1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_svm.h"
40 #include "kfd_debug.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44 
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48 
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51 
52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 						uint32_t proximity_domain)
54 {
55 	struct kfd_topology_device *top_dev;
56 	struct kfd_topology_device *device = NULL;
57 
58 	list_for_each_entry(top_dev, &topology_device_list, list)
59 		if (top_dev->proximity_domain == proximity_domain) {
60 			device = top_dev;
61 			break;
62 		}
63 
64 	return device;
65 }
66 
67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 						uint32_t proximity_domain)
69 {
70 	struct kfd_topology_device *device = NULL;
71 
72 	down_read(&topology_lock);
73 
74 	device = kfd_topology_device_by_proximity_domain_no_lock(
75 							proximity_domain);
76 	up_read(&topology_lock);
77 
78 	return device;
79 }
80 
81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83 	struct kfd_topology_device *top_dev = NULL;
84 	struct kfd_topology_device *ret = NULL;
85 
86 	down_read(&topology_lock);
87 
88 	list_for_each_entry(top_dev, &topology_device_list, list)
89 		if (top_dev->gpu_id == gpu_id) {
90 			ret = top_dev;
91 			break;
92 		}
93 
94 	up_read(&topology_lock);
95 
96 	return ret;
97 }
98 
99 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100 {
101 	struct kfd_topology_device *top_dev;
102 
103 	top_dev = kfd_topology_device_by_id(gpu_id);
104 	if (!top_dev)
105 		return NULL;
106 
107 	return top_dev->gpu;
108 }
109 
110 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112 	struct kfd_topology_device *top_dev;
113 	struct kfd_node *device = NULL;
114 
115 	down_read(&topology_lock);
116 
117 	list_for_each_entry(top_dev, &topology_device_list, list)
118 		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119 			device = top_dev->gpu;
120 			break;
121 		}
122 
123 	up_read(&topology_lock);
124 
125 	return device;
126 }
127 
128 /* Called with write topology_lock acquired */
129 static void kfd_release_topology_device(struct kfd_topology_device *dev)
130 {
131 	struct kfd_mem_properties *mem;
132 	struct kfd_cache_properties *cache;
133 	struct kfd_iolink_properties *iolink;
134 	struct kfd_iolink_properties *p2plink;
135 	struct kfd_perf_properties *perf;
136 
137 	list_del(&dev->list);
138 
139 	while (dev->mem_props.next != &dev->mem_props) {
140 		mem = container_of(dev->mem_props.next,
141 				struct kfd_mem_properties, list);
142 		list_del(&mem->list);
143 		kfree(mem);
144 	}
145 
146 	while (dev->cache_props.next != &dev->cache_props) {
147 		cache = container_of(dev->cache_props.next,
148 				struct kfd_cache_properties, list);
149 		list_del(&cache->list);
150 		kfree(cache);
151 	}
152 
153 	while (dev->io_link_props.next != &dev->io_link_props) {
154 		iolink = container_of(dev->io_link_props.next,
155 				struct kfd_iolink_properties, list);
156 		list_del(&iolink->list);
157 		kfree(iolink);
158 	}
159 
160 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161 		p2plink = container_of(dev->p2p_link_props.next,
162 				struct kfd_iolink_properties, list);
163 		list_del(&p2plink->list);
164 		kfree(p2plink);
165 	}
166 
167 	while (dev->perf_props.next != &dev->perf_props) {
168 		perf = container_of(dev->perf_props.next,
169 				struct kfd_perf_properties, list);
170 		list_del(&perf->list);
171 		kfree(perf);
172 	}
173 
174 	kfree(dev);
175 }
176 
177 void kfd_release_topology_device_list(struct list_head *device_list)
178 {
179 	struct kfd_topology_device *dev;
180 
181 	while (!list_empty(device_list)) {
182 		dev = list_first_entry(device_list,
183 				       struct kfd_topology_device, list);
184 		kfd_release_topology_device(dev);
185 	}
186 }
187 
188 static void kfd_release_live_view(void)
189 {
190 	kfd_release_topology_device_list(&topology_device_list);
191 	memset(&sys_props, 0, sizeof(sys_props));
192 }
193 
194 struct kfd_topology_device *kfd_create_topology_device(
195 				struct list_head *device_list)
196 {
197 	struct kfd_topology_device *dev;
198 
199 	dev = kfd_alloc_struct(dev);
200 	if (!dev) {
201 		pr_err("No memory to allocate a topology device");
202 		return NULL;
203 	}
204 
205 	INIT_LIST_HEAD(&dev->mem_props);
206 	INIT_LIST_HEAD(&dev->cache_props);
207 	INIT_LIST_HEAD(&dev->io_link_props);
208 	INIT_LIST_HEAD(&dev->p2p_link_props);
209 	INIT_LIST_HEAD(&dev->perf_props);
210 
211 	list_add_tail(&dev->list, device_list);
212 
213 	return dev;
214 }
215 
216 
217 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
218 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
219 				  fmt, __VA_ARGS__))
220 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
221 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
223 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224 #define sysfs_show_32bit_val(buffer, offs, value) \
225 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226 #define sysfs_show_str_val(buffer, offs, value) \
227 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228 
229 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230 		char *buffer)
231 {
232 	int offs = 0;
233 
234 	/* Making sure that the buffer is an empty string */
235 	buffer[0] = 0;
236 
237 	if (attr == &sys_props.attr_genid) {
238 		sysfs_show_32bit_val(buffer, offs,
239 				     sys_props.generation_count);
240 	} else if (attr == &sys_props.attr_props) {
241 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242 				      sys_props.platform_oem);
243 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
244 				      sys_props.platform_id);
245 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246 				      sys_props.platform_rev);
247 	} else {
248 		offs = -EINVAL;
249 	}
250 
251 	return offs;
252 }
253 
254 static void kfd_topology_kobj_release(struct kobject *kobj)
255 {
256 	kfree(kobj);
257 }
258 
259 static const struct sysfs_ops sysprops_ops = {
260 	.show = sysprops_show,
261 };
262 
263 static const struct kobj_type sysprops_type = {
264 	.release = kfd_topology_kobj_release,
265 	.sysfs_ops = &sysprops_ops,
266 };
267 
268 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269 		char *buffer)
270 {
271 	int offs = 0;
272 	struct kfd_iolink_properties *iolink;
273 
274 	/* Making sure that the buffer is an empty string */
275 	buffer[0] = 0;
276 
277 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
278 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279 		return -EPERM;
280 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289 			      iolink->min_bandwidth);
290 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291 			      iolink->max_bandwidth);
292 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293 			      iolink->rec_transfer_size);
294 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295 
296 	return offs;
297 }
298 
299 static const struct sysfs_ops iolink_ops = {
300 	.show = iolink_show,
301 };
302 
303 static const struct kobj_type iolink_type = {
304 	.release = kfd_topology_kobj_release,
305 	.sysfs_ops = &iolink_ops,
306 };
307 
308 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309 		char *buffer)
310 {
311 	int offs = 0;
312 	struct kfd_mem_properties *mem;
313 
314 	/* Making sure that the buffer is an empty string */
315 	buffer[0] = 0;
316 
317 	mem = container_of(attr, struct kfd_mem_properties, attr);
318 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319 		return -EPERM;
320 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322 			      mem->size_in_bytes);
323 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326 			      mem->mem_clk_max);
327 
328 	return offs;
329 }
330 
331 static const struct sysfs_ops mem_ops = {
332 	.show = mem_show,
333 };
334 
335 static const struct kobj_type mem_type = {
336 	.release = kfd_topology_kobj_release,
337 	.sysfs_ops = &mem_ops,
338 };
339 
340 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341 		char *buffer)
342 {
343 	int offs = 0;
344 	uint32_t i, j;
345 	struct kfd_cache_properties *cache;
346 
347 	/* Making sure that the buffer is an empty string */
348 	buffer[0] = 0;
349 	cache = container_of(attr, struct kfd_cache_properties, attr);
350 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351 		return -EPERM;
352 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353 			cache->processor_id_low);
