1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/kernel.h> 26 #include <linux/pci.h> 27 #include <linux/errno.h> 28 #include <linux/acpi.h> 29 #include <linux/hash.h> 30 #include <linux/cpufreq.h> 31 #include <linux/log2.h> 32 #include <linux/dmi.h> 33 #include <linux/atomic.h> 34 35 #include "kfd_priv.h" 36 #include "kfd_crat.h" 37 #include "kfd_topology.h" 38 #include "kfd_device_queue_manager.h" 39 #include "kfd_iommu.h" 40 #include "kfd_svm.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_ras.h" 43 #include "amdgpu.h" 44 45 /* topology_device_list - Master list of all topology devices */ 46 static struct list_head topology_device_list; 47 static struct kfd_system_properties sys_props; 48 49 static DECLARE_RWSEM(topology_lock); 50 static uint32_t topology_crat_proximity_domain; 51 52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 53 uint32_t proximity_domain) 54 { 55 struct kfd_topology_device *top_dev; 56 struct kfd_topology_device *device = NULL; 57 58 list_for_each_entry(top_dev, &topology_device_list, list) 59 if (top_dev->proximity_domain == proximity_domain) { 60 device = top_dev; 61 break; 62 } 63 64 return device; 65 } 66 67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 68 uint32_t proximity_domain) 69 { 70 struct kfd_topology_device *device = NULL; 71 72 down_read(&topology_lock); 73 74 device = kfd_topology_device_by_proximity_domain_no_lock( 75 proximity_domain); 76 up_read(&topology_lock); 77 78 return device; 79 } 80 81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) 82 { 83 struct kfd_topology_device *top_dev = NULL; 84 struct kfd_topology_device *ret = NULL; 85 86 down_read(&topology_lock); 87 88 list_for_each_entry(top_dev, &topology_device_list, list) 89 if (top_dev->gpu_id == gpu_id) { 90 ret = top_dev; 91 break; 92 } 93 94 up_read(&topology_lock); 95 96 return ret; 97 } 98 99 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) 100 { 101 struct kfd_topology_device *top_dev; 102 103 top_dev = kfd_topology_device_by_id(gpu_id); 104 if (!top_dev) 105 return NULL; 106 107 return top_dev->gpu; 108 } 109 110 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) 111 { 112 struct kfd_topology_device *top_dev; 113 struct kfd_dev *device = NULL; 114 115 down_read(&topology_lock); 116 117 list_for_each_entry(top_dev, &topology_device_list, list) 118 if (top_dev->gpu && top_dev->gpu->pdev == pdev) { 119 device = top_dev->gpu; 120 break; 121 } 122 123 up_read(&topology_lock); 124 125 return device; 126 } 127 128 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev) 129 { 130 struct kfd_topology_device *top_dev; 131 struct kfd_dev *device = NULL; 132 133 down_read(&topology_lock); 134 135 list_for_each_entry(top_dev, &topology_device_list, list) 136 if (top_dev->gpu && top_dev->gpu->adev == adev) { 137 device = top_dev->gpu; 138 break; 139 } 140 141 up_read(&topology_lock); 142 143 return device; 144 } 145 146 /* Called with write topology_lock acquired */ 147 static void kfd_release_topology_device(struct kfd_topology_device *dev) 148 { 149 struct kfd_mem_properties *mem; 150 struct kfd_cache_properties *cache; 151 struct kfd_iolink_properties *iolink; 152 struct kfd_iolink_properties *p2plink; 153 struct kfd_perf_properties *perf; 154 155 list_del(&dev->list); 156 157 while (dev->mem_props.next != &dev->mem_props) { 158 mem = container_of(dev->mem_props.next, 159 struct kfd_mem_properties, list); 160 list_del(&mem->list); 161 kfree(mem); 162 } 163 164 while (dev->cache_props.next != &dev->cache_props) { 165 cache = container_of(dev->cache_props.next, 166 struct kfd_cache_properties, list); 167 list_del(&cache->list); 168 kfree(cache); 169 } 170 171 while (dev->io_link_props.next != &dev->io_link_props) { 172 iolink = container_of(dev->io_link_props.next, 173 struct kfd_iolink_properties, list); 174 list_del(&iolink->list); 175 kfree(iolink); 176 } 177 178 while (dev->p2p_link_props.next != &dev->p2p_link_props) { 179 p2plink = container_of(dev->p2p_link_props.next, 180 struct kfd_iolink_properties, list); 181 list_del(&p2plink->list); 182 kfree(p2plink); 183 } 184 185 while (dev->perf_props.next != &dev->perf_props) { 186 perf = container_of(dev->perf_props.next, 187 struct kfd_perf_properties, list); 188 list_del(&perf->list); 189 kfree(perf); 190 } 191 192 kfree(dev); 193 } 194 195 void kfd_release_topology_device_list(struct list_head *device_list) 196 { 197 struct kfd_topology_device *dev; 198 199 while (!list_empty(device_list)) { 200 dev = list_first_entry(device_list, 201 struct kfd_topology_device, list); 202 kfd_release_topology_device(dev); 203 } 204 } 205 206 static void kfd_release_live_view(void) 207 { 208 kfd_release_topology_device_list(&topology_device_list); 209 memset(&sys_props, 0, sizeof(sys_props)); 210 } 211 212 struct kfd_topology_device *kfd_create_topology_device( 213 struct list_head *device_list) 214 { 215 struct kfd_topology_device *dev; 216 217 dev = kfd_alloc_struct(dev); 218 if (!dev) { 219 pr_err("No memory to allocate a topology device"); 220 return NULL; 221 } 222 223 INIT_LIST_HEAD(&dev->mem_props); 224 INIT_LIST_HEAD(&dev->cache_props); 225 INIT_LIST_HEAD(&dev->io_link_props); 226 INIT_LIST_HEAD(&dev->p2p_link_props); 227 INIT_LIST_HEAD(&dev->perf_props); 228 229 list_add_tail(&dev->list, device_list); 230 231 return dev; 232 } 233 234 235 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \ 236 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \ 237 fmt, __VA_ARGS__)) 238 #define sysfs_show_32bit_prop(buffer, offs, name, value) \ 239 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value) 240 #define sysfs_show_64bit_prop(buffer, offs, name, value) \ 241 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value) 242 #define sysfs_show_32bit_val(buffer, offs, value) \ 243 sysfs_show_gen_prop(buffer, offs, "%u\n", value) 244 #define sysfs_show_str_val(buffer, offs, value) \ 245 sysfs_show_gen_prop(buffer, offs, "%s\n", value) 246 247 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, 248 char *buffer) 249 { 250 int offs = 0; 251 252 /* Making sure that the buffer is an empty string */ 253 buffer[0] = 0; 254 255 if (attr == &sys_props.attr_genid) { 256 sysfs_show_32bit_val(buffer, offs, 257 sys_props.generation_count); 258 } else if (attr == &sys_props.attr_props) { 259 sysfs_show_64bit_prop(buffer, offs, "platform_oem", 260 sys_props.platform_oem); 261 sysfs_show_64bit_prop(buffer, offs, "platform_id", 262 sys_props.platform_id); 263 sysfs_show_64bit_prop(buffer, offs, "platform_rev", 264 sys_props.platform_rev); 265 } else { 266 offs = -EINVAL; 267 } 268 269 return offs; 270 } 271 272 static void kfd_topology_kobj_release(struct kobject *kobj) 273 { 274 kfree(kobj); 275 } 276 277 static const struct sysfs_ops sysprops_ops = { 278 .show = sysprops_show, 279 }; 280 281 static struct kobj_type sysprops_type = { 282 .release = kfd_topology_kobj_release, 283 .sysfs_ops = &sysprops_ops, 284 }; 285 286 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, 287 char *buffer) 288 { 289 int offs = 0; 290 struct kfd_iolink_properties *iolink; 291 292 /* Making sure that the buffer is an empty string */ 293 buffer[0] = 0; 294 295 iolink = container_of(attr, struct kfd_iolink_properties, attr); 296 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu)) 297 return -EPERM; 298 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type); 299 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj); 300 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min); 301 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from); 302 