1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/errno.h>
27 #include <linux/acpi.h>
28 #include <linux/hash.h>
29 #include <linux/cpufreq.h>
30 #include <linux/log2.h>
31 #include <linux/dmi.h>
32 #include <linux/atomic.h>
33 
34 #include "kfd_priv.h"
35 #include "kfd_crat.h"
36 #include "kfd_topology.h"
37 #include "kfd_device_queue_manager.h"
38 #include "kfd_iommu.h"
39 
40 /* topology_device_list - Master list of all topology devices */
41 static struct list_head topology_device_list;
42 static struct kfd_system_properties sys_props;
43 
44 static DECLARE_RWSEM(topology_lock);
45 static atomic_t topology_crat_proximity_domain;
46 
47 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
48 						uint32_t proximity_domain)
49 {
50 	struct kfd_topology_device *top_dev;
51 	struct kfd_topology_device *device = NULL;
52 
53 	down_read(&topology_lock);
54 
55 	list_for_each_entry(top_dev, &topology_device_list, list)
56 		if (top_dev->proximity_domain == proximity_domain) {
57 			device = top_dev;
58 			break;
59 		}
60 
61 	up_read(&topology_lock);
62 
63 	return device;
64 }
65 
66 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
67 {
68 	struct kfd_topology_device *top_dev = NULL;
69 	struct kfd_topology_device *ret = NULL;
70 
71 	down_read(&topology_lock);
72 
73 	list_for_each_entry(top_dev, &topology_device_list, list)
74 		if (top_dev->gpu_id == gpu_id) {
75 			ret = top_dev;
76 			break;
77 		}
78 
79 	up_read(&topology_lock);
80 
81 	return ret;
82 }
83 
84 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
85 {
86 	struct kfd_topology_device *top_dev;
87 
88 	top_dev = kfd_topology_device_by_id(gpu_id);
89 	if (!top_dev)
90 		return NULL;
91 
92 	return top_dev->gpu;
93 }
94 
95 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
96 {
97 	struct kfd_topology_device *top_dev;
98 	struct kfd_dev *device = NULL;
99 
100 	down_read(&topology_lock);
101 
102 	list_for_each_entry(top_dev, &topology_device_list, list)
103 		if (top_dev->gpu->pdev == pdev) {
104 			device = top_dev->gpu;
105 			break;
106 		}
107 
108 	up_read(&topology_lock);
109 
110 	return device;
111 }
112 
113 /* Called with write topology_lock acquired */
114 static void kfd_release_topology_device(struct kfd_topology_device *dev)
115 {
116 	struct kfd_mem_properties *mem;
117 	struct kfd_cache_properties *cache;
118 	struct kfd_iolink_properties *iolink;
119 	struct kfd_perf_properties *perf;
120 
121 	list_del(&dev->list);
122 
123 	while (dev->mem_props.next != &dev->mem_props) {
124 		mem = container_of(dev->mem_props.next,
125 				struct kfd_mem_properties, list);
126 		list_del(&mem->list);
127 		kfree(mem);
128 	}
129 
130 	while (dev->cache_props.next != &dev->cache_props) {
131 		cache = container_of(dev->cache_props.next,
132 				struct kfd_cache_properties, list);
133 		list_del(&cache->list);
134 		kfree(cache);
135 	}
136 
137 	while (dev->io_link_props.next != &dev->io_link_props) {
138 		iolink = container_of(dev->io_link_props.next,
139 				struct kfd_iolink_properties, list);
140 		list_del(&iolink->list);
141 		kfree(iolink);
142 	}
143 
144 	while (dev->perf_props.next != &dev->perf_props) {
145 		perf = container_of(dev->perf_props.next,
146 				struct kfd_perf_properties, list);
147 		list_del(&perf->list);
148 		kfree(perf);
149 	}
150 
151 	kfree(dev);
152 }
153 
154 void kfd_release_topology_device_list(struct list_head *device_list)
155 {
156 	struct kfd_topology_device *dev;
157 
158 	while (!list_empty(device_list)) {
159 		dev = list_first_entry(device_list,
160 				       struct kfd_topology_device, list);
161 		kfd_release_topology_device(dev);
162 	}
163 }
164 
165 static void kfd_release_live_view(void)
166 {
167 	kfd_release_topology_device_list(&topology_device_list);
168 	memset(&sys_props, 0, sizeof(sys_props));
169 }
170 
171 struct kfd_topology_device *kfd_create_topology_device(
172 				struct list_head *device_list)
173 {
174 	struct kfd_topology_device *dev;
175 
176 	dev = kfd_alloc_struct(dev);
177 	if (!dev) {
178 		pr_err("No memory to allocate a topology device");
179 		return NULL;
180 	}
181 
182 	INIT_LIST_HEAD(&dev->mem_props);
183 	INIT_LIST_HEAD(&dev->cache_props);
184 	INIT_LIST_HEAD(&dev->io_link_props);
185 	INIT_LIST_HEAD(&dev->perf_props);
186 
187 	list_add_tail(&dev->list, device_list);
188 
189 	return dev;
190 }
191 
192 
193 #define sysfs_show_gen_prop(buffer, fmt, ...) \
194 		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
195 #define sysfs_show_32bit_prop(buffer, name, value) \
196 		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
197 #define sysfs_show_64bit_prop(buffer, name, value) \
198 		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
199 #define sysfs_show_32bit_val(buffer, value) \
200 		sysfs_show_gen_prop(buffer, "%u\n", value)
201 #define sysfs_show_str_val(buffer, value) \
202 		sysfs_show_gen_prop(buffer, "%s\n", value)
203 
204 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
205 		char *buffer)
206 {
207 	ssize_t ret;
208 
209 	/* Making sure that the buffer is an empty string */
210 	buffer[0] = 0;
211 
212 	if (attr == &sys_props.attr_genid) {
213 		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
214 	} else if (attr == &sys_props.attr_props) {
215 		sysfs_show_64bit_prop(buffer, "platform_oem",