354 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357 			      cache->cacheline_size);
358 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359 			      cache->cachelines_per_tag);
360 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363 
364 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365 	for (i = 0; i < cache->sibling_map_size; i++)
366 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367 			/* Check each bit */
368 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369 						(cache->sibling_map[i] >> j) & 1);
370 
371 	/* Replace the last "," with end of line */
372 	buffer[offs-1] = '\n';
373 	return offs;
374 }
375 
376 static const struct sysfs_ops cache_ops = {
377 	.show = kfd_cache_show,
378 };
379 
380 static const struct kobj_type cache_type = {
381 	.release = kfd_topology_kobj_release,
382 	.sysfs_ops = &cache_ops,
383 };
384 
385 /****** Sysfs of Performance Counters ******/
386 
387 struct kfd_perf_attr {
388 	struct kobj_attribute attr;
389 	uint32_t data;
390 };
391 
392 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393 			char *buf)
394 {
395 	int offs = 0;
396 	struct kfd_perf_attr *attr;
397 
398 	buf[0] = 0;
399 	attr = container_of(attrs, struct kfd_perf_attr, attr);
400 	if (!attr->data) /* invalid data for PMC */
401 		return 0;
402 	else
403 		return sysfs_show_32bit_val(buf, offs, attr->data);
404 }
405 
406 #define KFD_PERF_DESC(_name, _data)			\
407 {							\
408 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
409 	.data = _data,					\
410 }
411 
412 static struct kfd_perf_attr perf_attr_iommu[] = {
413 	KFD_PERF_DESC(max_concurrent, 0),
414 	KFD_PERF_DESC(num_counters, 0),
415 	KFD_PERF_DESC(counter_ids, 0),
416 };
417 /****************************************/
418 
419 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420 		char *buffer)
421 {
422 	int offs = 0;
423 	struct kfd_topology_device *dev;
424 	uint32_t log_max_watch_addr;
425 
426 	/* Making sure that the buffer is an empty string */
427 	buffer[0] = 0;
428 
429 	if (strcmp(attr->name, "gpu_id") == 0) {
430 		dev = container_of(attr, struct kfd_topology_device,
431 				attr_gpuid);
432 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433 			return -EPERM;
434 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435 	}
436 
437 	if (strcmp(attr->name, "name") == 0) {
438 		dev = container_of(attr, struct kfd_topology_device,
439 				attr_name);
440 
441 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442 			return -EPERM;
443 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444 	}
445 
446 	dev = container_of(attr, struct kfd_topology_device,
447 			attr_props);
448 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449 		return -EPERM;
450 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451 			      dev->node_props.cpu_cores_count);
452 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
453 			      dev->gpu ? (dev->node_props.simd_count *
454 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
455 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
456 			      dev->node_props.mem_banks_count);
457 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
458 			      dev->node_props.caches_count);
459 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
460 			      dev->node_props.io_links_count);
461 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
462 			      dev->node_props.p2p_links_count);
463 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
464 			      dev->node_props.cpu_core_id_base);
465 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
466 			      dev->node_props.simd_id_base);
467 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
468 			      dev->node_props.max_waves_per_simd);
469 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
470 			      dev->node_props.lds_size_in_kb);
471 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
472 			      dev->node_props.gds_size_in_kb);
473 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
474 			      dev->node_props.num_gws);
475 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
476 			      dev->node_props.wave_front_size);
477 	sysfs_show_32bit_prop(buffer, offs, "array_count",
478 			      dev->gpu ? (dev->node_props.array_count *
479 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
480 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
481 			      dev->node_props.simd_arrays_per_engine);
482 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
483 			      dev->node_props.cu_per_simd_array);
484 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
485 			      dev->node_props.simd_per_cu);
486 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
487 			      dev->node_props.max_slots_scratch_cu);
488 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
489 			      dev->node_props.gfx_target_version);
490 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
491 			      dev->node_props.vendor_id);
492 	sysfs_show_32bit_prop(buffer, offs, "device_id",
493 			      dev->node_props.device_id);
494 	sysfs_show_32bit_prop(buffer, offs, "location_id",
495 			      dev->node_props.location_id);
496 	sysfs_show_32bit_prop(buffer, offs, "domain",
497 			      dev->node_props.domain);
498 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
499 			      dev->node_props.drm_render_minor);
500 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
501 			      dev->node_props.hive_id);
502 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
503 			      dev->node_props.num_sdma_engines);
504 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
505 			      dev->node_props.num_sdma_xgmi_engines);
506 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
507 			      dev->node_props.num_sdma_queues_per_engine);
508 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
509 			      dev->node_props.num_cp_queues);
510 
511 	if (dev->gpu) {
512 		log_max_watch_addr =
513 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
514 
515 		if (log_max_watch_addr) {
516 			dev->node_props.capability |=
517 					HSA_CAP_WATCH_POINTS_SUPPORTED;
518 
519 			dev->node_props.capability |=
520 				((log_max_watch_addr <<
521 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
522 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
523 		}
524 
525 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
526 			dev->node_props.capability |=
527 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
528 
529 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
530 			dev->node_props.max_engine_clk_fcompute);
531 
532 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
533 
534 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
535 				      dev->gpu->kfd->mec_fw_version);
536 		sysfs_show_32bit_prop(buffer, offs, "capability",
537 				      dev->node_props.capability);
538 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
539 				      dev->node_props.debug_prop);
540 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
541 				      dev->gpu->kfd->sdma_fw_version);
542 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
543 				      dev->gpu->adev->unique_id);
544 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
545 				      NUM_XCC(dev->gpu->xcc_mask));
546 	}
547 
548 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
549 				     cpufreq_quick_get_max(0)/1000);
550 }
551 
552 static const struct sysfs_ops node_ops = {
553 	.show = node_show,
554 };
555 
556 static const struct kobj_type node_type = {
557 	.release = kfd_topology_kobj_release,
558 	.sysfs_ops = &node_ops,
559 };
560 
561 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
562 {
563 	sysfs_remove_file(kobj, attr);
564 	kobject_del(kobj);
565 	kobject_put(kobj);
566 }
567 
568 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
569 {
570 	struct kfd_iolink_properties *p2plink;
571 	struct kfd_iolink_properties *iolink;
572 	struct kfd_cache_properties *cache;
573 	struct kfd_mem_properties *mem;
574 	struct kfd_perf_properties *perf;
575 
576 	if (dev->kobj_iolink) {
577 		list_for_each_entry(iolink, &dev->io_link_props, list)
578 			if (iolink->kobj) {
579 				kfd_remove_sysfs_file(iolink->kobj,
580 							&iolink->attr);
581 				iolink->kobj = NULL;
582 			}
583 		kobject_del(dev->kobj_iolink);
584 		kobject_put(dev->kobj_iolink);
585 		dev->kobj_iolink = NULL;
586 	}
587 
588 	if (dev->kobj_p2plink) {
589 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
590 			if (p2plink->kobj) {
