1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/kernel.h> 26 #include <linux/pci.h> 27 #include <linux/errno.h> 28 #include <linux/acpi.h> 29 #include <linux/hash.h> 30 #include <linux/cpufreq.h> 31 #include <linux/log2.h> 32 #include <linux/dmi.h> 33 #include <linux/atomic.h> 34 35 #include "kfd_priv.h" 36 #include "kfd_crat.h" 37 #include "kfd_topology.h" 38 #include "kfd_device_queue_manager.h" 39 #include "kfd_iommu.h" 40 #include "kfd_svm.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_ras.h" 43 #include "amdgpu.h" 44 45 /* topology_device_list - Master list of all topology devices */ 46 static struct list_head topology_device_list; 47 static struct kfd_system_properties sys_props; 48 49 static DECLARE_RWSEM(topology_lock); 50 static uint32_t topology_crat_proximity_domain; 51 52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 53 uint32_t proximity_domain) 54 { 55 struct kfd_topology_device *top_dev; 56 struct kfd_topology_device *device = NULL; 57 58 list_for_each_entry(top_dev, &topology_device_list, list) 59 if (top_dev->proximity_domain == proximity_domain) { 60 device = top_dev; 61 break; 62 } 63 64 return device; 65 } 66 67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 68 uint32_t proximity_domain) 69 { 70 struct kfd_topology_device *device = NULL; 71 72 down_read(&topology_lock); 73 74 device = kfd_topology_device_by_proximity_domain_no_lock( 75 proximity_domain); 76 up_read(&topology_lock); 77 78 return device; 79 } 80 81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) 82 { 83 struct kfd_topology_device *top_dev = NULL; 84 struct kfd_topology_device *ret = NULL; 85 86 down_read(&topology_lock); 87 88 list_for_each_entry(top_dev, &topology_device_list, list) 89 if (top_dev->gpu_id == gpu_id) { 90 ret = top_dev; 91 break; 92 } 93 94 up_read(&topology_lock); 95 96 return ret; 97 } 98 99 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) 100 { 101 struct kfd_topology_device *top_dev; 102 103 top_dev = kfd_topology_device_by_id(gpu_id); 104 if (!top_dev) 105 return NULL; 106 107 return top_dev->gpu; 108 } 109 110 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) 111 { 112 struct kfd_topology_device *top_dev; 113 struct kfd_dev *device = NULL; 114 115 down_read(&topology_lock); 116 117 list_for_each_entry(top_dev, &topology_device_list, list) 118 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) { 119 device = top_dev->gpu; 120 break; 121 } 122 123 up_read(&topology_lock); 124 125 return device; 126 } 127 128 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev) 129 { 130 struct kfd_topology_device *top_dev; 131 struct kfd_dev *device = NULL; 132 133 down_read(&topology_lock); 134 135 list_for_each_entry(top_dev, &topology_device_list, list) 136 if (top_dev->gpu && top_dev->gpu->adev == adev) { 137 device = top_dev->gpu; 138 break; 139 } 140 141 up_read(&topology_lock); 142 143 return device; 144 } 145 146 /* Called with write topology_lock acquired */ 147 static void kfd_release_topology_device(struct kfd_topology_device *dev) 148 { 149 struct kfd_mem_properties *mem; 150 struct kfd_cache_properties *cache; 151 struct kfd_iolink_properties *iolink; 152 struct kfd_iolink_properties *p2plink; 153 struct kfd_perf_properties *perf; 154 155 list_del(&dev->list); 156 157 while (dev->mem_props.next != &dev->mem_props) { 158 mem = container_of(dev->mem_props.next, 159 struct kfd_mem_properties, list); 160 list_del(&mem->list); 161 kfree(mem); 162 } 163 164 while (dev->cache_props.next != &dev->cache_props) { 165 cache = container_of(dev->cache_props.next, 166 struct kfd_cache_properties, list); 167 list_del(&cache->list); 168 kfree(cache); 169 } 170 171 while (dev->io_link_props.next != &dev->io_link_props) { 172 iolink = container_of(dev->io_link_props.next, 173 struct kfd_iolink_properties, list); 174 list_del(&iolink->list); 175 kfree(iolink); 176 } 177 178 while (dev->p2p_link_props.next != &dev->p2p_link_props) { 179 p2plink = container_of(dev->p2p_link_props.next, 180 struct kfd_iolink_properties, list); 181 list_del(&p2plink->list); 182 kfree(p2plink); 183 } 184 185 while (dev->perf_props.next != &dev->perf_props) { 186 perf = container_of(dev->perf_props.next, 187 struct kfd_perf_properties, list); 188 list_del(&perf->list); 189 kfree(perf); 190 } 191 192 kfree(dev); 193 } 194 195 void kfd_release_topology_device_list(struct list_head *device_list) 196 { 197 struct kfd_topology_device *dev; 198 199 while (!list_empty(device_list)) { 200 dev = list_first_entry(device_list, 201 struct kfd_topology_device, list); 202 kfd_release_topology_device(dev); 203 } 204 } 205 206 static void kfd_release_live_view(void) 207 { 208 kfd_release_topology_device_list(&topology_device_list); 209 memset(&sys_props, 0, sizeof(sys_props)); 210 } 211 212 struct kfd_topology_device *kfd_create_topology_device( 213 struct list_head *device_list) 214 { 215 struct kfd_topology_device *dev; 216 217 dev = kfd_alloc_struct(dev); 218 if (!dev) { 219 pr_err("No memory to allocate a topology device"); 220 return NULL; 221 } 222 223 INIT_LIST_HEAD(&dev->mem_props); 224 INIT_LIST_HEAD(&dev->cache_props); 225 INIT_LIST_HEAD(&dev->io_link_props); 226 INIT_LIST_HEAD(&dev->p2p_link_props); 227 INIT_LIST_HEAD(&dev->perf_props); 228 229 list_add_tail(&dev->list, device_list); 230 231 return dev; 232 } 233 234 235 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \ 236 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \ 237 fmt, __VA_ARGS__)) 238 #define sysfs_show_32bit_prop(buffer, offs, name, value) \ 239 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value) 240 #define sysfs_show_64bit_prop(buffer, offs, name, value) \ 241 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value) 242 #define sysfs_show_32bit_val(buffer, offs, value) \ 243 sysfs_show_gen_prop(buffer, offs, "%u\n", value) 244 #define sysfs_show_str_val(buffer, offs, value) \ 245 sysfs_show_gen_prop(buffer, offs, "%s\n", value) 246 247 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, 248 char *buffer) 249 { 250 int offs = 0; 251 252 /* Making sure that the buffer is an empty string */ 253 buffer[0] = 0; 254 255 if (attr == &sys_props.attr_genid) { 256 sysfs_show_32bit_val(buffer, offs, 257 sys_props.generation_count); 258 } else if (attr == &sys_props.attr_props) { 259 sysfs_show_64bit_prop(buffer, offs, "platform_oem", 260 sys_props.platform_oem); 261 sysfs_show_64bit_prop(buffer, offs, "platform_id", 262 sys_props.platform_id); 263 sysfs_show_64bit_prop(buffer, offs, "platform_rev", 264 sys_props.platform_rev); 265 } else { 266 offs = -EINVAL; 267 } 268 269 return offs; 270 } 271 272 static void kfd_topology_kobj_release(struct kobject *kobj) 273 { 274 kfree(kobj); 275 } 276 277 static const struct sysfs_ops sysprops_ops = { 278 .show = sysprops_show, 279 }; 280 281 static struct kobj_type sysprops_type = { 282 .release = kfd_topology_kobj_release, 283 .sysfs_ops = &sysprops_ops, 284 }; 285 286 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, 287 char *buffer) 288 { 289 int offs = 0; 290 struct kfd_iolink_properties *iolink; 291 292 /* Making sure that the buffer is an empty string */ 293 buffer[0] = 0; 294 295 iolink = container_of(attr, struct kfd_iolink_properties, attr); 296 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu)) 297 return -EPERM; 298 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type); 299 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj); 300 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min); 301 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from); 302 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to); 303 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight); 304 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency); 305 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency); 306 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth", 307 iolink->min_bandwidth); 308 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth", 309 iolink->max_bandwidth); 310 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size", 311 iolink->rec_transfer_size); 312 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags); 313 314 return offs; 315 } 316 317 static const struct sysfs_ops iolink_ops = { 318 .show = iolink_show, 319 }; 320 321 static struct kobj_type iolink_type = { 322 .release = kfd_topology_kobj_release, 323 .sysfs_ops = &iolink_ops, 324 }; 325 326 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, 327 char *buffer) 328 { 329 int offs = 0; 330 struct