216 				sys_props.platform_oem);
217 		sysfs_show_64bit_prop(buffer, "platform_id",
218 				sys_props.platform_id);
219 		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
220 				sys_props.platform_rev);
221 	} else {
222 		ret = -EINVAL;
223 	}
224 
225 	return ret;
226 }
227 
228 static void kfd_topology_kobj_release(struct kobject *kobj)
229 {
230 	kfree(kobj);
231 }
232 
233 static const struct sysfs_ops sysprops_ops = {
234 	.show = sysprops_show,
235 };
236 
237 static struct kobj_type sysprops_type = {
238 	.release = kfd_topology_kobj_release,
239 	.sysfs_ops = &sysprops_ops,
240 };
241 
242 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
243 		char *buffer)
244 {
245 	ssize_t ret;
246 	struct kfd_iolink_properties *iolink;
247 
248 	/* Making sure that the buffer is an empty string */
249 	buffer[0] = 0;
250 
251 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
252 	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
253 	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
254 	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
255 	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
256 	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
257 	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
258 	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
259 	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
260 	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
261 	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
262 	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
263 			iolink->rec_transfer_size);
264 	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
265 
266 	return ret;
267 }
268 
269 static const struct sysfs_ops iolink_ops = {
270 	.show = iolink_show,
271 };
272 
273 static struct kobj_type iolink_type = {
274 	.release = kfd_topology_kobj_release,
275 	.sysfs_ops = &iolink_ops,
276 };
277 
278 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
279 		char *buffer)
280 {
281 	ssize_t ret;
282 	struct kfd_mem_properties *mem;
283 
284 	/* Making sure that the buffer is an empty string */
285 	buffer[0] = 0;
286 
287 	mem = container_of(attr, struct kfd_mem_properties, attr);
288 	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
289 	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
290 	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
291 	sysfs_show_32bit_prop(buffer, "width", mem->width);
292 	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
293 
294 	return ret;
295 }
296 
297 static const struct sysfs_ops mem_ops = {
298 	.show = mem_show,
299 };
300 
301 static struct kobj_type mem_type = {
302 	.release = kfd_topology_kobj_release,
303 	.sysfs_ops = &mem_ops,
304 };
305 
306 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
307 		char *buffer)
308 {
309 	ssize_t ret;
310 	uint32_t i, j;
311 	struct kfd_cache_properties *cache;
312 
313 	/* Making sure that the buffer is an empty string */
314 	buffer[0] = 0;
315 
316 	cache = container_of(attr, struct kfd_cache_properties, attr);
317 	sysfs_show_32bit_prop(buffer, "processor_id_low",
318 			cache->processor_id_low);
319 	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
320 	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
321 	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
322 	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
323 			cache->cachelines_per_tag);
324 	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
325 	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
326 	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
327 	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
328 	for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
329 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
330 			/* Check each bit */
331 			if (cache->sibling_map[i] & (1 << j))
332 				ret = snprintf(buffer, PAGE_SIZE,
333 					 "%s%d%s", buffer, 1, ",");
334 			else
335 				ret = snprintf(buffer, PAGE_SIZE,
336 					 "%s%d%s", buffer, 0, ",");
337 		}
338 	/* Replace the last "," with end of line */
339 	*(buffer + strlen(buffer) - 1) = 0xA;
340 	return ret;
341 }
342 
343 static const struct sysfs_ops cache_ops = {
344 	.show = kfd_cache_show,
345 };
346 
347 static struct kobj_type cache_type = {
348 	.release = kfd_topology_kobj_release,
349 	.sysfs_ops = &cache_ops,
350 };
351 
352 /****** Sysfs of Performance Counters ******/
353 
354 struct kfd_perf_attr {
355 	struct kobj_attribute attr;
356 	uint32_t data;
357 };
358 
359 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
360 			char *buf)
361 {
362 	struct kfd_perf_attr *attr;
363 
364 	buf[0] = 0;
365 	attr = container_of(attrs, struct kfd_perf_attr, attr);
366 	if (!attr->data) /* invalid data for PMC */
367 		return 0;
368 	else
369 		return sysfs_show_32bit_val(buf, attr->data);
370 }
371 
372 #define KFD_PERF_DESC(_name, _data)			\
373 {							\
374 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
375 	.data = _data,					\
376 }
377 
378 static struct kfd_perf_attr perf_attr_iommu[] = {
379 	KFD_PERF_DESC(max_concurrent, 0),
380 	KFD_PERF_DESC(num_counters, 0),
381 	KFD_PERF_DESC(counter_ids, 0),
382 };
383 /****************************************/
384 
385 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