591 				kfd_remove_sysfs_file(p2plink->kobj,
592 							&p2plink->attr);
593 				p2plink->kobj = NULL;
594 			}
595 		kobject_del(dev->kobj_p2plink);
596 		kobject_put(dev->kobj_p2plink);
597 		dev->kobj_p2plink = NULL;
598 	}
599 
600 	if (dev->kobj_cache) {
601 		list_for_each_entry(cache, &dev->cache_props, list)
602 			if (cache->kobj) {
603 				kfd_remove_sysfs_file(cache->kobj,
604 							&cache->attr);
605 				cache->kobj = NULL;
606 			}
607 		kobject_del(dev->kobj_cache);
608 		kobject_put(dev->kobj_cache);
609 		dev->kobj_cache = NULL;
610 	}
611 
612 	if (dev->kobj_mem) {
613 		list_for_each_entry(mem, &dev->mem_props, list)
614 			if (mem->kobj) {
615 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
616 				mem->kobj = NULL;
617 			}
618 		kobject_del(dev->kobj_mem);
619 		kobject_put(dev->kobj_mem);
620 		dev->kobj_mem = NULL;
621 	}
622 
623 	if (dev->kobj_perf) {
624 		list_for_each_entry(perf, &dev->perf_props, list) {
625 			kfree(perf->attr_group);
626 			perf->attr_group = NULL;
627 		}
628 		kobject_del(dev->kobj_perf);
629 		kobject_put(dev->kobj_perf);
630 		dev->kobj_perf = NULL;
631 	}
632 
633 	if (dev->kobj_node) {
634 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
635 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
636 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
637 		kobject_del(dev->kobj_node);
638 		kobject_put(dev->kobj_node);
639 		dev->kobj_node = NULL;
640 	}
641 }
642 
643 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
644 		uint32_t id)
645 {
646 	struct kfd_iolink_properties *p2plink;
647 	struct kfd_iolink_properties *iolink;
648 	struct kfd_cache_properties *cache;
649 	struct kfd_mem_properties *mem;
650 	struct kfd_perf_properties *perf;
651 	int ret;
652 	uint32_t i, num_attrs;
653 	struct attribute **attrs;
654 
655 	if (WARN_ON(dev->kobj_node))
656 		return -EEXIST;
657 
658 	/*
659 	 * Creating the sysfs folders
660 	 */
661 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
662 	if (!dev->kobj_node)
663 		return -ENOMEM;
664 
665 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
666 			sys_props.kobj_nodes, "%d", id);
667 	if (ret < 0) {
668 		kobject_put(dev->kobj_node);
669 		return ret;
670 	}
671 
672 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
673 	if (!dev->kobj_mem)
674 		return -ENOMEM;
675 
676 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
677 	if (!dev->kobj_cache)
678 		return -ENOMEM;
679 
680 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
681 	if (!dev->kobj_iolink)
682 		return -ENOMEM;
683 
684 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
685 	if (!dev->kobj_p2plink)
686 		return -ENOMEM;
687 
688 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
689 	if (!dev->kobj_perf)
690 		return -ENOMEM;
691 
692 	/*
693 	 * Creating sysfs files for node properties
694 	 */
695 	dev->attr_gpuid.name = "gpu_id";
696 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
697 	sysfs_attr_init(&dev->attr_gpuid);
698 	dev->attr_name.name = "name";
699 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
700 	sysfs_attr_init(&dev->attr_name);
701 	dev->attr_props.name = "properties";
702 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
703 	sysfs_attr_init(&dev->attr_props);
704 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
705 	if (ret < 0)
706 		return ret;
707 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
708 	if (ret < 0)
709 		return ret;
710 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
711 	if (ret < 0)
712 		return ret;
713 
714 	i = 0;
715 	list_for_each_entry(mem, &dev->mem_props, list) {
716 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
717 		if (!mem->kobj)
718 			return -ENOMEM;
719 		ret = kobject_init_and_add(mem->kobj, &mem_type,
720 				dev->kobj_mem, "%d", i);
721 		if (ret < 0) {
722 			kobject_put(mem->kobj);
723 			return ret;
724 		}
725 
726 		mem->attr.name = "properties";
727 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
728 		sysfs_attr_init(&mem->attr);
729 		ret = sysfs_create_file(mem->kobj, &mem->attr);
730 		if (ret < 0)
731 			return ret;
732 		i++;
733 	}
734 
735 	i = 0;
736 	list_for_each_entry(cache, &dev->cache_props, list) {
737 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
738 		if (!cache->kobj)
739 			return -ENOMEM;
740 		ret = kobject_init_and_add(cache->kobj, &cache_type,
741 				dev->kobj_cache, "%d", i);
742 		if (ret < 0) {
743 			kobject_put(cache->kobj);
744 			return ret;
745 		}
746 
747 		cache->attr.name = "properties";
748 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
749 		sysfs_attr_init(&cache->attr);
750 		ret = sysfs_create_file(cache->kobj, &cache->attr);
751 		if (ret < 0)
752 			return ret;
753 		i++;
754 	}
755 
756 	i = 0;
757 	list_for_each_entry(iolink, &dev->io_link_props, list) {
758 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
759 		if (!iolink->kobj)
760 			return -ENOMEM;
761 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
762 				dev->kobj_iolink, "%d", i);
763 		if (ret < 0) {
764 			kobject_put(iolink->kobj);
765 			return ret;
766 		}
767 
768 		iolink->attr.name = "properties";
769 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
770 		sysfs_attr_init(&iolink->attr);
771 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
772 		if (ret < 0)
773 			return ret;
774 		i++;
775 	}
776 
777 	i = 0;
778 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
779 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
780 		if (!p2plink->kobj)
781 			return -ENOMEM;
782 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
783 				dev->kobj_p2plink, "%d", i);
784 		if (ret < 0) {
785 			kobject_put(p2plink->kobj);
786 			return ret;
787 		}
788 
789 		p2plink->attr.name = "properties";
790 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
791 		sysfs_attr_init(&p2plink->attr);
792 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
793 		if (ret < 0)
794 			return ret;
795 		i++;
796 	}
797 
798 	/* All hardware blocks have the same number of attributes. */
799 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
800 	list_for_each_entry(perf, &dev->perf_props, list) {
801 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
802 			* num_attrs + sizeof(struct attribute_group),
803 			GFP_KERNEL);
804 		if (!perf->attr_group)
805 			return -ENOMEM;
806 
807 		attrs = (struct attribute **)(perf->attr_group + 1);
808 		if (!strcmp(perf->block_name, "iommu")) {
809 		/* Information of IOMMU's num_counters and counter_ids is shown
810 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
811 		 * duplicate here.
812 		 */
813 			perf_attr_iommu[0].data = perf->max_concurrent;
814 			for (i = 0; i < num_attrs; i++)
815 				attrs[i] = &perf_attr_iommu[i].attr.attr;
816 		}
817 		perf->attr_group->name = perf->block_name;
818 		perf->attr_group->attrs = attrs;
819 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
820 		if (ret < 0)
821 			return ret;
822 	}
823 
824 	return 0;
825 }
826 
827 /* Called with write topology lock acquired */
828 static int kfd_build_sysfs_node_tree(void)
829 {
830 	struct kfd_topology_device *dev;
831 	int ret;
832 	uint32_t i = 0;
833 
834 	list_for_each_entry(dev, &topology_device_list, list) {
835 		ret = kfd_build_sysfs_node_entry(dev, i);
836 		if (ret < 0)
837 			return ret;
838 		i++;
839 	}
840 
841 	return 0;
842 }
843 
844 /* Called with write topology lock acquired */
845 static void kfd_remove_sysfs_node_tree(void)
846 {
847 	struct kfd_topology_device *dev;
848 
849 	list_for_each_entry(dev, &topology_device_list, list)
850 		kfd_remove_sysfs_node_entry(dev);
851 }
852 
853 static int kfd_topology_update_sysfs(void)
854 {
855 	int ret;
856 
857 	if (!sys_props.kobj_topology) {
858 		sys_props.kobj_topology =
859 				kfd_alloc_struct(sys_props.kobj_topology);
860 		if (!sys_props.kobj_topology)
861 			return -ENOMEM;
862 
863 		ret = kobject_init_and_add(sys_props.kobj_topology,
864 				&sysprops_type,  &kfd_device->kobj,
865 				"topology");
866 		if (ret < 0) {
867 			kobject_put(sys_props.kobj_topology);
868 			return ret;
869 		}
870 
871 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
872 				sys_props.kobj_topology);
873 		if (!sys_props.kobj_nodes)
874 			return -ENOMEM;
875 
876 		sys_props.attr_genid.name = "generation_id";
877 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
878 		sysfs_attr_init(&sys_props.attr_genid);
