1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_iommu.h"
40 #include "kfd_svm.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44 
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48 
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51 
52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 						uint32_t proximity_domain)
54 {
55 	struct kfd_topology_device *top_dev;
56 	struct kfd_topology_device *device = NULL;
57 
58 	list_for_each_entry(top_dev, &topology_device_list, list)
59 		if (top_dev->proximity_domain == proximity_domain) {
60 			device = top_dev;
61 			break;
62 		}
63 
64 	return device;
65 }
66 
67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 						uint32_t proximity_domain)
69 {
70 	struct kfd_topology_device *device = NULL;
71 
72 	down_read(&topology_lock);
73 
74 	device = kfd_topology_device_by_proximity_domain_no_lock(
75 							proximity_domain);
76 	up_read(&topology_lock);
77 
78 	return device;
79 }
80 
81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83 	struct kfd_topology_device *top_dev = NULL;
84 	struct kfd_topology_device *ret = NULL;
85 
86 	down_read(&topology_lock);
87 
88 	list_for_each_entry(top_dev, &topology_device_list, list)
89 		if (top_dev->gpu_id == gpu_id) {
90 			ret = top_dev;
91 			break;
92 		}
93 
94 	up_read(&topology_lock);
95 
96 	return ret;
97 }
98 
99 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100 {
101 	struct kfd_topology_device *top_dev;
102 
103 	top_dev = kfd_topology_device_by_id(gpu_id);
104 	if (!top_dev)
105 		return NULL;
106 
107 	return top_dev->gpu;
108 }
109 
110 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112 	struct kfd_topology_device *top_dev;
113 	struct kfd_node *device = NULL;
114 
115 	down_read(&topology_lock);
116 
117 	list_for_each_entry(top_dev, &topology_device_list, list)
118 		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119 			device = top_dev->gpu;
120 			break;
121 		}
122 
123 	up_read(&topology_lock);
124 
125 	return device;
126 }
127 
128 /* Called with write topology_lock acquired */
129 static void kfd_release_topology_device(struct kfd_topology_device *dev)
130 {
131 	struct kfd_mem_properties *mem;
132 	struct kfd_cache_properties *cache;
133 	struct kfd_iolink_properties *iolink;
134 	struct kfd_iolink_properties *p2plink;
135 	struct kfd_perf_properties *perf;
136 
137 	list_del(&dev->list);
138 
139 	while (dev->mem_props.next != &dev->mem_props) {
140 		mem = container_of(dev->mem_props.next,
141 				struct kfd_mem_properties, list);
142 		list_del(&mem->list);
143 		kfree(mem);
144 	}
145 
146 	while (dev->cache_props.next != &dev->cache_props) {
147 		cache = container_of(dev->cache_props.next,
148 				struct kfd_cache_properties, list);
149 		list_del(&cache->list);
150 		kfree(cache);
151 	}
152 
153 	while (dev->io_link_props.next != &dev->io_link_props) {
154 		iolink = container_of(dev->io_link_props.next,
155 				struct kfd_iolink_properties, list);
156 		list_del(&iolink->list);
157 		kfree(iolink);
158 	}
159 
160 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161 		p2plink = container_of(dev->p2p_link_props.next,
162 				struct kfd_iolink_properties, list);
163 		list_del(&p2plink->list);
164 		kfree(p2plink);
165 	}
166 
167 	while (dev->perf_props.next != &dev->perf_props) {
168 		perf = container_of(dev->perf_props.next,
169 				struct kfd_perf_properties, list);
170 		list_del(&perf->list);
171 		kfree(perf);
172 	}
173 
174 	kfree(dev);
175 }
176 
177 void kfd_release_topology_device_list(struct list_head *device_list)
178 {
179 	struct kfd_topology_device *dev;
180 
181 	while (!list_empty(device_list)) {
182 		dev = list_first_entry(device_list,
183 				       struct kfd_topology_device, list);
184 		kfd_release_topology_device(dev);
185 	}
186 }
187 
188 static void kfd_release_live_view(void)
189 {
190 	kfd_release_topology_device_list(&topology_device_list);
191 	memset(&sys_props, 0, sizeof(sys_props));
192 }
193 
194 struct kfd_topology_device *kfd_create_topology_device(
195 				struct list_head *device_list)
196 {
197 	struct kfd_topology_device *dev;
198 
199 	dev = kfd_alloc_struct(dev);
200 	if (!dev) {
201 		pr_err("No memory to allocate a topology device");
202 		return NULL;
203 	}
204 
205 	INIT_LIST_HEAD(&dev->mem_props);
206 	INIT_LIST_HEAD(&dev->cache_props);
207 	INIT_LIST_HEAD(&dev->io_link_props);
208 	INIT_LIST_HEAD(&dev->p2p_link_props);
209 	INIT_LIST_HEAD(&dev->perf_props);
210 
211 	list_add_tail(&dev->list, device_list);
212 
213 	return dev;
214 }
215 
216 
217 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
218 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
219 				  fmt, __VA_ARGS__))
220 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
221 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
223 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224 #define sysfs_show_32bit_val(buffer, offs, value) \
225 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226 #define sysfs_show_str_val(buffer, offs, value) \
227 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228 
229 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230 		char *buffer)
231 {
232 	int offs = 0;
233 
234 	/* Making sure that the buffer is an empty string */
235 	buffer[0] = 0;
236 
237 	if (attr == &sys_props.attr_genid) {
238 		sysfs_show_32bit_val(buffer, offs,
239 				     sys_props.generation_count);
240 	} else if (attr == &sys_props.attr_props) {
241 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242 				      sys_props.platform_oem);
243 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
244 				      sys_props.platform_id);
245 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246 				      sys_props.platform_rev);
247 	} else {
248 		offs = -EINVAL;
249 	}
250 
251 	return offs;
252 }
253 
254 static void kfd_topology_kobj_release(struct kobject *kobj)
255 {
256 	kfree(kobj);
257 }
258 
259 static const struct sysfs_ops sysprops_ops = {
260 	.show = sysprops_show,
261 };
262 
263 static const struct kobj_type sysprops_type = {
264 	.release = kfd_topology_kobj_release,
265 	.sysfs_ops = &sysprops_ops,
266 };
267 
268 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269 		char *buffer)
270 {
271 	int offs = 0;
272 	struct kfd_iolink_properties *iolink;
273 
274 	/* Making sure that the buffer is an empty string */
275 	buffer[0] = 0;
276 
277 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
278 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279 		return -EPERM;
280 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289 			      iolink->min_bandwidth);
290 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291 			      iolink->max_bandwidth);
292 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293 			      iolink->rec_transfer_size);
294 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295 
296 	return offs;
297 }
298 
299 static const struct sysfs_ops iolink_ops = {
300 	.show = iolink_show,
301 };
302 
303 static const struct kobj_type iolink_type = {
304 	.release = kfd_topology_kobj_release,
305 	.sysfs_ops = &iolink_ops,
306 };
307 
308 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309 		char *buffer)
310 {
311 	int offs = 0;
312 	struct kfd_mem_properties *mem;
313 
314 	/* Making sure that the buffer is an empty string */
315 	buffer[0] = 0;
316 
317 	mem = container_of(attr, struct kfd_mem_properties, attr);
318 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319 		return -EPERM;
320 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322 			      mem->size_in_bytes);
323 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326 			      mem->mem_clk_max);
327 
328 	return offs;
329 }
330 
331 static const struct sysfs_ops mem_ops = {
332 	.show = mem_show,
333 };
334 
335 static const struct kobj_type mem_type = {
336 	.release = kfd_topology_kobj_release,
337 	.sysfs_ops = &mem_ops,
338 };
339 
340 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341 		char *buffer)
342 {
343 	int offs = 0;
344 	uint32_t i, j;
345 	struct kfd_cache_properties *cache;
346 
347 	/* Making sure that the buffer is an empty string */
348 	buffer[0] = 0;
349 	cache = container_of(attr, struct kfd_cache_properties, attr);
350 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351 		return -EPERM;
352 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353 			cache->processor_id_low);
354 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357 			      cache->cacheline_size);
358 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359 			      cache->cachelines_per_tag);
360 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363 
364 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365 	for (i = 0; i < cache->sibling_map_size; i++)
366 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367 			/* Check each bit */
368 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369 						(cache->sibling_map[i] >> j) & 1);
370 
371 	/* Replace the last "," with end of line */
372 	buffer[offs-1] = '\n';
373 	return offs;
374 }
375 
376 static const struct sysfs_ops cache_ops = {
377 	.show = kfd_cache_show,
378 };
379 
380 static const struct kobj_type cache_type = {
381 	.release = kfd_topology_kobj_release,
382 	.sysfs_ops = &cache_ops,
383 };
384 
385 /****** Sysfs of Performance Counters ******/
386 
387 struct kfd_perf_attr {
388 	struct kobj_attribute attr;
389 	uint32_t data;
390 };
391 
392 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393 			char *buf)
394 {
395 	int offs = 0;
396 	struct kfd_perf_attr *attr;
397 
398 	buf[0] = 0;
399 	attr = container_of(attrs, struct kfd_perf_attr, attr);