kfd_mem_properties *mem; 331 332 /* Making sure that the buffer is an empty string */ 333 buffer[0] = 0; 334 335 mem = container_of(attr, struct kfd_mem_properties, attr); 336 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu)) 337 return -EPERM; 338 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type); 339 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes", 340 mem->size_in_bytes); 341 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags); 342 sysfs_show_32bit_prop(buffer, offs, "width", mem->width); 343 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max", 344 mem->mem_clk_max); 345 346 return offs; 347 } 348 349 static const struct sysfs_ops mem_ops = { 350 .show = mem_show, 351 }; 352 353 static struct kobj_type mem_type = { 354 .release = kfd_topology_kobj_release, 355 .sysfs_ops = &mem_ops, 356 }; 357 358 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, 359 char *buffer) 360 { 361 int offs = 0; 362 uint32_t i, j; 363 struct kfd_cache_properties *cache; 364 365 /* Making sure that the buffer is an empty string */ 366 buffer[0] = 0; 367 cache = container_of(attr, struct kfd_cache_properties, attr); 368 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu)) 369 return -EPERM; 370 sysfs_show_32bit_prop(buffer, offs, "processor_id_low", 371 cache->processor_id_low); 372 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level); 373 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size); 374 sysfs_show_32bit_prop(buffer, offs, "cache_line_size", 375 cache->cacheline_size); 376 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag", 377 cache->cachelines_per_tag); 378 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc); 379 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency); 380 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type); 381 382 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map "); 383 for (i = 0; i < cache->sibling_map_size; i++) 384 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) 385 /* Check each bit */ 386 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,", 387 (cache->sibling_map[i] >> j) & 1); 388 389 /* Replace the last "," with end of line */ 390 buffer[offs-1] = '\n'; 391 return offs; 392 } 393 394 static const struct sysfs_ops cache_ops = { 395 .show = kfd_cache_show, 396 }; 397 398 static struct kobj_type cache_type = { 399 .release = kfd_topology_kobj_release, 400 .sysfs_ops = &cache_ops, 401 }; 402 403 /****** Sysfs of Performance Counters ******/ 404 405 struct kfd_perf_attr { 406 struct kobj_attribute attr; 407 uint32_t data; 408 }; 409 410 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, 411 char *buf) 412 { 413 int offs = 0; 414 struct kfd_perf_attr *attr; 415 416 buf[0] = 0; 417 attr = container_of(attrs, struct kfd_perf_attr, attr); 418 if (!attr->data) /* invalid data for PMC */ 419 return 0; 420 else 421 return sysfs_show_32bit_val(buf, offs, attr->data); 422 } 423 424 #define KFD_PERF_DESC(_name, _data) \ 425 { \ 426 .attr = __ATTR(_name, 0444, perf_show, NULL), \ 427 .data = _data, \ 428 } 429 430 static struct kfd_perf_attr perf_attr_iommu[] = { 431 KFD_PERF_DESC(max_concurrent, 0), 432 KFD_PERF_DESC(num_counters, 0), 433 KFD_PERF_DESC(counter_ids, 0), 434 }; 435 /****************************************/ 436 437 static ssize_t node_show(struct kobject *kobj, struct attribute *attr, 438 char *buffer) 439 { 440 int offs = 0; 441 struct kfd_topology_device *dev; 442 uint32_t log_max_watch_addr; 443 444 /* Making sure that the buffer is an empty string */ 445 buffer[0] = 0; 446 447 if (strcmp(attr->name, "gpu_id") == 0) { 448 dev = container_of(attr, struct kfd_topology_device, 449 attr_gpuid); 450 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 451 return -EPERM; 452 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id); 453 } 454 455 if (strcmp(attr->name, "name") == 0) { 456 dev = container_of(attr, struct kfd_topology_device, 457 attr_name); 458 459 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 460 return -EPERM; 461 return sysfs_show_str_val(buffer, offs, dev->node_props.name); 462 } 463 464 dev = container_of(attr, struct kfd_topology_device, 465 attr_props); 466 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 467 return -EPERM; 468 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count", 469 dev->node_props.cpu_cores_count); 470 sysfs_show_32bit_prop(buffer, offs, "simd_count", 471 dev->gpu ? dev->node_props.simd_count : 0); 472 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count", 473 dev->node_props.mem_banks_count); 474 sysfs_show_32bit_prop(buffer, offs, "caches_count", 475 dev->node_props.caches_count); 476 sysfs_show_32bit_prop(buffer, offs, "io_links_count", 477 dev->node_props.io_links_count); 478 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count", 479 dev->node_props.p2p_links_count); 480 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base", 481 dev->node_props.cpu_core_id_base); 482 sysfs_show_32bit_prop(buffer, offs, "simd_id_base", 483 dev->node_props.simd_id_base); 484 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd", 485 dev->node_props.max_waves_per_simd); 486 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb", 487 dev->node_props.lds_size_in_kb); 488 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb", 489 dev->node_props.gds_size_in_kb); 490 sysfs_show_32bit_prop(buffer, offs, "num_gws", 491 dev->node_props.num_gws); 492 sysfs_show_32bit_prop(buffer, offs, "wave_front_size", 493 dev->node_props.wave_front_size); 494 sysfs_show_32bit_prop(buffer, offs, "array_count", 495 dev->node_props.array_count); 496 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine", 497 dev->node_props.simd_arrays_per_engine); 498 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array", 499 dev->node_props.cu_per_simd_array); 500 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu", 501 dev->node_props.simd_per_cu); 502 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu", 503 dev->node_props.max_slots_scratch_cu); 504 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version", 505 dev->node_props.gfx_target_version); 506 sysfs_show_32bit_prop(buffer, offs, "vendor_id", 507 dev->node_props.vendor_id); 508 sysfs_show_32bit_prop(buffer, offs, "device_id", 509 dev->node_props.device_id); 510 sysfs_show_32bit_prop(buffer, offs, "location_id", 511 dev->node_props.location_id); 512 sysfs_show_32bit_prop(buffer, offs, "domain", 513 dev->node_props.domain); 514 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor", 515 dev->node_props.drm_render_minor); 516 sysfs_show_64bit_prop(buffer, offs, "hive_id", 517 dev->node_props.hive_id); 518 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines", 519 dev->node_props.num_sdma_engines); 520 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines", 521 dev->node_props.num_sdma_xgmi_engines); 522 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine", 523 dev->node_props.num_sdma_queues_per_engine); 524 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues", 525 dev->node_props.num_cp_queues); 526 527 if (dev->gpu) { 528 log_max_watch_addr = 529 __ilog2_u32(dev->gpu->device_info.num_of_watch_points); 530 531 if (log_max_watch_addr) { 532 dev->node_props.capability |= 533 HSA_CAP_WATCH_POINTS_SUPPORTED; 534 535 dev->node_props.capability |= 536 ((log_max_watch_addr << 537 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & 538 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); 539 } 540 541 if (dev->gpu->adev->asic_type == CHIP_TONGA) 542 dev->node_props.capability |= 543 HSA_CAP_AQL_QUEUE_DOUBLE_MAP; 544 545 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute", 546 dev->node_props.max_engine_clk_fcompute); 547 548 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL); 549 550 sysfs_show_32bit_prop(buffer, offs, "fw_version", 551 dev->gpu->mec_fw_version); 552 sysfs_show_32bit_prop(buffer, offs, "capability", 553 dev->node_props.capability); 554 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version", 555 dev->gpu->sdma_fw_version); 556 sysfs_show_64bit_prop(buffer, offs, "unique_id", 557 dev->gpu->adev->unique_id); 558 559 } 560 561 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute", 562 cpufreq_quick_get_max(0)/1000); 563 } 564 565 static const struct sysfs_ops node_ops = { 566 .show = node_show, 567 }; 568 569 static struct kobj_type node_type = { 570 .release = kfd_topology_kobj_release, 571 .sysfs_ops = &node_ops, 572 }; 573 574 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) 