879 		ret = sysfs_create_file(sys_props.kobj_topology,
880 				&sys_props.attr_genid);
881 		if (ret < 0)
882 			return ret;
883 
884 		sys_props.attr_props.name = "system_properties";
885 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
886 		sysfs_attr_init(&sys_props.attr_props);
887 		ret = sysfs_create_file(sys_props.kobj_topology,
888 				&sys_props.attr_props);
889 		if (ret < 0)
890 			return ret;
891 	}
892 
893 	kfd_remove_sysfs_node_tree();
894 
895 	return kfd_build_sysfs_node_tree();
896 }
897 
898 static void kfd_topology_release_sysfs(void)
899 {
900 	kfd_remove_sysfs_node_tree();
901 	if (sys_props.kobj_topology) {
902 		sysfs_remove_file(sys_props.kobj_topology,
903 				&sys_props.attr_genid);
904 		sysfs_remove_file(sys_props.kobj_topology,
905 				&sys_props.attr_props);
906 		if (sys_props.kobj_nodes) {
907 			kobject_del(sys_props.kobj_nodes);
908 			kobject_put(sys_props.kobj_nodes);
909 			sys_props.kobj_nodes = NULL;
910 		}
911 		kobject_del(sys_props.kobj_topology);
912 		kobject_put(sys_props.kobj_topology);
913 		sys_props.kobj_topology = NULL;
914 	}
915 }
916 
917 /* Called with write topology_lock acquired */
918 static void kfd_topology_update_device_list(struct list_head *temp_list,
919 					struct list_head *master_list)
920 {
921 	while (!list_empty(temp_list)) {
922 		list_move_tail(temp_list->next, master_list);
923 		sys_props.num_devices++;
924 	}
925 }
926 
927 static void kfd_debug_print_topology(void)
928 {
929 	struct kfd_topology_device *dev;
930 
931 	down_read(&topology_lock);
932 
933 	dev = list_last_entry(&topology_device_list,
934 			struct kfd_topology_device, list);
935 	if (dev) {
936 		if (dev->node_props.cpu_cores_count &&
937 				dev->node_props.simd_count) {
938 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
939 				dev->node_props.device_id,
940 				dev->node_props.vendor_id);
941 		} else if (dev->node_props.cpu_cores_count)
942 			pr_info("Topology: Add CPU node\n");
943 		else if (dev->node_props.simd_count)
944 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
945 				dev->node_props.device_id,
946 				dev->node_props.vendor_id);
947 	}
948 	up_read(&topology_lock);
949 }
950 
951 /* Helper function for intializing platform_xx members of
952  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
953  */
954 static void kfd_update_system_properties(void)
955 {
956 	struct kfd_topology_device *dev;
957 
958 	down_read(&topology_lock);
959 	dev = list_last_entry(&topology_device_list,
960 			struct kfd_topology_device, list);
961 	if (dev) {
962 		sys_props.platform_id =
963 			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
964 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
965 		sys_props.platform_rev = dev->oem_revision;
966 	}
967 	up_read(&topology_lock);
968 }
969 
970 static void find_system_memory(const struct dmi_header *dm,
971 	void *private)
972 {
973 	struct kfd_mem_properties *mem;
974 	u16 mem_width, mem_clock;
975 	struct kfd_topology_device *kdev =
976 		(struct kfd_topology_device *)private;
977 	const u8 *dmi_data = (const u8 *)(dm + 1);
978 
979 	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
980 		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
981 		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
982 		list_for_each_entry(mem, &kdev->mem_props, list) {
983 			if (mem_width != 0xFFFF && mem_width != 0)
984 				mem->width = mem_width;
985 			if (mem_clock != 0)
986 				mem->mem_clk_max = mem_clock;
987 		}
988 	}
989 }
990 
991 /* kfd_add_non_crat_information - Add information that is not currently
992  *	defined in CRAT but is necessary for KFD topology
993  * @dev - topology device to which addition info is added
994  */
995 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
996 {
997 	/* Check if CPU only node. */
998 	if (!kdev->gpu) {
999 		/* Add system memory information */
1000 		dmi_walk(find_system_memory, kdev);
1001 	}
1002 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1003 }
1004 
1005 int kfd_topology_init(void)
1006 {
1007 	void *crat_image = NULL;
1008 	size_t image_size = 0;
1009 	int ret;
1010 	struct list_head temp_topology_device_list;
1011 	int cpu_only_node = 0;
1012 	struct kfd_topology_device *kdev;
1013 	int proximity_domain;
1014 
1015 	/* topology_device_list - Master list of all topology devices
1016 	 * temp_topology_device_list - temporary list created while parsing CRAT
1017 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1018 	 * topology_device_list
1019 	 */
1020 
1021 	/* Initialize the head for the both the lists */
1022 	INIT_LIST_HEAD(&topology_device_list);
1023 	INIT_LIST_HEAD(&temp_topology_device_list);
1024 	init_rwsem(&topology_lock);
1025 
1026 	memset(&sys_props, 0, sizeof(sys_props));
1027 
1028 	/* Proximity domains in ACPI CRAT tables start counting at
1029 	 * 0. The same should be true for virtual CRAT tables created
1030 	 * at this stage. GPUs added later in kfd_topology_add_device
1031 	 * use a counter.
1032 	 */
1033 	proximity_domain = 0;
1034 
1035 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1036 					    COMPUTE_UNIT_CPU, NULL,
1037 					    proximity_domain);
1038 	cpu_only_node = 1;
1039 	if (ret) {
1040 		pr_err("Error creating VCRAT table for CPU\n");
1041 		return ret;
1042 	}
1043 
1044 	ret = kfd_parse_crat_table(crat_image,
1045 				   &temp_topology_device_list,
1046 				   proximity_domain);
1047 	if (ret) {
1048 		pr_err("Error parsing VCRAT table for CPU\n");
1049 		goto err;
1050 	}
1051 
1052 	kdev = list_first_entry(&temp_topology_device_list,
1053 				struct kfd_topology_device, list);
1054 
1055 	down_write(&topology_lock);
1056 	kfd_topology_update_device_list(&temp_topology_device_list,
1057 					&topology_device_list);
1058 	topology_crat_proximity_domain = sys_props.num_devices-1;
1059 	ret = kfd_topology_update_sysfs();
1060 	up_write(&topology_lock);
1061 
1062 	if (!ret) {
1063 		sys_props.generation_count++;
1064 		kfd_update_system_properties();
1065 		kfd_debug_print_topology();
1066 	} else
1067 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1068 
1069 	/* For nodes with GPU, this information gets added
1070 	 * when GPU is detected (kfd_topology_add_device).
1071 	 */
1072 	if (cpu_only_node) {
1073 		/* Add additional information to CPU only node created above */
1074 		down_write(&topology_lock);
1075 		kdev = list_first_entry(&topology_device_list,
1076 				struct kfd_topology_device, list);
1077 		up_write(&topology_lock);
1078 		kfd_add_non_crat_information(kdev);
1079 	}
1080 
1081 err:
1082 	kfd_destroy_crat_image(crat_image);
1083 	return ret;
1084 }
1085 
1086 void kfd_topology_shutdown(void)
1087 {
1088 	down_write(&topology_lock);
1089 	kfd_topology_release_sysfs();
1090 	kfd_release_live_view();
1091 	up_write(&topology_lock);
1092 }
1093 
1094 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1095 {
1096 	uint32_t hashout;
1097 	uint32_t buf[8];
1098 	uint64_t local_mem_size;
1099 	int i;
1100 
1101 	if (!gpu)
1102 		return 0;
1103 
1104 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1105 			gpu->local_mem_info.local_mem_size_public;
1106 	buf[0] = gpu->adev->pdev->devfn;
1107 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1108 		(gpu->adev->pdev->subsystem_device << 16);
1109 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1110 	buf[3] = gpu->adev->pdev->device;
1111 	buf[4] = gpu->adev->pdev->bus->number;
1112 	buf[5] = lower_32_bits(local_mem_size);
1113 	buf[6] = upper_32_bits(local_mem_size);
1114 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1115 
1116 	for (i = 0, hashout = 0; i < 8; i++)
1117 		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1118 
1119 	return hashout;
1120 }
1121 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1122  *		the GPU device is not already present in the topology device
1123  *		list then return NULL. This means a new topology device has to
1124  *		be created for this GPU.
1125  */
1126 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1127 {
1128 	struct kfd_topology_device *dev;
1129 	struct kfd_topology_device *out_dev = NULL;
1130 	struct kfd_mem_properties *mem;
1131 	struct kfd_cache_properties *cache;
1132 	struct kfd_iolink_properties *iolink;
1133 	struct kfd_iolink_properties *p2plink;
1134 
1135 	list_for_each_entry(dev, &topology_device_list, list) {
1136 		/* Discrete GPUs need their own topology device list
1137 		 * entries. Don't assign them to CPU/APU nodes.
