_TABLES(smu_info));
1246 	get_atom_data_table_revision(header, &revision);
1247 
1248 	if (revision.minor == 2) {
1249 		/* Vega12 */
1250 		smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2,
1251 							DATA_TABLES(smu_info));
1252 
1253 		if (!smu_info_v3_2)
1254 			return BP_RESULT_BADBIOSTABLE;
1255 
1256 		info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10;
1257 	} else if (revision.minor == 3) {
1258 		/* Vega20 */
1259 		smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3,
1260 							DATA_TABLES(smu_info));
1261 
1262 		if (!smu_info_v3_3)
1263 			return BP_RESULT_BADBIOSTABLE;
1264 
1265 		info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10;
1266 	}
1267 
1268 	 // We need to convert from 10KHz units into KHz units.
1269 	info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
1270 
1271 	 /* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */
1272 	info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
1273 	/* Hardcode frequency if BIOS gives no DCE Ref Clk */
1274 	if (info->pll_info.crystal_frequency == 0) {
1275 		if (revision.minor == 2)
1276 			info->pll_info.crystal_frequency = 27000;
1277 		else if (revision.minor == 3)
1278 			info->pll_info.crystal_frequency = 100000;
1279 	}
1280 	/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
1281 	info->dp_phy_ref_clk     = dce_info->dpphy_refclk_10khz * 10;
1282 	info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;
1283 
1284 	/* Get GPU PLL VCO Clock */
1285 	if (bp->cmd_tbl.get_smu_clock_info != NULL) {
1286 		if (revision.minor == 2)
1287 			info->smu_gpu_pll_output_freq =
1288 					bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
1289 		else if (revision.minor == 3)
1290 			info->smu_gpu_pll_output_freq =
1291 					bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10;
1292 	}
1293 
1294 	return BP_RESULT_OK;
1295 }
1296 
1297 static enum bp_result bios_parser_get_encoder_cap_info(
1298 	struct dc_bios *dcb,
1299 	struct graphics_object_id object_id,
1300 	struct bp_encoder_cap_info *info)
1301 {
1302 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1303 	struct atom_display_object_path_v2 *object;
1304 	struct atom_encoder_caps_record *record = NULL;
1305 
1306 	if (!info)
1307 		return BP_RESULT_BADINPUT;
1308 
1309 	object = get_bios_object(bp, object_id);
1310 
1311 	if (!object)
1312 		return BP_RESULT_BADINPUT;
1313 
1314 	record = get_encoder_cap_record(bp, object);
1315 	if (!record)
1316 		return BP_RESULT_NORECORD;
1317 
1318 	info->DP_HBR2_CAP = (record->encodercaps &
1319 			ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0;
1320 	info->DP_HBR2_EN = (record->encodercaps &
1321 			ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0;
1322 	info->DP_HBR3_EN = (record->encodercaps &
1323 			ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0;
1324 	info->HDMI_6GB_EN = (record->encodercaps &
1325 			ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0;
1326 
1327 	return BP_RESULT_OK;
1328 }
1329 
1330 
1331 static struct atom_encoder_caps_record *get_encoder_cap_record(
1332 	struct bios_parser *bp,
1333 	struct atom_display_object_path_v2 *object)
1334 {
1335 	struct atom_common_record_header *header;
1336 	uint32_t offset;
1337 
1338 	if (!object) {
1339 		BREAK_TO_DEBUGGER(); /* Invalid object */
1340 		return NULL;
1341 	}
1342 
1343 	offset = object->encoder_recordoffset + bp->object_info_tbl_offset;
1344 
1345 	for (;;) {
1346 		header = GET_IMAGE(struct atom_common_record_header, offset);
1347 
1348 		if (!header)
1349 			return NULL;
1350 
1351 		offset += header->record_size;
1352 
1353 		if (header->record_type == LAST_RECORD_TYPE ||
1354 				!header->record_size)
1355 			break;
1356 
1357 		if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE)
1358 			continue;
1359 
1360 		if (sizeof(struct atom_encoder_caps_record) <=
1361 							header->record_size)
1362 			return (struct atom_encoder_caps_record *)header;
1363 	}
1364 
1365 	return NULL;
1366 }
1367 
1368 /*
1369  * get_integrated_info_v11
1370  *
1371  * @brief
1372  * Get V8 integrated BIOS information
1373  *
1374  * @param
1375  * bios_parser *bp - [in]BIOS parser handler to get master data table
1376  * integrated_info *info - [out] store and output integrated info
1377  *
1378  * @return
1379  * enum bp_result - BP_RESULT_OK if information is available,
1380  *                  BP_RESULT_BADBIOSTABLE otherwise.