575 { 576 sysfs_remove_file(kobj, attr); 577 kobject_del(kobj); 578 kobject_put(kobj); 579 } 580 581 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) 582 { 583 struct kfd_iolink_properties *p2plink; 584 struct kfd_iolink_properties *iolink; 585 struct kfd_cache_properties *cache; 586 struct kfd_mem_properties *mem; 587 struct kfd_perf_properties *perf; 588 589 if (dev->kobj_iolink) { 590 list_for_each_entry(iolink, &dev->io_link_props, list) 591 if (iolink->kobj) { 592 kfd_remove_sysfs_file(iolink->kobj, 593 &iolink->attr); 594 iolink->kobj = NULL; 595 } 596 kobject_del(dev->kobj_iolink); 597 kobject_put(dev->kobj_iolink); 598 dev->kobj_iolink = NULL; 599 } 600 601 if (dev->kobj_p2plink) { 602 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 603 if (p2plink->kobj) { 604 kfd_remove_sysfs_file(p2plink->kobj, 605 &p2plink->attr); 606 p2plink->kobj = NULL; 607 } 608 kobject_del(dev->kobj_p2plink); 609 kobject_put(dev->kobj_p2plink); 610 dev->kobj_p2plink = NULL; 611 } 612 613 if (dev->kobj_cache) { 614 list_for_each_entry(cache, &dev->cache_props, list) 615 if (cache->kobj) { 616 kfd_remove_sysfs_file(cache->kobj, 617 &cache->attr); 618 cache->kobj = NULL; 619 } 620 kobject_del(dev->kobj_cache); 621 kobject_put(dev->kobj_cache); 622 dev->kobj_cache = NULL; 623 } 624 625 if (dev->kobj_mem) { 626 list_for_each_entry(mem, &dev->mem_props, list) 627 if (mem->kobj) { 628 kfd_remove_sysfs_file(mem->kobj, &mem->attr); 629 mem->kobj = NULL; 630 } 631 kobject_del(dev->kobj_mem); 632 kobject_put(dev->kobj_mem); 633 dev->kobj_mem = NULL; 634 } 635 636 if (dev->kobj_perf) { 637 list_for_each_entry(perf, &dev->perf_props, list) { 638 kfree(perf->attr_group); 639 perf->attr_group = NULL; 640 } 641 kobject_del(dev->kobj_perf); 642 kobject_put(dev->kobj_perf); 643 dev->kobj_perf = NULL; 644 } 645 646 if (dev->kobj_node) { 647 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); 648 sysfs_remove_file(dev->kobj_node, &dev->attr_name); 649 sysfs_remove_file(dev->kobj_node, &dev->attr_props); 650 kobject_del(dev->kobj_node); 651 kobject_put(dev->kobj_node); 652 dev->kobj_node = NULL; 653 } 654 } 655 656 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, 657 uint32_t id) 658 { 659 struct kfd_iolink_properties *p2plink; 660 struct kfd_iolink_properties *iolink; 661 struct kfd_cache_properties *cache; 662 struct kfd_mem_properties *mem; 663 struct kfd_perf_properties *perf; 664 int ret; 665 uint32_t i, num_attrs; 666 struct attribute **attrs; 667 668 if (WARN_ON(dev->kobj_node)) 669 return -EEXIST; 670 671 /* 672 * Creating the sysfs folders 673 */ 674 dev->kobj_node = kfd_alloc_struct(dev->kobj_node); 675 if (!dev->kobj_node) 676 return -ENOMEM; 677 678 ret = kobject_init_and_add(dev->kobj_node, &node_type, 679 sys_props.kobj_nodes, "%d", id); 680 if (ret < 0) { 681 kobject_put(dev->kobj_node); 682 return ret; 683 } 684 685 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); 686 if (!dev->kobj_mem) 687 return -ENOMEM; 688 689 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); 690 if (!dev->kobj_cache) 691 return -ENOMEM; 692 693 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); 694 if (!dev->kobj_iolink) 695 return -ENOMEM; 696 697 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node); 698 if (!dev->kobj_p2plink) 699 return -ENOMEM; 700 701 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); 702 if (!dev->kobj_perf) 703 return -ENOMEM; 704 705 /* 706 * Creating sysfs files for node properties 707 */ 708 dev->attr_gpuid.name = "gpu_id"; 709 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; 710 sysfs_attr_init(&dev->attr_gpuid); 711 dev->attr_name.name = "name"; 712 dev->attr_name.mode = KFD_SYSFS_FILE_MODE; 713 sysfs_attr_init(&dev->attr_name); 714 dev->attr_props.name = "properties"; 715 dev->attr_props.mode = KFD_SYSFS_FILE_MODE; 716 sysfs_attr_init(&dev->attr_props); 717 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); 718 if (ret < 0) 719 return ret; 720 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); 721 if (ret < 0) 722 return ret; 723 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); 724 if (ret < 0) 725 return ret; 726 727 i = 0; 728 list_for_each_entry(mem, &dev->mem_props, list) { 729 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 730 if (!mem->kobj) 731 return -ENOMEM; 732 ret = kobject_init_and_add(mem->kobj, &mem_type, 733 dev->kobj_mem, "%d", i); 734 if (ret < 0) { 735 kobject_put(mem->kobj); 736 return ret; 737 } 738 739 mem->attr.name = "properties"; 740 mem->attr.mode = KFD_SYSFS_FILE_MODE; 741 sysfs_attr_init(&mem->attr); 742 ret = sysfs_create_file(mem->kobj, &mem->attr); 743 if (ret < 0) 744 return ret; 745 i++; 746 } 747 748 i = 0; 749 list_for_each_entry(cache, &dev->cache_props, list) { 750 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 751 if (!cache->kobj) 752 return -ENOMEM; 753 ret = kobject_init_and_add(cache->kobj, &cache_type, 754 dev->kobj_cache, "%d", i); 755 if (ret < 0) { 756 kobject_put(cache->kobj); 757 return ret; 758 } 759 760 cache->attr.name = "properties"; 761 cache->attr.mode = KFD_SYSFS_FILE_MODE; 762 sysfs_attr_init(&cache->attr); 763 ret = sysfs_create_file(cache->kobj, &cache->attr); 764 if (ret < 0) 765 return ret; 766 i++; 767 } 768 769 i = 0; 770 list_for_each_entry(iolink, &dev->io_link_props, list) { 771 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 772 if (!iolink->kobj) 773 return -ENOMEM; 774 ret = kobject_init_and_add(iolink->kobj, &iolink_type, 775 dev->kobj_iolink, "%d", i); 776 if (ret < 0) { 777 kobject_put(iolink->kobj); 778 return ret; 779 } 780 781 iolink->attr.name = "properties"; 782 iolink->attr.mode = KFD_SYSFS_FILE_MODE; 783 sysfs_attr_init(&iolink->attr); 784 ret = sysfs_create_file(iolink->kobj, &iolink->attr); 785 if (ret < 0) 786 return ret; 787 i++; 788 } 789 790 i = 0; 791 list_for_each_entry(p2plink, &dev->p2p_link_props, list) { 792 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 793 if (!p2plink->kobj) 794 return -ENOMEM; 795 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 796 dev->kobj_p2plink, "%d", i); 797 if (ret < 0) { 798 kobject_put(p2plink->kobj); 799 return ret; 800 } 801 802 p2plink->attr.name = "properties"; 803 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 804 sysfs_attr_init(&p2plink->attr); 805 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 806 if (ret < 0) 807 return ret; 808 i++; 809 } 810 811 /* All hardware blocks have the same number of attributes. */ 812 num_attrs = ARRAY_SIZE(perf_attr_iommu); 813 list_for_each_entry(perf, &dev->perf_props, list) { 814 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) 815 * num_attrs + sizeof(struct attribute_group), 816 GFP_KERNEL); 817 if (!perf->attr_group) 818 return -ENOMEM; 819 820 attrs = (struct attribute **)(perf->attr_group + 1); 821 if (!strcmp(perf->block_name, "iommu")) { 822 /* Information of IOMMU's num_counters and counter_ids is shown 823 * under /sys/bus/event_source/devices/amd_iommu. We don't 824 * duplicate here. 825 */ 826 perf_attr_iommu[0].data = perf->max_concurrent; 827 for (i = 0; i < num_attrs; i++) 828 attrs[i] = &perf_attr_iommu[i].attr.attr; 829 } 830 perf->attr_group->name = perf->block_name; 831 perf->attr_group->attrs = attrs; 832 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); 833 if (ret < 0) 834 return ret; 835 } 836 837 return 0; 838 } 839 840 /* Called with write topology lock acquired */ 841 static int kfd_build_sysfs_node_tree(void) 842 { 843 struct kfd_topology_device *dev; 844 int ret; 845 uint32_t i = 0; 846 847 list_for_each_entry(dev, &topology_device_list, list) { 848 ret = kfd_build_sysfs_node_entry(dev, i); 849 if (ret < 0) 850 return ret; 851 i++; 852 } 853 854 return 0; 855 } 856 857 /* Called with write topology lock acquired */ 858 static void kfd_remove_sysfs_node_tree(void) 859 { 860 struct kfd_topology_device *dev; 861 862 list_for_each_entry(dev, &topology_device_list, list) 863 kfd_remove_sysfs_node_entry(dev); 864 } 865 866 static int kfd_topology_update_sysfs(void) 867 { 868 int ret; 869 870 if (!sys_props.kobj_topology) { 871 sys_props.kobj_topology = 872 kfd_alloc_struct(sys_props.kobj_topology); 873 if (!sys_props.kobj_topology) 874 return -ENOMEM; 875 876 ret = kobject_init_and_add(sys_props.kobj_topology, 877 &sysprops_type, &kfd_device->kobj, 878 "topology"); 879 if (ret < 0) { 880 kobject_put(sys_props.kobj_topology); 881 return ret; 882 } 883 884 sys_props.kobj_nodes = kobject_create_and_add("nodes", 885 sys_props.kobj_topology); 