1138 		 */
1139 		if (dev->node_props.cpu_cores_count)
1140 			continue;
1141 
1142 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1143 			dev->gpu = gpu;
1144 			out_dev = dev;
1145 
1146 			list_for_each_entry(mem, &dev->mem_props, list)
1147 				mem->gpu = dev->gpu;
1148 			list_for_each_entry(cache, &dev->cache_props, list)
1149 				cache->gpu = dev->gpu;
1150 			list_for_each_entry(iolink, &dev->io_link_props, list)
1151 				iolink->gpu = dev->gpu;
1152 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1153 				p2plink->gpu = dev->gpu;
1154 			break;
1155 		}
1156 	}
1157 	return out_dev;
1158 }
1159 
1160 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1161 {
1162 	/*
1163 	 * TODO: Generate an event for thunk about the arrival/removal
1164 	 * of the GPU
1165 	 */
1166 }
1167 
1168 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1169  *		patch this after CRAT parsing.
1170  */
1171 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1172 {
1173 	struct kfd_mem_properties *mem;
1174 	struct kfd_local_mem_info local_mem_info;
1175 
1176 	if (!dev)
1177 		return;
1178 
1179 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1180 	 * single bank of VRAM local memory.
1181 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1182 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1183 	 *	all the banks will report the same mem_clk_max information
1184 	 */
1185 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1186 					 dev->gpu->xcp);
1187 
1188 	list_for_each_entry(mem, &dev->mem_props, list)
1189 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1190 }
1191 
1192 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1193 					struct kfd_topology_device *target_gpu_dev,
1194 					struct kfd_iolink_properties *link)
1195 {
1196 	/* xgmi always supports atomics between links. */
1197 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1198 		return;
1199 
1200 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1201 	if (target_gpu_dev) {
1202 		uint32_t cap;
1203 
1204 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1205 				PCI_EXP_DEVCAP2, &cap);
1206 
1207 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1208 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1209 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1210 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1211 	/* set gpu (dev) flags. */
1212 	} else {
1213 		if (!dev->gpu->kfd->pci_atomic_requested ||
1214 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1215 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1216 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1217 	}
1218 }
1219 
1220 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1221 		struct kfd_iolink_properties *outbound_link,
1222 		struct kfd_iolink_properties *inbound_link)
1223 {
1224 	/* CPU -> GPU with PCIe */
1225 	if (!to_dev->gpu &&
1226 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1227 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1228 
1229 	if (to_dev->gpu) {
1230 		/* GPU <-> GPU with PCIe and
1231 		 * Vega20 with XGMI
1232 		 */
1233 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1234 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1235 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1236 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1238 		}
1239 	}
1240 }
1241 
1242 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1243 {
1244 	struct kfd_iolink_properties *link, *inbound_link;
1245 	struct kfd_topology_device *peer_dev;
1246 
1247 	if (!dev || !dev->gpu)
1248 		return;
1249 
1250 	/* GPU only creates direct links so apply flags setting to all */
1251 	list_for_each_entry(link, &dev->io_link_props, list) {
1252 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1253 		kfd_set_iolink_no_atomics(dev, NULL, link);
1254 		peer_dev = kfd_topology_device_by_proximity_domain(
1255 				link->node_to);
1256 
1257 		if (!peer_dev)
1258 			continue;
1259 
1260 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1261 		if (!peer_dev->gpu &&
1262 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1263 			/*
1264 			 * If the GPU is not part of a GPU hive, use its pci
1265 			 * device location as the hive ID to bind with the CPU.
1266 			 */
1267 			if (!dev->node_props.hive_id)
1268 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1269 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1270 		}
1271 
1272 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1273 									list) {
1274 			if (inbound_link->node_to != link->node_from)
1275 				continue;
1276 
1277 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1278 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1279 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1280 		}
1281 	}
1282 
1283 	/* Create indirect links so apply flags setting to all */
1284 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1285 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1286 		kfd_set_iolink_no_atomics(dev, NULL, link);
1287 		peer_dev = kfd_topology_device_by_proximity_domain(
1288 				link->node_to);
1289 
1290 		if (!peer_dev)
1291 			continue;
1292 
1293 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1294 									list) {
1295 			if (inbound_link->node_to != link->node_from)
1296 				continue;
1297 
1298 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1299 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1300 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1301 		}
1302 	}
1303 }
1304 
1305 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1306 				struct kfd_iolink_properties *p2plink)
1307 {
1308 	int ret;
1309 
1310 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1311 	if (!p2plink->kobj)
1312 		return -ENOMEM;
1313 
1314 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1315 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1316 	if (ret < 0) {
1317 		kobject_put(p2plink->kobj);
1318 		return ret;
1319 	}
1320 
1321 	p2plink->attr.name = "properties";
1322 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1323 	sysfs_attr_init(&p2plink->attr);
1324 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1325 	if (ret < 0)
1326 		return ret;
1327 
1328 	return 0;
1329 }
1330 
1331 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1332 {
1333 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1334 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1335 	struct kfd_topology_device *cpu_dev;
1336 	int ret = 0;
1337 	int i, num_cpu;
1338 
1339 	num_cpu = 0;
1340 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1341 		if (cpu_dev->gpu)
1342 			break;
1343 		num_cpu++;
1344 	}
1345 
1346 	gpu_link = list_first_entry(&kdev->io_link_props,
1347 					struct kfd_iolink_properties, list);
1348 	if (!gpu_link)
1349 		return -ENOMEM;
1350 
1351 	for (i = 0; i < num_cpu; i++) {
1352 		/* CPU <--> GPU */
1353 		if (gpu_link->node_to == i)
1354 			continue;
1355 
1356 		/* find CPU <-->  CPU links */
1357 		cpu_link = NULL;
1358 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359 		if (cpu_dev) {
1360 			list_for_each_entry(tmp_link,
1361 					&cpu_dev->io_link_props, list) {
1362 				if (tmp_link->node_to == gpu_link->node_to) {
1363 					cpu_link = tmp_link;
1364 					break;
1365 				}
1366 			}
1367 		}
1368 
1369 		if (!cpu_link)
1370 			return -ENOMEM;
1371 
1372 		/* CPU <--> CPU <--> GPU, GPU node*/
1373 		props = kfd_alloc_struct(props);
1374 		if (!props)
1375 			return -ENOMEM;
1376 
1377 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378 		props->weight = gpu_link->weight + cpu_link->weight;
1379 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383 
1384 		props->node_from = gpu_node;
1385 		props->node_to = i;
1386 		kdev->node_props.p2p_links_count++;
1387 		list_add_tail(&props->list, &kdev->p2p_link_props);
1388 		ret = kfd_build_p2p_node_entry(kdev, props);
1389 		if (ret < 0)
1390 			return ret;
1391 
1392 		/* for small Bar, no CPU --> GPU in-direct links */
1393 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1394 			/* CPU <--> CPU <--> GPU, CPU node*/
1395 			props2 = kfd_alloc_struct(props2);
1396 			if (!props2)
1397 				return -ENOMEM;
1398 
1399 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400 			props2->node_from = i;
1401 			props2->node_to = gpu_node;
1402 			props2->kobj = NULL;
1403 			cpu_dev->node_props.p2p_links_count++;
1404 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406 			if (ret < 0)
1407 				return ret;
1408 		}
1409 	}
1410 	return ret;
1411 }
1412 
1413 #if defined(CONFIG_HSA_AMD_P2P)
1414 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415 		struct kfd_topology_device *peer, int from, int to)
1416 {
1417 	struct kfd_iolink_properties *props = NULL;
1418 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419 	struct kfd_topology_device *cpu_dev;
1420 	int ret = 0;
1421 
1422 	if (!amdgpu_device_is_peer_accessible(
1423 				kdev->gpu->adev,
1424 				peer->gpu->adev))
1425 		return ret;
1426 
1427 	iolink1 = list_first_entry(&kdev->io_link_props,
1428 							struct kfd_iolink_properties, list);
1429 	if (!iolink1)
1430 		return -ENOMEM;
1431 
1432 	iolink2 = list_first_entry(&peer->io_link_props,
1433 							struct kfd_iolink_properties, list);
1434 	if (!iolink2)
1435 		return -ENOMEM;
1436 
1437 	props = kfd_alloc_struct(props);
1438 	if (!props)
1439 		return -ENOMEM;
1440 
1441 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1442 
1443 	props->weight = iolink1->weight + iolink2->weight;