1381  */
1382 static enum bp_result get_integrated_info_v11(
1383 	struct bios_parser *bp,
1384 	struct integrated_info *info)
1385 {
1386 	struct atom_integrated_system_info_v1_11 *info_v11;
1387 	uint32_t i;
1388 
1389 	info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11,
1390 					DATA_TABLES(integratedsysteminfo));
1391 
1392 	if (info_v11 == NULL)
1393 		return BP_RESULT_BADBIOSTABLE;
1394 
1395 	info->gpu_cap_info =
1396 	le32_to_cpu(info_v11->gpucapinfo);
1397 	/*
1398 	* system_config: Bit[0] = 0 : PCIE power gating disabled
1399 	*                       = 1 : PCIE power gating enabled
1400 	*                Bit[1] = 0 : DDR-PLL shut down disabled
1401 	*                       = 1 : DDR-PLL shut down enabled
1402 	*                Bit[2] = 0 : DDR-PLL power down disabled
1403 	*                       = 1 : DDR-PLL power down enabled
1404 	*/
1405 	info->system_config = le32_to_cpu(info_v11->system_config);
1406 	info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo);
1407 	info->memory_type = info_v11->memorytype;
1408 	info->ma_channel_number = info_v11->umachannelnumber;
1409 	info->lvds_ss_percentage =
1410 	le16_to_cpu(info_v11->lvds_ss_percentage);
1411 	info->lvds_sspread_rate_in_10hz =
1412 	le16_to_cpu(info_v11->lvds_ss_rate_10hz);
1413 	info->hdmi_ss_percentage =
1414 	le16_to_cpu(info_v11->hdmi_ss_percentage);
1415 	info->hdmi_sspread_rate_in_10hz =
1416 	le16_to_cpu(info_v11->hdmi_ss_rate_10hz);
1417 	info->dvi_ss_percentage =
1418 	le16_to_cpu(info_v11->dvi_ss_percentage);
1419 	info->dvi_sspread_rate_in_10_hz =
1420 	le16_to_cpu(info_v11->dvi_ss_rate_10hz);
1421 	info->lvds_misc = info_v11->lvds_misc;
1422 	for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
1423 		info->ext_disp_conn_info.gu_id[i] =
1424 				info_v11->extdispconninfo.guid[i];
1425 	}
1426 
1427 	for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
1428 		info->ext_disp_conn_info.path[i].device_connector_id =
1429 		object_id_from_bios_object_id(
1430 		le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid));
1431 
1432 		info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
1433 		object_id_from_bios_object_id(
1434 			le16_to_cpu(
1435 			info_v11->extdispconninfo.path[i].ext_encoder_objid));
1436 
1437 		info->ext_disp_conn_info.path[i].device_tag =
1438 			le16_to_cpu(
1439 				info_v11->extdispconninfo.path[i].device_tag);
1440 		info->ext_disp_conn_info.path[i].device_acpi_enum =
1441 		le16_to_cpu(
1442 			info_v11->extdispconninfo.path[i].device_acpi_enum);
1443 		info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
1444 			info_v11->extdispconninfo.path[i].auxddclut_index;
1445 		info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
1446 			info_v11->extdispconninfo.path[i].hpdlut_index;
1447 		info->ext_disp_conn_info.path[i].channel_mapping.raw =
1448 			info_v11->extdispconninfo.path[i].channelmapping;
1449 		info->ext_disp_conn_info.path[i].caps =
1450 				le16_to_cpu(info_v11->extdispconninfo.path[i].caps);
1451 	}
1452 	info->ext_disp_conn_info.checksum =
1453 	info_v11->extdispconninfo.checksum;
1454 
1455 	info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr;
1456 	info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum;
1457 	for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
1458 		info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
1459 				info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
1460 		info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
1461 				info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
1462 	}
1463 	info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum;
1464 	for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
1465 		info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
1466 				info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
1467 		info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
1468 				info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
1469 	}
1470 
1471 	info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr;
1472 	info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum;
1473 	for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
1474 		info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
1475 				info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
1476 		info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
1477 				info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
1478 	}
1479 	info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum;
1480 	for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
1481 		info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
1482 				info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
1483 		info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
1484 				info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
1485 	}
1486 
1487 	info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr;
1488 	info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum;
1489 	for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
1490 		info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
1491 				info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
1492 		info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