886 if (!sys_props.kobj_nodes) 887 return -ENOMEM; 888 889 sys_props.attr_genid.name = "generation_id"; 890 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; 891 sysfs_attr_init(&sys_props.attr_genid); 892 ret = sysfs_create_file(sys_props.kobj_topology, 893 &sys_props.attr_genid); 894 if (ret < 0) 895 return ret; 896 897 sys_props.attr_props.name = "system_properties"; 898 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; 899 sysfs_attr_init(&sys_props.attr_props); 900 ret = sysfs_create_file(sys_props.kobj_topology, 901 &sys_props.attr_props); 902 if (ret < 0) 903 return ret; 904 } 905 906 kfd_remove_sysfs_node_tree(); 907 908 return kfd_build_sysfs_node_tree(); 909 } 910 911 static void kfd_topology_release_sysfs(void) 912 { 913 kfd_remove_sysfs_node_tree(); 914 if (sys_props.kobj_topology) { 915 sysfs_remove_file(sys_props.kobj_topology, 916 &sys_props.attr_genid); 917 sysfs_remove_file(sys_props.kobj_topology, 918 &sys_props.attr_props); 919 if (sys_props.kobj_nodes) { 920 kobject_del(sys_props.kobj_nodes); 921 kobject_put(sys_props.kobj_nodes); 922 sys_props.kobj_nodes = NULL; 923 } 924 kobject_del(sys_props.kobj_topology); 925 kobject_put(sys_props.kobj_topology); 926 sys_props.kobj_topology = NULL; 927 } 928 } 929 930 /* Called with write topology_lock acquired */ 931 static void kfd_topology_update_device_list(struct list_head *temp_list, 932 struct list_head *master_list) 933 { 934 while (!list_empty(temp_list)) { 935 list_move_tail(temp_list->next, master_list); 936 sys_props.num_devices++; 937 } 938 } 939 940 static void kfd_debug_print_topology(void) 941 { 942 struct kfd_topology_device *dev; 943 944 down_read(&topology_lock); 945 946 dev = list_last_entry(&topology_device_list, 947 struct kfd_topology_device, list); 948 if (dev) { 949 if (dev->node_props.cpu_cores_count && 950 dev->node_props.simd_count) { 951 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", 952 dev->node_props.device_id, 953 dev->node_props.vendor_id); 954 } else if (dev->node_props.cpu_cores_count) 955 pr_info("Topology: Add CPU node\n"); 956 else if (dev->node_props.simd_count) 957 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", 958 dev->node_props.device_id, 959 dev->node_props.vendor_id); 960 } 961 up_read(&topology_lock); 962 } 963 964 /* Helper function for intializing platform_xx members of 965 * kfd_system_properties. Uses OEM info from the last CPU/APU node. 966 */ 967 static void kfd_update_system_properties(void) 968 { 969 struct kfd_topology_device *dev; 970 971 down_read(&topology_lock); 972 dev = list_last_entry(&topology_device_list, 973 struct kfd_topology_device, list); 974 if (dev) { 975 sys_props.platform_id = 976 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK; 977 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); 978 sys_props.platform_rev = dev->oem_revision; 979 } 980 up_read(&topology_lock); 981 } 982 983 static void find_system_memory(const struct dmi_header *dm, 984 void *private) 985 { 986 struct kfd_mem_properties *mem; 987 u16 mem_width, mem_clock; 988 struct kfd_topology_device *kdev = 989 (struct kfd_topology_device *)private; 990 const u8 *dmi_data = (const u8 *)(dm + 1); 991 992 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { 993 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); 994 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); 995 list_for_each_entry(mem, &kdev->mem_props, list) { 996 if (mem_width != 0xFFFF && mem_width != 0) 997 mem->width = mem_width; 998 if (mem_clock != 0) 999 mem->mem_clk_max = mem_clock; 1000 } 1001 } 1002 } 1003 1004 /* 1005 * Performance counters information is not part of CRAT but we would like to 1006 * put them in the sysfs under topology directory for Thunk to get the data. 1007 * This function is called before updating the sysfs. 1008 */ 1009 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev) 1010 { 1011 /* These are the only counters supported so far */ 1012 return kfd_iommu_add_perf_counters(kdev); 1013 } 1014 1015 /* kfd_add_non_crat_information - Add information that is not currently 1016 * defined in CRAT but is necessary for KFD topology 1017 * @dev - topology device to which addition info is added 1018 */ 1019 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) 1020 { 1021 /* Check if CPU only node. */ 1022 if (!kdev->gpu) { 1023 /* Add system memory information */ 1024 dmi_walk(find_system_memory, kdev); 1025 } 1026 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ 1027 } 1028 1029 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices. 1030 * Ignore CRAT for all other devices. AMD APU is identified if both CPU 1031 * and GPU cores are present. 1032 * @device_list - topology device list created by parsing ACPI CRAT table. 1033 * @return - TRUE if invalid, FALSE is valid. 1034 */ 1035 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list) 1036 { 1037 struct kfd_topology_device *dev; 1038 1039 list_for_each_entry(dev, device_list, list) { 1040 if (dev->node_props.cpu_cores_count && 1041 dev->node_props.simd_count) 1042 return false; 1043 } 1044 pr_info("Ignoring ACPI CRAT on non-APU system\n"); 1045 return true; 1046 } 1047 1048 int kfd_topology_init(void) 1049 { 1050 void *crat_image = NULL; 1051 size_t image_size = 0; 1052 int ret; 1053 struct list_head temp_topology_device_list; 1054 int cpu_only_node = 0; 1055 struct kfd_topology_device *kdev; 1056 int proximity_domain; 1057 1058 /* topology_device_list - Master list of all topology devices 1059 * temp_topology_device_list - temporary list created while parsing CRAT 1060 * or VCRAT. Once parsing is complete the contents of list is moved to 1061 * topology_device_list 1062 */ 1063 1064 /* Initialize the head for the both the lists */ 1065 INIT_LIST_HEAD(&topology_device_list); 1066 INIT_LIST_HEAD(&temp_topology_device_list); 1067 init_rwsem(&topology_lock); 1068 1069 memset(&sys_props, 0, sizeof(sys_props)); 1070 1071 /* Proximity domains in ACPI CRAT tables start counting at 1072 * 0. The same should be true for virtual CRAT tables created 1073 * at this stage. GPUs added later in kfd_topology_add_device 1074 * use a counter. 1075 */ 1076 proximity_domain = 0; 1077 1078 /* 1079 * Get the CRAT image from the ACPI. If ACPI doesn't have one 1080 * or if ACPI CRAT is invalid create a virtual CRAT. 1081 * NOTE: The current implementation expects all AMD APUs to have 1082 * CRAT. If no CRAT is available, it is assumed to be a CPU 1083 */ 1084 ret = kfd_create_crat_image_acpi(&crat_image, &image_size); 1085 if (!ret) { 1086 ret = kfd_parse_crat_table(crat_image, 1087 &temp_topology_device_list, 1088 proximity_domain); 1089 if (ret || 1090 kfd_is_acpi_crat_invalid(&temp_topology_device_list)) { 1091 kfd_release_topology_device_list( 1092 &temp_topology_device_list); 1093 kfd_destroy_crat_image(crat_image); 1094 crat_image = NULL; 1095 } 1096 } 1097 1098 if (!crat_image) { 1099 ret = kfd_create_crat_image_virtual(&crat_image, &image_size, 1100 COMPUTE_UNIT_CPU, NULL, 1101 proximity_domain); 1102 cpu_only_node = 1; 1103 if (ret) { 1104 pr_err("Error creating VCRAT table for CPU\n"); 1105 return ret; 1106 } 1107 1108 ret = kfd_parse_crat_table(crat_image, 1109 &temp_topology_device_list, 1110 proximity_domain); 1111 if (ret) { 1112 pr_err("Error parsing VCRAT table for CPU\n"); 1113 goto err; 1114 } 1115 } 1116 1117 kdev = list_first_entry(&temp_topology_device_list, 1118 struct kfd_topology_device, list); 1119 kfd_add_perf_to_topology(kdev); 1120 1121 down_write(&topology_lock); 1122 kfd_topology_update_device_list(&temp_topology_device_list, 1123 &topology_device_list); 1124 topology_crat_proximity_domain = sys_props.num_devices-1; 1125 ret = kfd_topology_update_sysfs(); 1126 up_write(&topology_lock); 1127 1128 if (!ret) { 1129 sys_props.generation_count++; 1130 kfd_update_system_properties(); 1131 kfd_debug_print_topology(); 1132 } else 1133 pr_err("Failed to update topology in sysfs ret=%d\n", ret); 1134 1135 /* For nodes with GPU, this information gets added 1136 * when GPU is detected (kfd_topology_add_device). 