1444 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1445 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1446 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1447 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1448 
1449 	if (iolink1->node_to != iolink2->node_to) {
1450 		/* CPU->CPU  link*/
1451 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1452 		if (cpu_dev) {
1453 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
1454 				if (iolink3->node_to == iolink2->node_to)
1455 					break;
1456 
1457 			props->weight += iolink3->weight;
1458 			props->min_latency += iolink3->min_latency;
1459 			props->max_latency += iolink3->max_latency;
1460 			props->min_bandwidth = min(props->min_bandwidth,
1461 							iolink3->min_bandwidth);
1462 			props->max_bandwidth = min(props->max_bandwidth,
1463 							iolink3->max_bandwidth);
1464 		} else {
1465 			WARN(1, "CPU node not found");
1466 		}
1467 	}
1468 
1469 	props->node_from = from;
1470 	props->node_to = to;
1471 	peer->node_props.p2p_links_count++;
1472 	list_add_tail(&props->list, &peer->p2p_link_props);
1473 	ret = kfd_build_p2p_node_entry(peer, props);
1474 
1475 	return ret;
1476 }
1477 #endif
1478 
1479 static int kfd_dev_create_p2p_links(void)
1480 {
1481 	struct kfd_topology_device *dev;
1482 	struct kfd_topology_device *new_dev;
1483 #if defined(CONFIG_HSA_AMD_P2P)
1484 	uint32_t i;
1485 #endif
1486 	uint32_t k;
1487 	int ret = 0;
1488 
1489 	k = 0;
1490 	list_for_each_entry(dev, &topology_device_list, list)
1491 		k++;
1492 	if (k < 2)
1493 		return 0;
1494 
1495 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1496 	if (WARN_ON(!new_dev->gpu))
1497 		return 0;
1498 
1499 	k--;
1500 
1501 	/* create in-direct links */
1502 	ret = kfd_create_indirect_link_prop(new_dev, k);
1503 	if (ret < 0)
1504 		goto out;
1505 
1506 	/* create p2p links */
1507 #if defined(CONFIG_HSA_AMD_P2P)
1508 	i = 0;
1509 	list_for_each_entry(dev, &topology_device_list, list) {
1510 		if (dev == new_dev)
1511 			break;
1512 		if (!dev->gpu || !dev->gpu->adev ||
1513 		    (dev->gpu->kfd->hive_id &&
1514 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1515 			goto next;
1516 
1517 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1518 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1519 		if (ret < 0)
1520 			goto out;
1521 
1522 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1523 		if (ret < 0)
1524 			goto out;
1525 next:
1526 		i++;
1527 	}
1528 #endif
1529 
1530 out:
1531 	return ret;
1532 }
1533 
1534 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1535 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1536 				struct kfd_gpu_cache_info *pcache_info,
1537 				struct kfd_cu_info *cu_info,
1538 				int cu_bitmask,
1539 				int cache_type, unsigned int cu_processor_id,
1540 				int cu_block)
1541 {
1542 	unsigned int cu_sibling_map_mask;
1543 	int first_active_cu;
1544 	struct kfd_cache_properties *pcache = NULL;
1545 
1546 	cu_sibling_map_mask = cu_bitmask;
1547 	cu_sibling_map_mask >>= cu_block;
1548 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1549 	first_active_cu = ffs(cu_sibling_map_mask);
1550 
1551 	/* CU could be inactive. In case of shared cache find the first active
1552 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1553 	 * inactive active skip it
1554 	 */
1555 	if (first_active_cu) {
1556 		pcache = kfd_alloc_struct(pcache);
1557 		if (!pcache)
1558 			return -ENOMEM;
1559 
1560 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1561 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1562 		pcache->cache_level = pcache_info[cache_type].cache_level;
1563 		pcache->cache_size = pcache_info[cache_type].cache_size;
1564 
1565 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1566 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1567 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1568 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1569 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1570 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1571 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1572 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1573 
1574 		/* Sibling map is w.r.t processor_id_low, so shift out
1575 		 * inactive CU
1576 		 */
1577 		cu_sibling_map_mask =
1578 			cu_sibling_map_mask >> (first_active_cu - 1);
1579 
1580 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1581 		pcache->sibling_map[1] =
1582 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1583 		pcache->sibling_map[2] =
1584 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1585 		pcache->sibling_map[3] =
1586 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1587 
1588 		pcache->sibling_map_size = 4;
1589 		*props_ext = pcache;
1590 
1591 		return 0;
1592 	}
1593 	return 1;
1594 }
1595 
1596 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1597 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1598 				struct kfd_gpu_cache_info *pcache_info,
1599 				struct kfd_cu_info *cu_info,
1600 				int cache_type, unsigned int cu_processor_id)
1601 {
1602 	unsigned int cu_sibling_map_mask;
1603 	int first_active_cu;
1604 	int i, j, k;
1605 	struct kfd_cache_properties *pcache = NULL;
1606 
1607 	cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1608 	cu_sibling_map_mask &=
1609 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1610 	first_active_cu = ffs(cu_sibling_map_mask);
1611 
1612 	/* CU could be inactive. In case of shared cache find the first active
1613 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1614 	 * inactive active skip it
1615 	 */
1616 	if (first_active_cu) {
1617 		pcache = kfd_alloc_struct(pcache);
1618 		if (!pcache)
1619 			return -ENOMEM;
1620 
1621 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1622 		pcache->processor_id_low = cu_processor_id
1623 					+ (first_active_cu - 1);
1624 		pcache->cache_level = pcache_info[cache_type].cache_level;
1625 		pcache->cache_size = pcache_info[cache_type].cache_size;
1626 
1627 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1628 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1629 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1630 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1631 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1632 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1633 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1634 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1635 
1636 		/* Sibling map is w.r.t processor_id_low, so shift out
1637 		 * inactive CU
1638 		 */
1639 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1640 		k = 0;
1641 
1642 		for (i = 0; i < cu_info->num_shader_engines; i++) {
1643 			for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1644 				pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1645 				pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1646 				pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1647 				pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1648 				k += 4;
1649 
1650 				cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
1651 				cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1652 			}
1653 		}
1654 		pcache->sibling_map_size = k;
1655 		*props_ext = pcache;
1656 		return 0;
1657 	}
1658 	return 1;
1659 }
1660 
1661 #define KFD_MAX_CACHE_TYPES 6
1662 
1663 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1664  * tables
1665  */
1666 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1667 {
1668 	struct kfd_gpu_cache_info *pcache_info = NULL;
1669 	int i, j, k;
1670 	int ct = 0;
1671 	unsigned int cu_processor_id;
1672 	int ret;
1673 	unsigned int num_cu_shared;
1674 	struct kfd_cu_info cu_info;
1675 	struct kfd_cu_info *pcu_info;
1676 	int gpu_processor_id;
1677 	struct kfd_cache_properties *props_ext;
1678 	int num_of_entries = 0;
1679 	int num_of_cache_types = 0;
1680 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1681 
1682 	amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1683 	pcu_info = &cu_info;
1684 
1685 	gpu_processor_id = dev->node_props.simd_id_base;
1686 
1687 	pcache_info = cache_info;
1688 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1689 	if (!num_of_cache_types) {
1690 		pr_warn("no cache info found\n");
1691 		return;
1692 	}
1693 
1694 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1695 	 * go through all available Compute Units.
1696 	 * The [i,j,k] loop will
1697 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1698 	 *			will parse through all available CU
1699 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1700 	 *			then it will consider only one CU from
1701 	 *			the shared unit
1702 	 */
1703 	for (ct = 0; ct < num_of_cache_types; ct++) {
1704 		cu_processor_id = gpu_processor_id;
1705 		if (pcache_info[ct].cache_level == 1) {
1706 			for (i = 0; i < pcu_info->num_shader_engines; i++) {
1707 				for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1708 					for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1709 
1710 						ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1711 										pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
1712 										cu_processor_id, k);
1713 
1714 						if (ret < 0)
1715 							break;
1716 
1717 						if (!ret) {
1718 							num_of_entries++;
1719 							list_add_tail(&props_ext->list, &dev->cache_props);
1720 						}
1721 
1722 						/* Move to next CU block */
1723 						num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1724 							pcu_info->num_cu_per_sh) ?
