xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include "amdgpu_sync.h"
27 #include "amdgpu_object.h"
28 #include "amdgpu_vm.h"
29 #include "amdgpu_hmm.h"
30 #include "amdgpu.h"
31 #include "amdgpu_xgmi.h"
32 #include "kfd_priv.h"
33 #include "kfd_svm.h"
34 #include "kfd_migrate.h"
35 #include "kfd_smi_events.h"
36 
37 #ifdef dev_fmt
38 #undef dev_fmt
39 #endif
40 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
41 
42 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
43 
44 /* Long enough to ensure no retry fault comes after svm range is restored and
45  * page table is updated.
46  */
47 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
48 
49 /* Giant svm range split into smaller ranges based on this, it is decided using
50  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
51  * power of 2MB.
52  */
53 static uint64_t max_svm_range_pages;
54 
55 struct criu_svm_metadata {
56 	struct list_head list;
57 	struct kfd_criu_svm_range_priv_data data;
58 };
59 
60 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
61 static bool
62 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
63 				    const struct mmu_notifier_range *range,
64 				    unsigned long cur_seq);
65 static int
66 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
67 		   uint64_t *bo_s, uint64_t *bo_l);
68 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
69 	.invalidate = svm_range_cpu_invalidate_pagetables,
70 };
71 
72 /**
73  * svm_range_unlink - unlink svm_range from lists and interval tree
74  * @prange: svm range structure to be removed
75  *
76  * Remove the svm_range from the svms and svm_bo lists and the svms
77  * interval tree.
78  *
79  * Context: The caller must hold svms->lock
80  */
81 static void svm_range_unlink(struct svm_range *prange)
82 {
83 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
84 		 prange, prange->start, prange->last);
85 
86 	if (prange->svm_bo) {
87 		spin_lock(&prange->svm_bo->list_lock);
88 		list_del(&prange->svm_bo_list);
89 		spin_unlock(&prange->svm_bo->list_lock);
90 	}
91 
92 	list_del(&prange->list);
93 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
94 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
95 }
96 
97 static void
98 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
99 {
100 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
101 		 prange, prange->start, prange->last);
102 
103 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
104 				     prange->start << PAGE_SHIFT,
105 				     prange->npages << PAGE_SHIFT,
106 				     &svm_range_mn_ops);
107 }
108 
109 /**
110  * svm_range_add_to_svms - add svm range to svms
111  * @prange: svm range structure to be added
112  *
113  * Add the svm range to svms interval tree and link list
114  *
115  * Context: The caller must hold svms->lock
116  */
117 static void svm_range_add_to_svms(struct svm_range *prange)
118 {
119 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
120 		 prange, prange->start, prange->last);
121 
122 	list_move_tail(&prange->list, &prange->svms->list);
123 	prange->it_node.start = prange->start;
124 	prange->it_node.last = prange->last;
125 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
126 }
127 
128 static void svm_range_remove_notifier(struct svm_range *prange)
129 {
130 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
131 		 prange->svms, prange,
132 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
133 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
134 
135 	if (prange->notifier.interval_tree.start != 0 &&
136 	    prange->notifier.interval_tree.last != 0)
137 		mmu_interval_notifier_remove(&prange->notifier);
138 }
139 
140 static bool
141 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
142 {
143 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
144 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
145 }
146 
147 static int
148 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
149 		      unsigned long offset, unsigned long npages,
150 		      unsigned long *hmm_pfns, uint32_t gpuidx)
151 {
152 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
153 	dma_addr_t *addr = prange->dma_addr[gpuidx];
154 	struct device *dev = adev->dev;
155 	struct page *page;
156 	int i, r;
157 
158 	if (!addr) {
159 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
160 		if (!addr)
161 			return -ENOMEM;
162 		prange->dma_addr[gpuidx] = addr;
163 	}
164 
165 	addr += offset;
166 	for (i = 0; i < npages; i++) {
167 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
168 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
169 
170 		page = hmm_pfn_to_page(hmm_pfns[i]);
171 		if (is_zone_device_page(page)) {
172 			struct amdgpu_device *bo_adev =
173 					amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
174 
175 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
176 				   bo_adev->vm_manager.vram_base_offset -
177 				   bo_adev->kfd.dev->pgmap.range.start;
178 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
179 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
180 			continue;
181 		}
182 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
183 		r = dma_mapping_error(dev, addr[i]);
184 		if (r) {
185 			dev_err(dev, "failed %d dma_map_page\n", r);
186 			return r;
187 		}
188 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
189 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
190 	}
191 	return 0;
192 }
193 
194 static int
195 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
196 		  unsigned long offset, unsigned long npages,
197 		  unsigned long *hmm_pfns)
198 {
199 	struct kfd_process *p;
200 	uint32_t gpuidx;
201 	int r;
202 
203 	p = container_of(prange->svms, struct kfd_process, svms);
204 
205 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
206 		struct kfd_process_device *pdd;
207 
208 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
209 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
210 		if (!pdd) {
211 			pr_debug("failed to find device idx %d\n", gpuidx);
212 			return -EINVAL;
213 		}
214 
215 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
216 					  hmm_pfns, gpuidx);
217 		if (r)
218 			break;
219 	}
220 
221 	return r;
222 }
223 
224 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
225 			 unsigned long offset, unsigned long npages)
226 {
227 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
228 	int i;
229 
230 	if (!dma_addr)
231 		return;
232 
233 	for (i = offset; i < offset + npages; i++) {
234 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
235 			continue;
236 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
237 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
238 		dma_addr[i] = 0;
239 	}
240 }
241 
242 void svm_range_free_dma_mappings(struct svm_range *prange)
243 {
244 	struct kfd_process_device *pdd;
245 	dma_addr_t *dma_addr;
246 	struct device *dev;
247 	struct kfd_process *p;
248 	uint32_t gpuidx;
249 
250 	p = container_of(prange->svms, struct kfd_process, svms);
251 
252 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
253 		dma_addr = prange->dma_addr[gpuidx];
254 		if (!dma_addr)
255 			continue;
256 
257 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
258 		if (!pdd) {
259 			pr_debug("failed to find device idx %d\n", gpuidx);
260 			continue;
261 		}
262 		dev = &pdd->dev->adev->pdev->dev;
263 		svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
264 		kvfree(dma_addr);
265 		prange->dma_addr[gpuidx] = NULL;
266 	}
267 }
268 
269 static void svm_range_free(struct svm_range *prange, bool update_mem_usage)
270 {
271 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
272 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
273 
274 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
275 		 prange->start, prange->last);
276 
277 	svm_range_vram_node_free(prange);
278 	svm_range_free_dma_mappings(prange);
279 
280 	if (update_mem_usage && !p->xnack_enabled) {
281 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
282 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
283 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
284 	}
285 	mutex_destroy(&prange->lock);
286 	mutex_destroy(&prange->migrate_mutex);
287 	kfree(prange);
288 }
289 
290 static void
291 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
292 				 uint8_t *granularity, uint32_t *flags)
293 {
294 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
295 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
296 	*granularity = 9;
297 	*flags =
298 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
299 }
300 
301 static struct
302 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
303 			 uint64_t last, bool update_mem_usage)
304 {
305 	uint64_t size = last - start + 1;
306 	struct svm_range *prange;
307 	struct kfd_process *p;
308 
309 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
310 	if (!prange)
311 		return NULL;
312 
313 	p = container_of(svms, struct kfd_process, svms);
314 	if (!p->xnack_enabled && update_mem_usage &&
315 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
316 					    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)) {
317 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
318 		kfree(prange);
319 		return NULL;
320 	}
321 	prange->npages = size;
322 	prange->svms = svms;
323 	prange->start = start;
324 	prange->last = last;
325 	INIT_LIST_HEAD(&prange->list);
326 	INIT_LIST_HEAD(&prange->update_list);
327 	INIT_LIST_HEAD(&prange->svm_bo_list);
328 	INIT_LIST_HEAD(&prange->deferred_list);
329 	INIT_LIST_HEAD(&prange->child_list);
330 	atomic_set(&prange->invalid, 0);
331 	prange->validate_timestamp = 0;
332 	mutex_init(&prange->migrate_mutex);
333 	mutex_init(&prange->lock);
334 
335 	if (p->xnack_enabled)
336 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
337 			    MAX_GPU_INSTANCE);
338 
339 	svm_range_set_default_attributes(&prange->preferred_loc,
340 					 &prange->prefetch_loc,
341 					 &prange->granularity, &prange->flags);
342 
343 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
344 
345 	return prange;
346 }
347 
348 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
349 {
350 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
351 		return false;
352 
353 	return true;
354 }
355 
356 static void svm_range_bo_release(struct kref *kref)
357 {
358 	struct svm_range_bo *svm_bo;
359 
360 	svm_bo = container_of(kref, struct svm_range_bo, kref);
361 	pr_debug("svm_bo 0x%p\n", svm_bo);
362 
363 	spin_lock(&svm_bo->list_lock);
364 	while (!list_empty(&svm_bo->range_list)) {
365 		struct svm_range *prange =
366 				list_first_entry(&svm_bo->range_list,
367 						struct svm_range, svm_bo_list);
368 		/* list_del_init tells a concurrent svm_range_vram_node_new when
369 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
370 		 */
371 		list_del_init(&prange->svm_bo_list);
372 		spin_unlock(&svm_bo->list_lock);
373 
374 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
375 			 prange->start, prange->last);
376 		mutex_lock(&prange->lock);
377 		prange->svm_bo = NULL;
378 		mutex_unlock(&prange->lock);
379 
380 		spin_lock(&svm_bo->list_lock);
381 	}
382 	spin_unlock(&svm_bo->list_lock);
383 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
384 		/* We're not in the eviction worker.