386 		char *buffer)
387 {
388 	struct kfd_topology_device *dev;
389 	char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
390 	uint32_t i;
391 	uint32_t log_max_watch_addr;
392 
393 	/* Making sure that the buffer is an empty string */
394 	buffer[0] = 0;
395 
396 	if (strcmp(attr->name, "gpu_id") == 0) {
397 		dev = container_of(attr, struct kfd_topology_device,
398 				attr_gpuid);
399 		return sysfs_show_32bit_val(buffer, dev->gpu_id);
400 	}
401 
402 	if (strcmp(attr->name, "name") == 0) {
403 		dev = container_of(attr, struct kfd_topology_device,
404 				attr_name);
405 		for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
406 			public_name[i] =
407 					(char)dev->node_props.marketing_name[i];
408 			if (dev->node_props.marketing_name[i] == 0)
409 				break;
410 		}
411 		public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
412 		return sysfs_show_str_val(buffer, public_name);
413 	}
414 
415 	dev = container_of(attr, struct kfd_topology_device,
416 			attr_props);
417 	sysfs_show_32bit_prop(buffer, "cpu_cores_count",
418 			dev->node_props.cpu_cores_count);
419 	sysfs_show_32bit_prop(buffer, "simd_count",
420 			dev->node_props.simd_count);
421 	sysfs_show_32bit_prop(buffer, "mem_banks_count",
422 			dev->node_props.mem_banks_count);
423 	sysfs_show_32bit_prop(buffer, "caches_count",
424 			dev->node_props.caches_count);
425 	sysfs_show_32bit_prop(buffer, "io_links_count",
426 			dev->node_props.io_links_count);
427 	sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
428 			dev->node_props.cpu_core_id_base);
429 	sysfs_show_32bit_prop(buffer, "simd_id_base",
430 			dev->node_props.simd_id_base);
431 	sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
432 			dev->node_props.max_waves_per_simd);
433 	sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
434 			dev->node_props.lds_size_in_kb);
435 	sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
436 			dev->node_props.gds_size_in_kb);
437 	sysfs_show_32bit_prop(buffer, "wave_front_size",
438 			dev->node_props.wave_front_size);
439 	sysfs_show_32bit_prop(buffer, "array_count",
440 			dev->node_props.array_count);
441 	sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
442 			dev->node_props.simd_arrays_per_engine);
443 	sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
444 			dev->node_props.cu_per_simd_array);
445 	sysfs_show_32bit_prop(buffer, "simd_per_cu",
446 			dev->node_props.simd_per_cu);
447 	sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
448 			dev->node_props.max_slots_scratch_cu);
449 	sysfs_show_32bit_prop(buffer, "vendor_id",
450 			dev->node_props.vendor_id);
451 	sysfs_show_32bit_prop(buffer, "device_id",
452 			dev->node_props.device_id);
453 	sysfs_show_32bit_prop(buffer, "location_id",
454 			dev->node_props.location_id);
455 	sysfs_show_32bit_prop(buffer, "drm_render_minor",
456 			dev->node_props.drm_render_minor);
457 	sysfs_show_64bit_prop(buffer, "hive_id",
458 			dev->node_props.hive_id);
459 
460 	if (dev->gpu) {
461 		log_max_watch_addr =
462 			__ilog2_u32(dev->gpu->device_info->num_of_watch_points);
463 
464 		if (log_max_watch_addr) {
465 			dev->node_props.capability |=
466 					HSA_CAP_WATCH_POINTS_SUPPORTED;
467 
468 			dev->node_props.capability |=
469 				((log_max_watch_addr <<
470 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
471 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
472 		}
473 
474 		if (dev->gpu->device_info->asic_family == CHIP_TONGA)
475 			dev->node_props.capability |=
476 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
477 
478 		sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
479 			dev->node_props.max_engine_clk_fcompute);
480 
481 		sysfs_show_64bit_prop(buffer, "local_mem_size",
482 				(unsigned long long int) 0);
483 
484 		sysfs_show_32bit_prop(buffer, "fw_version",
485 				dev->gpu->mec_fw_version);
486 		sysfs_show_32bit_prop(buffer, "capability",
487 				dev->node_props.capability);
488 		sysfs_show_32bit_prop(buffer, "sdma_fw_version",
489 				dev->gpu->sdma_fw_version);
490 	}
491 
492 	return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
493 					cpufreq_quick_get_max(0)/1000);
494 }
495 
496 static const struct sysfs_ops node_ops = {
497 	.show = node_show,
498 };
499 
500 static struct kobj_type node_type = {
501 	.release = kfd_topology_kobj_release,
502 	.sysfs_ops = &node_ops,
503 };
504 
505 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
506 {
507 	sysfs_remove_file(kobj, attr);
508 	kobject_del(kobj);
509 	kobject_put(kobj);
510 }
511 
512 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
513 {
514 	struct kfd_iolink_properties *iolink;
515 	struct kfd_cache_properties *cache;
516 	struct kfd_mem_properties *mem;
517 	struct kfd_perf_properties *perf;
518 
519 	if (dev->kobj_iolink) {
520 		list_for_each_entry(iolink, &dev->io_link_props, list)
521 			if (iolink->kobj) {
522 				kfd_remove_sysfs_file(iolink->kobj,
523 							&iolink->attr);
524 				iolink->kobj = NULL;
525 			}
526 		kobject_del(dev->kobj_iolink);
527 		kobject_put(dev->kobj_iolink);
528 		dev->kobj_iolink = NULL;
529 	}
530 
531 	if (dev->kobj_cache) {
532 		list_for_each_entry(cache, &dev->cache_props, list)
533 			if (cache->kobj) {
534 				kfd_remove_sysfs_file(cache->kobj,
