1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/kernel.h> 26 #include <linux/pci.h> 27 #include <linux/errno.h> 28 #include <linux/acpi.h> 29 #include <linux/hash.h> 30 #include <linux/cpufreq.h> 31 #include <linux/log2.h> 32 #include <linux/dmi.h> 33 #include <linux/atomic.h> 34 35 #include "kfd_priv.h" 36 #include "kfd_crat.h" 37 #include "kfd_topology.h" 38 #include "kfd_device_queue_manager.h" 39 #include "kfd_iommu.h" 40 #include "kfd_svm.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_ras.h" 43 #include "amdgpu.h" 44 45 /* topology_device_list - Master list of all topology devices */ 46 static struct list_head topology_device_list; 47 static struct kfd_system_properties sys_props; 48 49 static DECLARE_RWSEM(topology_lock); 50 static uint32_t topology_crat_proximity_domain; 51 52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 53 uint32_t proximity_domain) 54 { 55 struct kfd_topology_device *top_dev; 56 struct kfd_topology_device *device = NULL; 57 58 list_for_each_entry(top_dev, &topology_device_list, list) 59 if (top_dev->proximity_domain == proximity_domain) { 60 device = top_dev; 61 break; 62 } 63 64 return device; 65 } 66 67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 68 uint32_t proximity_domain) 69 { 70 struct kfd_topology_device *device = NULL; 71 72 down_read(&topology_lock); 73 74 device = kfd_topology_device_by_proximity_domain_no_lock( 75 proximity_domain); 76 up_read(&topology_lock); 77 78 return device; 79 } 80 81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) 82 { 83 struct kfd_topology_device *top_dev = NULL; 84 struct kfd_topology_device *ret = NULL; 85 86 down_read(&topology_lock); 87 88 list_for_each_entry(top_dev, &topology_device_list, list) 89 if (top_dev->gpu_id == gpu_id) { 90 ret = top_dev; 91 break; 92 } 93 94 up_read(&topology_lock); 95 96 return ret; 97 } 98 99 struct kfd_node *kfd_device_by_id(uint32_t gpu_id) 100 { 101 struct kfd_topology_device *top_dev; 102 103 top_dev = kfd_topology_device_by_id(gpu_id); 104 if (!top_dev) 105 return NULL; 106 107 return top_dev->gpu; 108 } 109 110 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev) 111 { 112 struct kfd_topology_device *top_dev; 113 struct kfd_node *device = NULL; 114 115 down_read(&topology_lock); 116 117 list_for_each_entry(top_dev, &topology_device_list, list) 118 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) { 119 device = top_dev->gpu; 120 break; 121 } 122 123 up_read(&topology_lock); 124 125 return device; 126 } 127 128 struct kfd_node *kfd_device_by_adev(const struct amdgpu_device *adev) 129 { 130 struct kfd_topology_device *top_dev; 131 struct kfd_node *device = NULL; 132 133 down_read(&topology_lock); 134 135 list_for_each_entry(top_dev, &topology_device_list, list) 136 if (top_dev->gpu && top_dev->gpu->adev == adev) { 137 device = top_dev->gpu; 138 break; 139 } 140 141 up_read(&topology_lock); 142 143 return device; 144 } 145 146 /* Called with write topology_lock acquired */ 147 static void kfd_release_topology_device(struct kfd_topology_device *dev) 148 { 149 struct kfd_mem_properties *mem; 150 struct kfd_cache_properties *cache; 151 struct kfd_iolink_properties *iolink; 152 struct kfd_iolink_properties *p2plink; 153 struct kfd_perf_properties *perf; 154 155 list_del(&dev->list); 156 157 while (dev->mem_props.next != &dev->mem_props) { 158 mem = container_of(dev->mem_props.next, 159 struct kfd_mem_properties, list); 160 list_del(&mem->list); 161 kfree(mem); 162 } 163 164 while (dev->cache_props.next != &dev->cache_props) { 165 cache = container_of(dev->cache_props.next, 166 struct kfd_cache_properties, list); 167 list_del(&cache->list); 168 kfree(cache); 169 } 170 171 while (dev->io_link_props.next != &dev->io_link_props) { 172 iolink = container_of(dev->io_link_props.next, 173 struct kfd_iolink_properties, list); 174 list_del(&iolink->list); 175 kfree(iolink); 176 } 177 178 while (dev->p2p_link_props.next != &dev->p2p_link_props) { 179 p2plink = container_of(dev->p2p_link_props.next, 180 struct kfd_iolink_properties, list); 181 list_del(&p2plink->list); 182 kfree(p2plink); 183 } 184 185 while (dev->perf_props.next != &dev->perf_props) { 186 perf = container_of(dev->perf_props.next, 187 struct kfd_perf_properties, list); 188 list_del(&perf->list); 189 kfree(perf); 190 } 191 192 kfree(dev); 193 } 194 195 void kfd_release_topology_device_list(struct list_head *device_list) 196 { 197 struct kfd_topology_device *dev; 198 199 while (!list_empty(device_list)) { 200 dev = list_first_entry(device_list, 201 struct kfd_topology_device, list); 202 kfd_release_topology_device(dev); 203 } 204 } 205 206 static void kfd_release_live_view(void) 207 { 208 kfd_release_topology_device_list(&topology_device_list); 209 memset(&sys_props, 0, sizeof(sys_props)); 210 } 211 212 struct kfd_topology_device *kfd_create_topology_device( 213 struct list_head *device_list) 214 { 215 struct kfd_topology_device *dev; 216 217 dev = kfd_alloc_struct(dev); 218 if (!dev) { 219 pr_err("No memory to allocate a topology device"); 220 return NULL; 221 } 222 223 INIT_LIST_HEAD(&dev->mem_props); 224 INIT_LIST_HEAD(&dev->cache_props); 225 INIT_LIST_HEAD(&dev->io_link_props); 226 INIT_LIST_HEAD(&dev->p2p_link_props); 227 INIT_LIST_HEAD(&dev->perf_props); 228 229 list_add_tail(&dev->list, device_list); 230 231 return dev; 232 } 233 234 235 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \ 236 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \ 237 fmt, __VA_ARGS__)) 238 #define sysfs_show_32bit_prop(buffer, offs, name, value) \ 239 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value) 240 #define sysfs_show_64bit_prop(buffer, offs, name, value) \ 241 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value) 242 #define sysfs_show_32bit_val(buffer, offs, value) \ 243 sysfs_show_gen_prop(buffer, offs, "%u\n", value) 244 #define sysfs_show_str_val(buffer, offs, value) \ 245 sysfs_show_gen_prop(buffer, offs, "%s\n", value) 246 247 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, 248 char *buffer) 249 { 250 int offs = 0; 251 252 /* Making sure that the buffer is an empty string */ 253 buffer[0] = 0; 254 255 if (attr == &sys_props.attr_genid) { 256 sysfs_show_32bit_val(buffer, offs, 257 sys_props.generation_count); 258 } else if (attr == &sys_props.attr_props) { 259 sysfs_show_64bit_prop(buffer, offs, "platform_oem", 260 sys_props.platform_oem); 261 sysfs_show_64bit_prop(buffer, offs, "platform_id", 262 sys_props.platform_id); 263 sysfs_show_64bit_prop(buffer, offs, "platform_rev", 264 sys_props.platform_rev); 265 } else { 266 offs = -EINVAL; 267 } 268 269 return offs; 270 } 271 272 static void kfd_topology_kobj_release(struct kobject *kobj) 273 { 274 kfree(kobj); 275 } 276 277 static const struct sysfs_ops sysprops_ops = { 278 .show = sysprops_show, 279 }; 280 281 static const struct kobj_type sysprops_type = { 282 .release = kfd_topology_kobj_release, 283 .sysfs_ops = &sysprops_ops, 284 }; 285 286 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, 287 char *buffer) 288 { 289 int offs = 0; 290 struct kfd_iolink_properties *iolink; 291 292 /* Making sure that the buffer is an empty string */ 293 buffer[0] = 0; 294 295 iolink = container_of(attr, struct kfd_iolink_properties, attr); 296 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu)) 297 return -EPERM; 298 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type); 299 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj); 300 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min); 301 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from); 302 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to); 303 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight); 304 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency); 305 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency); 306 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth", 307 iolink->min_bandwidth); 308 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth", 309 iolink->max_bandwidth); 310 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size", 311 iolink->rec_transfer_size); 312 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags); 313 314 return offs; 315 } 316 317 static const struct sysfs_ops iolink_ops = { 318 .show = iolink_show, 319 }; 320 321 static const struct kobj_type iolink_type = { 322 .release = kfd_topology_kobj_release, 323 .sysfs_ops = &iolink_ops, 324 }; 325 326 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, 327 char *buffer) 328 { 329 int offs = 0; 330 struct kfd_mem_properties *mem; 331 332 /* Making sure that the