400 	if (!attr->data) /* invalid data for PMC */
401 		return 0;
402 	else
403 		return sysfs_show_32bit_val(buf, offs, attr->data);
404 }
405 
406 #define KFD_PERF_DESC(_name, _data)			\
407 {							\
408 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
409 	.data = _data,					\
410 }
411 
412 static struct kfd_perf_attr perf_attr_iommu[] = {
413 	KFD_PERF_DESC(max_concurrent, 0),
414 	KFD_PERF_DESC(num_counters, 0),
415 	KFD_PERF_DESC(counter_ids, 0),
416 };
417 /****************************************/
418 
419 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420 		char *buffer)
421 {
422 	int offs = 0;
423 	struct kfd_topology_device *dev;
424 	uint32_t log_max_watch_addr;
425 
426 	/* Making sure that the buffer is an empty string */
427 	buffer[0] = 0;
428 
429 	if (strcmp(attr->name, "gpu_id") == 0) {
430 		dev = container_of(attr, struct kfd_topology_device,
431 				attr_gpuid);
432 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433 			return -EPERM;
434 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435 	}
436 
437 	if (strcmp(attr->name, "name") == 0) {
438 		dev = container_of(attr, struct kfd_topology_device,
439 				attr_name);
440 
441 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442 			return -EPERM;
443 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444 	}
445 
446 	dev = container_of(attr, struct kfd_topology_device,
447 			attr_props);
448 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449 		return -EPERM;
450 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451 			      dev->node_props.cpu_cores_count);
452 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
453 			      dev->gpu ? (dev->node_props.simd_count *
454 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
455 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
456 			      dev->node_props.mem_banks_count);
457 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
458 			      dev->node_props.caches_count);
459 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
460 			      dev->node_props.io_links_count);
461 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
462 			      dev->node_props.p2p_links_count);
463 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
464 			      dev->node_props.cpu_core_id_base);
465 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
466 			      dev->node_props.simd_id_base);
467 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
468 			      dev->node_props.max_waves_per_simd);
469 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
470 			      dev->node_props.lds_size_in_kb);
471 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
472 			      dev->node_props.gds_size_in_kb);
473 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
474 			      dev->node_props.num_gws);
475 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
476 			      dev->node_props.wave_front_size);
477 	sysfs_show_32bit_prop(buffer, offs, "array_count",
478 			      dev->gpu ? (dev->node_props.array_count *
479 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
480 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
481 			      dev->node_props.simd_arrays_per_engine);
482 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
483 			      dev->node_props.cu_per_simd_array);
484 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
485 			      dev->node_props.simd_per_cu);
486 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
487 			      dev->node_props.max_slots_scratch_cu);
488 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
489 			      dev->node_props.gfx_target_version);
490 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
491 			      dev->node_props.vendor_id);
492 	sysfs_show_32bit_prop(buffer, offs, "device_id",
493 			      dev->node_props.device_id);
494 	sysfs_show_32bit_prop(buffer, offs, "location_id",
495 			      dev->node_props.location_id);
496 	sysfs_show_32bit_prop(buffer, offs, "domain",
497 			      dev->node_props.domain);
498 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
499 			      dev->node_props.drm_render_minor);
500 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
501 			      dev->node_props.hive_id);
502 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
503 			      dev->node_props.num_sdma_engines);
504 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
505 			      dev->node_props.num_sdma_xgmi_engines);
506 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
507 			      dev->node_props.num_sdma_queues_per_engine);
508 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
509 			      dev->node_props.num_cp_queues);
510 
511 	if (dev->gpu) {
512 		log_max_watch_addr =
513 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
514 
515 		if (log_max_watch_addr) {
516 			dev->node_props.capability |=
517 					HSA_CAP_WATCH_POINTS_SUPPORTED;
518 
519 			dev->node_props.capability |=
520 				((log_max_watch_addr <<
521 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
522 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
523 		}
524 
525 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
526 			dev->node_props.capability |=
527 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
528 
529 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
530 			dev->node_props.max_engine_clk_fcompute);
531 
532 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
533 
534 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
535 				      dev->gpu->kfd->mec_fw_version);
536 		sysfs_show_32bit_prop(buffer, offs, "capability",
537 				      dev->node_props.capability);
538 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
539 				      dev->node_props.debug_prop);
540 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
541 				      dev->gpu->kfd->sdma_fw_version);
542 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
543 				      dev->gpu->adev->unique_id);
544 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
545 				      NUM_XCC(dev->gpu->xcc_mask));
546 	}
547 
548 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
549 				     cpufreq_quick_get_max(0)/1000);
550 }
551 
552 static const struct sysfs_ops node_ops = {
553 	.show = node_show,
554 };
555 
556 static const struct kobj_type node_type = {
557 	.release = kfd_topology_kobj_release,
558 	.sysfs_ops = &node_ops,
559 };
560 
561 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
562 {
563 	sysfs_remove_file(kobj, attr);
564 	kobject_del(kobj);
565 	kobject_put(kobj);
566 }
567 
568 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
569 {
570 	struct kfd_iolink_properties *p2plink;
571 	struct kfd_iolink_properties *iolink;
572 	struct kfd_cache_properties *cache;
573 	struct kfd_mem_properties *mem;
574 	struct kfd_perf_properties *perf;
575 
576 	if (dev->kobj_iolink) {
577 		list_for_each_entry(iolink, &dev->io_link_props, list)
578 			if (iolink->kobj) {
579 				kfd_remove_sysfs_file(iolink->kobj,
580 							&iolink->attr);
581 				iolink->kobj = NULL;
582 			}
583 		kobject_del(dev->kobj_iolink);
584 		kobject_put(dev->kobj_iolink);
585 		dev->kobj_iolink = NULL;
586 	}
587 
588 	if (dev->kobj_p2plink) {
589 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
590 			if (p2plink->kobj) {
591 				kfd_remove_sysfs_file(p2plink->kobj,
592 							&p2plink->attr);
593 				p2plink->kobj = NULL;
594 			}
595 		kobject_del(dev->kobj_p2plink);
596 		kobject_put(dev->kobj_p2plink);
597 		dev->kobj_p2plink = NULL;
598 	}
599 
600 	if (dev->kobj_cache) {
601 		list_for_each_entry(cache, &dev->cache_props, list)
602 			if (cache->kobj) {
603 				kfd_remove_sysfs_file(cache->kobj,
604 							&cache->attr);
605 				cache->kobj = NULL;
606 			}
607 		kobject_del(dev->kobj_cache);
608 		kobject_put(dev->kobj_cache);
609 		dev->kobj_cache = NULL;
610 	}
611 
612 	if (dev->kobj_mem) {
613 		list_for_each_entry(mem, &dev->mem_props, list)
614 			if (mem->kobj) {
615 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
616 				mem->kobj = NULL;
617 			}
618 		kobject_del(dev->kobj_mem);
619 		kobject_put(dev->kobj_mem);
620 		dev->kobj_mem = NULL;
621 	}
622 
623 	if (dev->kobj_perf) {
624 		list_for_each_entry(perf, &dev->perf_props, list) {
625 			kfree(perf->attr_group);
626 			perf->attr_group = NULL;
627 		}
628 		kobject_del(dev->kobj_perf);
629 		kobject_put(dev->kobj_perf);
630 		dev->kobj_perf = NULL;
631 	}
632 
633 	if (dev->kobj_node) {
634 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
635 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
636 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
637 		kobject_del(dev->kobj_node);
638 		kobject_put(dev->kobj_node);
639 		dev->kobj_node = NULL;
640 	}
641 }
642 
643 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
644 		uint32_t id)
645 {
646 	struct kfd_iolink_properties *p2plink;
647 	struct kfd_iolink_properties *iolink;
648 	struct kfd_cache_properties *cache;
649 	struct kfd_mem_properties *mem;
650 	struct kfd_perf_properties *perf;
651 	int ret;
652 	uint32_t i, num_attrs;
653 	struct attribute **attrs;
654 
655 	if (WARN_ON(dev->kobj_node))
656 		return -EEXIST;
657 
658 	/*
659 	 * Creating the sysfs folders
660 	 */
661 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
662 	if (!dev->kobj_node)
663 		return -ENOMEM;
664 
665 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
666 			sys_props.kobj_nodes, "%d", id);
667 	if (ret < 0) {
668 		kobject_put(dev->kobj_node);
669 		return ret;
670 	}
671 
672 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
673 	if (!dev->kobj_mem)
674 		return -ENOMEM;
675 
676 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
677 	if (!dev->kobj_cache)
678 		return -ENOMEM;
