1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/errno.h>
27 #include <linux/acpi.h>
28 #include <linux/hash.h>
29 #include <linux/cpufreq.h>
30 
31 #include "kfd_priv.h"
32 #include "kfd_crat.h"
33 #include "kfd_topology.h"
34 
35 static struct list_head topology_device_list;
36 static int topology_crat_parsed;
37 static struct kfd_system_properties sys_props;
38 
39 static DECLARE_RWSEM(topology_lock);
40 
41 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
42 {
43 	struct kfd_topology_device *top_dev;
44 	struct kfd_dev *device = NULL;
45 
46 	down_read(&topology_lock);
47 
48 	list_for_each_entry(top_dev, &topology_device_list, list)
49 		if (top_dev->gpu_id == gpu_id) {
50 			device = top_dev->gpu;
51 			break;
52 		}
53 
54 	up_read(&topology_lock);
55 
56 	return device;
57 }
58 
59 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
60 {
61 	struct kfd_topology_device *top_dev;
62 	struct kfd_dev *device = NULL;
63 
64 	down_read(&topology_lock);
65 
66 	list_for_each_entry(top_dev, &topology_device_list, list)
67 		if (top_dev->gpu->pdev == pdev) {
68 			device = top_dev->gpu;
69 			break;
70 		}
71 
72 	up_read(&topology_lock);
73 
74 	return device;
75 }
76 
77 static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
78 {
79 	struct acpi_table_header *crat_table;
80 	acpi_status status;
81 
82 	if (!size)
83 		return -EINVAL;
84 
85 	/*
86 	 * Fetch the CRAT table from ACPI
87 	 */
88 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
89 	if (status == AE_NOT_FOUND) {
90 		pr_warn("CRAT table not found\n");
91 		return -ENODATA;
92 	} else if (ACPI_FAILURE(status)) {
93 		const char *err = acpi_format_exception(status);
94 
95 		pr_err("CRAT table error: %s\n", err);
96 		return -EINVAL;
97 	}
98 
99 	if (*size >= crat_table->length && crat_image != NULL)
100 		memcpy(crat_image, crat_table, crat_table->length);
101 
102 	*size = crat_table->length;
103 
104 	return 0;
105 }
106 
107 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
108 		struct crat_subtype_computeunit *cu)
109 {
110 	BUG_ON(!dev);
111 	BUG_ON(!cu);
112 
113 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
114 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
115 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
116 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
117 
118 	pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
119 			cu->processor_id_low);
120 }
121 
122 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
123 		struct crat_subtype_computeunit *cu)
124 {
125 	BUG_ON(!dev);
126 	BUG_ON(!cu);
127 
128 	dev->node_props.simd_id_base = cu->processor_id_low;
129 	dev->node_props.simd_count = cu->num_simd_cores;
130 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
131 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
132 	dev->node_props.wave_front_size = cu->wave_front_size;
133 	dev->node_props.mem_banks_count = cu->num_banks;
134 	dev->node_props.array_count = cu->num_arrays;
135 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
136 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
137 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
138 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
139 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
140 	pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
141 				cu->processor_id_low);
142 }
143 
144 /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
145 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
146 {
147 	struct kfd_topology_device *dev;
148 	int i = 0;
149 
150 	BUG_ON(!cu);
151 
152 	pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
153 			cu->proximity_domain, cu->hsa_capability);
154 	list_for_each_entry(dev, &topology_device_list, list) {
155 		if (cu->proximity_domain == i) {
156 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
157 				kfd_populated_cu_info_cpu(dev, cu);
158 
159 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
160 				kfd_populated_cu_info_gpu(dev, cu);
161 			break;
162 		}
163 		i++;
164 	}
165 
166 	return 0;
167 }
168 
169 /*
170  * kfd_parse_subtype_mem is called when the topology mutex is
171  * already acquired
172  */
173 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
174 {
175 	struct kfd_mem_properties *props;
176 	struct kfd_topology_device *dev;
177 	int i = 0;
178 
179 	BUG_ON(!mem);
180 
181 	pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
182 			mem->promixity_domain);