385 		 * Signal the fence and synchronize with any
386 		 * pending eviction work.
387 		 */
388 		dma_fence_signal(&svm_bo->eviction_fence->base);
389 		cancel_work_sync(&svm_bo->eviction_work);
390 	}
391 	dma_fence_put(&svm_bo->eviction_fence->base);
392 	amdgpu_bo_unref(&svm_bo->bo);
393 	kfree(svm_bo);
394 }
395 
396 static void svm_range_bo_wq_release(struct work_struct *work)
397 {
398 	struct svm_range_bo *svm_bo;
399 
400 	svm_bo = container_of(work, struct svm_range_bo, release_work);
401 	svm_range_bo_release(&svm_bo->kref);
402 }
403 
404 static void svm_range_bo_release_async(struct kref *kref)
405 {
406 	struct svm_range_bo *svm_bo;
407 
408 	svm_bo = container_of(kref, struct svm_range_bo, kref);
409 	pr_debug("svm_bo 0x%p\n", svm_bo);
410 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
411 	schedule_work(&svm_bo->release_work);
412 }
413 
414 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
415 {
416 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
417 }
418 
419 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
420 {
421 	if (svm_bo)
422 		kref_put(&svm_bo->kref, svm_range_bo_release);
423 }
424 
425 static bool
426 svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange)
427 {
428 	struct amdgpu_device *bo_adev;
429 
430 	mutex_lock(&prange->lock);
431 	if (!prange->svm_bo) {
432 		mutex_unlock(&prange->lock);
433 		return false;
434 	}
435 	if (prange->ttm_res) {
436 		/* We still have a reference, all is well */
437 		mutex_unlock(&prange->lock);
438 		return true;
439 	}
440 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
441 		/*
442 		 * Migrate from GPU to GPU, remove range from source bo_adev
443 		 * svm_bo range list, and return false to allocate svm_bo from
444 		 * destination adev.
445 		 */
446 		bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
447 		if (bo_adev != adev) {
448 			mutex_unlock(&prange->lock);
449 
450 			spin_lock(&prange->svm_bo->list_lock);
451 			list_del_init(&prange->svm_bo_list);
452 			spin_unlock(&prange->svm_bo->list_lock);
453 
454 			svm_range_bo_unref(prange->svm_bo);
455 			return false;
456 		}
457 		if (READ_ONCE(prange->svm_bo->evicting)) {
458 			struct dma_fence *f;
459 			struct svm_range_bo *svm_bo;
460 			/* The BO is getting evicted,
461 			 * we need to get a new one
462 			 */
463 			mutex_unlock(&prange->lock);
464 			svm_bo = prange->svm_bo;
465 			f = dma_fence_get(&svm_bo->eviction_fence->base);
466 			svm_range_bo_unref(prange->svm_bo);
467 			/* wait for the fence to avoid long spin-loop
468 			 * at list_empty_careful
469 			 */
470 			dma_fence_wait(f, false);
471 			dma_fence_put(f);
472 		} else {
473 			/* The BO was still around and we got
474 			 * a new reference to it
475 			 */
476 			mutex_unlock(&prange->lock);
477 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
478 				 prange->svms, prange->start, prange->last);
479 
480 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
481 			return true;
482 		}
483 
484 	} else {
485 		mutex_unlock(&prange->lock);
486 	}
487 
488 	/* We need a new svm_bo. Spin-loop to wait for concurrent
489 	 * svm_range_bo_release to finish removing this range from
490 	 * its range list. After this, it is safe to reuse the
491 	 * svm_bo pointer and svm_bo_list head.