679 
680 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
681 	if (!dev->kobj_iolink)
682 		return -ENOMEM;
683 
684 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
685 	if (!dev->kobj_p2plink)
686 		return -ENOMEM;
687 
688 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
689 	if (!dev->kobj_perf)
690 		return -ENOMEM;
691 
692 	/*
693 	 * Creating sysfs files for node properties
694 	 */
695 	dev->attr_gpuid.name = "gpu_id";
696 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
697 	sysfs_attr_init(&dev->attr_gpuid);
698 	dev->attr_name.name = "name";
699 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
700 	sysfs_attr_init(&dev->attr_name);
701 	dev->attr_props.name = "properties";
702 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
703 	sysfs_attr_init(&dev->attr_props);
704 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
705 	if (ret < 0)
706 		return ret;
707 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
708 	if (ret < 0)
709 		return ret;
710 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
711 	if (ret < 0)
712 		return ret;
713 
714 	i = 0;
715 	list_for_each_entry(mem, &dev->mem_props, list) {
716 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
717 		if (!mem->kobj)
718 			return -ENOMEM;
719 		ret = kobject_init_and_add(mem->kobj, &mem_type,
720 				dev->kobj_mem, "%d", i);
721 		if (ret < 0) {
722 			kobject_put(mem->kobj);
723 			return ret;
724 		}
725 
726 		mem->attr.name = "properties";
727 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
728 		sysfs_attr_init(&mem->attr);
729 		ret = sysfs_create_file(mem->kobj, &mem->attr);
730 		if (ret < 0)
731 			return ret;
732 		i++;
733 	}
734 
735 	i = 0;
736 	list_for_each_entry(cache, &dev->cache_props, list) {
737 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
738 		if (!cache->kobj)
739 			return -ENOMEM;
740 		ret = kobject_init_and_add(cache->kobj, &cache_type,
741 				dev->kobj_cache, "%d", i);
742 		if (ret < 0) {
743 			kobject_put(cache->kobj);
744 			return ret;
745 		}
746 
747 		cache->attr.name = "properties";
748 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
749 		sysfs_attr_init(&cache->attr);
750 		ret = sysfs_create_file(cache->kobj, &cache->attr);
751 		if (ret < 0)
752 			return ret;
753 		i++;
754 	}
755 
756 	i = 0;
757 	list_for_each_entry(iolink, &dev->io_link_props, list) {
758 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
759 		if (!iolink->kobj)
760 			return -ENOMEM;
761 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
762 				dev->kobj_iolink, "%d", i);
763 		if (ret < 0) {
764 			kobject_put(iolink->kobj);
765 			return ret;
766 		}
767 
768 		iolink->attr.name = "properties";
769 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
770 		sysfs_attr_init(&iolink->attr);
771 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
772 		if (ret < 0)
773 			return ret;
774 		i++;
775 	}
776 
777 	i = 0;
778 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
779 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
780 		if (!p2plink->kobj)
781 			return -ENOMEM;
782 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
783 				dev->kobj_p2plink, "%d", i);
784 		if (ret < 0) {
785 			kobject_put(p2plink->kobj);
786 			return ret;
787 		}
788 
789 		p2plink->attr.name = "properties";
790 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
791 		sysfs_attr_init(&p2plink->attr);
792 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
793 		if (ret < 0)
794 			return ret;
795 		i++;
796 	}
797 
798 	/* All hardware blocks have the same number of attributes. */
799 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
800 	list_for_each_entry(perf, &dev->perf_props, list) {
801 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
802 			* num_attrs + sizeof(struct attribute_group),
803 			GFP_KERNEL);
804 		if (!perf->attr_group)
805 			return -ENOMEM;
806 
807 		attrs = (struct attribute **)(perf->attr_group + 1);
808 		if (!strcmp(perf->block_name, "iommu")) {
809 		/* Information of IOMMU's num_counters and counter_ids is shown
810 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
811 		 * duplicate here.
812 		 */
813 			perf_attr_iommu[0].data = perf->max_concurrent;
814 			for (i = 0; i < num_attrs; i++)
815 				attrs[i] = &perf_attr_iommu[i].attr.attr;
816 		}
817 		perf->attr_group->name = perf->block_name;
818 		perf->attr_group->attrs = attrs;
819 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
820 		if (ret < 0)
821 			return ret;
822 	}
823 
824 	return 0;
825 }
826 
827 /* Called with write topology lock acquired */
828 static int kfd_build_sysfs_node_tree(void)
829 {
830 	struct kfd_topology_device *dev;
831 	int ret;
832 	uint32_t i = 0;
833 
834 	list_for_each_entry(dev, &topology_device_list, list) {
835 		ret = kfd_build_sysfs_node_entry(dev, i);
836 		if (ret < 0)
837 			return ret;
838 		i++;
839 	}
840 
841 	return 0;
842 }
843 
844 /* Called with write topology lock acquired */
845 static void kfd_remove_sysfs_node_tree(void)
846 {
847 	struct kfd_topology_device *dev;
848 
849 	list_for_each_entry(dev, &topology_device_list, list)
850 		kfd_remove_sysfs_node_entry(dev);
851 }
852 
853 static int kfd_topology_update_sysfs(void)
854 {
855 	int ret;
856 
857 	if (!sys_props.kobj_topology) {
858 		sys_props.kobj_topology =
859 				kfd_alloc_struct(sys_props.kobj_topology);
860 		if (!sys_props.kobj_topology)
861 			return -ENOMEM;
862 
863 		ret = kobject_init_and_add(sys_props.kobj_topology,
864 				&sysprops_type,  &kfd_device->kobj,
865 				"topology");
866 		if (ret < 0) {
867 			kobject_put(sys_props.kobj_topology);
868 			return ret;
869 		}
870 
871 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
872 				sys_props.kobj_topology);
873 		if (!sys_props.kobj_nodes)
874 			return -ENOMEM;
875 
876 		sys_props.attr_genid.name = "generation_id";
877 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
878 		sysfs_attr_init(&sys_props.attr_genid);
879 		ret = sysfs_create_file(sys_props.kobj_topology,
880 				&sys_props.attr_genid);
881 		if (ret < 0)
882 			return ret;
883 
884 		sys_props.attr_props.name = "system_properties";
885 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
886 		sysfs_attr_init(&sys_props.attr_props);
887 		ret = sysfs_create_file(sys_props.kobj_topology,
888 				&sys_props.attr_props);
889 		if (ret < 0)
890 			return ret;
891 	}
892 
893 	kfd_remove_sysfs_node_tree();
894 
895 	return kfd_build_sysfs_node_tree();
896 }
897 
898 static void kfd_topology_release_sysfs(void)
899 {
900 	kfd_remove_sysfs_node_tree();
901 	if (sys_props.kobj_topology) {
902 		sysfs_remove_file(sys_props.kobj_topology,
903 				&sys_props.attr_genid);
904 		sysfs_remove_file(sys_props.kobj_topology,
905 				&sys_props.attr_props);
906 		if (sys_props.kobj_nodes) {
907 			kobject_del(sys_props.kobj_nodes);
908 			kobject_put(sys_props.kobj_nodes);
909 			sys_props.kobj_nodes = NULL;
910 		}
911 		kobject_del(sys_props.kobj_topology);
912 		kobject_put(sys_props.kobj_topology);
913 		sys_props.kobj_topology = NULL;
914 	}
915 }
916 
917 /* Called with write topology_lock acquired */
918 static void kfd_topology_update_device_list(struct list_head *temp_list,
919 					struct list_head *master_list)
920 {
921 	while (!list_empty(temp_list)) {
922 		list_move_tail(temp_list->next, master_list);
923 		sys_props.num_devices++;
924 	}
925 }
926 
927 static void kfd_debug_print_topology(void)
928 {
929 	struct kfd_topology_device *dev;
930 
931 	down_read(&topology_lock);
932 
933 	dev = list_last_entry(&topology_device_list,
934 			struct kfd_topology_device, list);
935 	if (dev) {
936 		if (dev->node_props.cpu_cores_count &&
937 				dev->node_props.simd_count) {
938 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
939 				dev->node_props.device_id,
940 				dev->node_props.vendor_id);
941 		} else if (dev->node_props.cpu_cores_count)
942 			pr_info("Topology: Add CPU node\n");
943 		else if (dev->node_props.simd_count)
944 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
945 				dev->node_props.device_id,
946 				dev->node_props.vendor_id);
947 	}
948 	up_read(&topology_lock);
949 }
950 
951 /* Helper function for intializing platform_xx members of
952  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
953  */
954 static void kfd_update_system_properties(void)
955 {
956 	struct kfd_topology_device *dev;
957 
958 	down_read(&topology_lock);
959 	dev = list_last_entry(&topology_device_list,
960 			struct kfd_topology_device, list);
961 	if (dev) {
962 		sys_props.platform_id =
963 			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
964 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
965 		sys_props.platform_rev = dev->oem_revision;
966 	}
967 	up_read(&topology_lock);
968 }
969 
970 static void find_system_memory(const struct dmi_header *dm,
971 	void *private)
972 {
973 	struct kfd_mem_properties *mem;
974 	u16 mem_width, mem_clock;
975 	struct kfd_topology_device *kdev =
976 		(struct kfd_topology_device *)private;
977 	const u8 *dmi_data = (const u8 *)(dm + 1);
978 
979 	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
980 		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
981 		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
982 		list_for_each_entry(mem, &kdev->mem_props, list) {
983 			if (mem_width != 0xFFFF && mem_width != 0)
984 				mem->width = mem_width;
985 			if (mem_clock != 0)
986 				mem->mem_clk_max = mem_clock;
987 		}
988 	}
989 }
990 
991 /*
992  * Performance counters information is not part of CRAT but we would like to
993  * put them in the sysfs under topology directory for Thunk to get the data.