1725 							pcache_info[ct].num_cu_shared :
1726 							(pcu_info->num_cu_per_sh - k);
1727 						cu_processor_id += num_cu_shared;
1728 					}
1729 				}
1730 			}
1731 		} else {
1732 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1733 								pcu_info, ct, cu_processor_id);
1734 
1735 			if (ret < 0)
1736 				break;
1737 
1738 			if (!ret) {
1739 				num_of_entries++;
1740 				list_add_tail(&props_ext->list, &dev->cache_props);
1741 			}
1742 		}
1743 	}
1744 	dev->node_props.caches_count += num_of_entries;
1745 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1746 }
1747 
1748 static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1749 					  struct kfd_topology_device **dev)
1750 {
1751 	int proximity_domain = ++topology_crat_proximity_domain;
1752 	struct list_head temp_topology_device_list;
1753 	void *crat_image = NULL;
1754 	size_t image_size = 0;
1755 	int res;
1756 
1757 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1758 					    COMPUTE_UNIT_GPU, gpu,
1759 					    proximity_domain);
1760 	if (res) {
1761 		pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1762 		       gpu_id);
1763 		topology_crat_proximity_domain--;
1764 		goto err;
1765 	}
1766 
1767 	INIT_LIST_HEAD(&temp_topology_device_list);
1768 
1769 	res = kfd_parse_crat_table(crat_image,
1770 				   &temp_topology_device_list,
1771 				   proximity_domain);
1772 	if (res) {
1773 		pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1774 		       gpu_id);
1775 		topology_crat_proximity_domain--;
1776 		goto err;
1777 	}
1778 
1779 	kfd_topology_update_device_list(&temp_topology_device_list,
1780 					&topology_device_list);
1781 
1782 	*dev = kfd_assign_gpu(gpu);
1783 	if (WARN_ON(!*dev)) {
1784 		res = -ENODEV;
1785 		goto err;
1786 	}
1787 
1788 	/* Fill the cache affinity information here for the GPUs
1789 	 * using VCRAT
1790 	 */
1791 	kfd_fill_cache_non_crat_info(*dev, gpu);
1792 
1793 	/* Update the SYSFS tree, since we added another topology
1794 	 * device
1795 	 */
1796 	res = kfd_topology_update_sysfs();
1797 	if (!res)
1798 		sys_props.generation_count++;
1799 	else
1800 		pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1801 		       gpu_id, res);
1802 
1803 err:
1804 	kfd_destroy_crat_image(crat_image);
1805 	return res;
1806 }
1807 
1808 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1809 {
1810 	bool firmware_supported = true;
1811 
1812 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1813 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1814 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1815 						AMDGPU_MES_API_VERSION_MASK) >>
1816 						AMDGPU_MES_API_VERSION_SHIFT;
1817 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1818 						AMDGPU_MES_VERSION_MASK;
1819 
1820 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1821 		goto out;
1822 	}
1823 
1824 	/*
1825 	 * Note: Any unlisted devices here are assumed to support exception handling.
1826 	 * Add additional checks here as needed.
1827 	 */
1828 	switch (KFD_GC_VERSION(dev->gpu)) {
1829 	case IP_VERSION(9, 0, 1):
1830 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1831 		break;
1832 	case IP_VERSION(9, 1, 0):
1833 	case IP_VERSION(9, 2, 1):
1834 	case IP_VERSION(9, 2, 2):
1835 	case IP_VERSION(9, 3, 0):
1836 	case IP_VERSION(9, 4, 0):
1837 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1838 		break;
1839 	case IP_VERSION(9, 4, 1):
1840 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1841 		break;
1842 	case IP_VERSION(9, 4, 2):
1843 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1844 		break;
1845 	case IP_VERSION(10, 1, 10):
1846 	case IP_VERSION(10, 1, 2):
1847 	case IP_VERSION(10, 1, 1):
1848 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1849 		break;
1850 	case IP_VERSION(10, 3, 0):
1851 	case IP_VERSION(10, 3, 2):
1852 	case IP_VERSION(10, 3, 1):
1853 	case IP_VERSION(10, 3, 4):
1854 	case IP_VERSION(10, 3, 5):
1855 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1856 		break;
1857 	case IP_VERSION(10, 1, 3):
1858 	case IP_VERSION(10, 3, 3):
1859 		firmware_supported = false;
1860 		break;
1861 	default:
1862 		break;
1863 	}
1864 
1865 out:
1866 	if (firmware_supported)
1867 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1868 }
1869 
1870 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1871 {
1872 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1873 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1874 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1875 
1876 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1877 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1878 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1879 
1880 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1881 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1882 
1883 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1884 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1885 			dev->node_props.debug_prop |=
1886 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1887 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1888 		else
1889 			dev->node_props.debug_prop |=
1890 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1891 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1892 
1893 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1894 			dev->node_props.capability |=
1895 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1896 	} else {
1897 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1898 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1899 
1900 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1901 			dev->node_props.capability |=
1902 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1903 	}
1904 
1905 	kfd_topology_set_dbg_firmware_support(dev);
1906 }
1907 
1908 int kfd_topology_add_device(struct kfd_node *gpu)
1909 {
1910 	uint32_t gpu_id;
1911 	struct kfd_topology_device *dev;
1912 	struct kfd_cu_info cu_info;
1913 	int res = 0;
1914 	int i;
1915 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1916 
1917 	gpu_id = kfd_generate_gpu_id(gpu);
1918 	if (gpu->xcp && !gpu->xcp->ddev) {
1919 		dev_warn(gpu->adev->dev,
1920 		"Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1921 		gpu_id);
1922 		return 0;
1923 	} else {
1924 		pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1925 	}
1926 
1927 	/* Check to see if this gpu device exists in the topology_device_list.
1928 	 * If so, assign the gpu to that device,
1929 	 * else create a Virtual CRAT for this gpu device and then parse that
1930 	 * CRAT to create a new topology device. Once created assign the gpu to
1931 	 * that topology device
1932 	 */
1933 	down_write(&topology_lock);
1934 	dev = kfd_assign_gpu(gpu);
1935 	if (!dev)
1936 		res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1937 	up_write(&topology_lock);
1938 	if (res)
1939 		return res;
1940 
1941 	dev->gpu_id = gpu_id;
1942 	gpu->id = gpu_id;
1943 
1944 	kfd_dev_create_p2p_links();
1945 
1946 	/* TODO: Move the following lines to function
1947 	 *	kfd_add_non_crat_information
1948 	 */
1949 
1950 	/* Fill-in additional information that is not available in CRAT but
1951 	 * needed for the topology
1952 	 */
1953 
1954 	amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1955 
1956 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1957 		dev->node_props.name[i] = __tolower(asic_name[i]);
1958 		if (asic_name[i] == '\0')
1959 			break;
1960 	}
1961 	dev->node_props.name[i] = '\0';
1962 
1963 	dev->node_props.simd_arrays_per_engine =
1964 		cu_info.num_shader_arrays_per_engine;
1965 
1966 	dev->node_props.gfx_target_version =
1967 				gpu->kfd->device_info.gfx_target_version;
1968 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1969 	dev->node_props.device_id = gpu->adev->pdev->device;
1970 	dev->node_props.capability |=
1971 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1972 			HSA_CAP_ASIC_REVISION_MASK);
1973 
1974 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1975 	if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
1976 		dev->node_props.location_id |= dev->gpu->node_id;
1977 
1978 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1979 	dev->node_props.max_engine_clk_fcompute =
1980 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1981 	dev->node_props.max_engine_clk_ccompute =
1982 		cpufreq_quick_get_max(0) / 1000;
1983 
1984 	if (gpu->xcp)
1985 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
1986 	else
1987 		dev->node_props.drm_render_minor =
1988 				gpu->kfd->shared_resources.drm_render_minor;
1989 
1990 	dev->node_props.hive_id = gpu->kfd->hive_id;
1991 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1992 	dev->node_props.num_sdma_xgmi_engines =
1993 					kfd_get_num_xgmi_sdma_engines(gpu);
1994 	dev->node_props.num_sdma_queues_per_engine =
1995 				gpu->kfd->device_info.num_sdma_queues_per_engine -
1996 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
1997 	dev->node_props.num_gws = (dev->gpu->gws &&
1998 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
1999 		dev->gpu->adev->gds.gws_size : 0;
2000 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2001 
2002 	kfd_fill_mem_clk_max_info(dev);
2003 	kfd_fill_iolink_non_crat_info(dev);
2004 
2005 	switch (dev->gpu->adev->asic_type) {
2006 	case CHIP_KAVERI:
2007 	case CHIP_HAWAII:
2008 	case CHIP_TONGA:
2009 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2010 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2011 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2012 		break;
2013 	case CHIP_CARRIZO:
2014 	case CHIP_FIJI:
2015 	case CHIP_POLARIS10:
2016 	case CHIP_POLARIS11:
2017 	case CHIP_POLARIS12:
2018 	case CHIP_VEGAM:
2019 		pr_debug("Adding doorbell packet type capability\n");
2020 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2021 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2022 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2023 		break;
2024 	default:
2025 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2026 			WARN(1, "Unexpected ASIC family %u",
2027 			     dev->gpu->adev->asic_type);
2028 		else
2029 			kfd_topology_set_capabilities(dev);
2030 	}
2031 
2032 	/*
2033 	 * Overwrite ATS capability according to needs_iommu_device to fix
2034 	 * potential missing corresponding bit in CRAT of BIOS.