535 							&cache->attr);
536 				cache->kobj = NULL;
537 			}
538 		kobject_del(dev->kobj_cache);
539 		kobject_put(dev->kobj_cache);
540 		dev->kobj_cache = NULL;
541 	}
542 
543 	if (dev->kobj_mem) {
544 		list_for_each_entry(mem, &dev->mem_props, list)
545 			if (mem->kobj) {
546 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
547 				mem->kobj = NULL;
548 			}
549 		kobject_del(dev->kobj_mem);
550 		kobject_put(dev->kobj_mem);
551 		dev->kobj_mem = NULL;
552 	}
553 
554 	if (dev->kobj_perf) {
555 		list_for_each_entry(perf, &dev->perf_props, list) {
556 			kfree(perf->attr_group);
557 			perf->attr_group = NULL;
558 		}
559 		kobject_del(dev->kobj_perf);
560 		kobject_put(dev->kobj_perf);
561 		dev->kobj_perf = NULL;
562 	}
563 
564 	if (dev->kobj_node) {
565 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
566 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
567 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
568 		kobject_del(dev->kobj_node);
569 		kobject_put(dev->kobj_node);
570 		dev->kobj_node = NULL;
571 	}
572 }
573 
574 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
575 		uint32_t id)
576 {
577 	struct kfd_iolink_properties *iolink;
578 	struct kfd_cache_properties *cache;
579 	struct kfd_mem_properties *mem;
580 	struct kfd_perf_properties *perf;
581 	int ret;
582 	uint32_t i, num_attrs;
583 	struct attribute **attrs;
584 
585 	if (WARN_ON(dev->kobj_node))
586 		return -EEXIST;
587 
588 	/*
589 	 * Creating the sysfs folders
590 	 */
591 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
592 	if (!dev->kobj_node)
593 		return -ENOMEM;
594 
595 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
596 			sys_props.kobj_nodes, "%d", id);
597 	if (ret < 0)
598 		return ret;
599 
600 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
601 	if (!dev->kobj_mem)
602 		return -ENOMEM;
603 
604 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
605 	if (!dev->kobj_cache)
606 		return -ENOMEM;
607 
608 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
609 	if (!dev->kobj_iolink)
610 		return -ENOMEM;
611 
612 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
613 	if (!dev->kobj_perf)
614 		return -ENOMEM;
615 
616 	/*
617 	 * Creating sysfs files for node properties
618 	 */
619 	dev->attr_gpuid.name = "gpu_id";
620 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
621 	sysfs_attr_init(&dev->attr_gpuid);
622 	dev->attr_name.name = "name";
623 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
624 	sysfs_attr_init(&dev->attr_name);
625 	dev->attr_props.name = "properties";
626 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
627 	sysfs_attr_init(&dev->attr_props);
628 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
629 	if (ret < 0)
630 		return ret;
631 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
632 	if (ret < 0)
633 		return ret;
634 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
635 	if (ret < 0)
636 		return ret;
637 
638 	i = 0;
639 	list_for_each_entry(mem, &dev->mem_props, list) {
640 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
641 		if (!mem->kobj)
642 			return -ENOMEM;
643 		ret = kobject_init_and_add(mem->kobj, &mem_type,
644 				dev->kobj_mem, "%d", i);
645 		if (ret < 0)
646 			return ret;
647 
648 		mem->attr.name = "properties";
649 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
650 		sysfs_attr_init(&mem->attr);
651 		ret = sysfs_create_file(mem->kobj, &mem->attr);
652 		if (ret < 0)
653 			return ret;
654 		i++;
655 	}
656 
657 	i = 0;
658 	list_for_each_entry(cache, &dev->cache_props, list) {
659 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
660 		if (!cache->kobj)
661 			return -ENOMEM;
662 		ret = kobject_init_and_add(cache->kobj, &cache_type,
663 				dev->kobj_cache, "%d", i);
664 		if (ret < 0)
665 			return ret;
666 
667 		cache->attr.name = "properties";
668 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
669 		sysfs_attr_init(&cache->attr);
670 		ret = sysfs_create_file(cache->kobj, &cache->attr);
671 		if (ret < 0)
672 			return ret;
673 		i++;
674 	}
675 
676 	i = 0;
677 	list_for_each_entry(iolink, &dev->io_link_props, list) {
678 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
679 		if (!iolink->kobj)
680 			return -ENOMEM;
681 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
682 				dev->kobj_iolink, "%d", i);
683 		if (ret < 0)
684 			return ret;
685 
686 		iolink->attr.name = "properties";
687 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
688 		sysfs_attr_init(&iolink->attr);
689 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
690 		if (ret < 0)
691 			return ret;
692 		i++;
693 	}
694 
695 	/* All hardware blocks have the same number of attributes. */
696 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
697 	list_for_each_entry(perf, &dev->perf_props, list) {
698 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
699 			* num_attrs + sizeof(struct attribute_group),
700 			GFP_KERNEL);
701 		if (!perf->attr_group)
702 			return -ENOMEM;
703 
704 		attrs = (struct attribute **)(perf->attr_group + 1);
705 		if (!strcmp(perf->block_name, "iommu")) {
706 		/* Information of IOMMU's num_counters and counter_ids is shown
707 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
708 		 * duplicate here.