994  * This function is called before updating the sysfs.
995  */
996 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
997 {
998 	/* These are the only counters supported so far */
999 	return kfd_iommu_add_perf_counters(kdev);
1000 }
1001 
1002 /* kfd_add_non_crat_information - Add information that is not currently
1003  *	defined in CRAT but is necessary for KFD topology
1004  * @dev - topology device to which addition info is added
1005  */
1006 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
1007 {
1008 	/* Check if CPU only node. */
1009 	if (!kdev->gpu) {
1010 		/* Add system memory information */
1011 		dmi_walk(find_system_memory, kdev);
1012 	}
1013 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1014 }
1015 
1016 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
1017  *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
1018  *	and GPU cores are present.
1019  * @device_list - topology device list created by parsing ACPI CRAT table.
1020  * @return - TRUE if invalid, FALSE is valid.
1021  */
1022 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
1023 {
1024 	struct kfd_topology_device *dev;
1025 
1026 	list_for_each_entry(dev, device_list, list) {
1027 		if (dev->node_props.cpu_cores_count &&
1028 			dev->node_props.simd_count)
1029 			return false;
1030 	}
1031 	pr_info("Ignoring ACPI CRAT on non-APU system\n");
1032 	return true;
1033 }
1034 
1035 int kfd_topology_init(void)
1036 {
1037 	void *crat_image = NULL;
1038 	size_t image_size = 0;
1039 	int ret;
1040 	struct list_head temp_topology_device_list;
1041 	int cpu_only_node = 0;
1042 	struct kfd_topology_device *kdev;
1043 	int proximity_domain;
1044 
1045 	/* topology_device_list - Master list of all topology devices
1046 	 * temp_topology_device_list - temporary list created while parsing CRAT
1047 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1048 	 * topology_device_list
1049 	 */
1050 
1051 	/* Initialize the head for the both the lists */
1052 	INIT_LIST_HEAD(&topology_device_list);
1053 	INIT_LIST_HEAD(&temp_topology_device_list);
1054 	init_rwsem(&topology_lock);
1055 
1056 	memset(&sys_props, 0, sizeof(sys_props));
1057 
1058 	/* Proximity domains in ACPI CRAT tables start counting at
1059 	 * 0. The same should be true for virtual CRAT tables created
1060 	 * at this stage. GPUs added later in kfd_topology_add_device
1061 	 * use a counter.
1062 	 */
1063 	proximity_domain = 0;
1064 
1065 	/*
1066 	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
1067 	 * or if ACPI CRAT is invalid create a virtual CRAT.
1068 	 * NOTE: The current implementation expects all AMD APUs to have
1069 	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
1070 	 */
1071 	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
1072 	if (!ret) {
1073 		ret = kfd_parse_crat_table(crat_image,
1074 					   &temp_topology_device_list,
1075 					   proximity_domain);
1076 		if (ret ||
1077 		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
1078 			kfd_release_topology_device_list(
1079 				&temp_topology_device_list);
1080 			kfd_destroy_crat_image(crat_image);
1081 			crat_image = NULL;
1082 		}
1083 	}
1084 
1085 	if (!crat_image) {
1086 		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1087 						    COMPUTE_UNIT_CPU, NULL,
1088 						    proximity_domain);
1089 		cpu_only_node = 1;
1090 		if (ret) {
1091 			pr_err("Error creating VCRAT table for CPU\n");
1092 			return ret;
1093 		}
1094 
1095 		ret = kfd_parse_crat_table(crat_image,
1096 					   &temp_topology_device_list,
1097 					   proximity_domain);
1098 		if (ret) {
1099 			pr_err("Error parsing VCRAT table for CPU\n");
1100 			goto err;
1101 		}
1102 	}
1103 
1104 	kdev = list_first_entry(&temp_topology_device_list,
1105 				struct kfd_topology_device, list);
1106 	kfd_add_perf_to_topology(kdev);
1107 
1108 	down_write(&topology_lock);
1109 	kfd_topology_update_device_list(&temp_topology_device_list,
1110 					&topology_device_list);
1111 	topology_crat_proximity_domain = sys_props.num_devices-1;
1112 	ret = kfd_topology_update_sysfs();
1113 	up_write(&topology_lock);
1114 
1115 	if (!ret) {
1116 		sys_props.generation_count++;
1117 		kfd_update_system_properties();
1118 		kfd_debug_print_topology();
1119 	} else
1120 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1121 
1122 	/* For nodes with GPU, this information gets added
1123 	 * when GPU is detected (kfd_topology_add_device).
1124 	 */
1125 	if (cpu_only_node) {
1126 		/* Add additional information to CPU only node created above */
1127 		down_write(&topology_lock);
1128 		kdev = list_first_entry(&topology_device_list,
1129 				struct kfd_topology_device, list);
1130 		up_write(&topology_lock);
1131 		kfd_add_non_crat_information(kdev);
1132 	}
1133 
1134 err:
1135 	kfd_destroy_crat_image(crat_image);
1136 	return ret;
1137 }
1138 
1139 void kfd_topology_shutdown(void)
1140 {
1141 	down_write(&topology_lock);
1142 	kfd_topology_release_sysfs();
1143 	kfd_release_live_view();
1144 	up_write(&topology_lock);
1145 }
1146 
1147 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1148 {
1149 	uint32_t hashout;
1150 	uint32_t buf[8];
1151 	uint64_t local_mem_size;
1152 	int i;
1153 
1154 	if (!gpu)
1155 		return 0;
1156 
1157 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1158 			gpu->local_mem_info.local_mem_size_public;
1159 	buf[0] = gpu->adev->pdev->devfn;
1160 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1161 		(gpu->adev->pdev->subsystem_device << 16);
1162 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1163 	buf[3] = gpu->adev->pdev->device;
1164 	buf[4] = gpu->adev->pdev->bus->number;
1165 	buf[5] = lower_32_bits(local_mem_size);
1166 	buf[6] = upper_32_bits(local_mem_size);
1167 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1168 
1169 	for (i = 0, hashout = 0; i < 8; i++)
1170 		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1171 
1172 	return hashout;
1173 }
1174 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1175  *		the GPU device is not already present in the topology device
1176  *		list then return NULL. This means a new topology device has to
1177  *		be created for this GPU.
1178  */
1179 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1180 {
1181 	struct kfd_topology_device *dev;
1182 	struct kfd_topology_device *out_dev = NULL;
1183 	struct kfd_mem_properties *mem;
1184 	struct kfd_cache_properties *cache;
1185 	struct kfd_iolink_properties *iolink;
1186 	struct kfd_iolink_properties *p2plink;
1187 
1188 	list_for_each_entry(dev, &topology_device_list, list) {
1189 		/* Discrete GPUs need their own topology device list
1190 		 * entries. Don't assign them to CPU/APU nodes.