buffer is an empty string */ 333 buffer[0] = 0; 334 335 mem = container_of(attr, struct kfd_mem_properties, attr); 336 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu)) 337 return -EPERM; 338 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type); 339 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes", 340 mem->size_in_bytes); 341 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags); 342 sysfs_show_32bit_prop(buffer, offs, "width", mem->width); 343 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max", 344 mem->mem_clk_max); 345 346 return offs; 347 } 348 349 static const struct sysfs_ops mem_ops = { 350 .show = mem_show, 351 }; 352 353 static const struct kobj_type mem_type = { 354 .release = kfd_topology_kobj_release, 355 .sysfs_ops = &mem_ops, 356 }; 357 358 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, 359 char *buffer) 360 { 361 int offs = 0; 362 uint32_t i, j; 363 struct kfd_cache_properties *cache; 364 365 /* Making sure that the buffer is an empty string */ 366 buffer[0] = 0; 367 cache = container_of(attr, struct kfd_cache_properties, attr); 368 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu)) 369 return -EPERM; 370 sysfs_show_32bit_prop(buffer, offs, "processor_id_low", 371 cache->processor_id_low); 372 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level); 373 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size); 374 sysfs_show_32bit_prop(buffer, offs, "cache_line_size", 375 cache->cacheline_size); 376 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag", 377 cache->cachelines_per_tag); 378 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc); 379 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency); 380 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type); 381 382 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map "); 383 for (i = 0; i < cache->sibling_map_size; i++) 384 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) 385 /* Check each bit */ 386 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,", 387 (cache->sibling_map[i] >> j) & 1); 388 389 /* Replace the last "," with end of line */ 390 buffer[offs-1] = '\n'; 391 return offs; 392 } 393 394 static const struct sysfs_ops cache_ops = { 395 .show = kfd_cache_show, 396 }; 397 398 static const struct kobj_type cache_type = { 399 .release = kfd_topology_kobj_release, 400 .sysfs_ops = &cache_ops, 401 }; 402 403 /****** Sysfs of Performance Counters ******/ 404 405 struct kfd_perf_attr { 406 struct kobj_attribute attr; 407 uint32_t data; 408 }; 409 410 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, 411 char *buf) 412 { 413 int offs = 0; 414 struct kfd_perf_attr *attr; 415 416 buf[0] = 0; 417 attr = container_of(attrs, struct kfd_perf_attr, attr); 418 if (!attr->data) /* invalid data for PMC */ 419 return 0; 420 else 421 return sysfs_show_32bit_val(buf, offs, attr->data); 422 } 423 424 #define KFD_PERF_DESC(_name, _data) \ 425 { \ 426 .attr = __ATTR(_name, 0444, perf_show, NULL), \ 427 .data = _data, \ 428 } 429 430 static struct kfd_perf_attr perf_attr_iommu[] = { 431 KFD_PERF_DESC(max_concurrent, 0), 432 KFD_PERF_DESC(num_counters, 0), 433 KFD_PERF_DESC(counter_ids, 0), 434 }; 435 /****************************************/ 436 437 static ssize_t node_show(struct kobject *kobj, struct attribute *attr, 438 char *buffer) 439 { 440 int offs = 0; 441 struct kfd_topology_device *dev; 442 uint32_t log_max_watch_addr; 443 444 /* Making sure that the buffer is an empty string */ 445 buffer[0] = 0; 446 447 if (strcmp(attr->name, "gpu_id") == 0) { 448 dev = container_of(attr, struct kfd_topology_device, 449 attr_gpuid); 450 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 451 return -EPERM; 452 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id); 453 } 454 455 if (strcmp(attr->name, "name") == 0) { 456 dev = container_of(attr, struct kfd_topology_device, 457 attr_name); 458 459 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 460 return -EPERM; 461 return sysfs_show_str_val(buffer, offs, dev->node_props.name); 462 } 463 464 dev = container_of(attr, struct kfd_topology_device, 465 attr_props); 466 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 467 return -EPERM; 468 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count", 469 dev->node_props.cpu_cores_count); 470 sysfs_show_32bit_prop(buffer, offs, "simd_count", 471 dev->gpu ? (dev->node_props.simd_count * 472 dev->gpu->num_xcc_per_node) : 0); 473 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count", 474 dev->node_props.mem_banks_count); 475 sysfs_show_32bit_prop(buffer, offs, "caches_count", 476 dev->node_props.caches_count); 477 sysfs_show_32bit_prop(buffer, offs, "io_links_count", 478 dev->node_props.io_links_count); 479 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count", 480 dev->node_props.p2p_links_count); 481 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base", 482 dev->node_props.cpu_core_id_base); 483 sysfs_show_32bit_prop(buffer, offs, "simd_id_base", 484 dev->node_props.simd_id_base); 485 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd", 486 dev->node_props.max_waves_per_simd); 487 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb", 488 dev->node_props.lds_size_in_kb); 489 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb", 490 dev->node_props.gds_size_in_kb); 491 sysfs_show_32bit_prop(buffer, offs, "num_gws", 492 dev->node_props.num_gws); 493 sysfs_show_32bit_prop(buffer, offs, "wave_front_size", 494 dev->node_props.wave_front_size); 495 sysfs_show_32bit_prop(buffer, offs, "array_count", 496 dev->gpu ? (dev->node_props.array_count * 497 dev->gpu->num_xcc_per_node) : 0); 498 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine", 499 dev->node_props.simd_arrays_per_engine); 500 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array", 501 dev->node_props.cu_per_simd_array); 502 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu", 503 dev->node_props.simd_per_cu); 504 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu", 505 dev->node_props.max_slots_scratch_cu); 506 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version", 507 dev->node_props.gfx_target_version); 508 sysfs_show_32bit_prop(buffer, offs, "vendor_id", 509 dev->node_props.vendor_id); 510 sysfs_show_32bit_prop(buffer, offs, "device_id", 511 dev->node_props.device_id); 512 sysfs_show_32bit_prop(buffer, offs, "location_id", 513 dev->node_props.location_id); 514 sysfs_show_32bit_prop(buffer, offs, "domain", 515 dev->node_props.domain); 516 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor", 517 dev->node_props.drm_render_minor); 518 sysfs_show_64bit_prop(buffer, offs, "hive_id", 519 dev->node_props.hive_id); 520 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines", 521 dev->node_props.num_sdma_engines); 522 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines", 523 dev->node_props.num_sdma_xgmi_engines); 524 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine", 525 dev->node_props.num_sdma_queues_per_engine); 526 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues", 527 dev->node_props.num_cp_queues); 528 529 if (dev->gpu) { 530 log_max_watch_addr = 531 __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points); 532 533 if (log_max_watch_addr) { 534 dev->node_props.capability |= 535 HSA_CAP_WATCH_POINTS_SUPPORTED; 536 537 dev->node_props.capability |= 538 ((log_max_watch_addr << 539 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & 540 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); 541 } 542 543 if (dev->gpu->adev->asic_type == CHIP_TONGA) 544 dev->node_props.capability |= 545 HSA_CAP_AQL_QUEUE_DOUBLE_MAP; 546 547 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute", 548 dev->node_props.max_engine_clk_fcompute); 549 550 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL); 551 552 sysfs_show_32bit_prop(buffer, offs, "fw_version", 553 dev->gpu->kfd->mec_fw_version); 554 sysfs_show_32bit_prop(buffer, offs, "capability", 555 dev->node_props.capability); 556 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version", 557 dev->gpu->kfd->sdma_fw_version); 558 sysfs_show_64bit_prop(buffer, offs, "unique_id", 559 dev->gpu->adev->unique_id); 560 sysfs_show_32bit_prop(buffer, offs, "num_xcc", 561 dev->gpu->num_xcc_per_node); 562 } 563 564 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute", 565 cpufreq_quick_get_max(0)/1000); 566 } 567 568 static const struct sysfs_ops node_ops = { 569 .show = node_show, 570 }; 571 572 static const struct kobj_type node_type = { 573 .release = kfd_topology_kobj_release, 574 .sysfs_ops = &node_ops, 575 }; 576 577 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) 578 { 579 sysfs_remove_file(kobj, attr); 580 kobject_del(kobj); 581 kobject_put(kobj); 582 } 583 584 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) 585 { 586 struct kfd_iolink_properties *p2plink; 587 struct kfd_iolink_properties *iolink; 588 struct kfd_cache_properties *cache; 589 struct kfd_mem_properties *mem; 590 struct kfd_perf_properties *perf; 591 592 if (dev->kobj_iolink) { 593 list_for_each_entry(iolink, &dev->io_link_props, list) 594 if (iolink->kobj) { 595 kfd_remove_sysfs_file(iolink->kobj, 596 &iolink->attr); 597 iolink->kobj = NULL; 598 } 599 kobject_del(dev->kobj_iolink); 600 kobject_put(dev->kobj_iolink); 601 dev->kobj_iolink = NULL; 602 } 603 604 if (dev->kobj_p2plink) { 605 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 606 if (p2plink->kobj) { 607 kfd_remove_sysfs_file(p2plink->kobj, 608 &p2plink->attr); 609 p2plink->kobj = NULL; 610 } 611 kobject_del(dev->kobj_p2plink); 612 kobject_put(dev->kobj_p2plink); 613 dev->kobj_p2plink = NULL; 614 } 615 616 if (dev->kobj_cache) { 617 list_for_each_entry(cache, &dev->cache_props, list) 618 if (cache->kobj) { 619 kfd_remove_sysfs_file(cache->kobj, 620 &cache->attr); 621 cache->kobj = NULL; 622 } 623 kobject_del(dev->kobj_cache); 624 kobject_put(dev->kobj_cache); 625 dev->kobj_cache = NULL; 626 } 627 628 if (dev->kobj_mem) { 629 list_for_each_entry(mem, &dev->mem_props, list) 630 if (mem->kobj) { 631 kfd_remove_sysfs_file(mem->kobj, &mem->attr); 632 mem->kobj = NULL; 633 } 634 kobject_del(dev->kobj_mem); 635 kobject_put(dev->kobj_mem); 636 dev->kobj_mem = NULL; 637 } 638 639 if (dev->kobj_perf) { 640 list_for_each_entry(perf, &dev->perf_props, list) { 641 kfree(perf->attr_group); 642 perf->attr_group = NULL; 643 } 644 kobject_del(dev->kobj_perf); 645 kobject_put(dev->kobj_perf); 646 dev->kobj_perf = NULL; 647 } 648 649 if (dev->kobj_node) { 650 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); 651 sysfs_remove_file(dev->kobj_node, &dev->attr_name); 652 sysfs_remove_file(dev->kobj_node, &dev->attr_props); 653 kobject_del(dev->kobj_node); 654 kobject_put(dev->kobj_node); 655 dev->kobj_node = NULL; 656 } 657 } 658 659 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, 660 uint32_t id) 661 { 662 struct kfd_iolink_properties *p2plink; 663 struct kfd_iolink_properties *iolink; 664 struct kfd_cache_properties *cache; 665 struct kfd_mem_properties *mem; 666 struct kfd_perf_properties *perf; 667 int ret; 668 uint32_t i, num_attrs; 669 struct attribute **attrs; 670 671 if (WARN_ON(dev->kobj_node)) 672 return -EEXIST; 673 674 /* 675 * Creating the sysfs folders 676 */ 677 dev->kobj_node = kfd_alloc_struct(dev->kobj_node); 678 if (!dev->kobj_node) 679 return -ENOMEM; 680 681 ret = kobject_init_and_add(dev->kobj_node, &node_type, 682 sys_props.kobj_nodes, "%d", id); 683 if (ret < 0) { 684 kobject_put(dev->kobj_node); 685 return ret; 686 } 687 688 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); 689 if (!dev->kobj_mem) 690 return -ENOMEM; 691 692 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); 693 if (!dev->kobj_cache) 694 return -ENOMEM; 695 696 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); 697 if (!dev->kobj_iolink) 698 return -ENOMEM; 699 700 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node); 701 if (!dev->kobj_p2plink) 702 return -ENOMEM; 703 704 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); 705 if (!dev->kobj_perf) 706 return -ENOMEM; 707 708 /* 709 * Creating sysfs files for node properties 710 */ 711 dev->attr_gpuid.name = "gpu_id"; 712 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; 713 sysfs_attr_init(&dev->attr_gpuid); 714 dev->attr_name.name = "name"; 715 dev->attr_name.mode = KFD_SYSFS_FILE_MODE; 716 sysfs_attr_init(&dev->attr_name); 717 dev->attr_props.name = "properties"; 718 dev->attr_props.mode = KFD_SYSFS_FILE_MODE; 719 sysfs_attr_init(&dev->attr_props); 720 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); 721 if (ret < 0) 722 return ret; 723 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); 724 if (ret < 0) 725 return ret; 726 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); 727 if (ret < 0) 728 return ret; 729 730 i = 0; 731 list_for_each_entry(mem, &dev->mem_props, list) { 732 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 733 if (!mem->kobj) 734 return -ENOMEM; 735 ret = kobject_init_and_add(mem->kobj, &mem_type, 736 dev->kobj_mem, "%d", i); 737 if (ret < 0) { 738 kobject_put(mem->kobj); 739 return ret; 740 } 741 742 mem->attr.name = "properties"; 743 mem->attr.mode = KFD_SYSFS_FILE_MODE; 744 sysfs_attr_init(&mem->attr); 745 ret = sysfs_create_file(mem->kobj, &mem->attr); 746 if (ret < 0) 747 return ret; 748 i++; 749 } 750 751 i = 0; 752 list_for_each_entry(cache, &dev->cache_props, list) { 753 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 754 if (!cache->kobj) 755 return -ENOMEM; 756 ret = kobject_init_and_add(cache->kobj, &cache_type, 757 dev->kobj_cache, "%d", i); 758 if (ret < 0) { 759 kobject_put(cache->kobj); 760 return ret; 761 } 762 763 cache->attr.name = "properties"; 764 cache->attr.mode = KFD_SYSFS_FILE_MODE; 765 sysfs_attr_init(&cache->attr); 766 ret = sysfs_create_file(cache->kobj, &cache->attr); 767 if (ret < 0) 768 return ret; 769 i++; 770 } 771 772 i = 0; 773 list_for_each_entry(iolink, &dev->io_link_props, list) { 774 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 775 if (!iolink->kobj) 776 return -ENOMEM; 777 ret = kobject_init_and_add(iolink->kobj, &iolink_type, 778 dev->kobj_iolink, "%d", i); 779 if (ret < 0) { 780 kobject_put(iolink->kobj); 781 return ret; 782 } 783 784 iolink->attr.name = "properties"; 785 iolink->attr.mode = KFD_SYSFS_FILE_MODE; 786 sysfs_attr_init(&iolink->attr); 787 ret = sysfs_create_file(iolink->kobj, &iolink->attr); 788 if (ret < 0) 789 return ret; 790 i++; 791 } 792 793 i = 0; 794 list_for_each_entry(p2plink, &dev->p2p_link_props, list) { 795 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 796 if (!p2plink->kobj) 797 return -ENOMEM; 798 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 799 dev->kobj_p2plink, "%d", i); 800 if (ret < 0) { 801 kobject_put(p2plink->kobj); 802 return ret; 803 } 804 805 p2plink->attr.name = "properties"; 806 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 807 sysfs_attr_init(&p2plink->attr); 808 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 809 if (ret < 0) 810 return ret; 811 i++; 812 } 813 814 /* All hardware blocks have the same number of attributes. */ 815 num_attrs = ARRAY_SIZE(perf_attr_iommu); 816 list_for_each_entry(perf, &dev->perf_props, list) { 817 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) 818 * num_attrs + sizeof(struct attribute_group), 819 GFP_KERNEL); 820 if (!perf->attr_group) 821 return -ENOMEM; 822 823 attrs = (struct attribute **)(perf->attr_group + 1); 824 if (!strcmp(perf->block_name, "iommu")) { 825 /* Information of IOMMU's num_counters and counter_ids is shown 826 * under /sys/bus/event_source/devices/amd_iommu. We don't 827 * duplicate here. 828 */ 829 perf_attr_iommu[0].data = perf->max_concurrent; 830 for (i = 0; i < num_attrs; i++) 831 attrs[i] = &perf_attr_iommu[i].attr.attr; 832 } 833 perf->attr_group->name = perf->block_name; 834 perf->attr_group->attrs = attrs; 835 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); 836 if (ret < 0) 837 return ret; 838 } 839 840 return 0; 841 } 842 843 /* Called with write topology lock acquired */ 844 static int kfd_build_sysfs_node_tree(void) 845 { 846 struct kfd_topology_device *dev; 847 int ret; 848 uint32_t i = 0; 849 850 list_for_each_entry(dev, &topology_device_list, list) { 851 ret = kfd_build_sysfs_node_entry(dev, i); 852 if (ret < 0) 853 return ret; 854 i++; 855 } 856 857 return 0; 858 } 859 860 /* Called with write topology lock acquired */ 861 static void kfd_remove_sysfs_node_tree(void) 862 { 863 struct kfd_topology_device *dev; 864 865 list_for_each_entry(dev, &topology_device_list, list) 866 kfd_remove_sysfs_node_entry(dev); 867 } 868 869 static int kfd_topology_update_sysfs(void) 870 { 871 int ret; 872 873 if (!sys_props.kobj_topology) { 874 sys_props.kobj_topology = 875 kfd_alloc_struct(sys_props.kobj_topology); 876 if (!sys_props.kobj_topology) 877 return -ENOMEM; 878 879 ret = kobject_init_and_add(sys_props.kobj_topology, 880 &sysprops_type, &kfd_device->kobj, 881 "topology"); 882 if (ret < 0) { 883 kobject_put(sys_props.kobj_topology); 884 return ret; 885 } 886 887 sys_props.kobj_nodes = kobject_create_and_add("nodes", 888 sys_props.kobj_topology); 889 if (!sys_props.kobj_nodes) 890 return -ENOMEM; 891 892 sys_props.attr_genid.name = "generation_id"; 893 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; 894 sysfs_attr_init(&sys_props.attr_genid); 895 ret = sysfs_create_file(sys_props.kobj_topology, 896 &sys_props.attr_genid); 897 if (ret < 0) 898 return ret; 899 900 sys_props.attr_props.name = "system_properties"; 901 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; 902 sysfs_attr_init(&sys_props.attr_props); 903 ret = sysfs_create_file(sys_props.kobj_topology, 904 &sys_props.attr_props); 905 if (ret < 0) 906 return ret; 907 } 908 909 kfd_remove_sysfs_node_tree(); 910 911 return kfd_build_sysfs_node_tree(); 912 } 913 914 static void kfd_topology_release_sysfs(void) 915 { 916 kfd_remove_sysfs_node_tree(); 917 if (sys_props.kobj_topology) { 918 sysfs_remove_file(sys_props.kobj_topology, 919 &sys_props.attr_genid); 920 sysfs_remove_file(sys_props.kobj_topology, 921 &sys_props.attr_props); 922 if (sys_props.kobj_nodes) { 923 kobject_del(sys_props.kobj_nodes); 924 kobject_put(sys_props.kobj_nodes); 925 sys_props.kobj_nodes = NULL; 926 } 927 kobject_del(sys_props.kobj_topology); 928 kobject_put(sys_props.kobj_topology); 929 sys_props.kobj_topology = NULL; 930 } 931 } 932 933 /* Called with write topology_lock acquired */ 934 static void kfd_topology_update_device_list(struct list_head *temp_list, 935 struct list_head *master_list) 936 { 937 while (!list_empty(temp_list)) { 938 list_move_tail(temp_list->next, master_list); 939 sys_props.num_devices++; 940 } 941 } 942 943 static void kfd_debug_print_topology(void) 944 { 945 struct kfd_topology_device *dev; 946 947 down_read(&topology_lock); 948 949 dev = list_last_entry(&topology_device_list, 950 struct kfd_topology_device, list); 951 if (dev) { 952 if (dev->node_props.cpu_cores_count && 953 dev->node_props.simd_count) { 954 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", 955 dev->node_props.device_id, 956 dev->node_props.vendor_id); 957 } else if (dev->node_props.cpu_cores_count) 958 pr_info("Topology: Add CPU node\n"); 959 else if (dev->node_props.simd_count) 960 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", 961 dev->node_props.device_id, 962 dev->node_props.vendor_id); 963 } 964 up_read(&topology_lock); 965 } 966 967 /* Helper function for intializing platform_xx members of 968 * kfd_system_properties. Uses OEM info from the last CPU/APU node. 969 */ 970 static void kfd_update_system_properties(void) 971 { 972 struct kfd_topology_device *dev; 973 974 down_read(&topology_lock); 975 dev = list_last_entry(&topology_device_list, 976 struct kfd_topology_device, list); 977 if (dev) { 978 sys_props.platform_id = 979 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK; 980 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); 981 sys_props.platform_rev = dev->oem_revision; 982 } 983 up_read(&topology_lock); 984 } 985 986 static void find_system_memory(const struct dmi_header *dm, 987 void *private) 988 { 989 struct kfd_mem_properties *mem; 990 u16 mem_width, mem_clock; 991 struct kfd_topology_device *kdev = 992 (struct kfd_topology_device *)private; 993 const u8 *dmi_data = (const u8 *)(dm + 1); 994 995 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { 996 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); 997 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); 998 list_for_each_entry(mem, &kdev->mem_props, list) { 999 if (mem_width != 0xFFFF && mem_width != 0) 1000 mem->width = mem_width; 1001 if (mem_clock != 0) 1002 mem->mem_clk_max = mem_clock; 1003 } 1004 } 1005 } 1006 1007 /* 1008 * Performance counters information is not part of CRAT but we would like to 1009 * put them in the sysfs under topology directory for Thunk to get the data. 1010 * This function is called before updating the sysfs. 1011 */ 1012 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev) 1013 { 1014 /* These are the only counters supported so far */ 1015 return kfd_iommu_add_perf_counters(kdev); 1016 } 1017 1018 /* kfd_add_non_crat_information - Add information that is not currently 1019 * defined in CRAT but is necessary for KFD topology 1020 * @dev - topology device to which addition info is added 1021 */ 1022 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) 1023 { 1024 /* Check if CPU only node. */ 1025 if (!kdev->gpu) { 1026 /* Add system memory information */ 1027 dmi_walk(find_system_memory, kdev); 1028 } 1029 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ 1030 } 1031 1032 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices. 1033 * Ignore CRAT for all other devices. AMD APU is identified if both CPU 1034 * and GPU cores are present. 1035 * @device_list - topology device list created by parsing ACPI CRAT table. 1036 * @return - TRUE if invalid, FALSE is valid. 1037 */ 1038 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list) 1039 { 1040 struct kfd_topology_device *dev; 1041 1042 list_for_each_entry(dev, device_list, list) { 1043 if (dev->node_props.cpu_cores_count && 1044 dev->node_props.simd_count) 1045 return false; 1046 } 1047 pr_info("Ignoring ACPI CRAT on non-APU system\n"); 1048 return true; 1049 } 1050 1051 int kfd_topology_init(void) 1052 { 1053 void *crat_image = NULL; 1054 size_t image_size = 0; 1055 int ret; 1056 struct list_head temp_topology_device_list; 1057 int cpu_only_node = 0; 1058 struct kfd_topology_device *kdev; 1059 int proximity_domain; 1060 1061 /* topology_device_list - Master list of all topology devices 1062 * temp_topology_device_list - temporary list created while parsing CRAT 1063 * or VCRAT. Once parsing is complete the contents of list is moved to 1064 * topology_device_list 1065 */ 1066 1067 /* Initialize the head for the both the lists */ 1068 INIT_LIST_HEAD(&topology_device_list); 1069 INIT_LIST_HEAD(&temp_topology_device_list); 1070 init_rwsem(&topology_lock); 1071 1072 memset(&sys_props, 0, sizeof(sys_props)); 1073 1074 /* Proximity domains in ACPI CRAT tables start counting at 1075 * 0. The same should be true for virtual CRAT tables created 1076 * at this stage. GPUs added later in kfd_topology_add_device 1077 * use a counter. 1078 */ 1079 proximity_domain = 0; 1080 1081 /* 1082 * Get the CRAT image from the ACPI. If ACPI doesn't have one 1083 * or if ACPI CRAT is invalid create a virtual CRAT. 1084 * NOTE: The current implementation expects all AMD APUs to have 1085 * CRAT. If no CRAT is available, it is assumed to be a CPU 1086 */ 1087 ret = kfd_create_crat_image_acpi(&crat_image, &image_size); 1088 if (!ret) { 1089 ret = kfd_parse_crat_table(crat_image, 1090 &temp_topology_device_list, 1091 proximity_domain); 1092 if (ret || 1093 kfd_is_acpi_crat_invalid(&temp_topology_device_list)) { 1094 kfd_release_topology_device_list( 1095 &temp_topology_device_list); 1096 kfd_destroy_crat_image(crat_image); 1097 crat_image = NULL; 1098 } 1099 } 1100 1101 if (!crat_image) { 1102 ret = kfd_create_crat_image_virtual(&crat_image, &image_size, 1103 COMPUTE_UNIT_CPU, NULL, 1104 proximity_domain); 1105 cpu_only_node = 1; 1106 if (ret) { 1107 pr_err("Error creating VCRAT table for CPU\n"); 1108 return ret; 1109 } 1110 1111 ret = kfd_parse_crat_table(crat_image, 1112 &temp_topology_device_list, 1113 proximity_domain); 1114 if (ret) { 1115 pr_err("Error parsing VCRAT table for CPU\n"); 1116 goto err; 1117 } 1118 } 1119 1120 kdev = list_first_entry(&temp_topology_device_list, 1121 struct kfd_topology_device, list); 1122 kfd_add_perf_to_topology(kdev); 1123 1124 down_write(&topology_lock); 1125 kfd_topology_update_device_list(&temp_topology_device_list, 1126 &topology_device_list); 1127 topology_crat_proximity_domain = sys_props.num_devices-1; 1128 ret = kfd_topology_update_sysfs(); 1129 up_write(&topology_lock); 1130 1131 if (!ret) { 1132 sys_props.generation_count++; 1133 kfd_update_system_properties(); 1134 kfd_debug_print_topology(); 1135 } else 1136 pr_err("Failed to update topology in sysfs ret=%d\n", ret); 1137 1138 /* For nodes with GPU, this information gets added 1139 * when GPU is detected (kfd_topology_add_device). 