492 	 */
493 	while (!list_empty_careful(&prange->svm_bo_list))
494 		;
495 
496 	return false;
497 }
498 
499 static struct svm_range_bo *svm_range_bo_new(void)
500 {
501 	struct svm_range_bo *svm_bo;
502 
503 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
504 	if (!svm_bo)
505 		return NULL;
506 
507 	kref_init(&svm_bo->kref);
508 	INIT_LIST_HEAD(&svm_bo->range_list);
509 	spin_lock_init(&svm_bo->list_lock);
510 
511 	return svm_bo;
512 }
513 
514 int
515 svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange,
516 			bool clear)
517 {
518 	struct amdgpu_bo_param bp;
519 	struct svm_range_bo *svm_bo;
520 	struct amdgpu_bo_user *ubo;
521 	struct amdgpu_bo *bo;
522 	struct kfd_process *p;
523 	struct mm_struct *mm;
524 	int r;
525 
526 	p = container_of(prange->svms, struct kfd_process, svms);
527 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
528 		 prange->start, prange->last);
529 
530 	if (svm_range_validate_svm_bo(adev, prange))
531 		return 0;
532 
533 	svm_bo = svm_range_bo_new();
534 	if (!svm_bo) {
535 		pr_debug("failed to alloc svm bo\n");
536 		return -ENOMEM;
537 	}
538 	mm = get_task_mm(p->lead_thread);
539 	if (!mm) {
540 		pr_debug("failed to get mm\n");
541 		kfree(svm_bo);
542 		return -ESRCH;
543 	}
544 	svm_bo->eviction_fence =
545 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
546 					   mm,
547 					   svm_bo);
548 	mmput(mm);
549 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
550 	svm_bo->evicting = 0;
551 	memset(&bp, 0, sizeof(bp));
552 	bp.size = prange->npages * PAGE_SIZE;
553 	bp.byte_align = PAGE_SIZE;
554 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
555 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
556 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
557 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
558 	bp.type = ttm_bo_type_device;
559 	bp.resv = NULL;
560 
561 	r = amdgpu_bo_create_user(adev, &bp, &ubo);
562 	if (r) {
563 		pr_debug("failed %d to create bo\n", r);
564 		goto create_bo_failed;
565 	}
566 	bo = &ubo->bo;
567 	r = amdgpu_bo_reserve(bo, true);
568 	if (r) {
569 		pr_debug("failed %d to reserve bo\n", r);
570 		goto reserve_bo_failed;
571 	}
572 
573 	if (clear) {
574 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
575 		if (r) {
576 			pr_debug("failed %d to sync bo\n", r);
577 			amdgpu_bo_unreserve(bo);
578 			goto reserve_bo_failed;
579 		}
580 	}
581 
582 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
583 	if (r) {
584 		pr_debug("failed %d to reserve bo\n", r);
585 		amdgpu_bo_unreserve(bo);
586 		goto reserve_bo_failed;
587 	}
588 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
589 
590 	amdgpu_bo_unreserve(bo);
591 
592 	svm_bo->bo = bo;
593 	prange->svm_bo = svm_bo;
594 	prange->ttm_res = bo->tbo.resource;
595 	prange->offset = 0;
596 
597 	spin_lock(&svm_bo->list_lock);
598 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
599 	spin_unlock(&svm_bo->list_lock);
600 
601 	return 0;
602 
603 reserve_bo_failed:
604 	amdgpu_bo_unref(&bo);
605 create_bo_failed:
606 	dma_fence_put(&svm_bo->eviction_fence->base);
607 	kfree(svm_bo);
608 	prange->ttm_res = NULL;
609 
610 	return r;
611 }
612 
613 void svm_range_vram_node_free(struct svm_range *prange)
614 {
615 	svm_range_bo_unref(prange->svm_bo);
616 	prange->ttm_res = NULL;
617 }
618 
619 struct amdgpu_device *
620 svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id)
621 {
622 	struct kfd_process_device *pdd;
623 	struct kfd_process *p;
624 	int32_t gpu_idx;
625 
626 	p = container_of(prange->svms, struct kfd_process, svms);
627 
628 	gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id);
629 	if (gpu_idx < 0) {
630 		pr_debug("failed to get device by id 0x%x\n", gpu_id);
631 		return NULL;
632 	}
633 	pdd = kfd_process_device_from_gpuidx(p, gpu_idx);
634 	if (!pdd) {
635 		pr_debug("failed to get device by idx 0x%x\n", gpu_idx);
636 		return NULL;
637 	}
638 
639 	return pdd->dev->adev;
640 }
641 
642 struct kfd_process_device *
643 svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev)
644 {
645 	struct kfd_process *p;
646 	int32_t gpu_idx, gpuid;
647 	int r;
648 
649 	p = container_of(prange->svms, struct kfd_process, svms);
650 
651 	r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpu_idx);
652 	if (r) {
653 		pr_debug("failed to get device id by adev %p\n", adev);
654 		return NULL;
655 	}
656 
657 	return kfd_process_device_from_gpuidx(p, gpu_idx);
658 }
659 
660 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
661 {
662 	struct ttm_operation_ctx ctx = { false, false };
663 
664 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
665 
666 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
667 }
668 
669 static int
670 svm_range_check_attr(struct kfd_process *p,
671 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
672 {
673 	uint32_t i;
674 
675 	for (i = 0; i < nattr; i++) {
676 		uint32_t val = attrs[i].value;
677 		int gpuidx = MAX_GPU_INSTANCE;
678 
679 		switch (attrs[i].type) {
680 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
681 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
682 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
683 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
684 			break;
685 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
686 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
687 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
688 			break;
689 		case KFD_IOCTL_SVM_ATTR_ACCESS:
690 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
691 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
692 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
693 			break;
694 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
695 			break;
696 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
697 			break;
698 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
699 			break;
700 		default:
701 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
702 			return -EINVAL;
703 		}
704 
705 		if (gpuidx < 0) {
706 			pr_debug("no GPU 0x%x found\n", val);
707 			return -EINVAL;
708 		} else if (gpuidx < MAX_GPU_INSTANCE &&
709 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
710 			pr_debug("GPU 0x%x not supported\n", val);
711 			return -EINVAL;
712 		}
713 	}
714 
715 	return 0;
716 }
717 
718 static void
719 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
720 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
721 		      bool *update_mapping)
722 {
723 	uint32_t i;
724 	int gpuidx;
725 
726 	for (i = 0; i < nattr; i++) {
727 		switch (attrs[i].type) {
728 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
729 			prange->preferred_loc = attrs[i].value;
730 			break;
731 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
732 			prange->prefetch_loc = attrs[i].value;
733 			break;
734 		case KFD_IOCTL_SVM_ATTR_ACCESS:
735 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
736 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
737 			*update_mapping = true;
738 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
739 							       attrs[i].value);
740 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
741 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
742 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
743 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
744 				bitmap_set(prange->bitmap_access, gpuidx, 1);
745 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
746 			} else {
747 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
748 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
749 			}
750 			break;
751 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
752 			*update_mapping = true;
753 			prange->flags |= attrs[i].value;
754 			break;
755 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
756 			*update_mapping = true;
757 			prange->flags &= ~attrs[i].value;
758 			break;
759 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
760 			prange->granularity = attrs[i].value;
761 			break;
762 		default:
763 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
764 		}
765 	}
766 }
767 
768 static bool
769 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
770 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
771 {
772 	uint32_t i;
773 	int gpuidx;
774 
775 	for (i = 0; i < nattr; i++) {
776 		switch (attrs[i].type) {
777 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
778 			if (prange->preferred_loc != attrs[i].value)
779 				return false;
780 			break;
781 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
782 			/* Prefetch should always trigger a migration even
783 			 * if the value of the attribute didn't change.