1137 */ 1138 if (cpu_only_node) { 1139 /* Add additional information to CPU only node created above */ 1140 down_write(&topology_lock); 1141 kdev = list_first_entry(&topology_device_list, 1142 struct kfd_topology_device, list); 1143 up_write(&topology_lock); 1144 kfd_add_non_crat_information(kdev); 1145 } 1146 1147 err: 1148 kfd_destroy_crat_image(crat_image); 1149 return ret; 1150 } 1151 1152 void kfd_topology_shutdown(void) 1153 { 1154 down_write(&topology_lock); 1155 kfd_topology_release_sysfs(); 1156 kfd_release_live_view(); 1157 up_write(&topology_lock); 1158 } 1159 1160 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) 1161 { 1162 uint32_t hashout; 1163 uint32_t buf[7]; 1164 uint64_t local_mem_size; 1165 int i; 1166 1167 if (!gpu) 1168 return 0; 1169 1170 local_mem_size = gpu->local_mem_info.local_mem_size_private + 1171 gpu->local_mem_info.local_mem_size_public; 1172 buf[0] = gpu->adev->pdev->devfn; 1173 buf[1] = gpu->adev->pdev->subsystem_vendor | 1174 (gpu->adev->pdev->subsystem_device << 16); 1175 buf[2] = pci_domain_nr(gpu->adev->pdev->bus); 1176 buf[3] = gpu->adev->pdev->device; 1177 buf[4] = gpu->adev->pdev->bus->number; 1178 buf[5] = lower_32_bits(local_mem_size); 1179 buf[6] = upper_32_bits(local_mem_size); 1180 1181 for (i = 0, hashout = 0; i < 7; i++) 1182 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH); 1183 1184 return hashout; 1185 } 1186 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If 1187 * the GPU device is not already present in the topology device 1188 * list then return NULL. This means a new topology device has to 1189 * be created for this GPU. 1190 */ 1191 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu) 1192 { 1193 struct kfd_topology_device *dev; 1194 struct kfd_topology_device *out_dev = NULL; 1195 struct kfd_mem_properties *mem; 1196 struct kfd_cache_properties *cache; 1197 struct kfd_iolink_properties *iolink; 1198 struct kfd_iolink_properties *p2plink; 1199 1200 list_for_each_entry(dev, &topology_device_list, list) { 1201 /* Discrete GPUs need their own topology device list 1202 * entries. Don't assign them to CPU/APU nodes. 1203 */ 1204 if (!gpu->use_iommu_v2 && 1205 dev->node_props.cpu_cores_count) 1206 continue; 1207 1208 if (!dev->gpu && (dev->node_props.simd_count > 0)) { 1209 dev->gpu = gpu; 1210 out_dev = dev; 1211 1212 list_for_each_entry(mem, &dev->mem_props, list) 1213 mem->gpu = dev->gpu; 1214 list_for_each_entry(cache, &dev->cache_props, list) 1215 cache->gpu = dev->gpu; 1216 list_for_each_entry(iolink, &dev->io_link_props, list) 1217 iolink->gpu = dev->gpu; 1218 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 1219 p2plink->gpu = dev->gpu; 1220 break; 1221 } 1222 } 1223 return out_dev; 1224 } 1225 1226 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) 1227 { 1228 /* 1229 * TODO: Generate an event for thunk about the arrival/removal 1230 * of the GPU 1231 */ 1232 } 1233 1234 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, 1235 * patch this after CRAT parsing. 1236 */ 1237 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) 1238 { 1239 struct kfd_mem_properties *mem; 1240 struct kfd_local_mem_info local_mem_info; 1241 1242 if (!dev) 1243 return; 1244 1245 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with 1246 * single bank of VRAM local memory. 1247 * for dGPUs - VCRAT reports only one bank of Local Memory 1248 * for APUs - If CRAT from ACPI reports more than one bank, then 1249 * all the banks will report the same mem_clk_max information 1250 */ 1251 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info); 1252 1253 list_for_each_entry(mem, &dev->mem_props, list) 1254 mem->mem_clk_max = local_mem_info.mem_clk_max; 1255 } 1256 1257 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev, 1258 struct kfd_topology_device *target_gpu_dev, 1259 struct kfd_iolink_properties *link) 1260 { 1261 /* xgmi always supports atomics between links. */ 1262 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI) 1263 return; 1264 1265 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */ 1266 if (target_gpu_dev) { 1267 uint32_t cap; 1268 1269 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev, 1270 PCI_EXP_DEVCAP2, &cap); 1271 1272 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | 1273 PCI_EXP_DEVCAP2_ATOMIC_COMP64))) 1274 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1275 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1276 /* set gpu (dev) flags. */ 1277 } else { 1278 if (!dev->gpu->pci_atomic_requested || 1279 dev->gpu->adev->asic_type == CHIP_HAWAII) 1280 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1281 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1282 } 1283 } 1284 1285 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev, 1286 struct kfd_iolink_properties *outbound_link, 1287 struct kfd_iolink_properties *inbound_link) 1288 { 1289 /* CPU -> GPU with PCIe */ 1290 if (!to_dev->gpu && 1291 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 1292 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1293 1294 if (to_dev->gpu) { 1295 /* GPU <-> GPU with PCIe and 1296 * Vega20 with XGMI 1297 */ 1298 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS || 1299 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && 1300 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) { 1301 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1302 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1303 } 1304 } 1305 } 1306 1307 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) 1308 { 1309 struct kfd_iolink_properties *link, *inbound_link; 1310 struct kfd_topology_device *peer_dev; 1311 1312 if (!dev || !dev->gpu) 1313 return; 1314 1315 /* GPU only creates direct links so apply flags setting to all */ 1316 list_for_each_entry(link, &dev->io_link_props, list) { 1317 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1318 kfd_set_iolink_no_atomics(dev, NULL, link); 1319 peer_dev = kfd_topology_device_by_proximity_domain( 1320 link->node_to); 1321 1322 if (!peer_dev) 1323 continue; 1324 1325 /* Include the CPU peer in GPU hive if connected over xGMI. */ 1326 if (!peer_dev->gpu && !peer_dev->node_props.hive_id && 1327 dev->node_props.hive_id && 1328 dev->gpu->adev->gmc.xgmi.connected_to_cpu) 1329 peer_dev->node_props.hive_id = dev->node_props.hive_id; 1330 1331 list_for_each_entry(inbound_link, &peer_dev->io_link_props, 1332 list) { 1333 if (inbound_link->node_to != link->node_from) 1334 continue; 1335 1336 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1337 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1338 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1339 } 1340 } 1341 1342 /* Create indirect links so apply flags setting to all */ 1343 list_for_each_entry(link, &dev->p2p_link_props, list) { 1344 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1345 kfd_set_iolink_no_atomics(dev, NULL, link); 1346 peer_dev = kfd_topology_device_by_proximity_domain( 1347 link->node_to); 1348 1349 if (!peer_dev) 1350 continue; 1351 1352 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props, 1353 list) { 1354 if (inbound_link->node_to != link->node_from) 1355 continue; 1356 1357 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1358 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1359 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1360 } 1361 } 1362 } 1363 1364 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev, 1365 struct kfd_iolink_properties *p2plink) 1366 { 1367 int ret; 1368 1369 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 1370 if (!p2plink->kobj) 1371 return -ENOMEM; 1372 1373 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 1374 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1); 1375 if (ret < 0) { 1376 kobject_put(p2plink->kobj); 1377 return ret; 1378 } 1379 1380 p2plink->attr.name = "properties"; 1381 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 1382 sysfs_attr_init(&p2plink->attr); 1383 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 1384 if (ret < 0) 1385 return ret; 1386 1387 return 0; 1388 } 1389 1390 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node) 1391 { 1392 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link; 1393 struct kfd_iolink_properties *props = NULL, *props2 = NULL; 1394 struct kfd_topology_device *cpu_dev; 1395 int ret = 0; 1396 int i, num_cpu; 1397 1398 num_cpu = 0; 1399 list_for_each_entry(cpu_dev, &topology_device_list, list) { 1400 if (cpu_dev->gpu) 1401 break; 1402 num_cpu++; 1403 } 1404 1405 gpu_link = list_first_entry(&kdev->io_link_props, 1406 struct kfd_iolink_properties, list); 1407 if (!gpu_link) 1408 return -ENOMEM; 1409 1410 for (i = 0; i < num_cpu; i++) { 1411 /* CPU <--> GPU */ 1412 if (gpu_link->node_to == i) 1413 continue; 1414 1415 /* find CPU <--> CPU links */ 1416 cpu_link = NULL; 1417 cpu_dev = kfd_topology_device_by_proximity_domain(i); 1418 if (cpu_dev) { 1419 list_for_each_entry(tmp_link, 1420 &cpu_dev->io_link_props, list) { 