1191 		 */
1192 		if (!gpu->kfd->use_iommu_v2 &&
1193 		    dev->node_props.cpu_cores_count)
1194 			continue;
1195 
1196 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1197 			dev->gpu = gpu;
1198 			out_dev = dev;
1199 
1200 			list_for_each_entry(mem, &dev->mem_props, list)
1201 				mem->gpu = dev->gpu;
1202 			list_for_each_entry(cache, &dev->cache_props, list)
1203 				cache->gpu = dev->gpu;
1204 			list_for_each_entry(iolink, &dev->io_link_props, list)
1205 				iolink->gpu = dev->gpu;
1206 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1207 				p2plink->gpu = dev->gpu;
1208 			break;
1209 		}
1210 	}
1211 	return out_dev;
1212 }
1213 
1214 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1215 {
1216 	/*
1217 	 * TODO: Generate an event for thunk about the arrival/removal
1218 	 * of the GPU
1219 	 */
1220 }
1221 
1222 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1223  *		patch this after CRAT parsing.
1224  */
1225 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1226 {
1227 	struct kfd_mem_properties *mem;
1228 	struct kfd_local_mem_info local_mem_info;
1229 
1230 	if (!dev)
1231 		return;
1232 
1233 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1234 	 * single bank of VRAM local memory.
1235 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1236 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1237 	 *	all the banks will report the same mem_clk_max information
1238 	 */
1239 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1240 					 dev->gpu->xcp);
1241 
1242 	list_for_each_entry(mem, &dev->mem_props, list)
1243 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1244 }
1245 
1246 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1247 					struct kfd_topology_device *target_gpu_dev,
1248 					struct kfd_iolink_properties *link)
1249 {
1250 	/* xgmi always supports atomics between links. */
1251 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1252 		return;
1253 
1254 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1255 	if (target_gpu_dev) {
1256 		uint32_t cap;
1257 
1258 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1259 				PCI_EXP_DEVCAP2, &cap);
1260 
1261 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1262 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1263 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1264 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1265 	/* set gpu (dev) flags. */
1266 	} else {
1267 		if (!dev->gpu->kfd->pci_atomic_requested ||
1268 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1269 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1270 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1271 	}
1272 }
1273 
1274 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1275 		struct kfd_iolink_properties *outbound_link,
1276 		struct kfd_iolink_properties *inbound_link)
1277 {
1278 	/* CPU -> GPU with PCIe */
1279 	if (!to_dev->gpu &&
1280 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1281 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1282 
1283 	if (to_dev->gpu) {
1284 		/* GPU <-> GPU with PCIe and
1285 		 * Vega20 with XGMI
1286 		 */
1287 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1288 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1289 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1290 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1291 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1292 		}
1293 	}
1294 }
1295 
1296 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1297 {
1298 	struct kfd_iolink_properties *link, *inbound_link;
1299 	struct kfd_topology_device *peer_dev;
1300 
1301 	if (!dev || !dev->gpu)
1302 		return;
1303 
1304 	/* GPU only creates direct links so apply flags setting to all */
1305 	list_for_each_entry(link, &dev->io_link_props, list) {
1306 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1307 		kfd_set_iolink_no_atomics(dev, NULL, link);
1308 		peer_dev = kfd_topology_device_by_proximity_domain(
1309 				link->node_to);
1310 
1311 		if (!peer_dev)
1312 			continue;
1313 
1314 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1315 		if (!peer_dev->gpu &&
1316 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1317 			/*
1318 			 * If the GPU is not part of a GPU hive, use its pci
1319 			 * device location as the hive ID to bind with the CPU.
1320 			 */
1321 			if (!dev->node_props.hive_id)
1322 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1323 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1324 		}
1325 
1326 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1327 									list) {
1328 			if (inbound_link->node_to != link->node_from)
1329 				continue;
1330 
1331 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1332 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1333 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1334 		}
1335 	}
1336 
1337 	/* Create indirect links so apply flags setting to all */
1338 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1339 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1340 		kfd_set_iolink_no_atomics(dev, NULL, link);
1341 		peer_dev = kfd_topology_device_by_proximity_domain(
1342 				link->node_to);
1343 
1344 		if (!peer_dev)
1345 			continue;
1346 
1347 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1348 									list) {
1349 			if (inbound_link->node_to != link->node_from)
1350 				continue;
1351 
1352 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1353 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1354 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1355 		}
1356 	}
1357 }
1358 
1359 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1360 				struct kfd_iolink_properties *p2plink)
1361 {
1362 	int ret;
1363 
1364 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1365 	if (!p2plink->kobj)
1366 		return -ENOMEM;
1367 
1368 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1369 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1370 	if (ret < 0) {
1371 		kobject_put(p2plink->kobj);
1372 		return ret;
1373 	}
1374 
1375 	p2plink->attr.name = "properties";
1376 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1377 	sysfs_attr_init(&p2plink->attr);
1378 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1379 	if (ret < 0)
1380 		return ret;
1381 
1382 	return 0;
1383 }
1384 
1385 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1386 {
1387 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1388 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1389 	struct kfd_topology_device *cpu_dev;
1390 	int ret = 0;
1391 	int i, num_cpu;
1392 
1393 	num_cpu = 0;
1394 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1395 		if (cpu_dev->gpu)
1396 			break;
1397 		num_cpu++;
1398 	}
1399 
1400 	gpu_link = list_first_entry(&kdev->io_link_props,
1401 					struct kfd_iolink_properties, list);
1402 	if (!gpu_link)
1403 		return -ENOMEM;
1404 
1405 	for (i = 0; i < num_cpu; i++) {
1406 		/* CPU <--> GPU */
1407 		if (gpu_link->node_to == i)
1408 			continue;
1409 
1410 		/* find CPU <-->  CPU links */
1411 		cpu_link = NULL;
1412 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1413 		if (cpu_dev) {
1414 			list_for_each_entry(tmp_link,
1415 					&cpu_dev->io_link_props, list) {
1416 				if (tmp_link->node_to == gpu_link->node_to) {
1417 					cpu_link = tmp_link;
1418 					break;
1419 				}
1420 			}
1421 		}
1422 
1423 		if (!cpu_link)
1424 			return -ENOMEM;
1425 
1426 		/* CPU <--> CPU <--> GPU, GPU node*/
1427 		props = kfd_alloc_struct(props);
1428 		if (!props)
1429 			return -ENOMEM;
1430 
1431 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1432 		props->weight = gpu_link->weight + cpu_link->weight;
1433 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1434 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1435 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1436 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1437 
1438 		props->node_from = gpu_node;
1439 		props->node_to = i;
1440 		kdev->node_props.p2p_links_count++;
1441 		list_add_tail(&props->list, &kdev->p2p_link_props);
1442 		ret = kfd_build_p2p_node_entry(kdev, props);
1443 		if (ret < 0)
1444 			return ret;
1445 
1446 		/* for small Bar, no CPU --> GPU in-direct links */
1447 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1448 			/* CPU <--> CPU <--> GPU, CPU node*/
1449 			props2 = kfd_alloc_struct(props2);
1450 			if (!props2)
1451 				return -ENOMEM;
1452 
1453 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1454 			props2->node_from = i;
1455 			props2->node_to = gpu_node;
1456 			props2->kobj = NULL;
1457 			cpu_dev->node_props.p2p_links_count++;
1458 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1459 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1460 			if (ret < 0)
1461 				return ret;
1462 		}
1463 	}
1464 	return ret;
1465 }
1466 
1467 #if defined(CONFIG_HSA_AMD_P2P)
1468 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1469 		struct kfd_topology_device *peer, int from, int to)
1470 {
1471 	struct kfd_iolink_properties *props = NULL;
1472 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1473 	struct kfd_topology_device *cpu_dev;
1474 	int ret = 0;
1475 
1476 	if (!amdgpu_device_is_peer_accessible(
1477 				kdev->gpu->adev,
1478 				peer->gpu->adev))
1479 		return ret;
1480 
1481 	iolink1 = list_first_entry(&kdev->io_link_props,
1482 							struct kfd_iolink_properties, list);
1483 	if (!iolink1)
1484 		return -ENOMEM;
1485 
1486 	iolink2 = list_first_entry(&peer->io_link_props,
1487 							struct kfd_iolink_properties, list);
1488 	if (!iolink2)
1489 		return -ENOMEM;
1490 
1491 	props = kfd_alloc_struct(props);
1492 	if (!props)