183 	list_for_each_entry(dev, &topology_device_list, list) {
184 		if (mem->promixity_domain == i) {
185 			props = kfd_alloc_struct(props);
186 			if (props == NULL)
187 				return -ENOMEM;
188 
189 			if (dev->node_props.cpu_cores_count == 0)
190 				props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
191 			else
192 				props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
193 
194 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
195 				props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
196 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
197 				props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
198 
199 			props->size_in_bytes =
200 				((uint64_t)mem->length_high << 32) +
201 							mem->length_low;
202 			props->width = mem->width;
203 
204 			dev->mem_bank_count++;
205 			list_add_tail(&props->list, &dev->mem_props);
206 
207 			break;
208 		}
209 		i++;
210 	}
211 
212 	return 0;
213 }
214 
215 /*
216  * kfd_parse_subtype_cache is called when the topology mutex
217  * is already acquired
218  */
219 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
220 {
221 	struct kfd_cache_properties *props;
222 	struct kfd_topology_device *dev;
223 	uint32_t id;
224 
225 	BUG_ON(!cache);
226 
227 	id = cache->processor_id_low;
228 
229 	pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
230 	list_for_each_entry(dev, &topology_device_list, list)
231 		if (id == dev->node_props.cpu_core_id_base ||
232 		    id == dev->node_props.simd_id_base) {
233 			props = kfd_alloc_struct(props);
234 			if (props == NULL)
235 				return -ENOMEM;
236 
237 			props->processor_id_low = id;
238 			props->cache_level = cache->cache_level;
239 			props->cache_size = cache->cache_size;
240 			props->cacheline_size = cache->cache_line_size;
241 			props->cachelines_per_tag = cache->lines_per_tag;
242 			props->cache_assoc = cache->associativity;
243 			props->cache_latency = cache->cache_latency;
244 
245 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
246 				props->cache_type |= HSA_CACHE_TYPE_DATA;
247 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
248 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
249 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
250 				props->cache_type |= HSA_CACHE_TYPE_CPU;
251 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
252 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
253 
254 			dev->cache_count++;
255 			dev->node_props.caches_count++;
256 			list_add_tail(&props->list, &dev->cache_props);
257 
258 			break;
259 		}
260 
261 	return 0;
262 }
263 
264 /*
265  * kfd_parse_subtype_iolink is called when the topology mutex
266  * is already acquired
267  */
268 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
269 {
270 	struct kfd_iolink_properties *props;
271 	struct kfd_topology_device *dev;
272 	uint32_t i = 0;
273 	uint32_t id_from;
274 	uint32_t id_to;
275 
276 	BUG_ON(!iolink);
277 
278 	id_from = iolink->proximity_domain_from;
279 	id_to = iolink->proximity_domain_to;
280 
281 	pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
282 	list_for_each_entry(dev, &topology_device_list, list) {
283 		if (id_from == i) {
284 			props = kfd_alloc_struct(props);
285 			if (props == NULL)
286 				return -ENOMEM;
287 
288 			props->node_from = id_from;
289 			props->node_to = id_to;
290 			props->ver_maj = iolink->version_major;
291 			props->ver_min = iolink->version_minor;
292 
293 			/*
294 			 * weight factor (derived from CDIR), currently always 1
295 			 */
296 			props->weight = 1;
297 
298 			props->min_latency = iolink->minimum_latency;
299 			props->max_latency = iolink->maximum_latency;
300 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
301 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
302 			props->rec_transfer_size =
303 					iolink->recommended_transfer_size;
304 
305 			dev->io_link_count++;
306 			dev->node_props.io_links_count++;
307 			list_add_tail(&props->list, &dev->io_link_props);
308 
309 			break;
310 		}
311 		i++;
312 	}
313 
314 	return 0;
315 }
316 
317 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
318 {
319 	struct crat_subtype_computeunit *cu;
320 	struct crat_subtype_memory *mem;
321 	struct crat_subtype_cache *cache;
322 	struct crat_subtype_iolink *iolink;
323 	int ret = 0;
324 
325 	BUG_ON(!sub_type_hdr);
326 
327 	switch (sub_type_hdr->type) {
328 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
329 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