1421 if (tmp_link->node_to == gpu_link->node_to) { 1422 cpu_link = tmp_link; 1423 break; 1424 } 1425 } 1426 } 1427 1428 if (!cpu_link) 1429 return -ENOMEM; 1430 1431 /* CPU <--> CPU <--> GPU, GPU node*/ 1432 props = kfd_alloc_struct(props); 1433 if (!props) 1434 return -ENOMEM; 1435 1436 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties)); 1437 props->weight = gpu_link->weight + cpu_link->weight; 1438 props->min_latency = gpu_link->min_latency + cpu_link->min_latency; 1439 props->max_latency = gpu_link->max_latency + cpu_link->max_latency; 1440 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth); 1441 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth); 1442 1443 props->node_from = gpu_node; 1444 props->node_to = i; 1445 kdev->node_props.p2p_links_count++; 1446 list_add_tail(&props->list, &kdev->p2p_link_props); 1447 ret = kfd_build_p2p_node_entry(kdev, props); 1448 if (ret < 0) 1449 return ret; 1450 1451 /* for small Bar, no CPU --> GPU in-direct links */ 1452 if (kfd_dev_is_large_bar(kdev->gpu)) { 1453 /* CPU <--> CPU <--> GPU, CPU node*/ 1454 props2 = kfd_alloc_struct(props2); 1455 if (!props2) 1456 return -ENOMEM; 1457 1458 memcpy(props2, props, sizeof(struct kfd_iolink_properties)); 1459 props2->node_from = i; 1460 props2->node_to = gpu_node; 1461 props2->kobj = NULL; 1462 cpu_dev->node_props.p2p_links_count++; 1463 list_add_tail(&props2->list, &cpu_dev->p2p_link_props); 1464 ret = kfd_build_p2p_node_entry(cpu_dev, props2); 1465 if (ret < 0) 1466 return ret; 1467 } 1468 } 1469 return ret; 1470 } 1471 1472 #if defined(CONFIG_HSA_AMD_P2P) 1473 static int kfd_add_peer_prop(struct kfd_topology_device *kdev, 1474 struct kfd_topology_device *peer, int from, int to) 1475 { 1476 struct kfd_iolink_properties *props = NULL; 1477 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3; 1478 struct kfd_topology_device *cpu_dev; 1479 int ret = 0; 1480 1481 if (!amdgpu_device_is_peer_accessible( 1482 kdev->gpu->adev, 1483 peer->gpu->adev)) 1484 return ret; 1485 1486 iolink1 = list_first_entry(&kdev->io_link_props, 1487 struct kfd_iolink_properties, list); 1488 if (!iolink1) 1489 return -ENOMEM; 1490 1491 iolink2 = list_first_entry(&peer->io_link_props, 1492 struct kfd_iolink_properties, list); 1493 if (!iolink2) 1494 return -ENOMEM; 1495 1496 props = kfd_alloc_struct(props); 1497 if (!props) 1498 return -ENOMEM; 1499 1500 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties)); 1501 1502 props->weight = iolink1->weight + iolink2->weight; 1503 props->min_latency = iolink1->min_latency + iolink2->min_latency; 1504 props->max_latency = iolink1->max_latency + iolink2->max_latency; 1505 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth); 1506 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth); 1507 1508 if (iolink1->node_to != iolink2->node_to) { 1509 /* CPU->CPU link*/ 1510 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to); 1511 if (cpu_dev) { 1512 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) 1513 if (iolink3->node_to == iolink2->node_to) 1514 break; 1515 1516 props->weight += iolink3->weight; 1517 props->min_latency += iolink3->min_latency; 1518 props->max_latency += iolink3->max_latency; 1519 props->min_bandwidth = min(props->min_bandwidth, 1520 iolink3->min_bandwidth); 1521 props->max_bandwidth = min(props->max_bandwidth, 1522 iolink3->max_bandwidth); 1523 } else { 1524 WARN(1, "CPU node not found"); 1525 } 1526 } 1527 1528 props->node_from = from; 1529 props->node_to = to; 1530 peer->node_props.p2p_links_count++; 1531 list_add_tail(&props->list, &peer->p2p_link_props); 1532 ret = kfd_build_p2p_node_entry(peer, props); 1533 1534 return ret; 1535 } 1536 #endif 1537 1538 static int kfd_dev_create_p2p_links(void) 1539 { 1540 struct kfd_topology_device *dev; 1541 struct kfd_topology_device *new_dev; 1542 #if defined(CONFIG_HSA_AMD_P2P) 1543 uint32_t i; 1544 #endif 1545 uint32_t k; 1546 int ret = 0; 1547 1548 k = 0; 1549 list_for_each_entry(dev, &topology_device_list, list) 1550 k++; 1551 if (k < 2) 1552 return 0; 1553 1554 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); 1555 if (WARN_ON(!new_dev->gpu)) 1556 return 0; 1557 1558 k--; 1559 1560 /* create in-direct links */ 1561 ret = kfd_create_indirect_link_prop(new_dev, k); 1562 if (ret < 0) 1563 goto out; 1564 1565 /* create p2p links */ 1566 #if defined(CONFIG_HSA_AMD_P2P) 1567 i = 0; 1568 list_for_each_entry(dev, &topology_device_list, list) { 1569 if (dev == new_dev) 1570 break; 1571 if (!dev->gpu || !dev->gpu->adev || 1572 (dev->gpu->hive_id && 1573 dev->gpu->hive_id == new_dev->gpu->hive_id)) 1574 goto next; 1575 1576 /* check if node(s) is/are peer accessible in one direction or bi-direction */ 1577 ret = kfd_add_peer_prop(new_dev, dev, i, k); 1578 if (ret < 0) 1579 goto out; 1580 1581 ret = kfd_add_peer_prop(dev, new_dev, k, i); 1582 if (ret < 0) 1583 goto out; 1584 next: 1585 i++; 1586 } 1587 #endif 1588 1589 out: 1590 return ret; 1591 } 1592 1593 1594 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1595 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext, 1596 struct kfd_gpu_cache_info *pcache_info, 1597 struct kfd_cu_info *cu_info, 1598 int cu_bitmask, 1599 int cache_type, unsigned int cu_processor_id, 1600 int cu_block) 1601 { 1602 unsigned int cu_sibling_map_mask; 1603 int first_active_cu; 1604 struct kfd_cache_properties *pcache = NULL; 1605 1606 cu_sibling_map_mask = cu_bitmask; 1607 cu_sibling_map_mask >>= cu_block; 1608 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1609 first_active_cu = ffs(cu_sibling_map_mask); 1610 1611 /* CU could be inactive. In case of shared cache find the first active 1612 * CU. and incase of non-shared cache check if the CU is inactive. If 1613 * inactive active skip it 1614 */ 1615 if (first_active_cu) { 1616 pcache = kfd_alloc_struct(pcache); 1617 if (!pcache) 1618 return -ENOMEM; 1619 1620 memset(pcache, 0, sizeof(struct kfd_cache_properties)); 1621 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); 1622 pcache->cache_level = pcache_info[cache_type].cache_level; 1623 pcache->cache_size = pcache_info[cache_type].cache_size; 1624 1625 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) 1626 pcache->cache_type |= HSA_CACHE_TYPE_DATA; 1627 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) 1628 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 1629 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) 1630 pcache->cache_type |= HSA_CACHE_TYPE_CPU; 1631 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 1632 pcache->cache_type |= HSA_CACHE_TYPE_HSACU; 1633 1634 /* Sibling map is w.r.t processor_id_low, so shift out 1635 * inactive CU 1636 */ 1637 cu_sibling_map_mask = 1638 cu_sibling_map_mask >> (first_active_cu - 1); 1639 1640 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1641 pcache->sibling_map[1] = 1642 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1643 pcache->sibling_map[2] = 1644 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1645 pcache->sibling_map[3] = 1646 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1647 1648 pcache->sibling_map_size = 4; 1649 *props_ext = pcache; 1650 1651 return 0; 1652 } 1653 return 1; 1654 } 1655 1656 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1657 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext, 1658 struct kfd_gpu_cache_info *pcache_info, 1659 struct kfd_cu_info *cu_info, 1660 int cache_type, unsigned int cu_processor_id) 1661 { 1662 unsigned int cu_sibling_map_mask; 1663 int first_active_cu; 1664 int i, j, k; 1665 struct kfd_cache_properties *pcache = NULL; 1666 1667 cu_sibling_map_mask = cu_info->cu_bitmap[0][0]; 1668 cu_sibling_map_mask &= 1669 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1670 first_active_cu = ffs(cu_sibling_map_mask); 1671 1672 /* CU could be inactive. In case of shared cache find the first active 1673 * CU. and incase of non-shared cache check if the CU is inactive. If 1674 * inactive active skip it 1675 */ 1676 if (first_active_cu) { 1677 pcache = kfd_alloc_struct(pcache); 1678 if (!pcache) 1679 return -ENOMEM; 1680 1681 memset(pcache, 0, sizeof(struct kfd_cache_properties)); 1682 pcache->processor_id_low = cu_processor_id 1683 + (first_active_cu - 1); 1684 pcache->cache_level = pcache_info[cache_type].cache_level; 1685 pcache->cache_size = pcache_info[cache_type].cache_size; 1686 1687 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) 1688 pcache->cache_type |= HSA_CACHE_TYPE_DATA; 1689 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) 