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to); 303 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight); 304 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency); 305 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency); 306 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth", 307 iolink->min_bandwidth); 308 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth", 309 iolink->max_bandwidth); 310 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size", 311 iolink->rec_transfer_size); 312 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags); 313 314 return offs; 315 } 316 317 static const struct sysfs_ops iolink_ops = { 318 .show = iolink_show, 319 }; 320 321 static struct kobj_type iolink_type = { 322 .release = kfd_topology_kobj_release, 323 .sysfs_ops = &iolink_ops, 324 }; 325 326 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, 327 char *buffer) 328 { 329 int offs = 0; 330 struct kfd_mem_properties *mem; 331 332 /* Making sure that the buffer is an empty string */ 333 buffer[0] = 0; 334 335 mem = container_of(attr, struct kfd_mem_properties, attr); 336 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu)) 337 return -EPERM; 338 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type); 339 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes", 340 mem->size_in_bytes); 341 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags); 342 sysfs_show_32bit_prop(buffer, offs, "width", mem->width); 343 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max", 344 mem->mem_clk_max); 345 346 return offs; 347 } 348 349 static const struct sysfs_ops mem_ops = { 350 .show = mem_show, 351 }; 352 353 static struct kobj_type mem_type = { 354 .release = kfd_topology_kobj_release, 355 .sysfs_ops = &mem_ops, 356 }; 357 358 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, 359 char *buffer) 360 { 361 int offs = 0; 362 uint32_t i, j; 363 struct kfd_cache_properties *cache; 364 365 /* Making sure that the buffer is an empty string */ 366 buffer[0] = 0; 367 368 cache = container_of(attr, struct kfd_cache_properties, attr); 369 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu)) 370 return -EPERM; 371 sysfs_show_32bit_prop(buffer, offs, "processor_id_low", 372 cache->processor_id_low); 373 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level); 374 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size); 375 sysfs_show_32bit_prop(buffer, offs, "cache_line_size", 376 cache->cacheline_size); 377 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag", 378 cache->cachelines_per_tag); 379 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc); 380 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency); 381 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type); 382 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map "); 383 for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++) 384 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) 385 /* Check each bit */ 386 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,", 387 (cache->sibling_map[i] >> j) & 1); 388 389 /* Replace the last "," with end of line */ 390 buffer[offs-1] = '\n'; 391 return offs; 392 } 393 394 static const struct sysfs_ops cache_ops = { 395 .show = kfd_cache_show, 396 }; 397 398 static struct kobj_type cache_type = { 399 .release = kfd_topology_kobj_release, 400 .sysfs_ops = &cache_ops, 401 }; 402 403 /****** Sysfs of Performance Counters ******/ 404 405 struct kfd_perf_attr { 406 struct kobj_attribute attr; 407 uint32_t data; 408 }; 409 410 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, 411 char *buf) 412 { 413 int offs = 0; 414 struct kfd_perf_attr *attr; 415 416 buf[0] = 0; 417 attr = container_of(attrs, struct kfd_perf_attr, attr); 418 if (!attr->data) /* invalid data for PMC */ 419 return 0; 420 else 421 return sysfs_show_32bit_val(buf, offs, attr->data); 422 } 423 424 #define KFD_PERF_DESC(_name, _data) \ 425 { \ 426 .attr = __ATTR(_name, 0444, perf_show, NULL), \ 427 .data = _data, \ 428 } 429 430 static struct kfd_perf_attr perf_attr_iommu[] = { 431 KFD_PERF_DESC(max_concurrent, 0), 432 KFD_PERF_DESC(num_counters, 0), 433 KFD_PERF_DESC(counter_ids, 0), 434 }; 435 /****************************************/ 436 437 static ssize_t node_show(struct kobject *kobj, struct attribute *attr, 438 char *buffer) 439 { 440 int offs = 0; 441 struct kfd_topology_device *dev; 442 uint32_t log_max_watch_addr; 443 444 /* Making sure that the buffer is an empty string */ 445 buffer[0] = 0; 446 447 if (strcmp(attr->name, "gpu_id") == 0) { 448 dev = container_of(attr, struct kfd_topology_device, 449 attr_gpuid); 450 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 451 return -EPERM; 452 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id); 453 } 454 455 if (strcmp(attr->name, "name") == 0) { 456 dev = container_of(attr, struct kfd_topology_device, 457 attr_name); 458 459 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 460 return -EPERM; 461 return sysfs_show_str_val(buffer, offs, dev->node_props.name); 462 } 463 464 dev = container_of(attr, struct kfd_topology_device, 465 attr_props); 466 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 467 return -EPERM; 468 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count", 469 dev->node_props.cpu_cores_count); 470 sysfs_show_32bit_prop(buffer, offs, "simd_count", 471 dev->gpu ? dev->node_props.simd_count : 0); 472 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count", 473 dev->node_props.mem_banks_count); 474 sysfs_show_32bit_prop(buffer, offs, "caches_count", 475 dev->node_props.caches_count); 476 sysfs_show_32bit_prop(buffer, offs, "io_links_count", 477 dev->node_props.io_links_count); 478 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count", 479 dev->node_props.p2p_links_count); 480 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base", 481 dev->node_props.cpu_core_id_base); 482 sysfs_show_32bit_prop(buffer, offs, "simd_id_base", 483 dev->node_props.simd_id_base); 484 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd", 485 dev->node_props.max_waves_per_simd); 486 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb", 487 dev->node_props.lds_size_in_kb); 488 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb", 489 dev->node_props.gds_size_in_kb); 490 sysfs_show_32bit_prop(buffer, offs, "num_gws", 491 dev->node_props.num_gws); 492 sysfs_show_32bit_prop(buffer, offs, "wave_front_size", 493 dev->node_props.wave_front_size); 494 sysfs_show_32bit_prop(buffer, offs, "array_count", 495 dev->node_props.array_count); 496 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine", 497 dev->node_props.simd_arrays_per_engine); 498 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array", 499 dev->node_props.cu_per_simd_array); 500 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu", 501 dev->node_props.simd_per_cu); 502 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu", 503 dev->node_props.max_slots_scratch_cu); 504 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version", 505 dev->node_props.gfx_target_version); 506 sysfs_show_32bit_prop(buffer, offs, "vendor_id", 507 dev->node_props.vendor_id); 508 sysfs_show_32bit_prop(buffer, offs, "device_id", 509 dev->node_props.device_id); 510 sysfs_show_32bit_prop(buffer, offs, "location_id", 511 dev->node_props.location_id); 512 sysfs_show_32bit_prop(buffer, offs, "domain", 513 dev->node_props.domain); 514 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor", 515 dev->node_props.drm_render_minor); 516 