1493 				info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
1494 	}
1495 	info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum;
1496 	for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
1497 		info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
1498 				info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
1499 		info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
1500 				info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
1501 	}
1502 
1503 	info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr;
1504 	info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum;
1505 	for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
1506 		info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
1507 				info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
1508 		info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
1509 				info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
1510 	}
1511 	info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum;
1512 	for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
1513 		info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
1514 				info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
1515 		info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
1516 				info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
1517 	}
1518 
1519 
1520 	/** TODO - review **/
1521 	#if 0
1522 	info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock)
1523 									* 10;
1524 	info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10;
1525 	info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;
1526 
1527 	for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
1528 		/* Convert [10KHz] into [KHz] */
1529 		info->disp_clk_voltage[i].max_supported_clk =
1530 		le32_to_cpu(info_v11->sDISPCLK_Voltage[i].
1531 			ulMaximumSupportedCLK) * 10;
1532 		info->disp_clk_voltage[i].voltage_index =
1533 		le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex);
1534 	}
1535 
1536 	info->boot_up_req_display_vector =
1537 			le32_to_cpu(info_v11->ulBootUpReqDisplayVector);
1538 	info->boot_up_nb_voltage =
1539 			le16_to_cpu(info_v11->usBootUpNBVoltage);
1540 	info->ext_disp_conn_info_offset =
1541 			le16_to_cpu(info_v11->usExtDispConnInfoOffset);
1542 	info->gmc_restore_reset_time =
1543 			le32_to_cpu(info_v11->ulGMCRestoreResetTime);
1544 	info->minimum_n_clk =
1545 			le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]);
1546 	for (i = 1; i < 4; ++i)
1547 		info->minimum_n_clk =
1548 				info->minimum_n_clk <
1549 				le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ?
1550 				info->minimum_n_clk : le32_to_cpu(
1551 					info_v11->ulNbpStateNClkFreq[i]);
1552 
1553 	info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk);
1554 	info->ddr_dll_power_up_time =
1555 	    le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime);
1556 	info->ddr_pll_power_up_time =
1557 		le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime);
1558 	info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType);
1559 	info->max_lvds_pclk_freq_in_single_link =
1560 		le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
1561 	info->max_lvds_pclk_freq_in_single_link =
1562 		le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
1563 	info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
1564 		info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
1565 	info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
1566 		info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
1567 	info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
1568 		info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
1569 	info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
1570 		info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
1571 	info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
1572 		info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
1573 	info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
1574 		info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
1575 	info->lvds_off_to_on_delay_in_4ms =
1576 		info_v11->ucLVDSOffToOnDelay_in4Ms;
1577 	info->lvds_bit_depth_control_val =
1578 		le32_to_cpu(info_v11->ulLCDBitDepthControlVal);
1579 
1580 	for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
1581 		/* Convert [10KHz] into [KHz] */
1582 		info->avail_s_clk[i].supported_s_clk =
1583 			le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK)
1584 									* 10;
1585 		info->avail_s_clk[i].voltage_index =
1586 			le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex);
1587 		info->avail_s_clk[i].voltage_id =
1588 			le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID);
1589 	}
1590 	#endif /* TODO*/
1591 
1592 	return BP_RESULT_OK;
1593 }
1594 
1595 
1596 /*
1597  * construct_integrated_info
1598  *
1599  * @brief
1600  * Get integrated BIOS information based on table revision
1601  *
1602  * @param
1603  * bios_parser *bp - [in]BIOS parser handler to get master data table
1604  * integrated_info *info - [out] store and output integrated info
1605  *
1606  * @return
1607  * enum bp_result - BP_RESULT_OK if information is available,
1608  *                  BP_RESULT_BADBIOSTABLE otherwise.