1690 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 1691 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) 1692 pcache->cache_type |= HSA_CACHE_TYPE_CPU; 1693 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 1694 pcache->cache_type |= HSA_CACHE_TYPE_HSACU; 1695 1696 /* Sibling map is w.r.t processor_id_low, so shift out 1697 * inactive CU 1698 */ 1699 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); 1700 k = 0; 1701 1702 for (i = 0; i < cu_info->num_shader_engines; i++) { 1703 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) { 1704 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1705 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1706 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1707 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1708 k += 4; 1709 1710 cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4]; 1711 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1712 } 1713 } 1714 pcache->sibling_map_size = k; 1715 *props_ext = pcache; 1716 return 0; 1717 } 1718 return 1; 1719 } 1720 1721 #define KFD_MAX_CACHE_TYPES 6 1722 1723 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info 1724 * tables 1725 */ 1726 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev) 1727 { 1728 struct kfd_gpu_cache_info *pcache_info = NULL; 1729 int i, j, k; 1730 int ct = 0; 1731 unsigned int cu_processor_id; 1732 int ret; 1733 unsigned int num_cu_shared; 1734 struct kfd_cu_info cu_info; 1735 struct kfd_cu_info *pcu_info; 1736 int gpu_processor_id; 1737 struct kfd_cache_properties *props_ext; 1738 int num_of_entries = 0; 1739 int num_of_cache_types = 0; 1740 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES]; 1741 1742 amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info); 1743 pcu_info = &cu_info; 1744 1745 gpu_processor_id = dev->node_props.simd_id_base; 1746 1747 pcache_info = cache_info; 1748 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info); 1749 if (!num_of_cache_types) { 1750 pr_warn("no cache info found\n"); 1751 return; 1752 } 1753 1754 /* For each type of cache listed in the kfd_gpu_cache_info table, 1755 * go through all available Compute Units. 1756 * The [i,j,k] loop will 1757 * if kfd_gpu_cache_info.num_cu_shared = 1 1758 * will parse through all available CU 1759 * If (kfd_gpu_cache_info.num_cu_shared != 1) 1760 * then it will consider only one CU from 1761 * the shared unit 1762 */ 1763 for (ct = 0; ct < num_of_cache_types; ct++) { 1764 cu_processor_id = gpu_processor_id; 1765 if (pcache_info[ct].cache_level == 1) { 1766 for (i = 0; i < pcu_info->num_shader_engines; i++) { 1767 for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) { 1768 for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) { 1769 1770 ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info, 1771 pcu_info->cu_bitmap[i % 4][j + i / 4], ct, 1772 cu_processor_id, k); 1773 1774 if (ret < 0) 1775 break; 1776 1777 if (!ret) { 1778 num_of_entries++; 1779 list_add_tail(&props_ext->list, &dev->cache_props); 1780 } 1781 1782 /* Move to next CU block */ 1783 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <= 1784 pcu_info->num_cu_per_sh) ? 1785 pcache_info[ct].num_cu_shared : 1786 (pcu_info->num_cu_per_sh - k); 1787 cu_processor_id += num_cu_shared; 1788 } 1789 } 1790 } 1791 } else { 1792 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info, 1793 pcu_info, ct, cu_processor_id); 1794 1795 if (ret < 0) 1796 break; 1797 1798 if (!ret) { 1799 num_of_entries++; 1800 list_add_tail(&props_ext->list, &dev->cache_props); 1801 } 1802 } 1803 } 1804 dev->node_props.caches_count += num_of_entries; 1805 pr_debug("Added [%d] GPU cache entries\n", num_of_entries); 1806 } 1807 1808 static int kfd_topology_add_device_locked(struct kfd_dev *gpu, uint32_t gpu_id, 1809 struct kfd_topology_device **dev) 1810 { 1811 int proximity_domain = ++topology_crat_proximity_domain; 1812 struct list_head temp_topology_device_list; 1813 void *crat_image = NULL; 1814 size_t image_size = 0; 1815 int res; 1816 1817 res = kfd_create_crat_image_virtual(&crat_image, &image_size, 1818 COMPUTE_UNIT_GPU, gpu, 1819 proximity_domain); 1820 if (res) { 1821 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n", 1822 gpu_id); 1823 topology_crat_proximity_domain--; 1824 goto err; 1825 } 1826 1827 INIT_LIST_HEAD(&temp_topology_device_list); 1828 1829 res = kfd_parse_crat_table(crat_image, 1830 &temp_topology_device_list, 1831 proximity_domain); 1832 if (res) { 1833 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n", 1834 gpu_id); 1835 topology_crat_proximity_domain--; 1836 goto err; 1837 } 1838 1839 kfd_topology_update_device_list(&temp_topology_device_list, 1840 &topology_device_list); 1841 1842 *dev = kfd_assign_gpu(gpu); 1843 if (WARN_ON(!*dev)) { 1844 res = -ENODEV; 1845 goto err; 1846 } 1847 1848 /* Fill the cache affinity information here for the GPUs 1849 * using VCRAT 1850 */ 1851 kfd_fill_cache_non_crat_info(*dev, gpu); 1852 1853 /* Update the SYSFS tree, since we added another topology 1854 * device 1855 */ 1856 res = kfd_topology_update_sysfs(); 1857 if (!res) 1858 sys_props.generation_count++; 1859 else 1860 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n", 1861 gpu_id, res); 1862 1863 err: 1864 kfd_destroy_crat_image(crat_image); 1865 return res; 1866 } 1867 1868 int kfd_topology_add_device(struct kfd_dev *gpu) 1869 { 1870 uint32_t gpu_id; 1871 struct kfd_topology_device *dev; 1872 struct kfd_cu_info cu_info; 1873 int res = 0; 1874 int i; 1875 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type]; 1876 1877 gpu_id = kfd_generate_gpu_id(gpu); 1878 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); 1879 1880 /* Check to see if this gpu device exists in the topology_device_list. 1881 * If so, assign the gpu to that device, 1882 * else create a Virtual CRAT for this gpu device and then parse that 1883 * CRAT to create a new topology device. Once created assign the gpu to 1884 * that topology device 1885 */ 1886 down_write(&topology_lock); 1887 dev = kfd_assign_gpu(gpu); 1888 if (!dev) 1889 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev); 1890 up_write(&topology_lock); 1891 if (res) 1892 return res; 1893 1894 dev->gpu_id = gpu_id; 1895 gpu->id = gpu_id; 1896 1897 kfd_dev_create_p2p_links(); 1898 1899 /* TODO: Move the following lines to function 1900 * kfd_add_non_crat_information 1901 */ 1902 1903 /* Fill-in additional information that is not available in CRAT but 1904 * needed for the topology 1905 */ 1906 1907 amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info); 1908 1909 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) { 1910 dev->node_props.name[i] = __tolower(asic_name[i]); 1911 if (asic_name[i] == '\0') 1912 break; 1913 } 1914 dev->node_props.name[i] = '\0'; 1915 1916 dev->node_props.simd_arrays_per_engine = 1917 cu_info.num_shader_arrays_per_engine; 1918 1919 dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version; 1920 dev->node_props.vendor_id = gpu->adev->pdev->vendor; 1921 dev->node_props.device_id = gpu->adev->pdev->device; 1922 dev->node_props.capability |= 1923 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) & 1924 HSA_CAP_ASIC_REVISION_MASK); 1925 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev); 1926 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus); 1927 dev->node_props.max_engine_clk_fcompute = 1928 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev); 1929 dev->node_props.max_engine_clk_ccompute = 1930 cpufreq_quick_get_max(0) / 1000; 1931 dev->node_props.drm_render_minor = 1932 gpu->shared_resources.drm_render_minor; 1933 1934 dev->node_props.hive_id = gpu->hive_id; 1935 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu); 1936 dev->node_props.num_sdma_xgmi_engines = 1937 kfd_get_num_xgmi_sdma_engines(gpu); 1938 dev->node_props.num_sdma_queues_per_engine = 1939 gpu->device_info.num_sdma_queues_per_engine - 1940 gpu->device_info.num_reserved_sdma_queues_per_engine; 1941 dev->node_props.num_gws = (dev->gpu->gws && 1942 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ? 