784 			 */
785 			return false;
786 		case KFD_IOCTL_SVM_ATTR_ACCESS:
787 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
788 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
789 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
790 							       attrs[i].value);
791 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
792 				if (test_bit(gpuidx, prange->bitmap_access) ||
793 				    test_bit(gpuidx, prange->bitmap_aip))
794 					return false;
795 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
796 				if (!test_bit(gpuidx, prange->bitmap_access))
797 					return false;
798 			} else {
799 				if (!test_bit(gpuidx, prange->bitmap_aip))
800 					return false;
801 			}
802 			break;
803 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
804 			if ((prange->flags & attrs[i].value) != attrs[i].value)
805 				return false;
806 			break;
807 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
808 			if ((prange->flags & attrs[i].value) != 0)
809 				return false;
810 			break;
811 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
812 			if (prange->granularity != attrs[i].value)
813 				return false;
814 			break;
815 		default:
816 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
817 		}
818 	}
819 
820 	return true;
821 }
822 
823 /**
824  * svm_range_debug_dump - print all range information from svms
825  * @svms: svm range list header
826  *
827  * debug output svm range start, end, prefetch location from svms
828  * interval tree and link list
829  *
830  * Context: The caller must hold svms->lock
831  */
832 static void svm_range_debug_dump(struct svm_range_list *svms)
833 {
834 	struct interval_tree_node *node;
835 	struct svm_range *prange;
836 
837 	pr_debug("dump svms 0x%p list\n", svms);
838 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
839 
840 	list_for_each_entry(prange, &svms->list, list) {
841 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
842 			 prange, prange->start, prange->npages,
843 			 prange->start + prange->npages - 1,
844 			 prange->actual_loc);
845 	}
846 
847 	pr_debug("dump svms 0x%p interval tree\n", svms);
848 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
849 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
850 	while (node) {
851 		prange = container_of(node, struct svm_range, it_node);
852 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
853 			 prange, prange->start, prange->npages,
854 			 prange->start + prange->npages - 1,
855 			 prange->actual_loc);
856 		node = interval_tree_iter_next(node, 0, ~0ULL);
857 	}
858 }
859 
860 static int
861 svm_range_split_array(void *ppnew, void *ppold, size_t size,
862 		      uint64_t old_start, uint64_t old_n,
863 		      uint64_t new_start, uint64_t new_n)
864 {
865 	unsigned char *new, *old, *pold;
866 	uint64_t d;
867 
868 	if (!ppold)
869 		return 0;
870 	pold = *(unsigned char **)ppold;
871 	if (!pold)
872 		return 0;
873 
874 	new = kvmalloc_array(new_n, size, GFP_KERNEL);
875 	if (!new)
876 		return -ENOMEM;
877 
878 	d = (new_start - old_start) * size;
879 	memcpy(new, pold + d, new_n * size);
880 
881 	old = kvmalloc_array(old_n, size, GFP_KERNEL);
882 	if (!old) {
883 		kvfree(new);
884 		return -ENOMEM;
885 	}
886 
887 	d = (new_start == old_start) ? new_n * size : 0;
888 	memcpy(old, pold + d, old_n * size);
889 
890 	kvfree(pold);
891 	*(void **)ppold = old;
892 	*(void **)ppnew = new;
893 
894 	return 0;
895 }
896 
897 static int
898 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
899 		      uint64_t start, uint64_t last)
900 {
901 	uint64_t npages = last - start + 1;
902 	int i, r;
903 
904 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
905 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
906 					  sizeof(*old->dma_addr[i]), old->start,
907 					  npages, new->start, new->npages);
908 		if (r)
909 			return r;
910 	}
911 
912 	return 0;
913 }
914 
915 static int
916 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
917 		      uint64_t start, uint64_t last)
918 {
919 	uint64_t npages = last - start + 1;
920 
921 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
922 		 new->svms, new, new->start, start, last);
923 
924 	if (new->start == old->start) {
925 		new->offset = old->offset;
926 		old->offset += new->npages;
927 	} else {
928 		new->offset = old->offset + npages;
929 	}
930 
931 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
932 	new->ttm_res = old->ttm_res;
933 
934 	spin_lock(&new->svm_bo->list_lock);
935 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
936 	spin_unlock(&new->svm_bo->list_lock);
937 
938 	return 0;
939 }
940 
941 /**
942  * svm_range_split_adjust - split range and adjust
943  *
944  * @new: new range
945  * @old: the old range
946  * @start: the old range adjust to start address in pages
947  * @last: the old range adjust to last address in pages
948  *
949  * Copy system memory dma_addr or vram ttm_res in old range to new
950  * range from new_start up to size new->npages, the remaining old range is from
951  * start to last
952  *
953  * Return:
954  * 0 - OK, -ENOMEM - out of memory
955  */
956 static int
957 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
958 		      uint64_t start, uint64_t last)
959 {
960 	int r;
961 
962 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
963 		 new->svms, new->start, old->start, old->last, start, last);
964 
965 	if (new->start < old->start ||
966 	    new->last > old->last) {
967 		WARN_ONCE(1, "invalid new range start or last\n");
968 		return -EINVAL;
969 	}
970 
971 	r = svm_range_split_pages(new, old, start, last);
972 	if (r)
973 		return r;
974 
975 	if (old->actual_loc && old->ttm_res) {
976 		r = svm_range_split_nodes(new, old, start, last);
977 		if (r)
978 			return r;
979 	}
980 
981 	old->npages = last - start + 1;
982 	old->start = start;
983 	old->last = last;
984 	new->flags = old->flags;
985 	new->preferred_loc = old->preferred_loc;
986 	new->prefetch_loc = old->prefetch_loc;
987 	new->actual_loc = old->actual_loc;
988 	new->granularity = old->granularity;
989 	new->mapped_to_gpu = old->mapped_to_gpu;
990 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
991 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
992 
993 	return 0;
994 }
995 
996 /**
997  * svm_range_split - split a range in 2 ranges
998  *
999  * @prange: the svm range to split
1000  * @start: the remaining range start address in pages
1001  * @last: the remaining range last address in pages
1002  * @new: the result new range generated
1003  *
1004  * Two cases only:
1005  * case 1: if start == prange->start
1006  *         prange ==> prange[start, last]
1007  *         new range [last + 1, prange->last]
1008  *
1009  * case 2: if last == prange->last
1010  *         prange ==> prange[start, last]
1011  *         new range [prange->start, start - 1]
1012  *
1013  * Return:
1014  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1015  */
1016 static int
1017 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1018 		struct svm_range **new)
1019 {
1020 	uint64_t old_start = prange->start;
1021 	uint64_t old_last = prange->last;
1022 	struct svm_range_list *svms;
1023 	int r = 0;
1024 
1025 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1026 		 old_start, old_last, start, last);
1027 
1028 	if (old_start != start && old_last != last)
1029 		return -EINVAL;
1030 	if (start < old_start || last > old_last)
1031 		return -EINVAL;
1032 
1033 	svms = prange->svms;
1034 	if (old_start == start)
1035 		*new = svm_range_new(svms, last + 1, old_last, false);
1036 	else
1037 		*new = svm_range_new(svms, old_start, start - 1, false);
1038 	if (!*new)
1039 		return -ENOMEM;
1040 
1041 	r = svm_range_split_adjust(*new, prange, start, last);
1042 	if (r) {
1043 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1044 			 r, old_start, old_last, start, last);
1045 		svm_range_free(*new, false);
1046 		*new = NULL;
1047 	}
1048 
1049 	return r;
1050 }
1051 
1052 static int
1053 svm_range_split_tail(struct svm_range *prange,
1054 		     uint64_t new_last, struct list_head *insert_list)
1055 {
1056 	struct svm_range *tail;
1057 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1058 
1059 	if (!r)
1060 		list_add(&tail->list, insert_list);
1061 	return r;
1062 }
1063 
1064 static int
1065 svm_range_split_head(struct svm_range *prange,
1066 		     uint64_t new_start, struct list_head *insert_list)
1067 {
1068 	struct svm_range *head;
1069 	int r = svm_range_split(prange, new_start, prange->last, &head);
1070 
1071 	if (!r)
1072 		list_add(&head->list, insert_list);
1073 	return r;
1074 }
1075 
1076 static void
1077 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1078 		    struct svm_range *pchild, enum svm_work_list_ops op)
1079 {
1080 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1081 		 pchild, pchild->start, pchild->last, prange, op);
1082 
1083 	pchild->work_item.mm = mm;
1084 	pchild->work_item.op = op;
1085 	list_add_tail(&pchild->child_list, &prange->child_list);
1086 }
1087 
1088 /**
1089  * svm_range_split_by_granularity - collect ranges within granularity boundary
1090  *
1091  * @p: the process with svms list
1092  * @mm: mm structure
1093  * @addr: the vm fault address in pages, to split the prange
1094  * @parent: parent range if prange is from child list
1095  * @prange: prange to split
1096  *
1097  * Trims @prange to be a single aligned block of prange->granularity if
1098  * possible. The head and tail are added to the child_list in @parent.
1099  *
1100  * Context: caller must hold mmap_read_lock and prange->lock
1101  *
1102  * Return:
1103  * 0 - OK, otherwise error code
1104  */
1105 int
1106 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1107 			       unsigned long addr, struct svm_range *parent,
1108 			       struct svm_range *prange)
1109 {
1110 	struct svm_range *head, *tail;
1111 	unsigned long start, last, size;
1112 	int r;
1113 
1114 	/* Align splited range start and size to granularity size, then a single
1115 	 * PTE will be used for whole range, this reduces the number of PTE
1116 	 * updated and the L1 TLB space used for translation.