1609  */
1610 static enum bp_result construct_integrated_info(
1611 	struct bios_parser *bp,
1612 	struct integrated_info *info)
1613 {
1614 	enum bp_result result = BP_RESULT_BADBIOSTABLE;
1615 
1616 	struct atom_common_table_header *header;
1617 	struct atom_data_revision revision;
1618 
1619 	struct clock_voltage_caps temp = {0, 0};
1620 	uint32_t i;
1621 	uint32_t j;
1622 
1623 	if (info && DATA_TABLES(integratedsysteminfo)) {
1624 		header = GET_IMAGE(struct atom_common_table_header,
1625 					DATA_TABLES(integratedsysteminfo));
1626 
1627 		get_atom_data_table_revision(header, &revision);
1628 
1629 		/* Don't need to check major revision as they are all 1 */
1630 		switch (revision.minor) {
1631 		case 11:
1632 			result = get_integrated_info_v11(bp, info);
1633 			break;
1634 		default:
1635 			return result;
1636 		}
1637 	}
1638 
1639 	if (result != BP_RESULT_OK)
1640 		return result;
1641 
1642 	/* Sort voltage table from low to high*/
1643 	for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
1644 		for (j = i; j > 0; --j) {
1645 			if (info->disp_clk_voltage[j].max_supported_clk <
1646 				info->disp_clk_voltage[j-1].max_supported_clk
1647 				) {
1648 				/* swap j and j - 1*/
1649 				temp = info->disp_clk_voltage[j-1];
1650 				info->disp_clk_voltage[j-1] =
1651 					info->disp_clk_voltage[j];
1652 				info->disp_clk_voltage[j] = temp;
1653 			}
1654 		}
1655 	}
1656 
1657 	return result;
1658 }
1659 
1660 static struct integrated_info *bios_parser_create_integrated_info(
1661 	struct dc_bios *dcb)
1662 {
1663 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1664 	struct integrated_info *info = NULL;
1665 
1666 	info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);
1667 
1668 	if (info == NULL) {
1669 		ASSERT_CRITICAL(0);
1670 		return NULL;
1671 	}
1672 
1673 	if (construct_integrated_info(bp, info) == BP_RESULT_OK)
1674 		return info;
1675 
1676 	kfree(info);
1677 
1678 	return NULL;
1679 }
1680 
1681 static enum bp_result update_slot_layout_info(
1682 	struct dc_bios *dcb,
1683 	unsigned int i,
1684 	struct slot_layout_info *slot_layout_info)
1685 {
1686 	unsigned int record_offset;
1687 	unsigned int j;
1688 	struct atom_display_object_path_v2 *object;
1689 	struct atom_bracket_layout_record *record;
1690 	struct atom_common_record_header *record_header;
1691 	enum bp_result result;
1692 	struct bios_parser *bp;
1693 	struct object_info_table *tbl;
1694 	struct display_object_info_table_v1_4 *v1_4;
1695 
1696 	record = NULL;
1697 	record_header = NULL;
1698 	result = BP_RESULT_NORECORD;
1699 
1700 	bp = BP_FROM_DCB(dcb);
1701 	tbl = &bp->object_info_tbl;
1702 	v1_4 = tbl->v1_4;
1703 
1704 	object = &v1_4->display_path[i];
1705 	record_offset = (unsigned int)
1706 		(object->disp_recordoffset) +
1707 		(unsigned int)(bp->object_info_tbl_offset);
1708 
1709 	for (;;) {
1710 
1711 		record_header = (struct atom_common_record_header *)
1712 			GET_IMAGE(struct atom_common_record_header,
1713 			record_offset);
1714 		if (record_header == NULL) {
1715 			result = BP_RESULT_BADBIOSTABLE;
1716 			break;
1717 		}
1718 
1719 		/* the end of the list */