709 		 */
710 			perf_attr_iommu[0].data = perf->max_concurrent;
711 			for (i = 0; i < num_attrs; i++)
712 				attrs[i] = &perf_attr_iommu[i].attr.attr;
713 		}
714 		perf->attr_group->name = perf->block_name;
715 		perf->attr_group->attrs = attrs;
716 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
717 		if (ret < 0)
718 			return ret;
719 	}
720 
721 	return 0;
722 }
723 
724 /* Called with write topology lock acquired */
725 static int kfd_build_sysfs_node_tree(void)
726 {
727 	struct kfd_topology_device *dev;
728 	int ret;
729 	uint32_t i = 0;
730 
731 	list_for_each_entry(dev, &topology_device_list, list) {
732 		ret = kfd_build_sysfs_node_entry(dev, i);
733 		if (ret < 0)
734 			return ret;
735 		i++;
736 	}
737 
738 	return 0;
739 }
740 
741 /* Called with write topology lock acquired */
742 static void kfd_remove_sysfs_node_tree(void)
743 {
744 	struct kfd_topology_device *dev;
745 
746 	list_for_each_entry(dev, &topology_device_list, list)
747 		kfd_remove_sysfs_node_entry(dev);
748 }
749 
750 static int kfd_topology_update_sysfs(void)
751 {
752 	int ret;
753 
754 	pr_info("Creating topology SYSFS entries\n");
755 	if (!sys_props.kobj_topology) {
756 		sys_props.kobj_topology =
757 				kfd_alloc_struct(sys_props.kobj_topology);
758 		if (!sys_props.kobj_topology)
759 			return -ENOMEM;
760 
761 		ret = kobject_init_and_add(sys_props.kobj_topology,
762 				&sysprops_type,  &kfd_device->kobj,
763 				"topology");
764 		if (ret < 0)
765 			return ret;
766 
767 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
768 				sys_props.kobj_topology);
769 		if (!sys_props.kobj_nodes)
770 			return -ENOMEM;
771 
772 		sys_props.attr_genid.name = "generation_id";
773 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
774 		sysfs_attr_init(&sys_props.attr_genid);
775 		ret = sysfs_create_file(sys_props.kobj_topology,
776 				&sys_props.attr_genid);
777 		if (ret < 0)
778 			return ret;
779 
780 		sys_props.attr_props.name = "system_properties";
781 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
782 		sysfs_attr_init(&sys_props.attr_props);
783 		ret = sysfs_create_file(sys_props.kobj_topology,
784 				&sys_props.attr_props);
785 		if (ret < 0)
786 			return ret;
787 	}
788 
789 	kfd_remove_sysfs_node_tree();
790 
791 	return kfd_build_sysfs_node_tree();
792 }
793 
794 static void kfd_topology_release_sysfs(void)
795 {
796 	kfd_remove_sysfs_node_tree();
797 	if (sys_props.kobj_topology) {
798 		sysfs_remove_file(sys_props.kobj_topology,
799 				&sys_props.attr_genid);
800 		sysfs_remove_file(sys_props.kobj_topology,
801 				&sys_props.attr_props);
802 		if (sys_props.kobj_nodes) {
803 			kobject_del(sys_props.kobj_nodes);
804 			kobject_put(sys_props.kobj_nodes);
805 			sys_props.kobj_nodes = NULL;
806 		}
807 		kobject_del(sys_props.kobj_topology);
808 		kobject_put(sys_props.kobj_topology);
809 		sys_props.kobj_topology = NULL;
810 	}
811 }
812 
813 /* Called with write topology_lock acquired */
814 static void kfd_topology_update_device_list(struct list_head *temp_list,
815 					struct list_head *master_list)
816 {
817 	while (!list_empty(temp_list)) {
818 		list_move_tail(temp_list->next, master_list);
819 		sys_props.num_devices++;
820 	}
821 }
822 
823 static void kfd_debug_print_topology(void)
824 {
825 	struct kfd_topology_device *dev;
826 
827 	down_read(&topology_lock);
828 
829 	dev = list_last_entry(&topology_device_list,
830 			struct kfd_topology_device, list);
831 	if (dev) {
832 		if (dev->node_props.cpu_cores_count &&
833 				dev->node_props.simd_count) {
834 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
835 				dev->node_props.device_id,
836 				dev->node_props.vendor_id);
837 		} else if (dev->node_props.cpu_cores_count)
838 			pr_info("Topology: Add CPU node\n");
839 		else if (dev->node_props.simd_count)
840 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
841 				dev->node_props.device_id,
842 				dev->node_props.vendor_id);
843 	}
844 	up_read(&topology_lock);
845 }
846 
847 /* Helper function for intializing platform_xx members of
848  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
849  */
850 static void kfd_update_system_properties(void)
851 {
852 	struct kfd_topology_device *dev;
853 
854 	down_read(&topology_lock);
855 	dev = list_last_entry(&topology_device_list,
856 			struct kfd_topology_device, list);
857 	if (dev) {
858 		sys_props.platform_id =
859 			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
860 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
861 		sys_props.platform_rev = dev->oem_revision;
862 	}
863 	up_read(&topology_lock);
864 }
865 
866 static void find_system_memory(const struct dmi_header *dm,
867 	void *private)
868 {
869 	struct kfd_mem_properties *mem;
870 	u16 mem_width, mem_clock;
871 	struct kfd_topology_device *kdev =
872 		(struct kfd_topology_device *)private;
873 	const u8 *dmi_data = (const u8 *)(dm + 1);
874 
875 	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
876 		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
877 		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
878 		list_for_each_entry(mem, &kdev->mem_props, list) {
879 			if (mem_width != 0xFFFF && mem_width != 0)
880 				mem->width = mem_width;
881 			if (mem_clock != 0)
882 				mem->mem_clk_max = mem_clock;
883 		}
884 	}
885 }
886 
887 /*
888  * Performance counters information is not part of CRAT but we would like to
889  * put them in the sysfs under topology directory for Thunk to get the data.
890  * This function is called before updating the sysfs.
891  */
892 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
893 {
894 	/* These are the only counters supported so far */
895 	return kfd_iommu_add_perf_counters(kdev);
896 }
897 
898 /* kfd_add_non_crat_information - Add information that is not currently
899  *	defined in CRAT but is necessary for KFD topology
900  * @dev - topology device to which addition info is added
901  */
902 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
903 {
904 	/* Check if CPU only node. */
905 	if (!kdev->gpu) {
906 		/* Add system memory information */
907 		dmi_walk(find_system_memory, kdev);
908 	}
909 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
910 }
911 
912 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
913  *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
914  *	and GPU cores are present.
915  * @device_list - topology device list created by parsing ACPI CRAT table.
916  * @return - TRUE if invalid, FALSE is valid.