330 		ret = kfd_parse_subtype_cu(cu);
331 		break;
332 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
333 		mem = (struct crat_subtype_memory *)sub_type_hdr;
334 		ret = kfd_parse_subtype_mem(mem);
335 		break;
336 	case CRAT_SUBTYPE_CACHE_AFFINITY:
337 		cache = (struct crat_subtype_cache *)sub_type_hdr;
338 		ret = kfd_parse_subtype_cache(cache);
339 		break;
340 	case CRAT_SUBTYPE_TLB_AFFINITY:
341 		/*
342 		 * For now, nothing to do here
343 		 */
344 		pr_info("Found TLB entry in CRAT table (not processing)\n");
345 		break;
346 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
347 		/*
348 		 * For now, nothing to do here
349 		 */
350 		pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
351 		break;
352 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
353 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
354 		ret = kfd_parse_subtype_iolink(iolink);
355 		break;
356 	default:
357 		pr_warn("Unknown subtype (%d) in CRAT\n",
358 				sub_type_hdr->type);
359 	}
360 
361 	return ret;
362 }
363 
364 static void kfd_release_topology_device(struct kfd_topology_device *dev)
365 {
366 	struct kfd_mem_properties *mem;
367 	struct kfd_cache_properties *cache;
368 	struct kfd_iolink_properties *iolink;
369 
370 	BUG_ON(!dev);
371 
372 	list_del(&dev->list);
373 
374 	while (dev->mem_props.next != &dev->mem_props) {
375 		mem = container_of(dev->mem_props.next,
376 				struct kfd_mem_properties, list);
377 		list_del(&mem->list);
378 		kfree(mem);
379 	}
380 
381 	while (dev->cache_props.next != &dev->cache_props) {
382 		cache = container_of(dev->cache_props.next,
383 				struct kfd_cache_properties, list);
384 		list_del(&cache->list);
385 		kfree(cache);
386 	}
387 
388 	while (dev->io_link_props.next != &dev->io_link_props) {
389 		iolink = container_of(dev->io_link_props.next,
390 				struct kfd_iolink_properties, list);
391 		list_del(&iolink->list);
392 		kfree(iolink);
393 	}
394 
395 	kfree(dev);
396 
397 	sys_props.num_devices--;
398 }
399 
400 static void kfd_release_live_view(void)
401 {
402 	struct kfd_topology_device *dev;
403 
404 	while (topology_device_list.next != &topology_device_list) {
405 		dev = container_of(topology_device_list.next,
406 				 struct kfd_topology_device, list);
407 		kfd_release_topology_device(dev);
408 }
409 
410 	memset(&sys_props, 0, sizeof(sys_props));
411 }
412 
413 static struct kfd_topology_device *kfd_create_topology_device(void)
414 {
415 	struct kfd_topology_device *dev;
416 
417 	dev = kfd_alloc_struct(dev);
418 	if (dev == NULL) {
419 		pr_err("No memory to allocate a topology device");
420 		return NULL;
421 	}
422 
423 	INIT_LIST_HEAD(&dev->mem_props);
424 	INIT_LIST_HEAD(&dev->cache_props);
425 	INIT_LIST_HEAD(&dev->io_link_props);
426 
427 	list_add_tail(&dev->list, &topology_device_list);
428 	sys_props.num_devices++;
429 
430 	return dev;
431 }
432 
433 static int kfd_parse_crat_table(void *crat_image)
434 {
435 	struct kfd_topology_device *top_dev;
436 	struct crat_subtype_generic *sub_type_hdr;
437 	uint16_t node_id;
438 	int ret;
439 	struct crat_header *crat_table = (struct crat_header *)crat_image;
440 	uint16_t num_nodes;
441 	uint32_t image_len;
442 
443 	if (!crat_image)
444 		return -EINVAL;
445 
446 	num_nodes = crat_table->num_domains;
447 	image_len = crat_table->length;
448 
449 	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
450 
451 	for (node_id = 0; node_id < num_nodes; node_id++) {
452 		top_dev = kfd_create_topology_device();
453 		if (!top_dev) {
454 			kfd_release_live_view();
455 			return -ENOMEM;
456 		}
457 	}
458 
459 	sys_props.platform_id =
460 		(*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
461 	sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
462 	sys_props.platform_rev = crat_table->revision;
463 
464 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
465 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
466 			((char *)crat_image) + image_len) {
467 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
468 			ret = kfd_parse_subtype(sub_type_hdr);
469 			if (ret != 0) {
470 				kfd_release_live_view();
471 				return ret;
472 			}
473 		}
474 
475 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
476 				sub_type_hdr->length);
477 	}
478 
479 	sys_props.generation_count++;
480 	topology_crat_parsed = 1;
481 
482 	return 0;
483 }
484 
485 
486 #define sysfs_show_gen_prop(buffer, fmt, ...) \