1720 		if (record_header->record_type == 0xff ||
1721 			record_header->record_size == 0)	{
1722 			break;
1723 		}
1724 
1725 		if (record_header->record_type ==
1726 			ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
1727 			sizeof(struct atom_bracket_layout_record)
1728 			<= record_header->record_size) {
1729 			record = (struct atom_bracket_layout_record *)
1730 				(record_header);
1731 			result = BP_RESULT_OK;
1732 			break;
1733 		}
1734 
1735 		record_offset += record_header->record_size;
1736 	}
1737 
1738 	/* return if the record not found */
1739 	if (result != BP_RESULT_OK)
1740 		return result;
1741 
1742 	/* get slot sizes */
1743 	slot_layout_info->length = record->bracketlen;
1744 	slot_layout_info->width = record->bracketwidth;
1745 
1746 	/* get info for each connector in the slot */
1747 	slot_layout_info->num_of_connectors = record->conn_num;
1748 	for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
1749 		slot_layout_info->connectors[j].connector_type =
1750 			(enum connector_layout_type)
1751 			(record->conn_info[j].connector_type);
1752 		switch (record->conn_info[j].connector_type) {
1753 		case CONNECTOR_TYPE_DVI_D:
1754 			slot_layout_info->connectors[j].connector_type =
1755 				CONNECTOR_LAYOUT_TYPE_DVI_D;
1756 			slot_layout_info->connectors[j].length =
1757 				CONNECTOR_SIZE_DVI;
1758 			break;
1759 
1760 		case CONNECTOR_TYPE_HDMI:
1761 			slot_layout_info->connectors[j].connector_type =
1762 				CONNECTOR_LAYOUT_TYPE_HDMI;
1763 			slot_layout_info->connectors[j].length =
1764 				CONNECTOR_SIZE_HDMI;
1765 			break;
1766 
1767 		case CONNECTOR_TYPE_DISPLAY_PORT:
1768 			slot_layout_info->connectors[j].connector_type =
1769 				CONNECTOR_LAYOUT_TYPE_DP;
1770 			slot_layout_info->connectors[j].length =
1771 				CONNECTOR_SIZE_DP;
1772 			break;
1773 
1774 		case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
1775 			slot_layout_info->connectors[j].connector_type =
1776 				CONNECTOR_LAYOUT_TYPE_MINI_DP;
1777 			slot_layout_info->connectors[j].length =
1778 				CONNECTOR_SIZE_MINI_DP;
1779 			break;
1780 
1781 		default:
1782 			slot_layout_info->connectors[j].connector_type =
1783 				CONNECTOR_LAYOUT_TYPE_UNKNOWN;
1784 			slot_layout_info->connectors[j].length =
1785 				CONNECTOR_SIZE_UNKNOWN;
1786 		}
1787 
1788 		slot_layout_info->connectors[j].position =
1789 			record->conn_info[j].position;
1790 		slot_layout_info->connectors[j].connector_id =
1791 			object_id_from_bios_object_id(
1792 				record->conn_info[j].connectorobjid);
1793 	}
1794 	return result;
1795 }
1796 
1797 
1798 static enum bp_result get_bracket_layout_record(
1799 	struct dc_bios *dcb,
1800 	unsigned int bracket_layout_id,
1801 	struct slot_layout_info *slot_layout_info)
1802 {
1803 	unsigned int i;
1804 	struct bios_parser *bp = BP_FROM_DCB(dcb);
1805 	enum bp_result result;
1806 	struct object_info_table *tbl;
1807 	struct display_object_info_table_v1_4 *v1_4;
1808 
1809 	if (slot_layout_info == NULL) {
1810 		DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
1811 		return BP_RESULT_BADINPUT;
1812 	}
1813 	tbl = &bp->object_info_tbl;
1814 	v1_4 = tbl->v1_4;