1117 	 */
1118 	size = 1UL << prange->granularity;
1119 	start = ALIGN_DOWN(addr, size);
1120 	last = ALIGN(addr + 1, size) - 1;
1121 
1122 	pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1123 		 prange->svms, prange->start, prange->last, start, last, size);
1124 
1125 	if (start > prange->start) {
1126 		r = svm_range_split(prange, start, prange->last, &head);
1127 		if (r)
1128 			return r;
1129 		svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1130 	}
1131 
1132 	if (last < prange->last) {
1133 		r = svm_range_split(prange, prange->start, last, &tail);
1134 		if (r)
1135 			return r;
1136 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1137 	}
1138 
1139 	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1140 	if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1141 		prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1142 		pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1143 			 prange, prange->start, prange->last,
1144 			 SVM_OP_ADD_RANGE_AND_MAP);
1145 	}
1146 	return 0;
1147 }
1148 
1149 static uint64_t
1150 svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange,
1151 			int domain)
1152 {
1153 	struct amdgpu_device *bo_adev;
1154 	uint32_t flags = prange->flags;
1155 	uint32_t mapping_flags = 0;
1156 	uint64_t pte_flags;
1157 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1158 	bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1159 
1160 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1161 		bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
1162 
1163 	switch (KFD_GC_VERSION(adev->kfd.dev)) {
1164 	case IP_VERSION(9, 4, 1):
1165 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1166 			if (bo_adev == adev) {
1167 				mapping_flags |= coherent ?
1168 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1169 			} else {
1170 				mapping_flags |= coherent ?
1171 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1172 				if (amdgpu_xgmi_same_hive(adev, bo_adev))
1173 					snoop = true;
1174 			}
1175 		} else {
1176 			mapping_flags |= coherent ?
1177 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1178 		}
1179 		break;
1180 	case IP_VERSION(9, 4, 2):
1181 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1182 			if (bo_adev == adev) {
1183 				mapping_flags |= coherent ?
1184 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1185 				if (adev->gmc.xgmi.connected_to_cpu)
1186 					snoop = true;
1187 			} else {
1188 				mapping_flags |= coherent ?
1189 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1190 				if (amdgpu_xgmi_same_hive(adev, bo_adev))
1191 					snoop = true;
1192 			}
1193 		} else {
1194 			mapping_flags |= coherent ?
1195 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1196 		}
1197 		break;
1198 	default:
1199 		mapping_flags |= coherent ?
1200 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1201 	}
1202 
1203 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1204 
1205 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1206 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1207 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1208 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1209 
1210 	pte_flags = AMDGPU_PTE_VALID;
1211 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1212 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1213 
1214 	pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags);
1215 	return pte_flags;
1216 }
1217 
1218 static int
1219 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1220 			 uint64_t start, uint64_t last,
1221 			 struct dma_fence **fence)
1222 {
1223 	uint64_t init_pte_value = 0;
1224 
1225 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1226 
1227 	return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1228 				      last, init_pte_value, 0, 0, NULL, NULL,
1229 				      fence);
1230 }
1231 
1232 static int
1233 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1234 			  unsigned long last, uint32_t trigger)
1235 {
1236 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1237 	struct kfd_process_device *pdd;
1238 	struct dma_fence *fence = NULL;
1239 	struct kfd_process *p;
1240 	uint32_t gpuidx;
1241 	int r = 0;
1242 
1243 	if (!prange->mapped_to_gpu) {
1244 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1245 			 prange, prange->start, prange->last);
1246 		return 0;
1247 	}
1248 
1249 	if (prange->start == start && prange->last == last) {
1250 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1251 		prange->mapped_to_gpu = false;
1252 	}
1253 
1254 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1255 		  MAX_GPU_INSTANCE);
1256 	p = container_of(prange->svms, struct kfd_process, svms);
1257 
1258 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1259 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1260 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1261 		if (!pdd) {
1262 			pr_debug("failed to find device idx %d\n", gpuidx);
1263 			return -EINVAL;
1264 		}
1265 
1266 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1267 					     start, last, trigger);
1268 
1269 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1270 					     drm_priv_to_vm(pdd->drm_priv),
1271 					     start, last, &fence);
1272 		if (r)
1273 			break;
1274 
1275 		if (fence) {
1276 			r = dma_fence_wait(fence, false);
1277 			dma_fence_put(fence);
1278 			fence = NULL;
1279 			if (r)
1280 				break;
1281 		}
1282 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1283 	}
1284 
1285 	return r;
1286 }
1287 
1288 static int
1289 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1290 		     unsigned long offset, unsigned long npages, bool readonly,
1291 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1292 		     struct dma_fence **fence, bool flush_tlb)
1293 {
1294 	struct amdgpu_device *adev = pdd->dev->adev;
1295 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1296 	uint64_t pte_flags;
1297 	unsigned long last_start;
1298 	int last_domain;
1299 	int r = 0;
1300 	int64_t i, j;
1301 
1302 	last_start = prange->start + offset;
1303 
1304 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1305 		 last_start, last_start + npages - 1, readonly);
1306 
1307 	for (i = offset; i < offset + npages; i++) {
1308 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1309 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1310 
1311 		/* Collect all pages in the same address range and memory domain
1312 		 * that can be mapped with a single call to update mapping.
1313 		 */
1314 		if (i < offset + npages - 1 &&
1315 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1316 			continue;
1317 
1318 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1319 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1320 
1321 		pte_flags = svm_range_get_pte_flags(adev, prange, last_domain);
1322 		if (readonly)
1323 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1324 
1325 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1326 			 prange->svms, last_start, prange->start + i,
1327 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1328 			 pte_flags);
1329 
1330 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1331 					   last_start, prange->start + i,
1332 					   pte_flags,
1333 					   (last_start - prange->start) << PAGE_SHIFT,
1334 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1335 					   NULL, dma_addr, &vm->last_update);