487 		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
488 #define sysfs_show_32bit_prop(buffer, name, value) \
489 		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
490 #define sysfs_show_64bit_prop(buffer, name, value) \
491 		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
492 #define sysfs_show_32bit_val(buffer, value) \
493 		sysfs_show_gen_prop(buffer, "%u\n", value)
494 #define sysfs_show_str_val(buffer, value) \
495 		sysfs_show_gen_prop(buffer, "%s\n", value)
496 
497 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
498 		char *buffer)
499 {
500 	ssize_t ret;
501 
502 	/* Making sure that the buffer is an empty string */
503 	buffer[0] = 0;
504 
505 	if (attr == &sys_props.attr_genid) {
506 		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
507 	} else if (attr == &sys_props.attr_props) {
508 		sysfs_show_64bit_prop(buffer, "platform_oem",
509 				sys_props.platform_oem);
510 		sysfs_show_64bit_prop(buffer, "platform_id",
511 				sys_props.platform_id);
512 		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
513 				sys_props.platform_rev);
514 	} else {
515 		ret = -EINVAL;
516 	}
517 
518 	return ret;
519 }
520 
521 static const struct sysfs_ops sysprops_ops = {
522 	.show = sysprops_show,
523 };
524 
525 static struct kobj_type sysprops_type = {
526 	.sysfs_ops = &sysprops_ops,
527 };
528 
529 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
530 		char *buffer)
531 {
532 	ssize_t ret;
533 	struct kfd_iolink_properties *iolink;
534 
535 	/* Making sure that the buffer is an empty string */
536 	buffer[0] = 0;
537 
538 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
539 	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
540 	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
541 	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
542 	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
543 	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
544 	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
545 	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
546 	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
547 	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
548 	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
549 	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
550 			iolink->rec_transfer_size);
551 	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
552 
553 	return ret;
554 }
555 
556 static const struct sysfs_ops iolink_ops = {
557 	.show = iolink_show,
558 };
559 
560 static struct kobj_type iolink_type = {
561 	.sysfs_ops = &iolink_ops,
562 };
563 
564 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
565 		char *buffer)
566 {
567 	ssize_t ret;
568 	struct kfd_mem_properties *mem;
569 
570 	/* Making sure that the buffer is an empty string */
571 	buffer[0] = 0;
572 
573 	mem = container_of(attr, struct kfd_mem_properties, attr);
574 	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
575 	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
576 	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
577 	sysfs_show_32bit_prop(buffer, "width", mem->width);
578 	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
579 
580 	return ret;
581 }
582 
583 static const struct sysfs_ops mem_ops = {
584 	.show = mem_show,
585 };
586 
587 static struct kobj_type mem_type = {
588 	.sysfs_ops = &mem_ops,
589 };
590 
591 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
592 		char *buffer)
593 {
594 	ssize_t ret;
595 	uint32_t i;
596 	struct kfd_cache_properties *cache;
597 
598 	/* Making sure that the buffer is an empty string */
599 	buffer[0] = 0;
600 
601 	cache = container_of(attr, struct kfd_cache_properties, attr);
602 	sysfs_show_32bit_prop(buffer, "processor_id_low",
603 			cache->processor_id_low);
604 	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
605 	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
606 	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
607 	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
608 			cache->cachelines_per_tag);
609 	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
610 	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
611 	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
612 	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
613 	for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
614 		ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
615 				buffer, cache->sibling_map[i],
616 				(i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