1815 
1816 	result = BP_RESULT_NORECORD;
1817 	for (i = 0; i < v1_4->number_of_path; ++i)	{
1818 
1819 		if (bracket_layout_id ==
1820 			v1_4->display_path[i].display_objid) {
1821 			result = update_slot_layout_info(dcb, i,
1822 				slot_layout_info);
1823 			break;
1824 		}
1825 	}
1826 	return result;
1827 }
1828 
1829 static enum bp_result bios_get_board_layout_info(
1830 	struct dc_bios *dcb,
1831 	struct board_layout_info *board_layout_info)
1832 {
1833 	unsigned int i;
1834 	struct bios_parser *bp;
1835 	enum bp_result record_result;
1836 
1837 	const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
1838 		GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
1839 		GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
1840 		0, 0
1841 	};
1842 
1843 	bp = BP_FROM_DCB(dcb);
1844 	if (board_layout_info == NULL) {
1845 		DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
1846 		return BP_RESULT_BADINPUT;
1847 	}
1848 
1849 	board_layout_info->num_of_slots = 0;
1850 
1851 	for (i = 0; i < MAX_BOARD_SLOTS; ++i) {
1852 		record_result = get_bracket_layout_record(dcb,
1853 			slot_index_to_vbios_id[i],
1854 			&board_layout_info->slots[i]);
1855 
1856 		if (record_result == BP_RESULT_NORECORD && i > 0)
1857 			break; /* no more slots present in bios */
1858 		else if (record_result != BP_RESULT_OK)
1859 			return record_result;  /* fail */
1860 
1861 		++board_layout_info->num_of_slots;
1862 	}
1863 
1864 	/* all data is valid */
1865 	board_layout_info->is_number_of_slots_valid = 1;
1866 	board_layout_info->is_slots_size_valid = 1;
1867 	board_layout_info->is_connector_offsets_valid = 1;
1868 	board_layout_info->is_connector_lengths_valid = 1;
1869 
1870 	return BP_RESULT_OK;
1871 }
1872 
1873 static const struct dc_vbios_funcs vbios_funcs = {
1874 	.get_connectors_number = bios_parser_get_connectors_number,
1875 
1876 	.get_connector_id = bios_parser_get_connector_id,
1877 
1878 	.get_src_obj = bios_parser_get_src_obj,
1879 
1880 	.get_i2c_info = bios_parser_get_i2c_info,
1881 
1882 	.get_hpd_info = bios_parser_get_hpd_info,
1883 
1884 	.get_device_tag = bios_parser_get_device_tag,
1885 
1886 	.get_firmware_info = bios_parser_get_firmware_info,
1887 
1888 	.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,
1889 
1890 	.get_ss_entry_number = bios_parser_get_ss_entry_number,
1891 
1892 	.get_embedded_panel_info = bios_parser_get_embedded_panel_info,
1893 
1894 	.get_gpio_pin_info = bios_parser_get_gpio_pin_info,
1895 
1896 	.get_encoder_cap_info = bios_parser_get_encoder_cap_info,
1897 
1898 	.is_device_id_supported = bios_parser_is_device_id_supported,
1899 
1900 	.is_accelerated_mode = bios_parser_is_accelerated_mode,
1901 
1902 	.is_active_display = bios_is_active_display,
1903 
1904 	.set_scratch_critical_state = bios_parser_set_scratch_critical_state,
1905 
1906 
1907 /*	 COMMANDS */
1908 	.encoder_control = bios_parser_encoder_control,
1909 
1910 	.transmitter_control = bios_parser_transmitter_control,
1911 
1912 	.enable_crtc = bios_parser_enable_crtc,
1913 
1914 	.set_pixel_clock = bios_parser_set_pixel_clock,
1915 
1916 	.set_dce_clock = bios_parser_set_dce_clock,