sysfs_show_64bit_prop(buffer, offs, "hive_id", 517 dev->node_props.hive_id); 518 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines", 519 dev->node_props.num_sdma_engines); 520 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines", 521 dev->node_props.num_sdma_xgmi_engines); 522 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine", 523 dev->node_props.num_sdma_queues_per_engine); 524 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues", 525 dev->node_props.num_cp_queues); 526 527 if (dev->gpu) { 528 log_max_watch_addr = 529 __ilog2_u32(dev->gpu->device_info.num_of_watch_points); 530 531 if (log_max_watch_addr) { 532 dev->node_props.capability |= 533 HSA_CAP_WATCH_POINTS_SUPPORTED; 534 535 dev->node_props.capability |= 536 ((log_max_watch_addr << 537 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & 538 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); 539 } 540 541 if (dev->gpu->adev->asic_type == CHIP_TONGA) 542 dev->node_props.capability |= 543 HSA_CAP_AQL_QUEUE_DOUBLE_MAP; 544 545 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute", 546 dev->node_props.max_engine_clk_fcompute); 547 548 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL); 549 550 sysfs_show_32bit_prop(buffer, offs, "fw_version", 551 dev->gpu->mec_fw_version); 552 sysfs_show_32bit_prop(buffer, offs, "capability", 553 dev->node_props.capability); 554 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version", 555 dev->gpu->sdma_fw_version); 556 sysfs_show_64bit_prop(buffer, offs, "unique_id", 557 dev->gpu->adev->unique_id); 558 559 } 560 561 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute", 562 cpufreq_quick_get_max(0)/1000); 563 } 564 565 static const struct sysfs_ops node_ops = { 566 .show = node_show, 567 }; 568 569 static struct kobj_type node_type = { 570 .release = kfd_topology_kobj_release, 571 .sysfs_ops = &node_ops, 572 }; 573 574 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) 575 { 576 sysfs_remove_file(kobj, attr); 577 kobject_del(kobj); 578 kobject_put(kobj); 579 } 580 581 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) 582 { 583 struct kfd_iolink_properties *p2plink; 584 struct kfd_iolink_properties *iolink; 585 struct kfd_cache_properties *cache; 586 struct kfd_mem_properties *mem; 587 struct kfd_perf_properties *perf; 588 589 if (dev->kobj_iolink) { 590 list_for_each_entry(iolink, &dev->io_link_props, list) 591 if (iolink->kobj) { 592 kfd_remove_sysfs_file(iolink->kobj, 593 &iolink->attr); 594 iolink->kobj = NULL; 595 } 596 kobject_del(dev->kobj_iolink); 597 kobject_put(dev->kobj_iolink); 598 dev->kobj_iolink = NULL; 599 } 600 601 if (dev->kobj_p2plink) { 602 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 603 if (p2plink->kobj) { 604 kfd_remove_sysfs_file(p2plink->kobj, 605 &p2plink->attr); 606 p2plink->kobj = NULL; 607 } 608 kobject_del(dev->kobj_p2plink); 609 kobject_put(dev->kobj_p2plink); 610 dev->kobj_p2plink = NULL; 611 } 612 613 if (dev->kobj_cache) { 614 list_for_each_entry(cache, &dev->cache_props, list) 615 if (cache->kobj) { 616 kfd_remove_sysfs_file(cache->kobj, 617 &cache->attr); 618 cache->kobj = NULL; 619 } 620 kobject_del(dev->kobj_cache); 621 kobject_put(dev->kobj_cache); 622 dev->kobj_cache = NULL; 623 } 624 625 if (dev->kobj_mem) { 626 list_for_each_entry(mem, &dev->mem_props, list) 627 if (mem->kobj) { 628 kfd_remove_sysfs_file(mem->kobj, &mem->attr); 629 mem->kobj = NULL; 630 } 631 kobject_del(dev->kobj_mem); 632 kobject_put(dev->kobj_mem); 633 dev->kobj_mem = NULL; 634 } 635 636 if (dev->kobj_perf) { 637 list_for_each_entry(perf, &dev->perf_props, list) { 638 kfree(perf->attr_group); 639 perf->attr_group = NULL; 640 } 641 kobject_del(dev->kobj_perf); 642 kobject_put(dev->kobj_perf); 643 dev->kobj_perf = NULL; 644 } 645 646 if (dev->kobj_node) { 647 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); 648 sysfs_remove_file(dev->kobj_node, &dev->attr_name); 649 sysfs_remove_file(dev->kobj_node, &dev->attr_props); 650 kobject_del(dev->kobj_node); 651 kobject_put(dev->kobj_node); 652 dev->kobj_node = NULL; 653 } 654 } 655 656 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, 657 uint32_t id) 658 { 659 struct kfd_iolink_properties *p2plink; 660 struct kfd_iolink_properties *iolink; 661 struct kfd_cache_properties *cache; 662 struct kfd_mem_properties *mem; 663 struct kfd_perf_properties *perf; 664 int ret; 665 uint32_t i, num_attrs; 666 struct attribute **attrs; 667 668 if (WARN_ON(dev->kobj_node)) 669 return -EEXIST; 670 671 /* 672 * Creating the sysfs folders 673 */ 674 dev->kobj_node = kfd_alloc_struct(dev->kobj_node); 675 if (!dev->kobj_node) 676 return -ENOMEM; 677 678 ret = kobject_init_and_add(dev->kobj_node, &node_type, 679 sys_props.kobj_nodes, "%d", id); 680 if (ret < 0) { 681 kobject_put(dev->kobj_node); 682 return ret; 683 } 684 685 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); 686 if (!dev->kobj_mem) 687 return -ENOMEM; 688 689 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); 690 if (!dev->kobj_cache) 691 return -ENOMEM; 692 693 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); 694 if (!dev->kobj_iolink) 695 return -ENOMEM; 696 697 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node); 698 if (!dev->kobj_p2plink) 699 return -ENOMEM; 700 701 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); 702 if (!dev->kobj_perf) 703 return -ENOMEM; 704 705 /* 706 * Creating sysfs files for node properties 707 */ 708 dev->attr_gpuid.name = "gpu_id"; 709 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; 710 sysfs_attr_init(&dev->attr_gpuid); 711 dev->attr_name.name = "name"; 712 dev->attr_name.mode = KFD_SYSFS_FILE_MODE; 713 sysfs_attr_init(&dev->attr_name); 714 dev->attr_props.name = "properties"; 715 dev->attr_props.mode = KFD_SYSFS_FILE_MODE; 716 sysfs_attr_init(&dev->attr_props); 717 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); 718 if (ret < 0) 719 return ret; 720 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); 721 if (ret < 0) 722 return ret; 723 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); 724 if (ret < 0) 725 return ret; 726 727 i = 0; 728 list_for_each_entry(mem, &dev->mem_props, list) { 729 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 730 if (!mem->kobj) 731 return -ENOMEM; 732 ret = kobject_init_and_add(mem->kobj, &mem_type, 733 dev->kobj_mem, "%d", i); 734 if (ret < 0) { 735 kobject_put(mem->kobj); 736 return ret; 737 } 738 739 mem->attr.name = "properties"; 740 mem->attr.mode = KFD_SYSFS_FILE_MODE; 741 sysfs_attr_init(&mem->attr); 742 ret = sysfs_create_file(mem->kobj, &mem->attr); 743 if (ret < 0) 744 return ret; 745 i++; 746 } 747 748 i = 0; 749 list_for_each_entry(cache, &dev->cache_props, list) { 750 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 751 if (!cache->kobj) 752 return -ENOMEM; 753 ret = kobject_init_and_add(cache->kobj, &cache_type, 754 dev->kobj_cache, "%d", i); 755 if (ret < 0) { 756 kobject_put(cache->kobj); 757 return ret; 758 } 759 760 cache->attr.name = "properties"; 761 cache->attr.mode = KFD_SYSFS_FILE_MODE; 762 sysfs_attr_init(&cache->attr); 763 ret = sysfs_create_file(cache->kobj, &cache->attr); 764 if (ret < 0) 765 return ret; 766 i++; 767 } 768 769 i = 0; 770 list_for_each_entry(iolink, &dev->io_link_props, list) { 771 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 772 if (!iolink->kobj) 773 return -ENOMEM; 774 ret = kobject_init_and_add(iolink->kobj, &iolink_type, 775 dev->kobj_iolink, "%d", i); 776 if (ret < 0) { 777 kobject_put(iolink->kobj); 778 return ret; 779 } 780 781 iolink->attr.name = "properties"; 782 iolink->attr.mode = KFD_SYSFS_FILE_MODE; 783 sysfs_attr_init(&iolink->attr); 784 ret = sysfs_create_file(iolink->kobj, &iolink->attr); 785 if (ret < 0) 786 return ret; 787 i++; 788 } 789 790 i = 0; 791 list_for_each_entry(p2plink, &dev->p2p_link_props, list) { 792 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 793 if (!p2plink->kobj) 794 return -ENOMEM; 795 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 796 dev->kobj_p2plink, "%d", i); 797 if (ret < 0) { 798 kobject_put(p2plink->kobj); 799 return ret; 800 } 801 802 p2plink->attr.name = "properties"; 803 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 804 sysfs_attr_init(&iolink->attr); 805 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 806 if (ret < 0) 807 return ret; 808 i++; 809 } 810 811 /* All hardware blocks have the same number of attributes. */ 812 num_attrs = ARRAY_SIZE(perf_attr_iommu); 813 list_for_each_entry(perf, &dev->perf_props, list) { 814 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) 815 * num_attrs + sizeof(struct attribute_group), 816 GFP_KERNEL); 817 if (!perf->attr_group) 818 return -ENOMEM; 819 820 attrs = (struct attribute **)(perf->attr_group + 1); 821 if (!strcmp(perf->block_name, "iommu")) { 822 /* Information of IOMMU's num_counters and counter_ids is shown 823 * under /sys/bus/event_source/devices/amd_iommu. We don't 824 * duplicate here. 825 */ 826 perf_attr_iommu[0].data = perf->max_concurrent; 827 for (i = 0; i < num_attrs; i++) 828 attrs[i] = &perf_attr_iommu[i].attr.attr; 829 } 830 perf->attr_group->name = perf->block_name; 831 perf->attr_group->attrs = attrs; 832 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); 833 if (ret < 0) 834 return ret; 835 } 836 837 return 0; 838 } 839 840 /* Called with write topology lock acquired */ 841 static int kfd_build_sysfs_node_tree(void) 842 { 843 struct kfd_topology_device *dev; 844 int ret; 845 uint32_t i = 0; 846 847 list_for_each_entry(dev, &topology_device_list, list) { 848 ret = kfd_build_sysfs_node_entry(dev, i); 849 if (ret < 0) 850 return ret; 851 i++; 852 } 853 854 return 0; 855 } 856 857 /* Called with write topology lock acquired */ 858 static void kfd_remove_sysfs_node_tree(void) 859 { 860 struct kfd_topology_device *dev; 861 862 list_for_each_entry(dev, &topology_device_list, list) 863 kfd_remove_sysfs_node_entry(dev); 864 } 865 866 static int kfd_topology_update_sysfs(void) 867 { 868 int ret; 869 870 if (!sys_props.kobj_topology) { 871 sys_props.kobj_topology = 872 kfd_alloc_struct(sys_props.kobj_topology); 873 if (!sys_props.kobj_topology) 874 return -ENOMEM; 875 876 ret = kobject_init_and_add(sys_props.kobj_topology, 877 &sysprops_type, &kfd_device->kobj, 878 "topology"); 879 if (ret < 0) { 880 kobject_put(sys_props.kobj_topology); 881 return ret; 882 } 883 884 sys_props.kobj_nodes = kobject_create_and_add("nodes", 885 sys_props.kobj_topology); 886 if (!sys_props.kobj_nodes) 887 return -ENOMEM; 888 889 sys_props.attr_genid.name = "generation_id"; 890 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; 891 sysfs_attr_init(&sys_props.attr_genid); 892 ret = sysfs_create_file(sys_props.kobj_topology, 893 &sys_props.attr_genid); 894 if (ret < 0) 895 return ret; 896 897 sys_props.attr_props.name = "system_properties"; 898 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; 899 sysfs_attr_init(&sys_props.attr_props); 900 ret = sysfs_create_file(sys_props.kobj_topology, 901 &sys_props.attr_props); 902 if (ret < 0) 903 return ret; 904 } 905 906 kfd_remove_sysfs_node_tree(); 907 908 return kfd_build_sysfs_node_tree(); 909 } 910 911 static void kfd_topology_release_sysfs(void) 912 { 913 kfd_remove_sysfs_node_tree(); 914 if (sys_props.kobj_topology) { 915 sysfs_remove_file(sys_props.kobj_topology, 916 &sys_props.attr_genid); 917 sysfs_remove_file(sys_props.kobj_topology, 918 &sys_props.attr_props); 919 if (sys_props.kobj_nodes) { 920 kobject_del(sys_props.kobj_nodes); 921 kobject_put(sys_props.kobj_nodes); 922 sys_props.kobj_nodes = NULL; 923 } 924 kobject_del(sys_props.kobj_topology); 925 kobject_put(sys_props.kobj_topology); 926 sys_props.kobj_topology = NULL; 927 } 928 } 929 930 /* Called with write topology_lock acquired */ 931 static void kfd_topology_update_device_list(struct list_head *temp_list, 932 struct list_head *master_list) 933 { 934 while (!list_empty(temp_list)) { 935 list_move_tail(temp_list->next, master_list); 936 sys_props.num_devices++; 937 } 938 } 939 940 static void kfd_debug_print_topology(void) 941 { 942 struct kfd_topology_device *dev; 943 944 down_read(&topology_lock); 945 946 dev = list_last_entry(&topology_device_list, 947 struct kfd_topology_device, list); 948 if (dev) { 949 if (dev->node_props.cpu_cores_count && 950 dev->node_props.simd_count) { 951 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", 952 dev->node_props.device_id, 953 dev->node_props.vendor_id); 954 } else if (dev->node_props.cpu_cores_count) 955 pr_info("Topology: Add CPU node\n"); 956 else if (dev->node_props.simd_count) 957 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", 958 dev->node_props.device_id, 959 dev->node_props.vendor_id); 960 } 961 up_read(&topology_lock); 962 } 963 964 /* Helper function for intializing platform_xx members of 965 * kfd_system_properties. Uses OEM info from the last CPU/APU node. 966 */ 967 static void kfd_update_system_properties(void) 968 { 969 struct kfd_topology_device *dev; 970 971 down_read(&topology_lock); 972 dev = list_last_entry(&topology_device_list, 973 struct kfd_topology_device, list); 974 if (dev) { 975 sys_props.platform_id = 976 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK; 977 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); 978 sys_props.platform_rev = dev->oem_revision; 979 } 980 up_read(&topology_lock); 981 } 982 983 static void find_system_memory(const struct dmi_header *dm, 984 void *private) 985 { 986 struct kfd_mem_properties *mem; 987 u16 mem_width, mem_clock; 988 struct kfd_topology_device *kdev = 989 (struct kfd_topology_device *)private; 990 const u8 *dmi_data = (const u8 *)(dm + 1); 991 992 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { 993 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); 994 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); 995 list_for_each_entry(mem, &kdev->mem_props, list) { 996 if (mem_width != 0xFFFF && mem_width != 0) 997 mem->width = mem_width; 998 if (mem_clock != 0) 999 mem->mem_clk_max = mem_clock; 1000 } 1001 } 1002 } 1003 1004 /* 1005 * Performance counters information is not part of CRAT but we would like to 1006 * put them in the sysfs under topology directory for Thunk to get the data. 1007 * This function is called before updating the sysfs. 1008 */ 1009 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev) 1010 { 1011 /* These are the only counters supported so far */ 1012 return kfd_iommu_add_perf_counters(kdev); 1013 } 1014 1015 /* kfd_add_non_crat_information - Add information that is not currently 1016 * defined in CRAT but is necessary for KFD topology 1017 * @dev - topology device to which addition info is added 1018 */ 1019 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) 1020 { 1021 /* Check if CPU only node. */ 1022 if (!kdev->gpu) { 1023 /* Add system memory information */ 1024 dmi_walk(find_system_memory, kdev); 1025 } 1026 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ 1027 } 1028 1029 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices. 1030 * Ignore CRAT for all other devices. AMD APU is identified if both CPU 1031 * and GPU cores are present. 