617 						"\n" : ",");
618 
619 	return ret;
620 }
621 
622 static const struct sysfs_ops cache_ops = {
623 	.show = kfd_cache_show,
624 };
625 
626 static struct kobj_type cache_type = {
627 	.sysfs_ops = &cache_ops,
628 };
629 
630 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
631 		char *buffer)
632 {
633 	ssize_t ret;
634 	struct kfd_topology_device *dev;
635 	char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
636 	uint32_t i;
637 
638 	/* Making sure that the buffer is an empty string */
639 	buffer[0] = 0;
640 
641 	if (strcmp(attr->name, "gpu_id") == 0) {
642 		dev = container_of(attr, struct kfd_topology_device,
643 				attr_gpuid);
644 		ret = sysfs_show_32bit_val(buffer, dev->gpu_id);
645 	} else if (strcmp(attr->name, "name") == 0) {
646 		dev = container_of(attr, struct kfd_topology_device,
647 				attr_name);
648 		for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
649 			public_name[i] =
650 					(char)dev->node_props.marketing_name[i];
651 			if (dev->node_props.marketing_name[i] == 0)
652 				break;
653 		}
654 		public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
655 		ret = sysfs_show_str_val(buffer, public_name);
656 	} else {
657 		dev = container_of(attr, struct kfd_topology_device,
658 				attr_props);
659 		sysfs_show_32bit_prop(buffer, "cpu_cores_count",
660 				dev->node_props.cpu_cores_count);
661 		sysfs_show_32bit_prop(buffer, "simd_count",
662 				dev->node_props.simd_count);
663 
664 		if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
665 			pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
666 					dev->node_props.mem_banks_count,
667 					dev->mem_bank_count);
668 			sysfs_show_32bit_prop(buffer, "mem_banks_count",
669 					dev->mem_bank_count);
670 		} else {
671 			sysfs_show_32bit_prop(buffer, "mem_banks_count",
672 					dev->node_props.mem_banks_count);
673 		}
674 
675 		sysfs_show_32bit_prop(buffer, "caches_count",
676 				dev->node_props.caches_count);
677 		sysfs_show_32bit_prop(buffer, "io_links_count",
678 				dev->node_props.io_links_count);
679 		sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
680 				dev->node_props.cpu_core_id_base);
681 		sysfs_show_32bit_prop(buffer, "simd_id_base",
682 				dev->node_props.simd_id_base);
683 		sysfs_show_32bit_prop(buffer, "capability",
684 				dev->node_props.capability);
685 		sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
686 				dev->node_props.max_waves_per_simd);
687 		sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
688 				dev->node_props.lds_size_in_kb);
689 		sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
690 				dev->node_props.gds_size_in_kb);
691 		sysfs_show_32bit_prop(buffer, "wave_front_size",
692 				dev->node_props.wave_front_size);
693 		sysfs_show_32bit_prop(buffer, "array_count",
694 				dev->node_props.array_count);
695 		sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
696 				dev->node_props.simd_arrays_per_engine);
697 		sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
698 				dev->node_props.cu_per_simd_array);
699 		sysfs_show_32bit_prop(buffer, "simd_per_cu",
700 				dev->node_props.simd_per_cu);
701 		sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
702 				dev->node_props.max_slots_scratch_cu);
703 		sysfs_show_32bit_prop(buffer, "engine_id",
704 				dev->node_props.engine_id);
705 		sysfs_show_32bit_prop(buffer, "vendor_id",
706 				dev->node_props.vendor_id);
707 		sysfs_show_32bit_prop(buffer, "device_id",
708 				dev->node_props.device_id);
709 		sysfs_show_32bit_prop(buffer, "location_id",
710 				dev->node_props.location_id);
711 
712 		if (dev->gpu) {
713 			sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
714 					kfd2kgd->get_max_engine_clock_in_mhz(
715 						dev->gpu->kgd));
716 			sysfs_show_64bit_prop(buffer, "local_mem_size",
717 					kfd2kgd->get_vmem_size(dev->gpu->kgd));
718 		}
719 
720 		ret = sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
721 				cpufreq_quick_get_max(0)/1000);
722 	}
723 
724 	return ret;
725 }
726 
727 static const struct sysfs_ops node_ops = {
728 	.show = node_show,
729 };
730 
731 static struct kobj_type node_type = {
732 	.sysfs_ops = &node_ops,
733 };
734 
735 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
736 {
737 	sysfs_remove_file(kobj, attr);
738 	kobject_del(kobj);
739 	kobject_put(kobj);
740 }
741 
742 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
743 {
744 	struct kfd_iolink_properties *iolink;