1140 */ 1141 if (cpu_only_node) { 1142 /* Add additional information to CPU only node created above */ 1143 down_write(&topology_lock); 1144 kdev = list_first_entry(&topology_device_list, 1145 struct kfd_topology_device, list); 1146 up_write(&topology_lock); 1147 kfd_add_non_crat_information(kdev); 1148 } 1149 1150 err: 1151 kfd_destroy_crat_image(crat_image); 1152 return ret; 1153 } 1154 1155 void kfd_topology_shutdown(void) 1156 { 1157 down_write(&topology_lock); 1158 kfd_topology_release_sysfs(); 1159 kfd_release_live_view(); 1160 up_write(&topology_lock); 1161 } 1162 1163 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu) 1164 { 1165 uint32_t hashout; 1166 uint32_t buf[8]; 1167 uint64_t local_mem_size; 1168 int i; 1169 1170 if (!gpu) 1171 return 0; 1172 1173 local_mem_size = gpu->kfd->local_mem_info.local_mem_size_private + 1174 gpu->kfd->local_mem_info.local_mem_size_public; 1175 buf[0] = gpu->adev->pdev->devfn; 1176 buf[1] = gpu->adev->pdev->subsystem_vendor | 1177 (gpu->adev->pdev->subsystem_device << 16); 1178 buf[2] = pci_domain_nr(gpu->adev->pdev->bus); 1179 buf[3] = gpu->adev->pdev->device; 1180 buf[4] = gpu->adev->pdev->bus->number; 1181 buf[5] = lower_32_bits(local_mem_size); 1182 buf[6] = upper_32_bits(local_mem_size); 1183 buf[7] = gpu->start_xcc_id | (gpu->num_xcc_per_node << 16); 1184 1185 for (i = 0, hashout = 0; i < 8; i++) 1186 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH); 1187 1188 return hashout; 1189 } 1190 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If 1191 * the GPU device is not already present in the topology device 1192 * list then return NULL. This means a new topology device has to 1193 * be created for this GPU. 1194 */ 1195 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu) 1196 { 1197 struct kfd_topology_device *dev; 1198 struct kfd_topology_device *out_dev = NULL; 1199 struct kfd_mem_properties *mem; 1200 struct kfd_cache_properties *cache; 1201 struct kfd_iolink_properties *iolink; 1202 struct kfd_iolink_properties *p2plink; 1203 1204 list_for_each_entry(dev, &topology_device_list, list) { 1205 /* Discrete GPUs need their own topology device list 1206 * entries. Don't assign them to CPU/APU nodes. 1207 */ 1208 if (!gpu->kfd->use_iommu_v2 && 1209 dev->node_props.cpu_cores_count) 1210 continue; 1211 1212 if (!dev->gpu && (dev->node_props.simd_count > 0)) { 1213 dev->gpu = gpu; 1214 out_dev = dev; 1215 1216 list_for_each_entry(mem, &dev->mem_props, list) 1217 mem->gpu = dev->gpu; 1218 list_for_each_entry(cache, &dev->cache_props, list) 1219 cache->gpu = dev->gpu; 1220 list_for_each_entry(iolink, &dev->io_link_props, list) 1221 iolink->gpu = dev->gpu; 1222 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 1223 p2plink->gpu = dev->gpu; 1224 break; 1225 } 1226 } 1227 return out_dev; 1228 } 1229 1230 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) 1231 { 1232 /* 1233 * TODO: Generate an event for thunk about the arrival/removal 1234 * of the GPU 1235 */ 1236 } 1237 1238 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, 1239 * patch this after CRAT parsing. 1240 */ 1241 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) 1242 { 1243 struct kfd_mem_properties *mem; 1244 struct kfd_local_mem_info local_mem_info; 1245 1246 if (!dev) 1247 return; 1248 1249 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with 1250 * single bank of VRAM local memory. 1251 * for dGPUs - VCRAT reports only one bank of Local Memory 1252 * for APUs - If CRAT from ACPI reports more than one bank, then 1253 * all the banks will report the same mem_clk_max information 1254 */ 1255 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info); 1256 1257 list_for_each_entry(mem, &dev->mem_props, list) 1258 mem->mem_clk_max = local_mem_info.mem_clk_max; 1259 } 1260 1261 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev, 1262 struct kfd_topology_device *target_gpu_dev, 1263 struct kfd_iolink_properties *link) 1264 { 1265 /* xgmi always supports atomics between links. */ 1266 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI) 1267 return; 1268 1269 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */ 1270 if (target_gpu_dev) { 1271 uint32_t cap; 1272 1273 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev, 1274 PCI_EXP_DEVCAP2, &cap); 1275 1276 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | 1277 PCI_EXP_DEVCAP2_ATOMIC_COMP64))) 1278 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1279 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1280 /* set gpu (dev) flags. */ 1281 } else { 1282 if (!dev->gpu->kfd->pci_atomic_requested || 1283 dev->gpu->adev->asic_type == CHIP_HAWAII) 1284 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1285 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1286 } 1287 } 1288 1289 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev, 1290 struct kfd_iolink_properties *outbound_link, 1291 struct kfd_iolink_properties *inbound_link) 1292 { 1293 /* CPU -> GPU with PCIe */ 1294 if (!to_dev->gpu && 1295 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 1296 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1297 1298 if (to_dev->gpu) { 1299 /* GPU <-> GPU with PCIe and 1300 * Vega20 with XGMI 1301 */ 1302 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS || 1303 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && 1304 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) { 1305 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1306 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1307 } 1308 } 1309 } 1310 1311 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) 1312 { 1313 struct kfd_iolink_properties *link, *inbound_link; 1314 struct kfd_topology_device *peer_dev; 1315 1316 if (!dev || !dev->gpu) 1317 return; 1318 1319 /* GPU only creates direct links so apply flags setting to all */ 1320 list_for_each_entry(link, &dev->io_link_props, list) { 1321 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1322 kfd_set_iolink_no_atomics(dev, NULL, link); 1323 peer_dev = kfd_topology_device_by_proximity_domain( 1324 link->node_to); 1325 1326 if (!peer_dev) 1327 continue; 1328 1329 /* Include the CPU peer in GPU hive if connected over xGMI. */ 1330 if (!peer_dev->gpu && 1331 link->iolink_type == CRAT_IOLINK_TYPE_XGMI) { 1332 /* 1333 * If the GPU is not part of a GPU hive, use its pci 1334 * device location as the hive ID to bind with the CPU. 1335 */ 1336 if (!dev->node_props.hive_id) 1337 dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev); 1338 peer_dev->node_props.hive_id = dev->node_props.hive_id; 1339 } 1340 1341 list_for_each_entry(inbound_link, &peer_dev->io_link_props, 1342 list) { 1343 if (inbound_link->node_to != link->node_from) 1344 continue; 1345 1346 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1347 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1348 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1349 } 1350 } 1351 1352 /* Create indirect links so apply flags setting to all */ 1353 list_for_each_entry(link, &dev->p2p_link_props, list) { 1354 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1355 kfd_set_iolink_no_atomics(dev, NULL, link); 1356 peer_dev = kfd_topology_device_by_proximity_domain( 1357 link->node_to); 1358 1359 if (!peer_dev) 1360 continue; 1361 1362 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props, 1363 list) { 1364 if (inbound_link->node_to != link->node_from) 1365 continue; 1366 1367 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1368 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1369 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1370 } 1371 } 1372 } 1373 1374 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev, 1375 struct kfd_iolink_properties *p2plink) 1376 { 1377 int ret; 1378 1379 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 1380 if (!p2plink->kobj) 1381 return -ENOMEM; 1382 1383 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 1384 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1); 1385 if (ret < 0) { 1386 kobject_put(p2plink->kobj); 1387 return ret; 1388 } 1389 1390 p2plink->attr.name = "properties"; 1391 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 1392 sysfs_attr_init(&p2plink->attr); 1393 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 1394 if (ret < 0) 1395 return ret; 1396 1397 return 0; 1398 } 1399 1400 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node) 1401 { 1402 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link; 1403 struct kfd_iolink_properties *props = NULL, *props2 = NULL; 1404 struct kfd_topology_device *cpu_dev; 1405 int ret = 0; 1406 int i, num_cpu; 1407 1408 num_cpu = 0; 1409 list_for_each_entry(cpu_dev, &topology_device_list, list) { 1410 if (cpu_dev->gpu) 1411 break; 1412 num_cpu++; 1413 } 1414 1415 gpu_link = list_first_entry(&kdev->io_link_props, 1416 struct kfd_iolink_properties, list); 1417 if (!gpu_link) 1418 return -ENOMEM; 1419 1420 for (i = 0; i < num_cpu; i++) { 1421 /* CPU <--> GPU */ 1422 if (gpu_link->node_to == i) 1423 continue; 1424 1425 /* find CPU <--> CPU links */ 1426 cpu_link = NULL; 1427 cpu_dev = kfd_topology_device_by_proximity_domain(i); 1428 