1917 
1918 	.program_crtc_timing = bios_parser_program_crtc_timing,
1919 
1920 	.crtc_source_select = bios_parser_crtc_source_select,
1921 
1922 	.enable_disp_power_gating = bios_parser_enable_disp_power_gating,
1923 
1924 	.bios_parser_destroy = firmware_parser_destroy,
1925 
1926 	.get_board_layout_info = bios_get_board_layout_info,
1927 };
1928 
1929 static bool bios_parser_construct(
1930 	struct bios_parser *bp,
1931 	struct bp_init_data *init,
1932 	enum dce_version dce_version)
1933 {
1934 	uint16_t *rom_header_offset = NULL;
1935 	struct atom_rom_header_v2_2 *rom_header = NULL;
1936 	struct display_object_info_table_v1_4 *object_info_tbl;
1937 	struct atom_data_revision tbl_rev = {0};
1938 
1939 	if (!init)
1940 		return false;
1941 
1942 	if (!init->bios)
1943 		return false;
1944 
1945 	bp->base.funcs = &vbios_funcs;
1946 	bp->base.bios = init->bios;
1947 	bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT;
1948 
1949 	bp->base.ctx = init->ctx;
1950 
1951 	bp->base.bios_local_image = NULL;
1952 
1953 	rom_header_offset =
1954 			GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER);
1955 
1956 	if (!rom_header_offset)
1957 		return false;
1958 
1959 	rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset);
1960 
1961 	if (!rom_header)
1962 		return false;
1963 
1964 	get_atom_data_table_revision(&rom_header->table_header, &tbl_rev);
1965 	if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2))
1966 		return false;
1967 
1968 	bp->master_data_tbl =
1969 		GET_IMAGE(struct atom_master_data_table_v2_1,
1970 				rom_header->masterdatatable_offset);
1971 
1972 	if (!bp->master_data_tbl)
1973 		return false;
1974 
1975 	bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo);
1976 
1977 	if (!bp->object_info_tbl_offset)
1978 		return false;
1979 
1980 	object_info_tbl =
1981 			GET_IMAGE(struct display_object_info_table_v1_4,
1982 						bp->object_info_tbl_offset);
1983 
1984 	if (!object_info_tbl)
1985 		return false;
1986 
1987 	get_atom_data_table_revision(&object_info_tbl->table_header,
1988 		&bp->object_info_tbl.revision);
1989 
1990 	if (bp->object_info_tbl.revision.major == 1
1991 		&& bp->object_info_tbl.revision.minor >= 4) {
1992 		struct display_object_info_table_v1_4 *tbl_v1_4;
1993 
1994 		tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4,
1995 			bp->object_info_tbl_offset);
1996 		if (!tbl_v1_4)
1997 			return false;
1998 
1999 		bp->object_info_tbl.v1_4 = tbl_v1_4;
2000 	} else
2001 		return false;
2002 
2003 	dal_firmware_parser_init_cmd_tbl(bp);
2004 	dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version);
2005 
2006 	bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base);
2007 
2008 	return true;
2009 }
2010 
2011 struct dc_bios *firmware_parser_create(
2012 	struct bp_init_data *init,
2013 	enum dce_version dce_version)
2014 {
2015 	struct bios_parser *bp = NULL;
2016 
2017 	bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
2018 	if (!bp)
2019 		return NULL;
2020 
2021 	if (bios_parser_construct(bp, init, dce_version))
2022 		return &bp->base;
2023 
2024 	kfree(bp);
2025 	return NULL;
2026 }
2027 
2028 
2029