745 	struct kfd_cache_properties *cache;
746 	struct kfd_mem_properties *mem;
747 
748 	BUG_ON(!dev);
749 
750 	if (dev->kobj_iolink) {
751 		list_for_each_entry(iolink, &dev->io_link_props, list)
752 			if (iolink->kobj) {
753 				kfd_remove_sysfs_file(iolink->kobj,
754 							&iolink->attr);
755 				iolink->kobj = NULL;
756 			}
757 		kobject_del(dev->kobj_iolink);
758 		kobject_put(dev->kobj_iolink);
759 		dev->kobj_iolink = NULL;
760 	}
761 
762 	if (dev->kobj_cache) {
763 		list_for_each_entry(cache, &dev->cache_props, list)
764 			if (cache->kobj) {
765 				kfd_remove_sysfs_file(cache->kobj,
766 							&cache->attr);
767 				cache->kobj = NULL;
768 			}
769 		kobject_del(dev->kobj_cache);
770 		kobject_put(dev->kobj_cache);
771 		dev->kobj_cache = NULL;
772 	}
773 
774 	if (dev->kobj_mem) {
775 		list_for_each_entry(mem, &dev->mem_props, list)
776 			if (mem->kobj) {
777 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
778 				mem->kobj = NULL;
779 			}
780 		kobject_del(dev->kobj_mem);
781 		kobject_put(dev->kobj_mem);
782 		dev->kobj_mem = NULL;
783 	}
784 
785 	if (dev->kobj_node) {
786 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
787 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
788 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
789 		kobject_del(dev->kobj_node);
790 		kobject_put(dev->kobj_node);
791 		dev->kobj_node = NULL;
792 	}
793 }
794 
795 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
796 		uint32_t id)
797 {
798 	struct kfd_iolink_properties *iolink;
799 	struct kfd_cache_properties *cache;
800 	struct kfd_mem_properties *mem;
801 	int ret;
802 	uint32_t i;
803 
804 	BUG_ON(!dev);
805 
806 	/*
807 	 * Creating the sysfs folders
808 	 */
809 	BUG_ON(dev->kobj_node);
810 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
811 	if (!dev->kobj_node)
812 		return -ENOMEM;
813 
814 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
815 			sys_props.kobj_nodes, "%d", id);
816 	if (ret < 0)
817 		return ret;
818 
819 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
820 	if (!dev->kobj_mem)
821 		return -ENOMEM;
822 
823 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
824 	if (!dev->kobj_cache)
825 		return -ENOMEM;
826 
827 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
828 	if (!dev->kobj_iolink)
829 		return -ENOMEM;
830 
831 	/*
832 	 * Creating sysfs files for node properties
833 	 */
834 	dev->attr_gpuid.name = "gpu_id";
835 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
836 	sysfs_attr_init(&dev->attr_gpuid);
837 	dev->attr_name.name = "name";
838 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
839 	sysfs_attr_init(&dev->attr_name);
840 	dev->attr_props.name = "properties";
841 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
842 	sysfs_attr_init(&dev->attr_props);
843 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
844 	if (ret < 0)
845 		return ret;
846 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
847 	if (ret < 0)
848 		return ret;
849 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
850 	if (ret < 0)
851 		return ret;
852 
853 	i = 0;
854 	list_for_each_entry(mem, &dev->mem_props, list) {
855 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
856 		if (!mem->kobj)
857 			return -ENOMEM;
858 		ret = kobject_init_and_add(mem->kobj, &mem_type,
859 				dev->kobj_mem, "%d", i);
860 		if (ret < 0)
861 			return ret;
862 
863 		mem->attr.name = "properties";
864 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
865 		sysfs_attr_init(&mem->attr);
866 		ret = sysfs_create_file(mem->kobj, &mem->attr);
867 		if (ret < 0)
868 			return ret;
869 		i++;
870 	}
871 
872 	i = 0;
873 	list_for_each_entry(cache, &dev->cache_props, list) {
874 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
875 		if (!cache->kobj)
876 			return -ENOMEM;
877 		ret = kobject_init_and_add(cache->kobj, &cache_type,
878 				dev->kobj_cache, "%d", i);
879 		if (ret < 0)
880 			return ret;
881 
882 		cache->attr.name = "properties";
883 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
884 		sysfs_attr_init(&cache->attr);
885 		ret = sysfs_create_file(cache->kobj, &cache->attr);
886 		if (ret < 0)
887 			return ret;
888 		i++;
889 	}
890 
891 	i = 0;
892 	list_for_each_entry(iolink, &dev->io_link_props, list) {
893 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
894 		if (!iolink->kobj)
895 			return -ENOMEM;
896 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