if (cpu_dev) { 1429 list_for_each_entry(tmp_link, 1430 &cpu_dev->io_link_props, list) { 1431 if (tmp_link->node_to == gpu_link->node_to) { 1432 cpu_link = tmp_link; 1433 break; 1434 } 1435 } 1436 } 1437 1438 if (!cpu_link) 1439 return -ENOMEM; 1440 1441 /* CPU <--> CPU <--> GPU, GPU node*/ 1442 props = kfd_alloc_struct(props); 1443 if (!props) 1444 return -ENOMEM; 1445 1446 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties)); 1447 props->weight = gpu_link->weight + cpu_link->weight; 1448 props->min_latency = gpu_link->min_latency + cpu_link->min_latency; 1449 props->max_latency = gpu_link->max_latency + cpu_link->max_latency; 1450 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth); 1451 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth); 1452 1453 props->node_from = gpu_node; 1454 props->node_to = i; 1455 kdev->node_props.p2p_links_count++; 1456 list_add_tail(&props->list, &kdev->p2p_link_props); 1457 ret = kfd_build_p2p_node_entry(kdev, props); 1458 if (ret < 0) 1459 return ret; 1460 1461 /* for small Bar, no CPU --> GPU in-direct links */ 1462 if (kfd_dev_is_large_bar(kdev->gpu)) { 1463 /* CPU <--> CPU <--> GPU, CPU node*/ 1464 props2 = kfd_alloc_struct(props2); 1465 if (!props2) 1466 return -ENOMEM; 1467 1468 memcpy(props2, props, sizeof(struct kfd_iolink_properties)); 1469 props2->node_from = i; 1470 props2->node_to = gpu_node; 1471 props2->kobj = NULL; 1472 cpu_dev->node_props.p2p_links_count++; 1473 list_add_tail(&props2->list, &cpu_dev->p2p_link_props); 1474 ret = kfd_build_p2p_node_entry(cpu_dev, props2); 1475 if (ret < 0) 1476 return ret; 1477 } 1478 } 1479 return ret; 1480 } 1481 1482 #if defined(CONFIG_HSA_AMD_P2P) 1483 static int kfd_add_peer_prop(struct kfd_topology_device *kdev, 1484 struct kfd_topology_device *peer, int from, int to) 1485 { 1486 struct kfd_iolink_properties *props = NULL; 1487 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3; 1488 struct kfd_topology_device *cpu_dev; 1489 int ret = 0; 1490 1491 if (!amdgpu_device_is_peer_accessible( 1492 kdev->gpu->adev, 1493 peer->gpu->adev)) 1494 return ret; 1495 1496 iolink1 = list_first_entry(&kdev->io_link_props, 1497 struct kfd_iolink_properties, list); 1498 if (!iolink1) 1499 return -ENOMEM; 1500 1501 iolink2 = list_first_entry(&peer->io_link_props, 1502 struct kfd_iolink_properties, list); 1503 if (!iolink2) 1504 return -ENOMEM; 1505 1506 props = kfd_alloc_struct(props); 1507 if (!props) 1508 return -ENOMEM; 1509 1510 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties)); 1511 1512 props->weight = iolink1->weight + iolink2->weight; 1513 props->min_latency = iolink1->min_latency + iolink2->min_latency; 1514 props->max_latency = iolink1->max_latency + iolink2->max_latency; 1515 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth); 1516 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth); 1517 1518 if (iolink1->node_to != iolink2->node_to) { 1519 /* CPU->CPU link*/ 1520 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to); 1521 if (cpu_dev) { 1522 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) 1523 if (iolink3->node_to == iolink2->node_to) 1524 break; 1525 1526 props->weight += iolink3->weight; 1527 props->min_latency += iolink3->min_latency; 1528 props->max_latency += iolink3->max_latency; 1529 props->min_bandwidth = min(props->min_bandwidth, 1530 iolink3->min_bandwidth); 1531 props->max_bandwidth = min(props->max_bandwidth, 1532 iolink3->max_bandwidth); 1533 } else { 1534 WARN(1, "CPU node not found"); 1535 } 1536 } 1537 1538 props->node_from = from; 1539 props->node_to = to; 1540 peer->node_props.p2p_links_count++; 1541 list_add_tail(&props->list, &peer->p2p_link_props); 1542 ret = kfd_build_p2p_node_entry(peer, props); 1543 1544 return ret; 1545 } 1546 #endif 1547 1548 static int kfd_dev_create_p2p_links(void) 1549 { 1550 struct kfd_topology_device *dev; 1551 struct kfd_topology_device *new_dev; 1552 #if defined(CONFIG_HSA_AMD_P2P) 1553 uint32_t i; 1554 #endif 1555 uint32_t k; 1556 int ret = 0; 1557 1558 k = 0; 1559 list_for_each_entry(dev, &topology_device_list, list) 1560 k++; 1561 if (k < 2) 1562 return 0; 1563 1564 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); 1565 if (WARN_ON(!new_dev->gpu)) 1566 return 0; 1567 1568 k--; 1569 1570 /* create in-direct links */ 1571 ret = kfd_create_indirect_link_prop(new_dev, k); 1572 if (ret < 0) 1573 goto out; 1574 1575 /* create p2p links */ 1576 #if defined(CONFIG_HSA_AMD_P2P) 1577 i = 0; 1578 list_for_each_entry(dev, &topology_device_list, list) { 1579 if (dev == new_dev) 1580 break; 1581 if (!dev->gpu || !dev->gpu->adev || 1582 (dev->gpu->kfd->hive_id && 1583 dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id)) 1584 goto next; 1585 1586 /* check if node(s) is/are peer accessible in one direction or bi-direction */ 1587 ret = kfd_add_peer_prop(new_dev, dev, i, k); 1588 if (ret < 0) 1589 goto out; 1590 1591 ret = kfd_add_peer_prop(dev, new_dev, k, i); 1592 if (ret < 0) 1593 goto out; 1594 next: 1595 i++; 1596 } 1597 #endif 1598 1599 out: 1600 return ret; 1601 } 1602 1603 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1604 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext, 1605 struct kfd_gpu_cache_info *pcache_info, 1606 struct kfd_cu_info *cu_info, 1607 int cu_bitmask, 1608 int cache_type, unsigned int cu_processor_id, 1609 int cu_block) 1610 { 1611 unsigned int cu_sibling_map_mask; 1612 int first_active_cu; 1613 struct kfd_cache_properties *pcache = NULL; 1614 1615 cu_sibling_map_mask = cu_bitmask; 1616 cu_sibling_map_mask >>= cu_block; 1617 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1618 first_active_cu = ffs(cu_sibling_map_mask); 1619 1620 /* CU could be inactive. In case of shared cache find the first active 1621 * CU. and incase of non-shared cache check if the CU is inactive. If 1622 * inactive active skip it 1623 */ 1624 if (first_active_cu) { 1625 pcache = kfd_alloc_struct(pcache); 1626 if (!pcache) 1627 return -ENOMEM; 1628 1629 memset(pcache, 0, sizeof(struct kfd_cache_properties)); 1630 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); 1631 pcache->cache_level = pcache_info[cache_type].cache_level; 1632 pcache->cache_size = pcache_info[cache_type].cache_size; 1633 1634 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) 1635 pcache->cache_type |= HSA_CACHE_TYPE_DATA; 1636 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) 1637 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 1638 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) 1639 pcache->cache_type |= HSA_CACHE_TYPE_CPU; 1640 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 1641 pcache->cache_type |= HSA_CACHE_TYPE_HSACU; 1642 1643 /* Sibling map is w.r.t processor_id_low, so shift out 1644 * inactive CU 1645 */ 1646 cu_sibling_map_mask = 1647 cu_sibling_map_mask >> (first_active_cu - 1); 1648 1649 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1650 pcache->sibling_map[1] = 1651 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1652 pcache->sibling_map[2] = 1653 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1654 pcache->sibling_map[3] = 1655 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1656 1657 pcache->sibling_map_size = 4; 1658 *props_ext = pcache; 1659 1660 return 0; 1661 } 1662 return 1; 1663 } 1664 1665 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1666 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext, 1667 struct kfd_gpu_cache_info *pcache_info, 1668 struct kfd_cu_info *cu_info, 1669 int cache_type, unsigned int cu_processor_id) 1670 { 1671 unsigned int cu_sibling_map_mask; 1672 int first_active_cu; 1673 int i, j, k; 1674 struct kfd_cache_properties *pcache = NULL; 1675 1676 cu_sibling_map_mask = cu_info->cu_bitmap[0][0]; 1677 cu_sibling_map_mask &= 1678 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1679 first_active_cu = ffs(cu_sibling_map_mask); 1680 1681 /* CU could be inactive. In case of shared cache find the first active 1682 * CU. and incase of non-shared cache check if the CU is inactive. If 1683 * inactive active skip it 1684 */ 1685 if (first_active_cu) { 1686 pcache = kfd_alloc_struct(pcache); 1687 if (!pcache) 1688 return -ENOMEM; 1689 1690 memset(pcache, 0, sizeof(struct kfd_cache_properties)); 1691 pcache->processor_id_low = cu_processor_id 1692 + (first_active_cu - 1); 1693 pcache->cache_level = pcache_info[cache_type].cache_level; 1694 pcache->cache_size = pcache_info[cache_type].cache_size; 1695 1696 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) 1697 pcache->cache_type |= HSA_CACHE_TYPE_DATA; 1698 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) 