1032 * @device_list - topology device list created by parsing ACPI CRAT table. 1033 * @return - TRUE if invalid, FALSE is valid. 1034 */ 1035 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list) 1036 { 1037 struct kfd_topology_device *dev; 1038 1039 list_for_each_entry(dev, device_list, list) { 1040 if (dev->node_props.cpu_cores_count && 1041 dev->node_props.simd_count) 1042 return false; 1043 } 1044 pr_info("Ignoring ACPI CRAT on non-APU system\n"); 1045 return true; 1046 } 1047 1048 int kfd_topology_init(void) 1049 { 1050 void *crat_image = NULL; 1051 size_t image_size = 0; 1052 int ret; 1053 struct list_head temp_topology_device_list; 1054 int cpu_only_node = 0; 1055 struct kfd_topology_device *kdev; 1056 int proximity_domain; 1057 1058 /* topology_device_list - Master list of all topology devices 1059 * temp_topology_device_list - temporary list created while parsing CRAT 1060 * or VCRAT. Once parsing is complete the contents of list is moved to 1061 * topology_device_list 1062 */ 1063 1064 /* Initialize the head for the both the lists */ 1065 INIT_LIST_HEAD(&topology_device_list); 1066 INIT_LIST_HEAD(&temp_topology_device_list); 1067 init_rwsem(&topology_lock); 1068 1069 memset(&sys_props, 0, sizeof(sys_props)); 1070 1071 /* Proximity domains in ACPI CRAT tables start counting at 1072 * 0. The same should be true for virtual CRAT tables created 1073 * at this stage. GPUs added later in kfd_topology_add_device 1074 * use a counter. 1075 */ 1076 proximity_domain = 0; 1077 1078 /* 1079 * Get the CRAT image from the ACPI. If ACPI doesn't have one 1080 * or if ACPI CRAT is invalid create a virtual CRAT. 1081 * NOTE: The current implementation expects all AMD APUs to have 1082 * CRAT. If no CRAT is available, it is assumed to be a CPU 1083 */ 1084 ret = kfd_create_crat_image_acpi(&crat_image, &image_size); 1085 if (!ret) { 1086 ret = kfd_parse_crat_table(crat_image, 1087 &temp_topology_device_list, 1088 proximity_domain); 1089 if (ret || 1090 kfd_is_acpi_crat_invalid(&temp_topology_device_list)) { 1091 kfd_release_topology_device_list( 1092 &temp_topology_device_list); 1093 kfd_destroy_crat_image(crat_image); 1094 crat_image = NULL; 1095 } 1096 } 1097 1098 if (!crat_image) { 1099 ret = kfd_create_crat_image_virtual(&crat_image, &image_size, 1100 COMPUTE_UNIT_CPU, NULL, 1101 proximity_domain); 1102 cpu_only_node = 1; 1103 if (ret) { 1104 pr_err("Error creating VCRAT table for CPU\n"); 1105 return ret; 1106 } 1107 1108 ret = kfd_parse_crat_table(crat_image, 1109 &temp_topology_device_list, 1110 proximity_domain); 1111 if (ret) { 1112 pr_err("Error parsing VCRAT table for CPU\n"); 1113 goto err; 1114 } 1115 } 1116 1117 kdev = list_first_entry(&temp_topology_device_list, 1118 struct kfd_topology_device, list); 1119 kfd_add_perf_to_topology(kdev); 1120 1121 down_write(&topology_lock); 1122 kfd_topology_update_device_list(&temp_topology_device_list, 1123 &topology_device_list); 1124 topology_crat_proximity_domain = sys_props.num_devices-1; 1125 ret = kfd_topology_update_sysfs(); 1126 up_write(&topology_lock); 1127 1128 if (!ret) { 1129 sys_props.generation_count++; 1130 kfd_update_system_properties(); 1131 kfd_debug_print_topology(); 1132 } else 1133 pr_err("Failed to update topology in sysfs ret=%d\n", ret); 1134 1135 /* For nodes with GPU, this information gets added 1136 * when GPU is detected (kfd_topology_add_device). 1137 */ 1138 if (cpu_only_node) { 1139 /* Add additional information to CPU only node created above */ 1140 down_write(&topology_lock); 1141 kdev = list_first_entry(&topology_device_list, 1142 struct kfd_topology_device, list); 1143 up_write(&topology_lock); 1144 kfd_add_non_crat_information(kdev); 1145 } 1146 1147 err: 1148 kfd_destroy_crat_image(crat_image); 1149 return ret; 1150 } 1151 1152 void kfd_topology_shutdown(void) 1153 { 1154 down_write(&topology_lock); 1155 kfd_topology_release_sysfs(); 1156 kfd_release_live_view(); 1157 up_write(&topology_lock); 1158 } 1159 1160 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) 1161 { 1162 uint32_t hashout; 1163 uint32_t buf[7]; 1164 uint64_t local_mem_size; 1165 int i; 1166 1167 if (!gpu) 1168 return 0; 1169 1170 local_mem_size = gpu->local_mem_info.local_mem_size_private + 1171 gpu->local_mem_info.local_mem_size_public; 1172 1173 buf[0] = gpu->pdev->devfn; 1174 buf[1] = gpu->pdev->subsystem_vendor | 1175 (gpu->pdev->subsystem_device << 16); 1176 buf[2] = pci_domain_nr(gpu->pdev->bus); 1177 buf[3] = gpu->pdev->device; 1178 buf[4] = gpu->pdev->bus->number; 1179 buf[5] = lower_32_bits(local_mem_size); 1180 buf[6] = upper_32_bits(local_mem_size); 1181 1182 for (i = 0, hashout = 0; i < 7; i++) 1183 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH); 1184 1185 return hashout; 1186 } 1187 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If 1188 * the GPU device is not already present in the topology device 1189 * list then return NULL. This means a new topology device has to 1190 * be created for this GPU. 1191 */ 1192 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu) 1193 { 1194 struct kfd_topology_device *dev; 1195 struct kfd_topology_device *out_dev = NULL; 1196 struct kfd_mem_properties *mem; 1197 struct kfd_cache_properties *cache; 1198 struct kfd_iolink_properties *iolink; 1199 struct kfd_iolink_properties *p2plink; 1200 1201 down_write(&topology_lock); 1202 list_for_each_entry(dev, &topology_device_list, list) { 1203 /* Discrete GPUs need their own topology device list 1204 * entries. Don't assign them to CPU/APU nodes. 1205 */ 1206 if (!gpu->use_iommu_v2 && 1207 dev->node_props.cpu_cores_count) 1208 continue; 1209 1210 if (!dev->gpu && (dev->node_props.simd_count > 0)) { 1211 dev->gpu = gpu; 1212 out_dev = dev; 1213 1214 list_for_each_entry(mem, &dev->mem_props, list) 1215 mem->gpu = dev->gpu; 1216 list_for_each_entry(cache, &dev->cache_props, list) 1217 cache->gpu = dev->gpu; 1218 list_for_each_entry(iolink, &dev->io_link_props, list) 1219 iolink->gpu = dev->gpu; 1220 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 1221 p2plink->gpu = dev->gpu; 1222 break; 1223 } 1224 } 1225 up_write(&topology_lock); 1226 return out_dev; 1227 } 1228 1229 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) 1230 { 1231 /* 1232 * TODO: Generate an event for thunk about the arrival/removal 1233 * of the GPU 1234 */ 1235 } 1236 1237 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, 1238 * patch this after CRAT parsing. 1239 */ 1240 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) 1241 { 1242 struct kfd_mem_properties *mem; 1243 struct kfd_local_mem_info local_mem_info; 1244 1245 if (!dev) 1246 return; 1247 1248 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with 1249 * single bank of VRAM local memory. 