897 				dev->kobj_iolink, "%d", i);
898 		if (ret < 0)
899 			return ret;
900 
901 		iolink->attr.name = "properties";
902 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
903 		sysfs_attr_init(&iolink->attr);
904 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
905 		if (ret < 0)
906 			return ret;
907 		i++;
908 }
909 
910 	return 0;
911 }
912 
913 static int kfd_build_sysfs_node_tree(void)
914 {
915 	struct kfd_topology_device *dev;
916 	int ret;
917 	uint32_t i = 0;
918 
919 	list_for_each_entry(dev, &topology_device_list, list) {
920 		ret = kfd_build_sysfs_node_entry(dev, 0);
921 		if (ret < 0)
922 			return ret;
923 		i++;
924 	}
925 
926 	return 0;
927 }
928 
929 static void kfd_remove_sysfs_node_tree(void)
930 {
931 	struct kfd_topology_device *dev;
932 
933 	list_for_each_entry(dev, &topology_device_list, list)
934 		kfd_remove_sysfs_node_entry(dev);
935 }
936 
937 static int kfd_topology_update_sysfs(void)
938 {
939 	int ret;
940 
941 	pr_info("Creating topology SYSFS entries\n");
942 	if (sys_props.kobj_topology == NULL) {
943 		sys_props.kobj_topology =
944 				kfd_alloc_struct(sys_props.kobj_topology);
945 		if (!sys_props.kobj_topology)
946 			return -ENOMEM;
947 
948 		ret = kobject_init_and_add(sys_props.kobj_topology,
949 				&sysprops_type,  &kfd_device->kobj,
950 				"topology");
951 		if (ret < 0)
952 			return ret;
953 
954 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
955 				sys_props.kobj_topology);
956 		if (!sys_props.kobj_nodes)
957 			return -ENOMEM;
958 
959 		sys_props.attr_genid.name = "generation_id";
960 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
961 		sysfs_attr_init(&sys_props.attr_genid);
962 		ret = sysfs_create_file(sys_props.kobj_topology,
963 				&sys_props.attr_genid);
964 		if (ret < 0)
965 			return ret;
966 
967 		sys_props.attr_props.name = "system_properties";
968 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
969 		sysfs_attr_init(&sys_props.attr_props);
970 		ret = sysfs_create_file(sys_props.kobj_topology,
971 				&sys_props.attr_props);
972 		if (ret < 0)
973 			return ret;
974 	}
975 
976 	kfd_remove_sysfs_node_tree();
977 
978 	return kfd_build_sysfs_node_tree();
979 }
980 
981 static void kfd_topology_release_sysfs(void)
982 {
983 	kfd_remove_sysfs_node_tree();
984 	if (sys_props.kobj_topology) {
985 		sysfs_remove_file(sys_props.kobj_topology,
986 				&sys_props.attr_genid);
987 		sysfs_remove_file(sys_props.kobj_topology,
988 				&sys_props.attr_props);
989 		if (sys_props.kobj_nodes) {
990 			kobject_del(sys_props.kobj_nodes);
991 			kobject_put(sys_props.kobj_nodes);
992 			sys_props.kobj_nodes = NULL;
993 		}
994 		kobject_del(sys_props.kobj_topology);
995 		kobject_put(sys_props.kobj_topology);
996 		sys_props.kobj_topology = NULL;
997 	}
998 }
999 
1000 int kfd_topology_init(void)
1001 {
1002 	void *crat_image = NULL;
1003 	size_t image_size = 0;
1004 	int ret;
1005 
1006 	/*
1007 	 * Initialize the head for the topology device list
1008 	 */
1009 	INIT_LIST_HEAD(&topology_device_list);
1010 	init_rwsem(&topology_lock);
1011 	topology_crat_parsed = 0;
1012 
1013 	memset(&sys_props, 0, sizeof(sys_props));
1014 
1015 	/*
1016 	 * Get the CRAT image from the ACPI
1017 	 */
1018 	ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1019 	if (ret == 0 && image_size > 0) {
1020 		pr_info("Found CRAT image with size=%zd\n", image_size);
1021 		crat_image = kmalloc(image_size, GFP_KERNEL);
1022 		if (!crat_image) {
1023 			ret = -ENOMEM;
1024 			pr_err("No memory for allocating CRAT image\n");
1025 			goto err;
1026 		}
1027 		ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1028 
1029 		if (ret == 0) {
1030 			down_write(&topology_lock);
1031 			ret = kfd_parse_crat_table(crat_image);
1032 			if (ret == 0)
1033 				ret = kfd_topology_update_sysfs();
1034 			up_write(&topology_lock);
1035 		} else {
1036 			pr_err("Couldn't get CRAT table size from ACPI\n");
1037 		}
1038 		kfree(crat_image);
1039 	} else if (ret == -ENODATA) {
1040 		ret = 0;
1041 	} else {
1042 		pr_err("Couldn't get CRAT table size from ACPI\n");
1043 	}
1044 
1045 err:
1046 	pr_info("Finished initializing topology ret=%d\n", ret);
1047 	return ret;
1048 }
1049 
1050 void kfd_topology_shutdown(void)
1051 {
1052 	kfd_topology_release_sysfs();
1053 	kfd_release_live_view();
1054 }
1055 
1056 static void kfd_debug_print_topology(void)
1057 {
1058 	struct kfd_topology_device *dev;
1059 	uint32_t i = 0;
1060 