1493 		return -ENOMEM;
1494 
1495 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1496 
1497 	props->weight = iolink1->weight + iolink2->weight;
1498 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1499 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1500 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1501 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1502 
1503 	if (iolink1->node_to != iolink2->node_to) {
1504 		/* CPU->CPU  link*/
1505 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1506 		if (cpu_dev) {
1507 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
1508 				if (iolink3->node_to == iolink2->node_to)
1509 					break;
1510 
1511 			props->weight += iolink3->weight;
1512 			props->min_latency += iolink3->min_latency;
1513 			props->max_latency += iolink3->max_latency;
1514 			props->min_bandwidth = min(props->min_bandwidth,
1515 							iolink3->min_bandwidth);
1516 			props->max_bandwidth = min(props->max_bandwidth,
1517 							iolink3->max_bandwidth);
1518 		} else {
1519 			WARN(1, "CPU node not found");
1520 		}
1521 	}
1522 
1523 	props->node_from = from;
1524 	props->node_to = to;
1525 	peer->node_props.p2p_links_count++;
1526 	list_add_tail(&props->list, &peer->p2p_link_props);
1527 	ret = kfd_build_p2p_node_entry(peer, props);
1528 
1529 	return ret;
1530 }
1531 #endif
1532 
1533 static int kfd_dev_create_p2p_links(void)
1534 {
1535 	struct kfd_topology_device *dev;
1536 	struct kfd_topology_device *new_dev;
1537 #if defined(CONFIG_HSA_AMD_P2P)
1538 	uint32_t i;
1539 #endif
1540 	uint32_t k;
1541 	int ret = 0;
1542 
1543 	k = 0;
1544 	list_for_each_entry(dev, &topology_device_list, list)
1545 		k++;
1546 	if (k < 2)
1547 		return 0;
1548 
1549 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1550 	if (WARN_ON(!new_dev->gpu))
1551 		return 0;
1552 
1553 	k--;
1554 
1555 	/* create in-direct links */
1556 	ret = kfd_create_indirect_link_prop(new_dev, k);
1557 	if (ret < 0)
1558 		goto out;
1559 
1560 	/* create p2p links */
1561 #if defined(CONFIG_HSA_AMD_P2P)
1562 	i = 0;
1563 	list_for_each_entry(dev, &topology_device_list, list) {
1564 		if (dev == new_dev)
1565 			break;
1566 		if (!dev->gpu || !dev->gpu->adev ||
1567 		    (dev->gpu->kfd->hive_id &&
1568 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1569 			goto next;
1570 
1571 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1572 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1573 		if (ret < 0)
1574 			goto out;
1575 
1576 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1577 		if (ret < 0)
1578 			goto out;
1579 next:
1580 		i++;
1581 	}
1582 #endif
1583 
1584 out:
1585 	return ret;
1586 }
1587 
1588 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1589 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1590 				struct kfd_gpu_cache_info *pcache_info,
1591 				struct kfd_cu_info *cu_info,
1592 				int cu_bitmask,
1593 				int cache_type, unsigned int cu_processor_id,
1594 				int cu_block)
1595 {
1596 	unsigned int cu_sibling_map_mask;
1597 	int first_active_cu;
1598 	struct kfd_cache_properties *pcache = NULL;
1599 
1600 	cu_sibling_map_mask = cu_bitmask;
1601 	cu_sibling_map_mask >>= cu_block;
1602 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1603 	first_active_cu = ffs(cu_sibling_map_mask);
1604 
1605 	/* CU could be inactive. In case of shared cache find the first active
1606 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1607 	 * inactive active skip it
1608 	 */
1609 	if (first_active_cu) {
1610 		pcache = kfd_alloc_struct(pcache);
1611 		if (!pcache)
1612 			return -ENOMEM;
1613 
1614 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1615 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1616 		pcache->cache_level = pcache_info[cache_type].cache_level;
1617 		pcache->cache_size = pcache_info[cache_type].cache_size;
1618 
1619 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1620 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1621 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1622 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1623 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1624 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1625 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1626 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1627 
1628 		/* Sibling map is w.r.t processor_id_low, so shift out
1629 		 * inactive CU
1630 		 */
1631 		cu_sibling_map_mask =
1632 			cu_sibling_map_mask >> (first_active_cu - 1);
1633 
1634 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1635 		pcache->sibling_map[1] =
1636 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1637 		pcache->sibling_map[2] =
1638 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1639 		pcache->sibling_map[3] =
1640 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1641 
1642 		pcache->sibling_map_size = 4;
1643 		*props_ext = pcache;
1644 
1645 		return 0;
1646 	}
1647 	return 1;
1648 }
1649 
1650 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1651 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1652 				struct kfd_gpu_cache_info *pcache_info,
1653 				struct kfd_cu_info *cu_info,
1654 				int cache_type, unsigned int cu_processor_id)
1655 {
1656 	unsigned int cu_sibling_map_mask;
1657 	int first_active_cu;
1658 	int i, j, k;
1659 	struct kfd_cache_properties *pcache = NULL;
1660 
1661 	cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1662 	cu_sibling_map_mask &=
1663 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1664 	first_active_cu = ffs(cu_sibling_map_mask);
1665 
1666 	/* CU could be inactive. In case of shared cache find the first active
1667 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1668 	 * inactive active skip it
1669 	 */
1670 	if (first_active_cu) {
1671 		pcache = kfd_alloc_struct(pcache);
1672 		if (!pcache)
1673 			return -ENOMEM;
1674 
1675 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1676 		pcache->processor_id_low = cu_processor_id
1677 					+ (first_active_cu - 1);
1678 		pcache->cache_level = pcache_info[cache_type].cache_level;
1679 		pcache->cache_size = pcache_info[cache_type].cache_size;
1680 
1681 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1682 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1683 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1684 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1685 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1686 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1687 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1688 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1689 
1690 		/* Sibling map is w.r.t processor_id_low, so shift out
1691 		 * inactive CU
1692 		 */
1693 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1694 		k = 0;
1695 
1696 		for (i = 0; i < cu_info->num_shader_engines; i++) {
1697 			for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1698 				pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1699 				pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1700 				pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1701 				pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1702 				k += 4;
1703 
1704 				cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
1705 				cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1706 			}
1707 		}
1708 		pcache->sibling_map_size = k;
1709 		*props_ext = pcache;
1710 		return 0;
1711 	}
1712 	return 1;
1713 }
1714 
1715 #define KFD_MAX_CACHE_TYPES 6
1716 
1717 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1718  * tables
1719  */
1720 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1721 {
1722 	struct kfd_gpu_cache_info *pcache_info = NULL;
1723 	int i, j, k;
1724 	int ct = 0;
1725 	unsigned int cu_processor_id;
1726 	int ret;
1727 	unsigned int num_cu_shared;
1728 	struct kfd_cu_info cu_info;
1729 	struct kfd_cu_info *pcu_info;
1730 	int gpu_processor_id;
1731 	struct kfd_cache_properties *props_ext;
1732 	int num_of_entries = 0;
1733 	int num_of_cache_types = 0;
1734 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1735 
1736 	amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1737 	pcu_info = &cu_info;
1738 
1739 	gpu_processor_id = dev->node_props.simd_id_base;
1740 
1741 	pcache_info = cache_info;
1742 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1743 	if (!num_of_cache_types) {
1744 		pr_warn("no cache info found\n");
1745 		return;
1746 	}
1747 
1748 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1749 	 * go through all available Compute Units.
1750 	 * The [i,j,k] loop will
1751 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1752 	 *			will parse through all available CU
1753 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1754 	 *			then it will consider only one CU from
1755 	 *			the shared unit
1756 	 */
1757 	for (ct = 0; ct < num_of_cache_types; ct++) {
1758 		cu_processor_id = gpu_processor_id;
1759 		if (pcache_info[ct].cache_level == 1) {
1760 			for (i = 0; i < pcu_info->num_shader_engines; i++) {
1761 				for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1762 					for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1763 
1764 						ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1765 										pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
1766 										cu_processor_id, k);
1767 
1768 						if (ret < 0)
1769 							break;
1770 
1771 						if (!ret) {
1772 							num_of_entries++;
1773 							list_add_tail(&props_ext->list, &dev->cache_props);
1774 						}
1775 
1776 						/* Move to next CU block */
1777 						num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1778 							pcu_info->num_cu_per_sh) ?