1250 * for dGPUs - VCRAT reports only one bank of Local Memory 1251 * for APUs - If CRAT from ACPI reports more than one bank, then 1252 * all the banks will report the same mem_clk_max information 1253 */ 1254 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info); 1255 1256 list_for_each_entry(mem, &dev->mem_props, list) 1257 mem->mem_clk_max = local_mem_info.mem_clk_max; 1258 } 1259 1260 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev, 1261 struct kfd_topology_device *target_gpu_dev, 1262 struct kfd_iolink_properties *link) 1263 { 1264 /* xgmi always supports atomics between links. */ 1265 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI) 1266 return; 1267 1268 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */ 1269 if (target_gpu_dev) { 1270 uint32_t cap; 1271 1272 pcie_capability_read_dword(target_gpu_dev->gpu->pdev, 1273 PCI_EXP_DEVCAP2, &cap); 1274 1275 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | 1276 PCI_EXP_DEVCAP2_ATOMIC_COMP64))) 1277 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1278 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1279 /* set gpu (dev) flags. */ 1280 } else { 1281 if (!dev->gpu->pci_atomic_requested || 1282 dev->gpu->adev->asic_type == CHIP_HAWAII) 1283 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1284 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1285 } 1286 } 1287 1288 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev, 1289 struct kfd_iolink_properties *outbound_link, 1290 struct kfd_iolink_properties *inbound_link) 1291 { 1292 /* CPU -> GPU with PCIe */ 1293 if (!to_dev->gpu && 1294 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 1295 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1296 1297 if (to_dev->gpu) { 1298 /* GPU <-> GPU with PCIe and 1299 * Vega20 with XGMI 1300 */ 1301 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS || 1302 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && 1303 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) { 1304 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1305 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1306 } 1307 } 1308 } 1309 1310 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) 1311 { 1312 struct kfd_iolink_properties *link, *inbound_link; 1313 struct kfd_topology_device *peer_dev; 1314 1315 if (!dev || !dev->gpu) 1316 return; 1317 1318 /* GPU only creates direct links so apply flags setting to all */ 1319 list_for_each_entry(link, &dev->io_link_props, list) { 1320 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1321 kfd_set_iolink_no_atomics(dev, NULL, link); 1322 peer_dev = kfd_topology_device_by_proximity_domain( 1323 link->node_to); 1324 1325 if (!peer_dev) 1326 continue; 1327 1328 /* Include the CPU peer in GPU hive if connected over xGMI. */ 1329 if (!peer_dev->gpu && !peer_dev->node_props.hive_id && 1330 dev->node_props.hive_id && 1331 dev->gpu->adev->gmc.xgmi.connected_to_cpu) 1332 peer_dev->node_props.hive_id = dev->node_props.hive_id; 1333 1334 list_for_each_entry(inbound_link, &peer_dev->io_link_props, 1335 list) { 1336 if (inbound_link->node_to != link->node_from) 1337 continue; 1338 1339 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1340 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1341 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1342 } 1343 } 1344 1345 /* Create indirect links so apply flags setting to all */ 1346 list_for_each_entry(link, &dev->p2p_link_props, list) { 1347 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1348 kfd_set_iolink_no_atomics(dev, NULL, link); 1349 peer_dev = kfd_topology_device_by_proximity_domain( 1350 link->node_to); 1351 1352 if (!peer_dev) 1353 continue; 1354 1355 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props, 1356 list) { 1357 if (inbound_link->node_to != link->node_from) 1358 continue; 1359 1360 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1361 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1362 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1363 } 1364 } 1365 } 1366 1367 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev, 1368 struct kfd_iolink_properties *p2plink) 1369 { 1370 int ret; 1371 1372 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 1373 if (!p2plink->kobj) 1374 return -ENOMEM; 1375 1376 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 1377 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1); 1378 if (ret < 0) { 1379 kobject_put(p2plink->kobj); 1380 return ret; 1381 } 1382 1383 p2plink->attr.name = "properties"; 1384 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 1385 sysfs_attr_init(&p2plink->attr); 1386 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 1387 if (ret < 0) 1388 return ret; 1389 1390 return 0; 1391 } 1392 1393 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node) 1394 { 1395 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link; 1396 struct kfd_iolink_properties *props = NULL, *props2 = NULL; 1397 struct kfd_topology_device *cpu_dev; 1398 int ret = 0; 1399 int i, num_cpu; 1400 1401 num_cpu = 0; 1402 list_for_each_entry(cpu_dev, &topology_device_list, list) { 1403 if (cpu_dev->gpu) 1404 break; 1405 num_cpu++; 1406 } 1407 1408 gpu_link = list_first_entry(&kdev->io_link_props, 1409 struct kfd_iolink_properties, list); 1410 if (!gpu_link) 1411 return -ENOMEM; 1412 1413 for (i = 0; i < num_cpu; i++) { 1414 /* CPU <--> GPU */ 1415 if (gpu_link->node_to == i) 1416 continue; 1417 1418 /* find CPU <--> CPU links */ 1419 cpu_link = NULL; 1420 cpu_dev = kfd_topology_device_by_proximity_domain(i); 1421 if (cpu_dev) { 1422 list_for_each_entry(tmp_link, 1423 &cpu_dev->io_link_props, list) { 1424 if (tmp_link->node_to == gpu_link->node_to) { 1425 cpu_link = tmp_link; 1426 break; 1427 } 1428 } 1429 } 1430 1431 if (!cpu_link) 1432 return -ENOMEM; 1433 1434 /* CPU <--> CPU <--> GPU, GPU node*/ 1435 props = kfd_alloc_struct(props); 1436 if (!props) 1437 return -ENOMEM; 1438 1439 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties)); 1440 props->weight = gpu_link->weight + cpu_link->weight; 1441 props->min_latency = gpu_link->min_latency + cpu_link->min_latency; 1442 props->max_latency = gpu_link->max_latency + cpu_link->max_latency; 1443 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth); 1444 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth); 1445 1446 props->node_from = gpu_node; 1447 props->node_to = i; 1448 kdev->node_props.p2p_links_count++; 1449 list_add_tail(&props->list, &kdev->p2p_link_props); 1450 ret = kfd_build_p2p_node_entry(kdev, props); 1451 if (ret < 0) 1452 return ret; 1453 1454 /* for small Bar, no CPU --> GPU in-direct links */ 1455 if (kfd_dev_is_large_bar(kdev->gpu)) { 1456 /* CPU <--> CPU <--> GPU, CPU node*/ 1457 props2 = kfd_alloc_struct(props2); 1458 if (!props2) 1459 return -ENOMEM; 1460 1461 memcpy(props2, props, sizeof(struct kfd_iolink_properties)); 1462 props2->node_from = i; 1463 props2->node_to = gpu_node; 1464 props2->kobj = NULL; 1465 cpu_dev->node_props.p2p_links_count++; 1466 list_add_tail(&props2->list, &cpu_dev->p2p_link_props); 1467 ret = kfd_build_p2p_node_entry(cpu_dev, props2); 1468 if (ret < 0) 1469 return ret; 1470 } 1471 } 1472 return ret; 1473 } 1474 1475 #if defined(CONFIG_HSA_AMD_P2P) 1476 static int kfd_add_peer_prop(struct kfd_topology_device *kdev, 1477 struct kfd_topology_device *peer, int from, int to) 1478 { 1479 struct kfd_iolink_properties *props = NULL; 1480 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3; 1481 struct kfd_topology_device *cpu_dev; 1482 int ret = 0; 1483 1484 if (!amdgpu_device_is_peer_accessible( 1485 kdev->gpu->adev, 1486 peer->gpu->adev)) 1487 return ret; 1488 1489 iolink1 = list_first_entry(&kdev->io_link_props, 1490 struct kfd_iolink_properties, list); 1491 if (!iolink1) 1492 return -ENOMEM; 1493 1494 iolink2 = list_first_entry(&peer->io_link_props, 1495 struct kfd_iolink_properties, list); 1496 if (!iolink2) 1497 return -ENOMEM; 1498 1499 props = kfd_alloc_struct(props); 1500 if (!props) 1501 return -ENOMEM; 1502 1503 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties)); 1504 1505 props->weight = iolink1->weight + iolink2->weight; 1506 props->min_latency = iolink1->min_latency + iolink2->min_latency; 1507 props->max_latency = iolink1->max_latency + iolink2->max_latency; 1508 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth); 1509 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth); 