1699 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 1700 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) 1701 pcache->cache_type |= HSA_CACHE_TYPE_CPU; 1702 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 1703 pcache->cache_type |= HSA_CACHE_TYPE_HSACU; 1704 1705 /* Sibling map is w.r.t processor_id_low, so shift out 1706 * inactive CU 1707 */ 1708 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); 1709 k = 0; 1710 1711 for (i = 0; i < cu_info->num_shader_engines; i++) { 1712 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) { 1713 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1714 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1715 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1716 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1717 k += 4; 1718 1719 cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4]; 1720 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1721 } 1722 } 1723 pcache->sibling_map_size = k; 1724 *props_ext = pcache; 1725 return 0; 1726 } 1727 return 1; 1728 } 1729 1730 #define KFD_MAX_CACHE_TYPES 6 1731 1732 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info 1733 * tables 1734 */ 1735 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev) 1736 { 1737 struct kfd_gpu_cache_info *pcache_info = NULL; 1738 int i, j, k; 1739 int ct = 0; 1740 unsigned int cu_processor_id; 1741 int ret; 1742 unsigned int num_cu_shared; 1743 struct kfd_cu_info cu_info; 1744 struct kfd_cu_info *pcu_info; 1745 int gpu_processor_id; 1746 struct kfd_cache_properties *props_ext; 1747 int num_of_entries = 0; 1748 int num_of_cache_types = 0; 1749 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES]; 1750 1751 amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info); 1752 pcu_info = &cu_info; 1753 1754 gpu_processor_id = dev->node_props.simd_id_base; 1755 1756 pcache_info = cache_info; 1757 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info); 1758 if (!num_of_cache_types) { 1759 pr_warn("no cache info found\n"); 1760 return; 1761 } 1762 1763 /* For each type of cache listed in the kfd_gpu_cache_info table, 1764 * go through all available Compute Units. 1765 * The [i,j,k] loop will 1766 * if kfd_gpu_cache_info.num_cu_shared = 1 1767 * will parse through all available CU 1768 * If (kfd_gpu_cache_info.num_cu_shared != 1) 1769 * then it will consider only one CU from 1770 * the shared unit 1771 */ 1772 for (ct = 0; ct < num_of_cache_types; ct++) { 1773 cu_processor_id = gpu_processor_id; 1774 if (pcache_info[ct].cache_level == 1) { 1775 for (i = 0; i < pcu_info->num_shader_engines; i++) { 1776 for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) { 1777 for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) { 1778 1779 ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info, 1780 pcu_info->cu_bitmap[i % 4][j + i / 4], ct, 1781 cu_processor_id, k); 1782 1783 if (ret < 0) 1784 break; 1785 1786 if (!ret) { 1787 num_of_entries++; 1788 list_add_tail(&props_ext->list, &dev->cache_props); 1789 } 1790 1791 /* Move to next CU block */ 1792 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <= 1793 pcu_info->num_cu_per_sh) ? 1794 pcache_info[ct].num_cu_shared : 1795 (pcu_info->num_cu_per_sh - k); 1796 cu_processor_id += num_cu_shared; 1797 } 1798 } 1799 } 1800 } else { 1801 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info, 1802 pcu_info, ct, cu_processor_id); 1803 1804 if (ret < 0) 1805 break; 1806 1807 if (!ret) { 1808 num_of_entries++; 1809 list_add_tail(&props_ext->list, &dev->cache_props); 1810 } 1811 } 1812 } 1813 dev->node_props.caches_count += num_of_entries; 1814 pr_debug("Added [%d] GPU cache entries\n", num_of_entries); 1815 } 1816 1817 static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id, 1818 struct kfd_topology_device **dev) 1819 { 1820 int proximity_domain = ++topology_crat_proximity_domain; 1821 struct list_head temp_topology_device_list; 1822 void *crat_image = NULL; 1823 size_t image_size = 0; 1824 int res; 1825 1826 res = kfd_create_crat_image_virtual(&crat_image, &image_size, 1827 COMPUTE_UNIT_GPU, gpu, 1828 proximity_domain); 1829 if (res) { 1830 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n", 1831 gpu_id); 1832 topology_crat_proximity_domain--; 1833 goto err; 1834 } 1835 1836 INIT_LIST_HEAD(&temp_topology_device_list); 1837 1838 res = kfd_parse_crat_table(crat_image, 1839 &temp_topology_device_list, 1840 proximity_domain); 1841 if (res) { 1842 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n", 1843 gpu_id); 1844 topology_crat_proximity_domain--; 1845 goto err; 1846 } 1847 1848 kfd_topology_update_device_list(&temp_topology_device_list, 1849 &topology_device_list); 1850 1851 *dev = kfd_assign_gpu(gpu); 1852 if (WARN_ON(!*dev)) { 1853 res = -ENODEV; 1854 goto err; 1855 } 1856 1857 /* Fill the cache affinity information here for the GPUs 1858 * using VCRAT 1859 */ 1860 kfd_fill_cache_non_crat_info(*dev, gpu); 1861 1862 /* Update the SYSFS tree, since we added another topology 1863 * device 1864 */ 1865 res = kfd_topology_update_sysfs(); 1866 if (!res) 1867 sys_props.generation_count++; 1868 else 1869 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n", 1870 gpu_id, res); 1871 1872 err: 1873 kfd_destroy_crat_image(crat_image); 1874 return res; 1875 } 1876 1877 int kfd_topology_add_device(struct kfd_node *gpu) 1878 { 1879 uint32_t gpu_id; 1880 struct kfd_topology_device *dev; 1881 struct kfd_cu_info cu_info; 1882 int res = 0; 1883 int i; 1884 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type]; 1885 1886 gpu_id = kfd_generate_gpu_id(gpu); 1887 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); 1888 1889 /* Check to see if this gpu device exists in the topology_device_list. 1890 * If so, assign the gpu to that device, 1891 * else create a Virtual CRAT for this gpu device and then parse that 1892 * CRAT to create a new topology device. Once created assign the gpu to 1893 * that topology device 1894 */ 1895 down_write(&topology_lock); 1896 dev = kfd_assign_gpu(gpu); 1897 if (!dev) 1898 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev); 1899 up_write(&topology_lock); 1900 if (res) 1901 return res; 1902 1903 dev->gpu_id = gpu_id; 1904 gpu->id = gpu_id; 1905 1906 kfd_dev_create_p2p_links(); 1907 1908 /* TODO: Move the following lines to function 1909 * kfd_add_non_crat_information 1910 */ 1911 1912 /* Fill-in additional information that is not available in CRAT but 1913 * needed for the topology 1914 */ 1915 1916 amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info); 1917 1918 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) { 1919 dev->node_props.name[i] = __tolower(asic_name[i]); 1920 if (asic_name[i] == '\0') 1921 break; 1922 } 1923 dev->node_props.name[i] = '\0'; 1924 1925 dev->node_props.simd_arrays_per_engine = 1926 cu_info.num_shader_arrays_per_engine; 1927 1928 dev->node_props.gfx_target_version = 1929 gpu->kfd->device_info.gfx_target_version; 1930 dev->node_props.vendor_id = gpu->adev->pdev->vendor; 1931 dev->node_props.device_id = gpu->adev->pdev->device; 1932 dev->node_props.capability |= 1933 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) & 1934 HSA_CAP_ASIC_REVISION_MASK); 1935 1936 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev); 1937 if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3)) 1938 dev->node_props.location_id |= dev->gpu->node_id; 1939 1940 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus); 1941 dev->node_props.max_engine_clk_fcompute = 1942 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev); 1943 dev->node_props.max_engine_clk_ccompute = 1944 cpufreq_quick_get_max(0) / 1000; 1945 dev->node_props.drm_render_minor = 1946 gpu->kfd->shared_resources.drm_render_minor; 1947 1948 dev->node_props.hive_id = gpu->kfd->hive_id; 1949 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu); 1950 dev->node_props.num_sdma_xgmi_engines = 1951 kfd_get_num_xgmi_sdma_engines(gpu); 1952 dev->node_props.num_sdma_queues_per_engine = 1953 gpu->kfd->device_info.num_sdma_queues_per_engine - 1954 gpu->kfd->device_info.num_reserved_sdma_queues_per_engine; 1955 dev->node_props.num_gws = (dev->gpu->gws && 1956 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ? 