1779 							pcache_info[ct].num_cu_shared :
1780 							(pcu_info->num_cu_per_sh - k);
1781 						cu_processor_id += num_cu_shared;
1782 					}
1783 				}
1784 			}
1785 		} else {
1786 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1787 								pcu_info, ct, cu_processor_id);
1788 
1789 			if (ret < 0)
1790 				break;
1791 
1792 			if (!ret) {
1793 				num_of_entries++;
1794 				list_add_tail(&props_ext->list, &dev->cache_props);
1795 			}
1796 		}
1797 	}
1798 	dev->node_props.caches_count += num_of_entries;
1799 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1800 }
1801 
1802 static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1803 					  struct kfd_topology_device **dev)
1804 {
1805 	int proximity_domain = ++topology_crat_proximity_domain;
1806 	struct list_head temp_topology_device_list;
1807 	void *crat_image = NULL;
1808 	size_t image_size = 0;
1809 	int res;
1810 
1811 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1812 					    COMPUTE_UNIT_GPU, gpu,
1813 					    proximity_domain);
1814 	if (res) {
1815 		pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1816 		       gpu_id);
1817 		topology_crat_proximity_domain--;
1818 		goto err;
1819 	}
1820 
1821 	INIT_LIST_HEAD(&temp_topology_device_list);
1822 
1823 	res = kfd_parse_crat_table(crat_image,
1824 				   &temp_topology_device_list,
1825 				   proximity_domain);
1826 	if (res) {
1827 		pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1828 		       gpu_id);
1829 		topology_crat_proximity_domain--;
1830 		goto err;
1831 	}
1832 
1833 	kfd_topology_update_device_list(&temp_topology_device_list,
1834 					&topology_device_list);
1835 
1836 	*dev = kfd_assign_gpu(gpu);
1837 	if (WARN_ON(!*dev)) {
1838 		res = -ENODEV;
1839 		goto err;
1840 	}
1841 
1842 	/* Fill the cache affinity information here for the GPUs
1843 	 * using VCRAT
1844 	 */
1845 	kfd_fill_cache_non_crat_info(*dev, gpu);
1846 
1847 	/* Update the SYSFS tree, since we added another topology
1848 	 * device
1849 	 */
1850 	res = kfd_topology_update_sysfs();
1851 	if (!res)
1852 		sys_props.generation_count++;
1853 	else
1854 		pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1855 		       gpu_id, res);
1856 
1857 err:
1858 	kfd_destroy_crat_image(crat_image);
1859 	return res;
1860 }
1861 
1862 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1863 {
1864 	bool firmware_supported = true;
1865 
1866 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1867 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1868 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1869 						AMDGPU_MES_API_VERSION_MASK) >>
1870 						AMDGPU_MES_API_VERSION_SHIFT;
1871 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1872 						AMDGPU_MES_VERSION_MASK;
1873 
1874 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1875 		goto out;
1876 	}
1877 
1878 	/*
1879 	 * Note: Any unlisted devices here are assumed to support exception handling.
1880 	 * Add additional checks here as needed.
1881 	 */
1882 	switch (KFD_GC_VERSION(dev->gpu)) {
1883 	case IP_VERSION(9, 0, 1):
1884 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1885 		break;
1886 	case IP_VERSION(9, 1, 0):
1887 	case IP_VERSION(9, 2, 1):
1888 	case IP_VERSION(9, 2, 2):
1889 	case IP_VERSION(9, 3, 0):
1890 	case IP_VERSION(9, 4, 0):
1891 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1892 		break;
1893 	case IP_VERSION(9, 4, 1):
1894 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1895 		break;
1896 	case IP_VERSION(9, 4, 2):
1897 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1898 		break;
1899 	case IP_VERSION(10, 1, 10):
1900 	case IP_VERSION(10, 1, 2):
1901 	case IP_VERSION(10, 1, 1):
1902 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1903 		break;
1904 	case IP_VERSION(10, 3, 0):
1905 	case IP_VERSION(10, 3, 2):
1906 	case IP_VERSION(10, 3, 1):
1907 	case IP_VERSION(10, 3, 4):
1908 	case IP_VERSION(10, 3, 5):
1909 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1910 		break;
1911 	case IP_VERSION(10, 1, 3):
1912 	case IP_VERSION(10, 3, 3):
1913 		firmware_supported = false;
1914 		break;
1915 	default:
1916 		break;
1917 	}
1918 
1919 out:
1920 	if (firmware_supported)
1921 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1922 }
1923 
1924 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1925 {
1926 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1927 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1928 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1929 
1930 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1931 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1932 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1933 
1934 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1935 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1936 						HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1937 
1938 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 4, 2))
1939 			dev->node_props.debug_prop |=
1940 				HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1941 		else
1942 			dev->node_props.capability |=
1943 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1944 	} else {
1945 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1946 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1947 
1948 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(11, 0, 0))
1949 			dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1950 		else
1951 			dev->node_props.capability |=
1952 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1953 	}
1954 
1955 	kfd_topology_set_dbg_firmware_support(dev);
1956 }
1957 
1958 int kfd_topology_add_device(struct kfd_node *gpu)
1959 {
1960 	uint32_t gpu_id;
1961 	struct kfd_topology_device *dev;
1962 	struct kfd_cu_info cu_info;
1963 	int res = 0;
1964 	int i;
1965 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1966 
1967 	gpu_id = kfd_generate_gpu_id(gpu);
1968 	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1969 
1970 	/* Check to see if this gpu device exists in the topology_device_list.
1971 	 * If so, assign the gpu to that device,
1972 	 * else create a Virtual CRAT for this gpu device and then parse that
1973 	 * CRAT to create a new topology device. Once created assign the gpu to
1974 	 * that topology device
1975 	 */
1976 	down_write(&topology_lock);
1977 	dev = kfd_assign_gpu(gpu);
1978 	if (!dev)
1979 		res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1980 	up_write(&topology_lock);
1981 	if (res)
1982 		return res;
1983 
1984 	dev->gpu_id = gpu_id;
1985 	gpu->id = gpu_id;
1986 
1987 	kfd_dev_create_p2p_links();
1988 
1989 	/* TODO: Move the following lines to function
1990 	 *	kfd_add_non_crat_information
1991 	 */
1992 
1993 	/* Fill-in additional information that is not available in CRAT but
1994 	 * needed for the topology
1995 	 */
1996 
1997 	amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1998 
1999 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2000 		dev->node_props.name[i] = __tolower(asic_name[i]);
2001 		if (asic_name[i] == '\0')
2002 			break;
2003 	}
2004 	dev->node_props.name[i] = '\0';
2005 
2006 	dev->node_props.simd_arrays_per_engine =
2007 		cu_info.num_shader_arrays_per_engine;
2008 
2009 	dev->node_props.gfx_target_version =
2010 				gpu->kfd->device_info.gfx_target_version;
2011 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2012 	dev->node_props.device_id = gpu->adev->pdev->device;
2013 	dev->node_props.capability |=
2014 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2015 			HSA_CAP_ASIC_REVISION_MASK);
2016 
2017 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2018 	if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
2019 		dev->node_props.location_id |= dev->gpu->node_id;
2020 
2021 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2022 	dev->node_props.max_engine_clk_fcompute =
2023 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2024 	dev->node_props.max_engine_clk_ccompute =
2025 		cpufreq_quick_get_max(0) / 1000;
2026 
2027 	if (gpu->xcp)
2028 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2029 	else
2030 		dev->node_props.drm_render_minor =
2031 				gpu->kfd->shared_resources.drm_render_minor;
2032 
2033 	dev->node_props.hive_id = gpu->kfd->hive_id;
2034 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2035 	dev->node_props.num_sdma_xgmi_engines =
2036 					kfd_get_num_xgmi_sdma_engines(gpu);
2037 	dev->node_props.num_sdma_queues_per_engine =
2038 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2039 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2040 	dev->node_props.num_gws = (dev->gpu->gws &&
2041 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2042 		dev->gpu->adev->gds.gws_size : 0;
2043 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2044 
2045 	kfd_fill_mem_clk_max_info(dev);
2046 	kfd_fill_iolink_non_crat_info(dev);
2047 
2048 	switch (dev->gpu->adev->asic_type) {
2049 	case CHIP_KAVERI:
2050 	case CHIP_HAWAII:
2051 	case CHIP_TONGA:
2052 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2053 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2054 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2055 		break;
2056 	case CHIP_CARRIZO:
2057 	case CHIP_FIJI:
2058 	case CHIP_POLARIS10:
2059 	case CHIP_POLARIS11:
2060 	case CHIP_POLARIS12:
2061 	case CHIP_VEGAM:
2062 		pr_debug("Adding doorbell packet type capability\n");
2063 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2064 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2065 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2066 		break;
2067 	default:
2068 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2069 			WARN(1, "Unexpected ASIC family %u",
2070 			     dev->gpu->adev->asic_type);
2071 		else
2072 			kfd_topology_set_capabilities(dev);
2073 	}
2074 
2075 	/*
2076 	 * Overwrite ATS capability according to needs_iommu_device to fix
2077 	 * potential missing corresponding bit in CRAT of BIOS.