1943 dev->gpu->adev->gds.gws_size : 0; 1944 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm); 1945 1946 kfd_fill_mem_clk_max_info(dev); 1947 kfd_fill_iolink_non_crat_info(dev); 1948 1949 switch (dev->gpu->adev->asic_type) { 1950 case CHIP_KAVERI: 1951 case CHIP_HAWAII: 1952 case CHIP_TONGA: 1953 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << 1954 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1955 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1956 break; 1957 case CHIP_CARRIZO: 1958 case CHIP_FIJI: 1959 case CHIP_POLARIS10: 1960 case CHIP_POLARIS11: 1961 case CHIP_POLARIS12: 1962 case CHIP_VEGAM: 1963 pr_debug("Adding doorbell packet type capability\n"); 1964 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << 1965 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1966 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1967 break; 1968 default: 1969 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1)) 1970 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << 1971 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1972 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1973 else 1974 WARN(1, "Unexpected ASIC family %u", 1975 dev->gpu->adev->asic_type); 1976 } 1977 1978 /* 1979 * Overwrite ATS capability according to needs_iommu_device to fix 1980 * potential missing corresponding bit in CRAT of BIOS. 1981 */ 1982 if (dev->gpu->use_iommu_v2) 1983 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 1984 else 1985 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT; 1986 1987 /* Fix errors in CZ CRAT. 1988 * simd_count: Carrizo CRAT reports wrong simd_count, probably 1989 * because it doesn't consider masked out CUs 1990 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd 1991 */ 1992 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) { 1993 dev->node_props.simd_count = 1994 cu_info.simd_per_cu * cu_info.cu_active_number; 1995 dev->node_props.max_waves_per_simd = 10; 1996 } 1997 1998 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */ 1999 dev->node_props.capability |= 2000 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ? 2001 HSA_CAP_SRAM_EDCSUPPORTED : 0; 2002 dev->node_props.capability |= 2003 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ? 2004 HSA_CAP_MEM_EDCSUPPORTED : 0; 2005 2006 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1)) 2007 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ? 2008 HSA_CAP_RASEVENTNOTIFY : 0; 2009 2010 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev)) 2011 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED; 2012 2013 kfd_debug_print_topology(); 2014 2015 kfd_notify_gpu_change(gpu_id, 1); 2016 2017 return 0; 2018 } 2019 2020 /** 2021 * kfd_topology_update_io_links() - Update IO links after device removal. 2022 * @proximity_domain: Proximity domain value of the dev being removed. 2023 * 2024 * The topology list currently is arranged in increasing order of 2025 * proximity domain. 2026 * 2027 * Two things need to be done when a device is removed: 2028 * 1. All the IO links to this device need to be removed. 2029 * 2. All nodes after the current device node need to move 2030 * up once this device node is removed from the topology 2031 * list. As a result, the proximity domain values for 2032 * all nodes after the node being deleted reduce by 1. 2033 * This would also cause the proximity domain values for 2034 * io links to be updated based on new proximity domain 2035 * values. 2036 * 2037 * Context: The caller must hold write topology_lock. 2038 */ 2039 static void kfd_topology_update_io_links(int proximity_domain) 2040 { 2041 struct kfd_topology_device *dev; 2042 struct kfd_iolink_properties *iolink, *p2plink, *tmp; 2043 2044 list_for_each_entry(dev, &topology_device_list, list) { 2045 if (dev->proximity_domain > proximity_domain) 2046 dev->proximity_domain--; 2047 2048 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) { 2049 /* 2050 * If there is an io link to the dev being deleted 2051 * then remove that IO link also. 2052 */ 2053 if (iolink->node_to == proximity_domain) { 2054 list_del(&iolink->list); 2055 dev->node_props.io_links_count--; 2056 } else { 2057 if (iolink->node_from > proximity_domain) 2058 iolink->node_from--; 2059 if (iolink->node_to > proximity_domain) 2060 iolink->node_to--; 2061 } 2062 } 2063 2064 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) { 2065 /* 2066 * If there is a p2p link to the dev being deleted 2067 * then remove that p2p link also. 2068 */ 2069 if (p2plink->node_to == proximity_domain) { 2070 list_del(&p2plink->list); 2071 dev->node_props.p2p_links_count--; 2072 } else { 2073 if (p2plink->node_from > proximity_domain) 2074 p2plink->node_from--; 2075 if (p2plink->node_to > proximity_domain) 2076 p2plink->node_to--; 2077 } 2078 } 2079 } 2080 } 2081 2082 int kfd_topology_remove_device(struct kfd_dev *gpu) 2083 { 2084 struct kfd_topology_device *dev, *tmp; 2085 uint32_t gpu_id; 2086 int res = -ENODEV; 2087 int i = 0; 2088 2089 down_write(&topology_lock); 2090 2091 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) { 2092 if (dev->gpu == gpu) { 2093 gpu_id = dev->gpu_id; 2094 kfd_remove_sysfs_node_entry(dev); 2095 kfd_release_topology_device(dev); 2096 sys_props.num_devices--; 2097 kfd_topology_update_io_links(i); 2098 topology_crat_proximity_domain = sys_props.num_devices-1; 2099 sys_props.generation_count++; 2100 res = 0; 2101 if (kfd_topology_update_sysfs() < 0) 2102 kfd_topology_release_sysfs(); 2103 break; 2104 } 2105 i++; 2106 } 2107 2108 up_write(&topology_lock); 2109 2110 if (!res) 2111 kfd_notify_gpu_change(gpu_id, 0); 2112 2113 return res; 2114 } 2115 2116 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD 2117 * topology. If GPU device is found @idx, then valid kfd_dev pointer is 2118 * returned through @kdev 2119 * Return - 0: On success (@kdev will be NULL for non GPU nodes) 2120 * -1: If end of list 2121 */ 2122 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev) 2123 { 2124 2125 struct kfd_topology_device *top_dev; 2126 uint8_t device_idx = 0; 2127 2128 *kdev = NULL; 2129 down_read(&topology_lock); 2130 2131 list_for_each_entry(top_dev, &topology_device_list, list) { 2132 if (device_idx == idx) { 2133 *kdev = top_dev->gpu; 2134 up_read(&topology_lock); 2135 return 0; 2136 } 2137 2138 device_idx++; 2139 } 2140 2141 up_read(&topology_lock); 2142 2143 return -1; 2144 2145 } 2146 2147 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) 2148 { 2149 int first_cpu_of_numa_node; 2150 2151 if (!cpumask || cpumask == cpu_none_mask) 2152 return -1; 2153 first_cpu_of_numa_node = cpumask_first(cpumask); 2154 if (first_cpu_of_numa_node >= nr_cpu_ids) 2155 return -1; 2156 #ifdef CONFIG_X86_64 2157 return cpu_data(first_cpu_of_numa_node).apicid; 2158 #else 2159 return first_cpu_of_numa_node; 2160 #endif 2161 } 2162 2163 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor 2164 * of the given NUMA node (numa_node_id) 2165 * Return -1 on failure 2166 */ 2167 int kfd_numa_node_to_apic_id(int numa_node_id) 2168 { 2169 if (numa_node_id == -1) { 2170 pr_warn("Invalid NUMA Node. Use online CPU mask\n"); 2171 return kfd_cpumask_to_apic_id(cpu_online_mask); 2172 } 2173 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); 2174 } 2175 2176 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu) 2177 { 2178 struct kfd_topology_device *dev; 2179 2180 gpu->use_iommu_v2 = false; 2181 2182 if (!gpu->device_info.needs_iommu_device) 2183 return; 2184 2185 down_read(&topology_lock); 2186 2187 /* Only use IOMMUv2 if there is an APU topology node with no GPU 2188 * assigned yet. This GPU will be assigned to it. 2189 */ 2190 list_for_each_entry(dev, &topology_device_list, list) 2191 if (dev->node_props.cpu_cores_count && 2192 dev->node_props.simd_count && 2193 !dev->gpu) 2194 gpu->use_iommu_v2 = true; 2195 2196 up_read(&topology_lock); 2197 } 2198 2199 #if defined(CONFIG_DEBUG_FS) 2200 2201 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) 2202 { 2203 struct kfd_topology_device *dev; 2204 unsigned int i = 0; 2205 int r = 0; 2206 2207 down_read(&topology_lock); 2208 2209 list_for_each_entry(dev, &topology_device_list, list) { 2210 if (!dev->gpu) { 2211 i++; 2212 continue; 2213 } 2214 2215 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2216 r = dqm_debugfs_hqds(m, dev->gpu->dqm); 2217 if (r) 2218 break; 2219 } 2220 2221 up_read(&topology_lock); 2222 2223 return r; 2224 } 2225 2226 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) 2227 { 2228 struct kfd_topology_device *dev; 2229 unsigned int i = 0; 2230 int r = 0; 2231 2232 down_read(&topology_lock); 2233 2234 list_for_each_entry(dev, &topology_device_list, list) { 2235 if (!dev->gpu) { 2236 i++; 2237 continue; 2238 } 2239 2240 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2241 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr); 2242 if (r) 2243 break; 2244 } 2245 2246 up_read(&topology_lock); 2247 2248 return r; 2249 } 2250 2251 #endif 2252