1061 	pr_info("DEBUG PRINT OF TOPOLOGY:");
1062 	list_for_each_entry(dev, &topology_device_list, list) {
1063 		pr_info("Node: %d\n", i);
1064 		pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
1065 		pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
1066 		pr_info("\tSIMD count: %d", dev->node_props.simd_count);
1067 		i++;
1068 	}
1069 }
1070 
1071 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1072 {
1073 	uint32_t hashout;
1074 	uint32_t buf[7];
1075 	int i;
1076 
1077 	if (!gpu)
1078 		return 0;
1079 
1080 	buf[0] = gpu->pdev->devfn;
1081 	buf[1] = gpu->pdev->subsystem_vendor;
1082 	buf[2] = gpu->pdev->subsystem_device;
1083 	buf[3] = gpu->pdev->device;
1084 	buf[4] = gpu->pdev->bus->number;
1085 	buf[5] = (uint32_t)(kfd2kgd->get_vmem_size(gpu->kgd) & 0xffffffff);
1086 	buf[6] = (uint32_t)(kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
1087 
1088 	for (i = 0, hashout = 0; i < 7; i++)
1089 		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1090 
1091 	return hashout;
1092 }
1093 
1094 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1095 {
1096 	struct kfd_topology_device *dev;
1097 	struct kfd_topology_device *out_dev = NULL;
1098 
1099 	BUG_ON(!gpu);
1100 
1101 	list_for_each_entry(dev, &topology_device_list, list)
1102 		if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
1103 			dev->gpu = gpu;
1104 			out_dev = dev;
1105 			break;
1106 		}
1107 
1108 	return out_dev;
1109 }
1110 
1111 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1112 {
1113 	/*
1114 	 * TODO: Generate an event for thunk about the arrival/removal
1115 	 * of the GPU
1116 	 */
1117 }
1118 
1119 int kfd_topology_add_device(struct kfd_dev *gpu)
1120 {
1121 	uint32_t gpu_id;
1122 	struct kfd_topology_device *dev;
1123 	int res;
1124 
1125 	BUG_ON(!gpu);
1126 
1127 	gpu_id = kfd_generate_gpu_id(gpu);
1128 
1129 	pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1130 
1131 	down_write(&topology_lock);
1132 	/*
1133 	 * Try to assign the GPU to existing topology device (generated from
1134 	 * CRAT table
1135 	 */
1136 	dev = kfd_assign_gpu(gpu);
1137 	if (!dev) {
1138 		pr_info("GPU was not found in the current topology. Extending.\n");
1139 		kfd_debug_print_topology();
1140 		dev = kfd_create_topology_device();
1141 		if (!dev) {
1142 			res = -ENOMEM;
1143 			goto err;
1144 		}
1145 		dev->gpu = gpu;
1146 
1147 		/*
1148 		 * TODO: Make a call to retrieve topology information from the
1149 		 * GPU vBIOS
1150 		 */
1151 
1152 		/*
1153 		 * Update the SYSFS tree, since we added another topology device
1154 		 */
1155 		if (kfd_topology_update_sysfs() < 0)
1156 			kfd_topology_release_sysfs();
1157 
1158 	}
1159 
1160 	dev->gpu_id = gpu_id;
1161 	gpu->id = gpu_id;
1162 	dev->node_props.vendor_id = gpu->pdev->vendor;
1163 	dev->node_props.device_id = gpu->pdev->device;
1164 	dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
1165 			(gpu->pdev->devfn & 0xffffff);
1166 	/*
1167 	 * TODO: Retrieve max engine clock values from KGD
1168 	 */
1169 
1170 	res = 0;
1171 
1172 err:
1173 	up_write(&topology_lock);
1174 
1175 	if (res == 0)
1176 		kfd_notify_gpu_change(gpu_id, 1);
1177 
1178 	return res;
1179 }
1180 
1181 int kfd_topology_remove_device(struct kfd_dev *gpu)
1182 {
1183 	struct kfd_topology_device *dev;
1184 	uint32_t gpu_id;
1185 	int res = -ENODEV;
1186 
1187 	BUG_ON(!gpu);
1188 
1189 	down_write(&topology_lock);
1190 
1191 	list_for_each_entry(dev, &topology_device_list, list)
1192 		if (dev->gpu == gpu) {
1193 			gpu_id = dev->gpu_id;
1194 			kfd_remove_sysfs_node_entry(dev);
1195 			kfd_release_topology_device(dev);
1196 			res = 0;
1197 			if (kfd_topology_update_sysfs() < 0)
1198 				kfd_topology_release_sysfs();
1199 			break;
1200 		}
1201 
1202 	up_write(&topology_lock);
1203 
1204 	if (res == 0)
1205 		kfd_notify_gpu_change(gpu_id, 0);
1206 
1207 	return res;
1208 }
1209 
1210 /*
1211  * When idx is out of bounds, the function will return NULL
1212  */
1213 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
1214 {
1215 
1216 	struct kfd_topology_device *top_dev;
1217 	struct kfd_dev *device = NULL;
1218 	uint8_t device_idx = 0;
1219 
1220 	down_read(&topology_lock);
1221 
1222 	list_for_each_entry(top_dev, &topology_device_list, list) {
1223 		if (device_idx == idx) {
1224 			device = top_dev->gpu;
1225 			break;
1226 		}
1227 
1228 		device_idx++;
1229 	}
1230 
1231 	up_read(&topology_lock);
1232 
1233 	return device;
1234 
1235 }
1236