1510 1511 if (iolink1->node_to != iolink2->node_to) { 1512 /* CPU->CPU link*/ 1513 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to); 1514 if (cpu_dev) { 1515 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) 1516 if (iolink3->node_to == iolink2->node_to) 1517 break; 1518 1519 props->weight += iolink3->weight; 1520 props->min_latency += iolink3->min_latency; 1521 props->max_latency += iolink3->max_latency; 1522 props->min_bandwidth = min(props->min_bandwidth, 1523 iolink3->min_bandwidth); 1524 props->max_bandwidth = min(props->max_bandwidth, 1525 iolink3->max_bandwidth); 1526 } else { 1527 WARN(1, "CPU node not found"); 1528 } 1529 } 1530 1531 props->node_from = from; 1532 props->node_to = to; 1533 peer->node_props.p2p_links_count++; 1534 list_add_tail(&props->list, &peer->p2p_link_props); 1535 ret = kfd_build_p2p_node_entry(peer, props); 1536 1537 return ret; 1538 } 1539 #endif 1540 1541 static int kfd_dev_create_p2p_links(void) 1542 { 1543 struct kfd_topology_device *dev; 1544 struct kfd_topology_device *new_dev; 1545 #if defined(CONFIG_HSA_AMD_P2P) 1546 uint32_t i; 1547 #endif 1548 uint32_t k; 1549 int ret = 0; 1550 1551 k = 0; 1552 list_for_each_entry(dev, &topology_device_list, list) 1553 k++; 1554 if (k < 2) 1555 return 0; 1556 1557 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); 1558 if (WARN_ON(!new_dev->gpu)) 1559 return 0; 1560 1561 k--; 1562 1563 /* create in-direct links */ 1564 ret = kfd_create_indirect_link_prop(new_dev, k); 1565 if (ret < 0) 1566 goto out; 1567 1568 /* create p2p links */ 1569 #if defined(CONFIG_HSA_AMD_P2P) 1570 i = 0; 1571 list_for_each_entry(dev, &topology_device_list, list) { 1572 if (dev == new_dev) 1573 break; 1574 if (!dev->gpu || !dev->gpu->adev || 1575 (dev->gpu->hive_id && 1576 dev->gpu->hive_id == new_dev->gpu->hive_id)) 1577 goto next; 1578 1579 /* check if node(s) is/are peer accessible in one direction or bi-direction */ 1580 ret = kfd_add_peer_prop(new_dev, dev, i, k); 1581 if (ret < 0) 1582 goto out; 1583 1584 ret = kfd_add_peer_prop(dev, new_dev, k, i); 1585 if (ret < 0) 1586 goto out; 1587 next: 1588 i++; 1589 } 1590 #endif 1591 1592 out: 1593 return ret; 1594 } 1595 1596 int kfd_topology_add_device(struct kfd_dev *gpu) 1597 { 1598 uint32_t gpu_id; 1599 struct kfd_topology_device *dev; 1600 struct kfd_cu_info cu_info; 1601 int res = 0; 1602 struct list_head temp_topology_device_list; 1603 void *crat_image = NULL; 1604 size_t image_size = 0; 1605 int proximity_domain; 1606 int i; 1607 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type]; 1608 1609 INIT_LIST_HEAD(&temp_topology_device_list); 1610 1611 gpu_id = kfd_generate_gpu_id(gpu); 1612 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); 1613 1614 /* Check to see if this gpu device exists in the topology_device_list. 1615 * If so, assign the gpu to that device, 1616 * else create a Virtual CRAT for this gpu device and then parse that 1617 * CRAT to create a new topology device. Once created assign the gpu to 1618 * that topology device 1619 */ 1620 dev = kfd_assign_gpu(gpu); 1621 if (!dev) { 1622 down_write(&topology_lock); 1623 proximity_domain = ++topology_crat_proximity_domain; 1624 1625 res = kfd_create_crat_image_virtual(&crat_image, &image_size, 1626 COMPUTE_UNIT_GPU, gpu, 1627 proximity_domain); 1628 if (res) { 1629 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n", 1630 gpu_id); 1631 topology_crat_proximity_domain--; 1632 return res; 1633 } 1634 res = kfd_parse_crat_table(crat_image, 1635 &temp_topology_device_list, 1636 proximity_domain); 1637 if (res) { 1638 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n", 1639 gpu_id); 1640 topology_crat_proximity_domain--; 1641 goto err; 1642 } 1643 1644 kfd_topology_update_device_list(&temp_topology_device_list, 1645 &topology_device_list); 1646 1647 /* Update the SYSFS tree, since we added another topology 1648 * device 1649 */ 1650 res = kfd_topology_update_sysfs(); 1651 up_write(&topology_lock); 1652 1653 if (!res) 1654 sys_props.generation_count++; 1655 else 1656 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n", 1657 gpu_id, res); 1658 dev = kfd_assign_gpu(gpu); 1659 if (WARN_ON(!dev)) { 1660 res = -ENODEV; 1661 goto err; 1662 } 1663 } 1664 1665 dev->gpu_id = gpu_id; 1666 gpu->id = gpu_id; 1667 1668 kfd_dev_create_p2p_links(); 1669 1670 /* TODO: Move the following lines to function 1671 * kfd_add_non_crat_information 1672 */ 1673 1674 /* Fill-in additional information that is not available in CRAT but 1675 * needed for the topology 1676 */ 1677 1678 amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info); 1679 1680 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) { 1681 dev->node_props.name[i] = __tolower(asic_name[i]); 1682 if (asic_name[i] == '\0') 1683 break; 1684 } 1685 dev->node_props.name[i] = '\0'; 1686 1687 dev->node_props.simd_arrays_per_engine = 1688 cu_info.num_shader_arrays_per_engine; 1689 1690 dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version; 1691 dev->node_props.vendor_id = gpu->pdev->vendor; 1692 dev->node_props.device_id = gpu->pdev->device; 1693 dev->node_props.capability |= 1694 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) & 1695 HSA_CAP_ASIC_REVISION_MASK); 1696 dev->node_props.location_id = pci_dev_id(gpu->pdev); 1697 dev->node_props.domain = pci_domain_nr(gpu->pdev->bus); 1698 dev->node_props.max_engine_clk_fcompute = 1699 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev); 1700 dev->node_props.max_engine_clk_ccompute = 1701 cpufreq_quick_get_max(0) / 1000; 1702 dev->node_props.drm_render_minor = 1703 gpu->shared_resources.drm_render_minor; 1704 1705 dev->node_props.hive_id = gpu->hive_id; 1706 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu); 1707 dev->node_props.num_sdma_xgmi_engines = 1708 kfd_get_num_xgmi_sdma_engines(gpu); 1709 dev->node_props.num_sdma_queues_per_engine = 1710 gpu->device_info.num_sdma_queues_per_engine - 1711 gpu->device_info.num_reserved_sdma_queues_per_engine; 1712 dev->node_props.num_gws = (dev->gpu->gws && 1713 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ? 1714 dev->gpu->adev->gds.gws_size : 0; 1715 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm); 1716 1717 kfd_fill_mem_clk_max_info(dev); 1718 kfd_fill_iolink_non_crat_info(dev); 1719 1720 switch (dev->gpu->adev->asic_type) { 1721 case CHIP_KAVERI: 1722 case CHIP_HAWAII: 1723 case CHIP_TONGA: 1724 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << 1725 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1726 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1727 break; 1728 case CHIP_CARRIZO: 1729 case CHIP_FIJI: 1730 case CHIP_POLARIS10: 1731 case CHIP_POLARIS11: 1732 case CHIP_POLARIS12: 1733 case CHIP_VEGAM: 1734 pr_debug("Adding doorbell packet type capability\n"); 1735 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << 1736 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1737 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1738 break; 1739 default: 1740 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1)) 1741 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << 1742 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1743 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1744 else 1745 WARN(1, "Unexpected ASIC family %u", 1746 dev->gpu->adev->asic_type); 1747 } 1748 1749 /* 1750 * Overwrite ATS capability according to needs_iommu_device to fix 1751 * potential missing corresponding bit in CRAT of BIOS. 1752 */ 1753 if (dev->gpu->use_iommu_v2) 1754 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 1755 else 1756 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT; 1757 1758 /* Fix errors in CZ CRAT. 1759 * simd_count: Carrizo CRAT reports wrong simd_count, probably 1760 * because it doesn't consider masked out CUs 1761 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd 1762 */ 1763 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) { 1764 dev->node_props.simd_count = 1765 cu_info.simd_per_cu * cu_info.cu_active_number; 1766 dev->node_props.max_waves_per_simd = 10; 1767 } 1768 1769 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */ 1770 dev->node_props.capability |= 1771 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ? 