1957 dev->gpu->adev->gds.gws_size : 0; 1958 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm); 1959 1960 kfd_fill_mem_clk_max_info(dev); 1961 kfd_fill_iolink_non_crat_info(dev); 1962 1963 switch (dev->gpu->adev->asic_type) { 1964 case CHIP_KAVERI: 1965 case CHIP_HAWAII: 1966 case CHIP_TONGA: 1967 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << 1968 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1969 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1970 break; 1971 case CHIP_CARRIZO: 1972 case CHIP_FIJI: 1973 case CHIP_POLARIS10: 1974 case CHIP_POLARIS11: 1975 case CHIP_POLARIS12: 1976 case CHIP_VEGAM: 1977 pr_debug("Adding doorbell packet type capability\n"); 1978 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << 1979 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1980 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1981 break; 1982 default: 1983 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1)) 1984 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << 1985 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1986 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1987 else 1988 WARN(1, "Unexpected ASIC family %u", 1989 dev->gpu->adev->asic_type); 1990 } 1991 1992 /* 1993 * Overwrite ATS capability according to needs_iommu_device to fix 1994 * potential missing corresponding bit in CRAT of BIOS. 1995 */ 1996 if (dev->gpu->kfd->use_iommu_v2) 1997 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 1998 else 1999 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT; 2000 2001 /* Fix errors in CZ CRAT. 2002 * simd_count: Carrizo CRAT reports wrong simd_count, probably 2003 * because it doesn't consider masked out CUs 2004 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd 2005 */ 2006 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) { 2007 dev->node_props.simd_count = 2008 cu_info.simd_per_cu * cu_info.cu_active_number; 2009 dev->node_props.max_waves_per_simd = 10; 2010 } 2011 2012 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */ 2013 dev->node_props.capability |= 2014 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ? 2015 HSA_CAP_SRAM_EDCSUPPORTED : 0; 2016 dev->node_props.capability |= 2017 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ? 2018 HSA_CAP_MEM_EDCSUPPORTED : 0; 2019 2020 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1)) 2021 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ? 2022 HSA_CAP_RASEVENTNOTIFY : 0; 2023 2024 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev)) 2025 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED; 2026 2027 kfd_debug_print_topology(); 2028 2029 kfd_notify_gpu_change(gpu_id, 1); 2030 2031 return 0; 2032 } 2033 2034 /** 2035 * kfd_topology_update_io_links() - Update IO links after device removal. 2036 * @proximity_domain: Proximity domain value of the dev being removed. 2037 * 2038 * The topology list currently is arranged in increasing order of 2039 * proximity domain. 2040 * 2041 * Two things need to be done when a device is removed: 2042 * 1. All the IO links to this device need to be removed. 2043 * 2. All nodes after the current device node need to move 2044 * up once this device node is removed from the topology 2045 * list. As a result, the proximity domain values for 2046 * all nodes after the node being deleted reduce by 1. 2047 * This would also cause the proximity domain values for 2048 * io links to be updated based on new proximity domain 2049 * values. 2050 * 2051 * Context: The caller must hold write topology_lock. 2052 */ 2053 static void kfd_topology_update_io_links(int proximity_domain) 2054 { 2055 struct kfd_topology_device *dev; 2056 struct kfd_iolink_properties *iolink, *p2plink, *tmp; 2057 2058 list_for_each_entry(dev, &topology_device_list, list) { 2059 if (dev->proximity_domain > proximity_domain) 2060 dev->proximity_domain--; 2061 2062 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) { 2063 /* 2064 * If there is an io link to the dev being deleted 2065 * then remove that IO link also. 2066 */ 2067 if (iolink->node_to == proximity_domain) { 2068 list_del(&iolink->list); 2069 dev->node_props.io_links_count--; 2070 } else { 2071 if (iolink->node_from > proximity_domain) 2072 iolink->node_from--; 2073 if (iolink->node_to > proximity_domain) 2074 iolink->node_to--; 2075 } 2076 } 2077 2078 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) { 2079 /* 2080 * If there is a p2p link to the dev being deleted 2081 * then remove that p2p link also. 2082 */ 2083 if (p2plink->node_to == proximity_domain) { 2084 list_del(&p2plink->list); 2085 dev->node_props.p2p_links_count--; 2086 } else { 2087 if (p2plink->node_from > proximity_domain) 2088 p2plink->node_from--; 2089 if (p2plink->node_to > proximity_domain) 2090 p2plink->node_to--; 2091 } 2092 } 2093 } 2094 } 2095 2096 int kfd_topology_remove_device(struct kfd_node *gpu) 2097 { 2098 struct kfd_topology_device *dev, *tmp; 2099 uint32_t gpu_id; 2100 int res = -ENODEV; 2101 int i = 0; 2102 2103 down_write(&topology_lock); 2104 2105 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) { 2106 if (dev->gpu == gpu) { 2107 gpu_id = dev->gpu_id; 2108 kfd_remove_sysfs_node_entry(dev); 2109 kfd_release_topology_device(dev); 2110 sys_props.num_devices--; 2111 kfd_topology_update_io_links(i); 2112 topology_crat_proximity_domain = sys_props.num_devices-1; 2113 sys_props.generation_count++; 2114 res = 0; 2115 if (kfd_topology_update_sysfs() < 0) 2116 kfd_topology_release_sysfs(); 2117 break; 2118 } 2119 i++; 2120 } 2121 2122 up_write(&topology_lock); 2123 2124 if (!res) 2125 kfd_notify_gpu_change(gpu_id, 0); 2126 2127 return res; 2128 } 2129 2130 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD 2131 * topology. If GPU device is found @idx, then valid kfd_dev pointer is 2132 * returned through @kdev 2133 * Return - 0: On success (@kdev will be NULL for non GPU nodes) 2134 * -1: If end of list 2135 */ 2136 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev) 2137 { 2138 2139 struct kfd_topology_device *top_dev; 2140 uint8_t device_idx = 0; 2141 2142 *kdev = NULL; 2143 down_read(&topology_lock); 2144 2145 list_for_each_entry(top_dev, &topology_device_list, list) { 2146 if (device_idx == idx) { 2147 *kdev = top_dev->gpu; 2148 up_read(&topology_lock); 2149 return 0; 2150 } 2151 2152 device_idx++; 2153 } 2154 2155 up_read(&topology_lock); 2156 2157 return -1; 2158 2159 } 2160 2161 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) 2162 { 2163 int first_cpu_of_numa_node; 2164 2165 if (!cpumask || cpumask == cpu_none_mask) 2166 return -1; 2167 first_cpu_of_numa_node = cpumask_first(cpumask); 2168 if (first_cpu_of_numa_node >= nr_cpu_ids) 2169 return -1; 2170 #ifdef CONFIG_X86_64 2171 return cpu_data(first_cpu_of_numa_node).apicid; 2172 #else 2173 return first_cpu_of_numa_node; 2174 #endif 2175 } 2176 2177 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor 2178 * of the given NUMA node (numa_node_id) 2179 * Return -1 on failure 2180 */ 2181 int kfd_numa_node_to_apic_id(int numa_node_id) 2182 { 2183 if (numa_node_id == -1) { 2184 pr_warn("Invalid NUMA Node. Use online CPU mask\n"); 2185 return kfd_cpumask_to_apic_id(cpu_online_mask); 2186 } 2187 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); 2188 } 2189 2190 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu) 2191 { 2192 struct kfd_topology_device *dev; 2193 2194 gpu->use_iommu_v2 = false; 2195 2196 if (!gpu->device_info.needs_iommu_device) 2197 return; 2198 2199 down_read(&topology_lock); 2200 2201 /* Only use IOMMUv2 if there is an APU topology node with no GPU 2202 * assigned yet. This GPU will be assigned to it. 2203 */ 2204 list_for_each_entry(dev, &topology_device_list, list) 2205 if (dev->node_props.cpu_cores_count && 2206 dev->node_props.simd_count && 2207 !dev->gpu) 2208 gpu->use_iommu_v2 = true; 2209 2210 up_read(&topology_lock); 2211 } 2212 2213 #if defined(CONFIG_DEBUG_FS) 2214 2215 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) 2216 { 2217 struct kfd_topology_device *dev; 2218 unsigned int i = 0; 2219 int r = 0; 2220 2221 down_read(&topology_lock); 2222 2223 list_for_each_entry(dev, &topology_device_list, list) { 2224 if (!dev->gpu) { 2225 i++; 2226 continue; 2227 } 2228 2229 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2230 r = dqm_debugfs_hqds(m, dev->gpu->dqm); 2231 if (r) 2232 break; 2233 } 2234 2235 up_read(&topology_lock); 2236 2237 return r; 2238 } 2239 2240 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) 2241 { 2242 struct kfd_topology_device *dev; 2243 unsigned int i = 0; 2244 int r = 0; 2245 2246 down_read(&topology_lock); 2247 2248 list_for_each_entry(dev, &topology_device_list, list) { 2249 if (!dev->gpu) { 2250 i++; 2251 continue; 2252 } 2253 2254 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2255 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr); 2256 if (r) 2257 break; 2258 } 2259 2260 up_read(&topology_lock); 2261 2262 return r; 2263 } 2264 2265 #endif 2266