1336 
1337 		for (j = last_start - prange->start; j <= i; j++)
1338 			dma_addr[j] |= last_domain;
1339 
1340 		if (r) {
1341 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1342 			goto out;
1343 		}
1344 		last_start = prange->start + i + 1;
1345 	}
1346 
1347 	r = amdgpu_vm_update_pdes(adev, vm, false);
1348 	if (r) {
1349 		pr_debug("failed %d to update directories 0x%lx\n", r,
1350 			 prange->start);
1351 		goto out;
1352 	}
1353 
1354 	if (fence)
1355 		*fence = dma_fence_get(vm->last_update);
1356 
1357 out:
1358 	return r;
1359 }
1360 
1361 static int
1362 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1363 		      unsigned long npages, bool readonly,
1364 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1365 {
1366 	struct kfd_process_device *pdd;
1367 	struct amdgpu_device *bo_adev;
1368 	struct kfd_process *p;
1369 	struct dma_fence *fence = NULL;
1370 	uint32_t gpuidx;
1371 	int r = 0;
1372 
1373 	if (prange->svm_bo && prange->ttm_res)
1374 		bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
1375 	else
1376 		bo_adev = NULL;
1377 
1378 	p = container_of(prange->svms, struct kfd_process, svms);
1379 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1380 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1381 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1382 		if (!pdd) {
1383 			pr_debug("failed to find device idx %d\n", gpuidx);
1384 			return -EINVAL;
1385 		}
1386 
1387 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1388 		if (IS_ERR(pdd))
1389 			return -EINVAL;
1390 
1391 		if (bo_adev && pdd->dev->adev != bo_adev &&
1392 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1393 			pr_debug("cannot map to device idx %d\n", gpuidx);
1394 			continue;
1395 		}
1396 
1397 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1398 					 prange->dma_addr[gpuidx],
1399 					 bo_adev, wait ? &fence : NULL,
1400 					 flush_tlb);
1401 		if (r)
1402 			break;
1403 
1404 		if (fence) {
1405 			r = dma_fence_wait(fence, false);
1406 			dma_fence_put(fence);
1407 			fence = NULL;
1408 			if (r) {
1409 				pr_debug("failed %d to dma fence wait\n", r);
1410 				break;
1411 			}
1412 		}
1413 
1414 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1415 	}
1416 
1417 	return r;
1418 }
1419 
1420 struct svm_validate_context {
1421 	struct kfd_process *process;
1422 	struct svm_range *prange;
1423 	bool intr;
1424 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1425 	struct ttm_validate_buffer tv[MAX_GPU_INSTANCE];
1426 	struct list_head validate_list;
1427 	struct ww_acquire_ctx ticket;
1428 };
1429 
1430 static int svm_range_reserve_bos(struct svm_validate_context *ctx)
1431 {
1432 	struct kfd_process_device *pdd;
1433 	struct amdgpu_vm *vm;
1434 	uint32_t gpuidx;
1435 	int r;
1436 
1437 	INIT_LIST_HEAD(&ctx->validate_list);
1438 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1439 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1440 		if (!pdd) {
1441 			pr_debug("failed to find device idx %d\n", gpuidx);
1442 			return -EINVAL;
1443 		}
1444 		vm = drm_priv_to_vm(pdd->drm_priv);
1445 
1446 		ctx->tv[gpuidx].bo = &vm->root.bo->tbo;
1447 		ctx->tv[gpuidx].num_shared = 4;
1448 		list_add(&ctx->tv[gpuidx].head, &ctx->validate_list);
1449 	}
1450 
1451 	r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list,
1452 				   ctx->intr, NULL);
1453 	if (r) {
1454 		pr_debug("failed %d to reserve bo\n", r);
1455 		return r;
1456 	}
1457 
1458 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1459 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1460 		if (!pdd) {
1461 			pr_debug("failed to find device idx %d\n", gpuidx);
1462 			r = -EINVAL;
1463 			goto unreserve_out;
1464 		}
1465 
1466 		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1467 					      drm_priv_to_vm(pdd->drm_priv),
1468 					      svm_range_bo_validate, NULL);
1469 		if (r) {
1470 			pr_debug("failed %d validate pt bos\n", r);
1471 			goto unreserve_out;
1472 		}
1473 	}
1474 
1475 	return 0;
1476 
1477 unreserve_out:
1478 	ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
1479 	return r;
1480 }
1481 
1482 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1483 {
1484 	ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
1485 }
1486 
1487 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1488 {
1489 	struct kfd_process_device *pdd;
1490 
1491 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1492 
1493 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1494 }
1495 
1496 /*
1497  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1498  *
1499  * To prevent concurrent destruction or change of range attributes, the
1500  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1501  * because that would block concurrent evictions and lead to deadlocks. To
1502  * serialize concurrent migrations or validations of the same range, the
1503  * prange->migrate_mutex must be held.
1504  *
1505  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1506  * eviction fence.
1507  *
1508  * The following sequence ensures race-free validation and GPU mapping:
1509  *
1510  * 1. Reserve page table (and SVM BO if range is in VRAM)
1511  * 2. hmm_range_fault to get page addresses (if system memory)
1512  * 3. DMA-map pages (if system memory)
1513  * 4-a. Take notifier lock
1514  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1515  * 4-c. Check that the range was not split or otherwise invalidated
1516  * 4-d. Update GPU page table
1517  * 4.e. Release notifier lock
1518  * 5. Release page table (and SVM BO) reservation
1519  */
1520 static int svm_range_validate_and_map(struct mm_struct *mm,
1521 				      struct svm_range *prange, int32_t gpuidx,
1522 				      bool intr, bool wait, bool flush_tlb)
1523 {
1524 	struct svm_validate_context ctx;
1525 	unsigned long start, end, addr;
1526 	struct kfd_process *p;
1527 	void *owner;
1528 	int32_t idx;
1529 	int r = 0;
1530 
1531 	ctx.process = container_of(prange->svms, struct kfd_process, svms);
1532 	ctx.prange = prange;
1533 	ctx.intr = intr;
1534 
1535 	if (gpuidx < MAX_GPU_INSTANCE) {
1536 		bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE);
1537 		bitmap_set(ctx.bitmap, gpuidx, 1);
1538 	} else if (ctx.process->xnack_enabled) {
1539 		bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1540 
1541 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1542 		 * GPU, which has ACCESS attribute to the range, create mapping
1543 		 * on that GPU.
1544 		 */
1545 		if (prange->actual_loc) {
1546 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process,
1547 							prange->actual_loc);
1548 			if (gpuidx < 0) {
1549 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1550 					 prange->actual_loc);
1551 				return -EINVAL;
1552 			}
1553 			if (test_bit(gpuidx, prange->bitmap_access))
1554 				bitmap_set(ctx.bitmap, gpuidx, 1);
1555 		}
1556 	} else {
1557 		bitmap_or(ctx.bitmap, prange->bitmap_access,
1558 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1559 	}
1560 
1561 	if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) {
1562 		if (!prange->mapped_to_gpu)
1563 			return 0;
1564 
1565 		bitmap_copy(ctx.bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1566 	}
1567 
1568 	if (prange->actual_loc && !prange->ttm_res) {
1569 		/* This should never happen. actual_loc gets set by
1570 		 * svm_migrate_ram_to_vram after allocating a BO.