1772 HSA_CAP_SRAM_EDCSUPPORTED : 0; 1773 dev->node_props.capability |= 1774 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ? 1775 HSA_CAP_MEM_EDCSUPPORTED : 0; 1776 1777 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1)) 1778 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ? 1779 HSA_CAP_RASEVENTNOTIFY : 0; 1780 1781 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev)) 1782 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED; 1783 1784 kfd_debug_print_topology(); 1785 1786 if (!res) 1787 kfd_notify_gpu_change(gpu_id, 1); 1788 err: 1789 kfd_destroy_crat_image(crat_image); 1790 return res; 1791 } 1792 1793 /** 1794 * kfd_topology_update_io_links() - Update IO links after device removal. 1795 * @proximity_domain: Proximity domain value of the dev being removed. 1796 * 1797 * The topology list currently is arranged in increasing order of 1798 * proximity domain. 1799 * 1800 * Two things need to be done when a device is removed: 1801 * 1. All the IO links to this device need to be removed. 1802 * 2. All nodes after the current device node need to move 1803 * up once this device node is removed from the topology 1804 * list. As a result, the proximity domain values for 1805 * all nodes after the node being deleted reduce by 1. 1806 * This would also cause the proximity domain values for 1807 * io links to be updated based on new proximity domain 1808 * values. 1809 * 1810 * Context: The caller must hold write topology_lock. 1811 */ 1812 static void kfd_topology_update_io_links(int proximity_domain) 1813 { 1814 struct kfd_topology_device *dev; 1815 struct kfd_iolink_properties *iolink, *p2plink, *tmp; 1816 1817 list_for_each_entry(dev, &topology_device_list, list) { 1818 if (dev->proximity_domain > proximity_domain) 1819 dev->proximity_domain--; 1820 1821 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) { 1822 /* 1823 * If there is an io link to the dev being deleted 1824 * then remove that IO link also. 1825 */ 1826 if (iolink->node_to == proximity_domain) { 1827 list_del(&iolink->list); 1828 dev->node_props.io_links_count--; 1829 } else { 1830 if (iolink->node_from > proximity_domain) 1831 iolink->node_from--; 1832 if (iolink->node_to > proximity_domain) 1833 iolink->node_to--; 1834 } 1835 } 1836 1837 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) { 1838 /* 1839 * If there is a p2p link to the dev being deleted 1840 * then remove that p2p link also. 1841 */ 1842 if (p2plink->node_to == proximity_domain) { 1843 list_del(&p2plink->list); 1844 dev->node_props.p2p_links_count--; 1845 } else { 1846 if (p2plink->node_from > proximity_domain) 1847 p2plink->node_from--; 1848 if (p2plink->node_to > proximity_domain) 1849 p2plink->node_to--; 1850 } 1851 } 1852 } 1853 } 1854 1855 int kfd_topology_remove_device(struct kfd_dev *gpu) 1856 { 1857 struct kfd_topology_device *dev, *tmp; 1858 uint32_t gpu_id; 1859 int res = -ENODEV; 1860 int i = 0; 1861 1862 down_write(&topology_lock); 1863 1864 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) { 1865 if (dev->gpu == gpu) { 1866 gpu_id = dev->gpu_id; 1867 kfd_remove_sysfs_node_entry(dev); 1868 kfd_release_topology_device(dev); 1869 sys_props.num_devices--; 1870 kfd_topology_update_io_links(i); 1871 topology_crat_proximity_domain = sys_props.num_devices-1; 1872 sys_props.generation_count++; 1873 res = 0; 1874 if (kfd_topology_update_sysfs() < 0) 1875 kfd_topology_release_sysfs(); 1876 break; 1877 } 1878 i++; 1879 } 1880 1881 up_write(&topology_lock); 1882 1883 if (!res) 1884 kfd_notify_gpu_change(gpu_id, 0); 1885 1886 return res; 1887 } 1888 1889 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD 1890 * topology. If GPU device is found @idx, then valid kfd_dev pointer is 1891 * returned through @kdev 1892 * Return - 0: On success (@kdev will be NULL for non GPU nodes) 1893 * -1: If end of list 1894 */ 1895 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev) 1896 { 1897 1898 struct kfd_topology_device *top_dev; 1899 uint8_t device_idx = 0; 1900 1901 *kdev = NULL; 1902 down_read(&topology_lock); 1903 1904 list_for_each_entry(top_dev, &topology_device_list, list) { 1905 if (device_idx == idx) { 1906 *kdev = top_dev->gpu; 1907 up_read(&topology_lock); 1908 return 0; 1909 } 1910 1911 device_idx++; 1912 } 1913 1914 up_read(&topology_lock); 1915 1916 return -1; 1917 1918 } 1919 1920 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) 1921 { 1922 int first_cpu_of_numa_node; 1923 1924 if (!cpumask || cpumask == cpu_none_mask) 1925 return -1; 1926 first_cpu_of_numa_node = cpumask_first(cpumask); 1927 if (first_cpu_of_numa_node >= nr_cpu_ids) 1928 return -1; 1929 #ifdef CONFIG_X86_64 1930 return cpu_data(first_cpu_of_numa_node).apicid; 1931 #else 1932 return first_cpu_of_numa_node; 1933 #endif 1934 } 1935 1936 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor 1937 * of the given NUMA node (numa_node_id) 1938 * Return -1 on failure 1939 */ 1940 int kfd_numa_node_to_apic_id(int numa_node_id) 1941 { 1942 if (numa_node_id == -1) { 1943 pr_warn("Invalid NUMA Node. Use online CPU mask\n"); 1944 return kfd_cpumask_to_apic_id(cpu_online_mask); 1945 } 1946 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); 1947 } 1948 1949 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu) 1950 { 1951 struct kfd_topology_device *dev; 1952 1953 gpu->use_iommu_v2 = false; 1954 1955 if (!gpu->device_info.needs_iommu_device) 1956 return; 1957 1958 down_read(&topology_lock); 1959 1960 /* Only use IOMMUv2 if there is an APU topology node with no GPU 1961 * assigned yet. This GPU will be assigned to it. 1962 */ 1963 list_for_each_entry(dev, &topology_device_list, list) 1964 if (dev->node_props.cpu_cores_count && 1965 dev->node_props.simd_count && 1966 !dev->gpu) 1967 gpu->use_iommu_v2 = true; 1968 1969 up_read(&topology_lock); 1970 } 1971 1972 #if defined(CONFIG_DEBUG_FS) 1973 1974 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) 1975 { 1976 struct kfd_topology_device *dev; 1977 unsigned int i = 0; 1978 int r = 0; 1979 1980 down_read(&topology_lock); 1981 1982 list_for_each_entry(dev, &topology_device_list, list) { 1983 if (!dev->gpu) { 1984 i++; 1985 continue; 1986 } 1987 1988 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 1989 r = dqm_debugfs_hqds(m, dev->gpu->dqm); 1990 if (r) 1991 break; 1992 } 1993 1994 up_read(&topology_lock); 1995 1996 return r; 1997 } 1998 1999 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) 2000 { 2001 struct kfd_topology_device *dev; 2002 unsigned int i = 0; 2003 int r = 0; 2004 2005 down_read(&topology_lock); 2006 2007 list_for_each_entry(dev, &topology_device_list, list) { 2008 if (!dev->gpu) { 2009 i++; 2010 continue; 2011 } 2012 2013 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2014 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr); 2015 if (r) 2016 break; 2017 } 2018 2019 up_read(&topology_lock); 2020 2021 return r; 2022 } 2023 2024 #endif 2025