917  */
918 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
919 {
920 	struct kfd_topology_device *dev;
921 
922 	list_for_each_entry(dev, device_list, list) {
923 		if (dev->node_props.cpu_cores_count &&
924 			dev->node_props.simd_count)
925 			return false;
926 	}
927 	pr_info("Ignoring ACPI CRAT on non-APU system\n");
928 	return true;
929 }
930 
931 int kfd_topology_init(void)
932 {
933 	void *crat_image = NULL;
934 	size_t image_size = 0;
935 	int ret;
936 	struct list_head temp_topology_device_list;
937 	int cpu_only_node = 0;
938 	struct kfd_topology_device *kdev;
939 	int proximity_domain;
940 
941 	/* topology_device_list - Master list of all topology devices
942 	 * temp_topology_device_list - temporary list created while parsing CRAT
943 	 * or VCRAT. Once parsing is complete the contents of list is moved to
944 	 * topology_device_list
945 	 */
946 
947 	/* Initialize the head for the both the lists */
948 	INIT_LIST_HEAD(&topology_device_list);
949 	INIT_LIST_HEAD(&temp_topology_device_list);
950 	init_rwsem(&topology_lock);
951 
952 	memset(&sys_props, 0, sizeof(sys_props));
953 
954 	/* Proximity domains in ACPI CRAT tables start counting at
955 	 * 0. The same should be true for virtual CRAT tables created
956 	 * at this stage. GPUs added later in kfd_topology_add_device
957 	 * use a counter.
958 	 */
959 	proximity_domain = 0;
960 
961 	/*
962 	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
963 	 * or if ACPI CRAT is invalid create a virtual CRAT.
964 	 * NOTE: The current implementation expects all AMD APUs to have
965 	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
966 	 */
967 	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
968 	if (!ret) {
969 		ret = kfd_parse_crat_table(crat_image,
970 					   &temp_topology_device_list,
971 					   proximity_domain);
972 		if (ret ||
973 		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
974 			kfd_release_topology_device_list(
975 				&temp_topology_device_list);
976 			kfd_destroy_crat_image(crat_image);
977 			crat_image = NULL;
978 		}
979 	}
980 
981 	if (!crat_image) {
982 		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
983 						    COMPUTE_UNIT_CPU, NULL,
984 						    proximity_domain);
985 		cpu_only_node = 1;
986 		if (ret) {
987 			pr_err("Error creating VCRAT table for CPU\n");
988 			return ret;
989 		}
990 
991 		ret = kfd_parse_crat_table(crat_image,
992 					   &temp_topology_device_list,
993 					   proximity_domain);
994 		if (ret) {
995 			pr_err("Error parsing VCRAT table for CPU\n");
996 			goto err;
997 		}
998 	}
999 
1000 	kdev = list_first_entry(&temp_topology_device_list,
1001 				struct kfd_topology_device, list);
1002 	kfd_add_perf_to_topology(kdev);
1003 
1004 	down_write(&topology_lock);
1005 	kfd_topology_update_device_list(&temp_topology_device_list,
1006 					&topology_device_list);
1007 	atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
1008 	ret = kfd_topology_update_sysfs();
1009 	up_write(&topology_lock);
1010 
1011 	if (!ret) {
1012 		sys_props.generation_count++;
1013 		kfd_update_system_properties();
1014 		kfd_debug_print_topology();
1015 		pr_info("Finished initializing topology\n");
1016 	} else
1017 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1018 
1019 	/* For nodes with GPU, this information gets added
1020 	 * when GPU is detected (kfd_topology_add_device).
1021 	 */
1022 	if (cpu_only_node) {
1023 		/* Add additional information to CPU only node created above */
1024 		down_write(&topology_lock);
1025 		kdev = list_first_entry(&topology_device_list,
1026 				struct kfd_topology_device, list);
1027 		up_write(&topology_lock);
1028 		kfd_add_non_crat_information(kdev);
1029 	}
1030 
1031 err:
1032 	kfd_destroy_crat_image(crat_image);
1033 	return ret;
1034 }
1035 
1036 void kfd_topology_shutdown(void)
1037 {
1038 	down_write(&topology_lock);
1039 	kfd_topology_release_sysfs();
1040 	kfd_release_live_view();
1041 	up_write(&topology_lock);
1042 }
1043 
1044 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1045 {
1046 	uint32_t hashout;
1047 	uint32_t buf[7];
1048 	uint64_t local_mem_size;
1049 	int i;
1050 	struct kfd_local_mem_info local_mem_info;
1051 
1052 	if (!gpu)
1053 		return 0;
1054 
1055 	gpu->kfd2kgd->get_local_mem_info(gpu->kgd, &local_mem_info);
1056 
1057 	local_mem_size = local_mem_info.local_mem_size_private +
1058 			local_mem_info.local_mem_size_public;
1059 
1060 	buf[0] = gpu->pdev->devfn;
1061 	buf[1] = gpu->pdev->subsystem_vendor;
1062 	buf[2] = gpu->pdev->subsystem_device;
1063 	buf[3] = gpu->pdev->device;
1064 	buf[4] = gpu->pdev->bus->number;
1065 	buf[5] = lower_32_bits(local_mem_size);
1066 	buf[6] = upper_32_bits(local_mem_size);
1067 
1068 	for (i = 0, hashout = 0; i < 7; i++)
1069 		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1070 
1071 	return hashout;
1072 }
1073 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1074  *		the GPU device is not already present in the topology device
1075  *		list then return NULL. This means a new topology device has to
1076  *		be created for this GPU.
1077  * TODO: Rather than assiging @gpu to first topology device withtout
1078  *		gpu attached, it will better to have more stringent check.
1079  */
1080 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1081 {
1082 	struct kfd_topology_device *dev;
1083 	struct kfd_topology_device *out_dev = NULL;
1084 
1085 	down_write(&topology_lock);
1086 	list_for_each_entry(dev, &topology_device_list, list)
1087 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1088 			dev->gpu = gpu;
1089 			out_dev = dev;
1090 			break;
1091 		}
1092 	up_write(&topology_lock);
1093 	return out_dev;
1094 }
1095 
1096 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1097 {
1098 	/*
1099 	 * TODO: Generate an event for thunk about the arrival/removal
1100 	 * of the GPU
1101 	 */
1102 }
1103 
1104 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1105  *		patch this after CRAT parsing.