1571 		 */
1572 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1573 		return -EINVAL;
1574 	}
1575 
1576 	svm_range_reserve_bos(&ctx);
1577 
1578 	p = container_of(prange->svms, struct kfd_process, svms);
1579 	owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap,
1580 						MAX_GPU_INSTANCE));
1581 	for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) {
1582 		if (kfd_svm_page_owner(p, idx) != owner) {
1583 			owner = NULL;
1584 			break;
1585 		}
1586 	}
1587 
1588 	start = prange->start << PAGE_SHIFT;
1589 	end = (prange->last + 1) << PAGE_SHIFT;
1590 	for (addr = start; addr < end && !r; ) {
1591 		struct hmm_range *hmm_range;
1592 		struct vm_area_struct *vma;
1593 		unsigned long next;
1594 		unsigned long offset;
1595 		unsigned long npages;
1596 		bool readonly;
1597 
1598 		vma = vma_lookup(mm, addr);
1599 		if (!vma) {
1600 			r = -EFAULT;
1601 			goto unreserve_out;
1602 		}
1603 		readonly = !(vma->vm_flags & VM_WRITE);
1604 
1605 		next = min(vma->vm_end, end);
1606 		npages = (next - addr) >> PAGE_SHIFT;
1607 		WRITE_ONCE(p->svms.faulting_task, current);
1608 		r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1609 					       readonly, owner, NULL,
1610 					       &hmm_range);
1611 		WRITE_ONCE(p->svms.faulting_task, NULL);
1612 		if (r) {
1613 			pr_debug("failed %d to get svm range pages\n", r);
1614 			goto unreserve_out;
1615 		}
1616 
1617 		offset = (addr - start) >> PAGE_SHIFT;
1618 		r = svm_range_dma_map(prange, ctx.bitmap, offset, npages,
1619 				      hmm_range->hmm_pfns);
1620 		if (r) {
1621 			pr_debug("failed %d to dma map range\n", r);
1622 			goto unreserve_out;
1623 		}
1624 
1625 		svm_range_lock(prange);
1626 		if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
1627 			pr_debug("hmm update the range, need validate again\n");
1628 			r = -EAGAIN;
1629 			goto unlock_out;
1630 		}
1631 		if (!list_empty(&prange->child_list)) {
1632 			pr_debug("range split by unmap in parallel, validate again\n");
1633 			r = -EAGAIN;
1634 			goto unlock_out;
1635 		}
1636 
1637 		r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1638 					  ctx.bitmap, wait, flush_tlb);
1639 
1640 unlock_out:
1641 		svm_range_unlock(prange);
1642 
1643 		addr = next;
1644 	}
1645 
1646 	if (addr == end) {
1647 		prange->validated_once = true;
1648 		prange->mapped_to_gpu = true;
1649 	}
1650 
1651 unreserve_out:
1652 	svm_range_unreserve_bos(&ctx);
1653 
1654 	if (!r)
1655 		prange->validate_timestamp = ktime_get_boottime();
1656 
1657 	return r;
1658 }
1659 
1660 /**
1661  * svm_range_list_lock_and_flush_work - flush pending deferred work
1662  *
1663  * @svms: the svm range list
1664  * @mm: the mm structure
1665  *
1666  * Context: Returns with mmap write lock held, pending deferred work flushed
1667  *
1668  */
1669 void
1670 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1671 				   struct mm_struct *mm)
1672 {
1673 retry_flush_work:
1674 	flush_work(&svms->deferred_list_work);
1675 	mmap_write_lock(mm);
1676 
1677 	if (list_empty(&svms->deferred_range_list))
1678 		return;
1679 	mmap_write_unlock(mm);
1680 	pr_debug("retry flush\n");
1681 	goto retry_flush_work;
1682 }
1683 
1684 static void svm_range_restore_work(struct work_struct *work)
1685 {
1686 	struct delayed_work *dwork = to_delayed_work(work);
1687 	struct amdkfd_process_info *process_info;
1688 	struct svm_range_list *svms;
1689 	struct svm_range *prange;
1690 	struct kfd_process *p;
1691 	struct mm_struct *mm;
1692 	int evicted_ranges;
1693 	int invalid;
1694 	int r;
1695 
1696 	svms = container_of(dwork, struct svm_range_list, restore_work);
1697 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1698 	if (!evicted_ranges)
1699 		return;
1700 
1701 	pr_debug("restore svm ranges\n");
1702 
1703 	p = container_of(svms, struct kfd_process, svms);
1704 	process_info = p->kgd_process_info;
1705 
1706 	/* Keep mm reference when svm_range_validate_and_map ranges */
1707 	mm = get_task_mm(p->lead_thread);
1708 	if (!mm) {
1709 		pr_debug("svms 0x%p process mm gone\n", svms);
1710 		return;
1711 	}
1712 
1713 	mutex_lock(&process_info->lock);
1714 	svm_range_list_lock_and_flush_work(svms, mm);
1715 	mutex_lock(&svms->lock);
1716 
1717 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1718 
1719 	list_for_each_entry(prange, &svms->list, list) {
1720 		invalid = atomic_read(&prange->invalid);
1721 		if (!invalid)
1722 			continue;
1723 
1724 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1725 			 prange->svms, prange, prange->start, prange->last,
1726 			 invalid);
1727 
1728 		/*
1729 		 * If range is migrating, wait for migration is done.
1730 		 */
1731 		mutex_lock(&prange->migrate_mutex);
1732 
1733 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1734 					       false, true, false);
1735 		if (r)
1736 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1737 				 prange->start);
1738 
1739 		mutex_unlock(&prange->migrate_mutex);
1740 		if (r)
1741 			goto out_reschedule;
1742 
1743 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1744 			goto out_reschedule;
1745 	}
1746 
1747 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1748 	    evicted_ranges)
1749 		goto out_reschedule;
1750 
1751 	evicted_ranges = 0;
1752 
1753 	r = kgd2kfd_resume_mm(mm);
1754 	if (r) {
1755 		/* No recovery from this failure. Probably the CP is
1756 		 * hanging. No point trying again.
1757 		 */
1758 		pr_debug("failed %d to resume KFD\n", r);
1759 	}
1760 
1761 	pr_debug("restore svm ranges successfully\n");
1762 
1763 out_reschedule:
1764 	mutex_unlock(&svms->lock);
1765 	mmap_write_unlock(mm);
1766 	mutex_unlock(&process_info->lock);
1767 
1768 	/* If validation failed, reschedule another attempt */
1769 	if (evicted_ranges) {
1770 		pr_debug("reschedule to restore svm range\n");
1771 		schedule_delayed_work(&svms->restore_work,
1772 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1773 
1774 		kfd_smi_event_queue_restore_rescheduled(mm);
1775 	}
1776 	mmput(mm);
1777 }
1778 
1779 /**
1780  * svm_range_evict - evict svm range
1781  * @prange: svm range structure
1782  * @mm: current process mm_struct
1783  * @start: starting process queue number
1784  * @last: last process queue number
1785  *
1786  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1787  * return to let CPU evict the buffer and proceed CPU pagetable update.
1788  *
1789  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1790  * If invalidation happens while restore work is running, restore work will
1791  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1792  * the queues.
1793  */
1794 static int
1795 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1796 		unsigned long start, unsigned long last,
1797 		enum mmu_notifier_event event)
1798 {
1799 	struct svm_range_list *svms = prange->svms;
1800 	struct svm_range *pchild;
1801 	struct kfd_process *p;
1802 	int r = 0;
1803 
1804 	p = container_of(svms, struct kfd_process, svms);
1805 
1806 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1807 		 svms, prange->start, prange->last, start, last);
1808 
1809 	if (!p->xnack_enabled ||
1810 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1811 		int evicted_ranges;
1812 		bool mapped = prange->mapped_to_gpu;
1813 
1814 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1815 			if (!pchild->mapped_to_gpu)
1816 				continue;
1817 			mapped = true;
1818 			mutex_lock_nested(&pchild->lock, 1);
1819 			if (pchild->start <= last && pchild->last >= start) {
1820 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1821 					 pchild->start, pchild->last);
1822 				atomic_inc(&pchild->invalid);
1823 			}
1824 			mutex_unlock(&pchild->lock);
1825 		}
1826 
1827 		if (!mapped)
1828 			return r;
1829 
1830 		if (prange->start <= last && prange->last >= start)
1831 			atomic_inc(&prange->invalid);
1832 
1833 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1834 		if (evicted_ranges != 1)
1835 			return r;
1836 
1837 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1838 			 prange->svms, prange->start, prange->last);
1839 
1840 		/* First eviction, stop the queues */
1841 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1842 		if (r)
1843 			pr_debug("failed to quiesce KFD\n");
1844 
1845 		pr_debug("schedule to restore svm %p ranges\n", svms);
1846 		schedule_delayed_work(&svms->restore_work,
1847 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1848 	} else {
1849 		unsigned long s, l;
1850 		uint32_t trigger;
1851 
1852 		if (event == MMU_NOTIFY_MIGRATE)
1853 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1854 		else
1855 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1856 
1857 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1858 			 prange->svms, start, last);