2078 	 */
2079 	if (dev->gpu->kfd->use_iommu_v2)
2080 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
2081 	else
2082 		dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2083 
2084 	/* Fix errors in CZ CRAT.
2085 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2086 	 *		because it doesn't consider masked out CUs
2087 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2088 	 */
2089 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2090 		dev->node_props.simd_count =
2091 			cu_info.simd_per_cu * cu_info.cu_active_number;
2092 		dev->node_props.max_waves_per_simd = 10;
2093 	}
2094 
2095 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2096 	dev->node_props.capability |=
2097 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2098 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2099 	dev->node_props.capability |=
2100 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2101 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2102 
2103 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2104 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2105 			HSA_CAP_RASEVENTNOTIFY : 0;
2106 
2107 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2108 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2109 
2110 	if (dev->gpu->adev->gmc.is_app_apu ||
2111 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2112 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2113 
2114 	kfd_debug_print_topology();
2115 
2116 	kfd_notify_gpu_change(gpu_id, 1);
2117 
2118 	return 0;
2119 }
2120 
2121 /**
2122  * kfd_topology_update_io_links() - Update IO links after device removal.
2123  * @proximity_domain: Proximity domain value of the dev being removed.
2124  *
2125  * The topology list currently is arranged in increasing order of
2126  * proximity domain.
2127  *
2128  * Two things need to be done when a device is removed:
2129  * 1. All the IO links to this device need to be removed.
2130  * 2. All nodes after the current device node need to move
2131  *    up once this device node is removed from the topology
2132  *    list. As a result, the proximity domain values for
2133  *    all nodes after the node being deleted reduce by 1.
2134  *    This would also cause the proximity domain values for
2135  *    io links to be updated based on new proximity domain
2136  *    values.
2137  *
2138  * Context: The caller must hold write topology_lock.
2139  */
2140 static void kfd_topology_update_io_links(int proximity_domain)
2141 {
2142 	struct kfd_topology_device *dev;
2143 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2144 
2145 	list_for_each_entry(dev, &topology_device_list, list) {
2146 		if (dev->proximity_domain > proximity_domain)
2147 			dev->proximity_domain--;
2148 
2149 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2150 			/*
2151 			 * If there is an io link to the dev being deleted
2152 			 * then remove that IO link also.
2153 			 */
2154 			if (iolink->node_to == proximity_domain) {
2155 				list_del(&iolink->list);
2156 				dev->node_props.io_links_count--;
2157 			} else {
2158 				if (iolink->node_from > proximity_domain)
2159 					iolink->node_from--;
2160 				if (iolink->node_to > proximity_domain)
2161 					iolink->node_to--;
2162 			}
2163 		}
2164 
2165 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2166 			/*
2167 			 * If there is a p2p link to the dev being deleted
2168 			 * then remove that p2p link also.
2169 			 */
2170 			if (p2plink->node_to == proximity_domain) {
2171 				list_del(&p2plink->list);
2172 				dev->node_props.p2p_links_count--;
2173 			} else {
2174 				if (p2plink->node_from > proximity_domain)
2175 					p2plink->node_from--;
2176 				if (p2plink->node_to > proximity_domain)
2177 					p2plink->node_to--;
2178 			}
2179 		}
2180 	}
2181 }
2182 
2183 int kfd_topology_remove_device(struct kfd_node *gpu)
2184 {
2185 	struct kfd_topology_device *dev, *tmp;
2186 	uint32_t gpu_id;
2187 	int res = -ENODEV;
2188 	int i = 0;
2189 
2190 	down_write(&topology_lock);
2191 
2192 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2193 		if (dev->gpu == gpu) {
2194 			gpu_id = dev->gpu_id;
2195 			kfd_remove_sysfs_node_entry(dev);
2196 			kfd_release_topology_device(dev);
2197 			sys_props.num_devices--;
2198 			kfd_topology_update_io_links(i);
2199 			topology_crat_proximity_domain = sys_props.num_devices-1;
2200 			sys_props.generation_count++;
2201 			res = 0;
2202 			if (kfd_topology_update_sysfs() < 0)
2203 				kfd_topology_release_sysfs();
2204 			break;
2205 		}
2206 		i++;
2207 	}
2208 
2209 	up_write(&topology_lock);
2210 
2211 	if (!res)
2212 		kfd_notify_gpu_change(gpu_id, 0);
2213 
2214 	return res;
2215 }
2216 
2217 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2218  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2219  *	returned through @kdev
2220  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2221  *		-1: If end of list
2222  */
2223 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2224 {
2225 
2226 	struct kfd_topology_device *top_dev;
2227 	uint8_t device_idx = 0;
2228 
2229 	*kdev = NULL;
2230 	down_read(&topology_lock);
2231 
2232 	list_for_each_entry(top_dev, &topology_device_list, list) {
2233 		if (device_idx == idx) {
2234 			*kdev = top_dev->gpu;
2235 			up_read(&topology_lock);
2236 			return 0;
2237 		}
2238 
2239 		device_idx++;
2240 	}
2241 
2242 	up_read(&topology_lock);
2243 
2244 	return -1;
2245 
2246 }
2247 
2248 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2249 {
2250 	int first_cpu_of_numa_node;
2251 
2252 	if (!cpumask || cpumask == cpu_none_mask)
2253 		return -1;
2254 	first_cpu_of_numa_node = cpumask_first(cpumask);
2255 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2256 		return -1;
2257 #ifdef CONFIG_X86_64
2258 	return cpu_data(first_cpu_of_numa_node).apicid;
2259 #else
2260 	return first_cpu_of_numa_node;
2261 #endif
2262 }
2263 
2264 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2265  *	of the given NUMA node (numa_node_id)
2266  * Return -1 on failure
2267  */
2268 int kfd_numa_node_to_apic_id(int numa_node_id)
2269 {
2270 	if (numa_node_id == -1) {
2271 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2272 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2273 	}
2274 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2275 }
2276 
2277 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu)
2278 {
2279 	struct kfd_topology_device *dev;
2280 
2281 	gpu->use_iommu_v2 = false;
2282 
2283 	if (!gpu->device_info.needs_iommu_device)
2284 		return;
2285 
2286 	down_read(&topology_lock);
2287 
2288 	/* Only use IOMMUv2 if there is an APU topology node with no GPU
2289 	 * assigned yet. This GPU will be assigned to it.
2290 	 */
2291 	list_for_each_entry(dev, &topology_device_list, list)
2292 		if (dev->node_props.cpu_cores_count &&
2293 		    dev->node_props.simd_count &&
2294 		    !dev->gpu)
2295 			gpu->use_iommu_v2 = true;
2296 
2297 	up_read(&topology_lock);
2298 }
2299 
2300 #if defined(CONFIG_DEBUG_FS)
2301 
2302 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2303 {
2304 	struct kfd_topology_device *dev;
2305 	unsigned int i = 0;
2306 	int r = 0;
2307 
2308 	down_read(&topology_lock);
2309 
2310 	list_for_each_entry(dev, &topology_device_list, list) {
2311 		if (!dev->gpu) {
2312 			i++;
2313 			continue;
2314 		}
2315 
2316 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2317 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2318 		if (r)
2319 			break;
2320 	}
2321 
2322 	up_read(&topology_lock);
2323 
2324 	return r;
2325 }
2326 
2327 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2328 {
2329 	struct kfd_topology_device *dev;
2330 	unsigned int i = 0;
2331 	int r = 0;
2332 
2333 	down_read(&topology_lock);
2334 
2335 	list_for_each_entry(dev, &topology_device_list, list) {
2336 		if (!dev->gpu) {
2337 			i++;
2338 			continue;
2339 		}
2340 
2341 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2342 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2343 		if (r)
2344 			break;
2345 	}
2346 
2347 	up_read(&topology_lock);
2348 
2349 	return r;
2350 }
2351 
2352 #endif
2353