1106  */
1107 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1108 {
1109 	struct kfd_mem_properties *mem;
1110 	struct kfd_local_mem_info local_mem_info;
1111 
1112 	if (!dev)
1113 		return;
1114 
1115 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1116 	 * single bank of VRAM local memory.
1117 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1118 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1119 	 *	all the banks will report the same mem_clk_max information
1120 	 */
1121 	dev->gpu->kfd2kgd->get_local_mem_info(dev->gpu->kgd,
1122 		&local_mem_info);
1123 
1124 	list_for_each_entry(mem, &dev->mem_props, list)
1125 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1126 }
1127 
1128 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1129 {
1130 	struct kfd_iolink_properties *link, *cpu_link;
1131 	struct kfd_topology_device *cpu_dev;
1132 	uint32_t cap;
1133 	uint32_t cpu_flag = CRAT_IOLINK_FLAGS_ENABLED;
1134 	uint32_t flag = CRAT_IOLINK_FLAGS_ENABLED;
1135 
1136 	if (!dev || !dev->gpu)
1137 		return;
1138 
1139 	pcie_capability_read_dword(dev->gpu->pdev,
1140 			PCI_EXP_DEVCAP2, &cap);
1141 
1142 	if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1143 		     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1144 		cpu_flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1145 			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1146 
1147 	if (!dev->gpu->pci_atomic_requested ||
1148 	    dev->gpu->device_info->asic_family == CHIP_HAWAII)
1149 		flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1150 			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1151 
1152 	/* GPU only creates direct links so apply flags setting to all */
1153 	list_for_each_entry(link, &dev->io_link_props, list) {
1154 		link->flags = flag;
1155 		cpu_dev = kfd_topology_device_by_proximity_domain(
1156 				link->node_to);
1157 		if (cpu_dev) {
1158 			list_for_each_entry(cpu_link,
1159 					    &cpu_dev->io_link_props, list)
1160 				if (cpu_link->node_to == link->node_from)
1161 					cpu_link->flags = cpu_flag;
1162 		}
1163 	}
1164 }
1165 
1166 int kfd_topology_add_device(struct kfd_dev *gpu)
1167 {
1168 	uint32_t gpu_id;
1169 	struct kfd_topology_device *dev;
1170 	struct kfd_cu_info cu_info;
1171 	int res = 0;
1172 	struct list_head temp_topology_device_list;
1173 	void *crat_image = NULL;
1174 	size_t image_size = 0;
1175 	int proximity_domain;
1176 
1177 	INIT_LIST_HEAD(&temp_topology_device_list);
1178 
1179 	gpu_id = kfd_generate_gpu_id(gpu);
1180 
1181 	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1182 
1183 	proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);
1184 
1185 	/* Check to see if this gpu device exists in the topology_device_list.
1186 	 * If so, assign the gpu to that device,
1187 	 * else create a Virtual CRAT for this gpu device and then parse that
1188 	 * CRAT to create a new topology device. Once created assign the gpu to
1189 	 * that topology device
1190 	 */
1191 	dev = kfd_assign_gpu(gpu);
1192 	if (!dev) {
1193 		res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1194 						    COMPUTE_UNIT_GPU, gpu,
1195 						    proximity_domain);
1196 		if (res) {
1197 			pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1198 			       gpu_id);
1199 			return res;
1200 		}
1201 		res = kfd_parse_crat_table(crat_image,
1202 					   &temp_topology_device_list,
1203 					   proximity_domain);
1204 		if (res) {
1205 			pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1206 			       gpu_id);
1207 			goto err;
1208 		}
1209 
1210 		down_write(&topology_lock);
1211 		kfd_topology_update_device_list(&temp_topology_device_list,
1212 			&topology_device_list);
1213 
1214 		/* Update the SYSFS tree, since we added another topology
1215 		 * device
1216 		 */
1217 		res = kfd_topology_update_sysfs();
1218 		up_write(&topology_lock);
1219 
1220 		if (!res)
1221 			sys_props.generation_count++;
1222 		else
1223 			pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1224 						gpu_id, res);
1225 		dev = kfd_assign_gpu(gpu);
1226 		if (WARN_ON(!dev)) {
1227 			res = -ENODEV;
1228 			goto err;
1229 		}
1230 	}
1231 
1232 	dev->gpu_id = gpu_id;
1233 	gpu->id = gpu_id;
1234 
1235 	/* TODO: Move the following lines to function
1236 	 *	kfd_add_non_crat_information
1237 	 */
1238 
1239 	/* Fill-in additional information that is not available in CRAT but
1240 	 * needed for the topology
1241 	 */
1242 
1243 	dev->gpu->kfd2kgd->get_cu_info(dev->gpu->kgd, &cu_info);
1244 	dev->node_props.simd_arrays_per_engine =
1245 		cu_info.num_shader_arrays_per_engine;
1246 
1247 	dev->node_props.vendor_id = gpu->pdev->vendor;
1248 	dev->node_props.device_id = gpu->pdev->device;
1249 	dev->node_props.location_id = PCI_DEVID(gpu->pdev->bus->number,
1250 		gpu->pdev->devfn);
1251 	dev->node_props.max_engine_clk_fcompute =
1252 		dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(dev->gpu->kgd);
1253 	dev->node_props.max_engine_clk_ccompute =
1254 		cpufreq_quick_get_max(0) / 1000;
1255 	dev->node_props.drm_render_minor =
1256 		gpu->shared_resources.drm_render_minor;
1257 
1258 	dev->node_props.hive_id = gpu->hive_id;
1259 
1260 	kfd_fill_mem_clk_max_info(dev);
1261 	kfd_fill_iolink_non_crat_info(dev);
1262 
1263 	switch (dev->gpu->device_info->asic_family) {
1264 	case CHIP_KAVERI:
1265 	case CHIP_HAWAII:
1266 	case CHIP_TONGA:
1267 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
1268 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1269 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1270 		break;
1271 	case CHIP_CARRIZO:
1272 	case CHIP_FIJI:
1273 	case CHIP_POLARIS10:
1274 	case CHIP_POLARIS11:
1275 		pr_debug("Adding doorbell packet type capability\n");
1276 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
1277 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1278 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1279 		break;
1280 	case CHIP_VEGA10:
1281 	case CHIP_VEGA20:
1282 	case CHIP_RAVEN:
1283 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1284 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1285 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1286 		break;
1287 	default:
1288 		WARN(1, "Unexpected ASIC family %u",
1289 		     dev->gpu->device_info->asic_family);
1290 	}
1291 
1292 	/* Fix errors in CZ CRAT.