2035 	 */
2036 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2037 
2038 	/* Fix errors in CZ CRAT.
2039 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2040 	 *		because it doesn't consider masked out CUs
2041 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2042 	 */
2043 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2044 		dev->node_props.simd_count =
2045 			cu_info.simd_per_cu * cu_info.cu_active_number;
2046 		dev->node_props.max_waves_per_simd = 10;
2047 	}
2048 
2049 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2050 	dev->node_props.capability |=
2051 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2052 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2053 	dev->node_props.capability |=
2054 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2055 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2056 
2057 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2058 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2059 			HSA_CAP_RASEVENTNOTIFY : 0;
2060 
2061 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2062 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2063 
2064 	if (dev->gpu->adev->gmc.is_app_apu ||
2065 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2066 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2067 
2068 	kfd_debug_print_topology();
2069 
2070 	kfd_notify_gpu_change(gpu_id, 1);
2071 
2072 	return 0;
2073 }
2074 
2075 /**
2076  * kfd_topology_update_io_links() - Update IO links after device removal.
2077  * @proximity_domain: Proximity domain value of the dev being removed.
2078  *
2079  * The topology list currently is arranged in increasing order of
2080  * proximity domain.
2081  *
2082  * Two things need to be done when a device is removed:
2083  * 1. All the IO links to this device need to be removed.
2084  * 2. All nodes after the current device node need to move
2085  *    up once this device node is removed from the topology
2086  *    list. As a result, the proximity domain values for
2087  *    all nodes after the node being deleted reduce by 1.
2088  *    This would also cause the proximity domain values for
2089  *    io links to be updated based on new proximity domain
2090  *    values.
2091  *
2092  * Context: The caller must hold write topology_lock.
2093  */
2094 static void kfd_topology_update_io_links(int proximity_domain)
2095 {
2096 	struct kfd_topology_device *dev;
2097 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2098 
2099 	list_for_each_entry(dev, &topology_device_list, list) {
2100 		if (dev->proximity_domain > proximity_domain)
2101 			dev->proximity_domain--;
2102 
2103 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2104 			/*
2105 			 * If there is an io link to the dev being deleted
2106 			 * then remove that IO link also.
2107 			 */
2108 			if (iolink->node_to == proximity_domain) {
2109 				list_del(&iolink->list);
2110 				dev->node_props.io_links_count--;
2111 			} else {
2112 				if (iolink->node_from > proximity_domain)
2113 					iolink->node_from--;
2114 				if (iolink->node_to > proximity_domain)
2115 					iolink->node_to--;
2116 			}
2117 		}
2118 
2119 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2120 			/*
2121 			 * If there is a p2p link to the dev being deleted
2122 			 * then remove that p2p link also.
2123 			 */
2124 			if (p2plink->node_to == proximity_domain) {
2125 				list_del(&p2plink->list);
2126 				dev->node_props.p2p_links_count--;
2127 			} else {
2128 				if (p2plink->node_from > proximity_domain)
2129 					p2plink->node_from--;
2130 				if (p2plink->node_to > proximity_domain)
2131 					p2plink->node_to--;
2132 			}
2133 		}
2134 	}
2135 }
2136 
2137 int kfd_topology_remove_device(struct kfd_node *gpu)
2138 {
2139 	struct kfd_topology_device *dev, *tmp;
2140 	uint32_t gpu_id;
2141 	int res = -ENODEV;
2142 	int i = 0;
2143 
2144 	down_write(&topology_lock);
2145 
2146 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2147 		if (dev->gpu == gpu) {
2148 			gpu_id = dev->gpu_id;
2149 			kfd_remove_sysfs_node_entry(dev);
2150 			kfd_release_topology_device(dev);
2151 			sys_props.num_devices--;
2152 			kfd_topology_update_io_links(i);
2153 			topology_crat_proximity_domain = sys_props.num_devices-1;
2154 			sys_props.generation_count++;
2155 			res = 0;
2156 			if (kfd_topology_update_sysfs() < 0)
2157 				kfd_topology_release_sysfs();
2158 			break;
2159 		}
2160 		i++;
2161 	}
2162 
2163 	up_write(&topology_lock);
2164 
2165 	if (!res)
2166 		kfd_notify_gpu_change(gpu_id, 0);
2167 
2168 	return res;
2169 }
2170 
2171 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2172  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2173  *	returned through @kdev
2174  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2175  *		-1: If end of list
2176  */
2177 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2178 {
2179 
2180 	struct kfd_topology_device *top_dev;
2181 	uint8_t device_idx = 0;
2182 
2183 	*kdev = NULL;
2184 	down_read(&topology_lock);
2185 
2186 	list_for_each_entry(top_dev, &topology_device_list, list) {
2187 		if (device_idx == idx) {
2188 			*kdev = top_dev->gpu;
2189 			up_read(&topology_lock);
2190 			return 0;
2191 		}
2192 
2193 		device_idx++;
2194 	}
2195 
2196 	up_read(&topology_lock);
2197 
2198 	return -1;
2199 
2200 }
2201 
2202 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2203 {
2204 	int first_cpu_of_numa_node;
2205 
2206 	if (!cpumask || cpumask == cpu_none_mask)
2207 		return -1;
2208 	first_cpu_of_numa_node = cpumask_first(cpumask);
2209 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2210 		return -1;
2211 #ifdef CONFIG_X86_64
2212 	return cpu_data(first_cpu_of_numa_node).apicid;
2213 #else
2214 	return first_cpu_of_numa_node;
2215 #endif
2216 }
2217 
2218 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2219  *	of the given NUMA node (numa_node_id)
2220  * Return -1 on failure
2221  */
2222 int kfd_numa_node_to_apic_id(int numa_node_id)
2223 {
2224 	if (numa_node_id == -1) {
2225 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2226 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2227 	}
2228 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2229 }
2230 
2231 #if defined(CONFIG_DEBUG_FS)
2232 
2233 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2234 {
2235 	struct kfd_topology_device *dev;
2236 	unsigned int i = 0;
2237 	int r = 0;
2238 
2239 	down_read(&topology_lock);
2240 
2241 	list_for_each_entry(dev, &topology_device_list, list) {
2242 		if (!dev->gpu) {
2243 			i++;
2244 			continue;
2245 		}
2246 
2247 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2248 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2249 		if (r)
2250 			break;
2251 	}
2252 
2253 	up_read(&topology_lock);
2254 
2255 	return r;
2256 }
2257 
2258 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2259 {
2260 	struct kfd_topology_device *dev;
2261 	unsigned int i = 0;
2262 	int r = 0;
2263 
2264 	down_read(&topology_lock);
2265 
2266 	list_for_each_entry(dev, &topology_device_list, list) {
2267 		if (!dev->gpu) {
2268 			i++;
2269 			continue;
2270 		}
2271 
2272 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2273 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2274 		if (r)
2275 			break;
2276 	}
2277 
2278 	up_read(&topology_lock);
2279 
2280 	return r;
2281 }
2282 
2283 #endif
2284