1293 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
1294 	 *		because it doesn't consider masked out CUs
1295 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1296 	 * capability flag: Carrizo CRAT doesn't report IOMMU flags
1297 	 */
1298 	if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1299 		dev->node_props.simd_count =
1300 			cu_info.simd_per_cu * cu_info.cu_active_number;
1301 		dev->node_props.max_waves_per_simd = 10;
1302 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
1303 	}
1304 
1305 	kfd_debug_print_topology();
1306 
1307 	if (!res)
1308 		kfd_notify_gpu_change(gpu_id, 1);
1309 err:
1310 	kfd_destroy_crat_image(crat_image);
1311 	return res;
1312 }
1313 
1314 int kfd_topology_remove_device(struct kfd_dev *gpu)
1315 {
1316 	struct kfd_topology_device *dev, *tmp;
1317 	uint32_t gpu_id;
1318 	int res = -ENODEV;
1319 
1320 	down_write(&topology_lock);
1321 
1322 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
1323 		if (dev->gpu == gpu) {
1324 			gpu_id = dev->gpu_id;
1325 			kfd_remove_sysfs_node_entry(dev);
1326 			kfd_release_topology_device(dev);
1327 			sys_props.num_devices--;
1328 			res = 0;
1329 			if (kfd_topology_update_sysfs() < 0)
1330 				kfd_topology_release_sysfs();
1331 			break;
1332 		}
1333 
1334 	up_write(&topology_lock);
1335 
1336 	if (!res)
1337 		kfd_notify_gpu_change(gpu_id, 0);
1338 
1339 	return res;
1340 }
1341 
1342 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
1343  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
1344  *	returned through @kdev
1345  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
1346  *		-1: If end of list
1347  */
1348 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
1349 {
1350 
1351 	struct kfd_topology_device *top_dev;
1352 	uint8_t device_idx = 0;
1353 
1354 	*kdev = NULL;
1355 	down_read(&topology_lock);
1356 
1357 	list_for_each_entry(top_dev, &topology_device_list, list) {
1358 		if (device_idx == idx) {
1359 			*kdev = top_dev->gpu;
1360 			up_read(&topology_lock);
1361 			return 0;
1362 		}
1363 
1364 		device_idx++;
1365 	}
1366 
1367 	up_read(&topology_lock);
1368 
1369 	return -1;
1370 
1371 }
1372 
1373 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
1374 {
1375 	const struct cpuinfo_x86 *cpuinfo;
1376 	int first_cpu_of_numa_node;
1377 
1378 	if (!cpumask || cpumask == cpu_none_mask)
1379 		return -1;
1380 	first_cpu_of_numa_node = cpumask_first(cpumask);
1381 	if (first_cpu_of_numa_node >= nr_cpu_ids)
1382 		return -1;
1383 	cpuinfo = &cpu_data(first_cpu_of_numa_node);
1384 
1385 	return cpuinfo->apicid;
1386 }
1387 
1388 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
1389  *	of the given NUMA node (numa_node_id)
1390  * Return -1 on failure
1391  */
1392 int kfd_numa_node_to_apic_id(int numa_node_id)
1393 {
1394 	if (numa_node_id == -1) {
1395 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
1396 		return kfd_cpumask_to_apic_id(cpu_online_mask);
1397 	}
1398 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
1399 }
1400 
1401 #if defined(CONFIG_DEBUG_FS)
1402 
1403 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
1404 {
1405 	struct kfd_topology_device *dev;
1406 	unsigned int i = 0;
1407 	int r = 0;
1408 
1409 	down_read(&topology_lock);
1410 
1411 	list_for_each_entry(dev, &topology_device_list, list) {
1412 		if (!dev->gpu) {
1413 			i++;
1414 			continue;
1415 		}
1416 
1417 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
1418 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
1419 		if (r)
1420 			break;
1421 	}
1422 
1423 	up_read(&topology_lock);
1424 
1425 	return r;
1426 }
1427 
1428 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
1429 {
1430 	struct kfd_topology_device *dev;
1431 	unsigned int i = 0;
1432 	int r = 0;
1433 
1434 	down_read(&topology_lock);
1435 
1436 	list_for_each_entry(dev, &topology_device_list, list) {
1437 		if (!dev->gpu) {
1438 			i++;
1439 			continue;
1440 		}
1441 
1442 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
1443 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
1444 		if (r)
1445 			break;
1446 	}
1447 
1448 	up_read(&topology_lock);
1449 
1450 	return r;
1451 }
1452 
1453 #endif
1454