1859 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1860 			mutex_lock_nested(&pchild->lock, 1);
1861 			s = max(start, pchild->start);
1862 			l = min(last, pchild->last);
1863 			if (l >= s)
1864 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1865 			mutex_unlock(&pchild->lock);
1866 		}
1867 		s = max(start, prange->start);
1868 		l = min(last, prange->last);
1869 		if (l >= s)
1870 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1871 	}
1872 
1873 	return r;
1874 }
1875 
1876 static struct svm_range *svm_range_clone(struct svm_range *old)
1877 {
1878 	struct svm_range *new;
1879 
1880 	new = svm_range_new(old->svms, old->start, old->last, false);
1881 	if (!new)
1882 		return NULL;
1883 
1884 	if (old->svm_bo) {
1885 		new->ttm_res = old->ttm_res;
1886 		new->offset = old->offset;
1887 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1888 		spin_lock(&new->svm_bo->list_lock);
1889 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1890 		spin_unlock(&new->svm_bo->list_lock);
1891 	}
1892 	new->flags = old->flags;
1893 	new->preferred_loc = old->preferred_loc;
1894 	new->prefetch_loc = old->prefetch_loc;
1895 	new->actual_loc = old->actual_loc;
1896 	new->granularity = old->granularity;
1897 	new->mapped_to_gpu = old->mapped_to_gpu;
1898 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1899 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1900 
1901 	return new;
1902 }
1903 
1904 void svm_range_set_max_pages(struct amdgpu_device *adev)
1905 {
1906 	uint64_t max_pages;
1907 	uint64_t pages, _pages;
1908 
1909 	/* 1/32 VRAM size in pages */
1910 	pages = adev->gmc.real_vram_size >> 17;
1911 	pages = clamp(pages, 1ULL << 9, 1ULL << 18);
1912 	pages = rounddown_pow_of_two(pages);
1913 	do {
1914 		max_pages = READ_ONCE(max_svm_range_pages);
1915 		_pages = min_not_zero(max_pages, pages);
1916 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
1917 }
1918 
1919 static int
1920 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
1921 		    uint64_t max_pages, struct list_head *insert_list,
1922 		    struct list_head *update_list)
1923 {
1924 	struct svm_range *prange;
1925 	uint64_t l;
1926 
1927 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
1928 		 max_pages, start, last);
1929 
1930 	while (last >= start) {
1931 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
1932 
1933 		prange = svm_range_new(svms, start, l, true);
1934 		if (!prange)
1935 			return -ENOMEM;
1936 		list_add(&prange->list, insert_list);
1937 		list_add(&prange->update_list, update_list);
1938 
1939 		start = l + 1;
1940 	}
1941 	return 0;
1942 }
1943 
1944 /**
1945  * svm_range_add - add svm range and handle overlap
1946  * @p: the range add to this process svms
1947  * @start: page size aligned
1948  * @size: page size aligned
1949  * @nattr: number of attributes
1950  * @attrs: array of attributes
1951  * @update_list: output, the ranges need validate and update GPU mapping
1952  * @insert_list: output, the ranges need insert to svms
1953  * @remove_list: output, the ranges are replaced and need remove from svms
1954  *
1955  * Check if the virtual address range has overlap with any existing ranges,
1956  * split partly overlapping ranges and add new ranges in the gaps. All changes
1957  * should be applied to the range_list and interval tree transactionally. If
1958  * any range split or allocation fails, the entire update fails. Therefore any
1959  * existing overlapping svm_ranges are cloned and the original svm_ranges left
1960  * unchanged.
1961  *
1962  * If the transaction succeeds, the caller can update and insert clones and
1963  * new ranges, then free the originals.
1964  *
1965  * Otherwise the caller can free the clones and new ranges, while the old
1966  * svm_ranges remain unchanged.
1967  *
1968  * Context: Process context, caller must hold svms->lock
1969  *
1970  * Return:
1971  * 0 - OK, otherwise error code
1972  */
1973 static int
1974 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
1975 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
1976 	      struct list_head *update_list, struct list_head *insert_list,
1977 	      struct list_head *remove_list)
1978 {
1979 	unsigned long last = start + size - 1UL;
1980 	struct svm_range_list *svms = &p->svms;
1981 	struct interval_tree_node *node;
1982 	struct svm_range *prange;
1983 	struct svm_range *tmp;
1984 	struct list_head new_list;
1985 	int r = 0;
1986 
1987 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
1988 
1989 	INIT_LIST_HEAD(update_list);
1990 	INIT_LIST_HEAD(insert_list);
1991 	INIT_LIST_HEAD(remove_list);
1992 	INIT_LIST_HEAD(&new_list);
1993 
1994 	node = interval_tree_iter_first(&svms->objects, start, last);
1995 	while (node) {
1996 		struct interval_tree_node *next;
1997 		unsigned long next_start;
1998 
1999 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2000 			 node->last);
2001 
2002 		prange = container_of(node, struct svm_range, it_node);
2003 		next = interval_tree_iter_next(node, start, last);
2004 		next_start = min(node->last, last) + 1;
2005 
2006 		if (svm_range_is_same_attrs(p, prange, nattr, attrs)) {
2007 			/* nothing to do */
2008 		} else if (node->start < start || node->last > last) {
2009 			/* node intersects the update range and its attributes
2010 			 * will change. Clone and split it, apply updates only
2011 			 * to the overlapping part
2012 			 */
2013 			struct svm_range *old = prange;
2014 
2015 			prange = svm_range_clone(old);
2016 			if (!prange) {
2017 				r = -ENOMEM;
2018 				goto out;
2019 			}
2020 
2021 			list_add(&old->update_list, remove_list);
2022 			list_add(&prange->list, insert_list);
2023 			list_add(&prange->update_list, update_list);
2024 
2025 			if (node->start < start) {
2026 				pr_debug("change old range start\n");
2027 				r = svm_range_split_head(prange, start,
2028 							 insert_list);
2029 				if (r)
2030 					goto out;
2031 			}
2032 			if (node->last > last) {
2033 				pr_debug("change old range last\n");
2034 				r = svm_range_split_tail(prange, last,
2035 							 insert_list);
2036 				if (r)
2037 					goto out;
2038 			}
2039 		} else {
2040 			/* The node is contained within start..last,
2041 			 * just update it
2042 			 */
2043 			list_add(&prange->update_list, update_list);
2044 		}
2045 
2046 		/* insert a new node if needed */
2047 		if (node->start > start) {
2048 			r = svm_range_split_new(svms, start, node->start - 1,
2049 						READ_ONCE(max_svm_range_pages),
2050 						&new_list, update_list);
2051 			if (r)
2052 				goto out;
2053 		}
2054 
2055 		node = next;
2056 		start = next_start;
2057 	}
2058 
2059 	/* add a final range at the end if needed */
2060 	if (start <= last)
2061 		r = svm_range_split_new(svms, start, last,
2062 					READ_ONCE(max_svm_range_pages),
2063 					&new_list, update_list);
2064 
2065 out:
2066 	if (r) {
2067 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2068 			svm_range_free(prange, false);
2069 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2070 			svm_range_free(prange, true);
2071 	} else {
2072 		list_splice(&new_list, insert_list);
2073 	}
2074 
2075 	return r;
2076 }
2077 
2078 static void
2079 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2080 					    struct svm_range *prange)
2081 {
2082 	unsigned long start;
2083 	unsigned long last;
2084 
2085 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2086 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2087 
2088 	if (prange->start == start && prange->last == last)
2089 		return;
2090 
2091 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2092 		  prange->svms, prange, start, last, prange->start,
2093 		  prange->last);
2094 
2095 	if (start != 0 && last != 0) {
2096 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2097 		svm_range_remove_notifier(prange);
2098 	}
2099 	prange->it_node.start = prange->start;
2100 	prange->it_node.last = prange->last;
2101 
2102 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2103 	svm_range_add_notifier_locked(mm, prange);
2104 }
2105 
2106 static void
2107 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2108 			 struct mm_struct *mm)
2109 {
2110 	switch (prange->work_item.op) {
2111 	case SVM_OP_NULL:
2112 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2113 			 svms, prange, prange->start, prange->last);
2114 		break;
2115 	case SVM_OP_UNMAP_RANGE:
2116 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2117 			 svms, prange, prange->start, prange->last);
2118 		svm_range_unlink(prange);
2119 		svm_range_remove_notifier(prange);
2120 		svm_range_free(prange, true);
2121 		break;
2122 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2123 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2124 			 svms, prange, prange->start, prange->last);
2125 		svm_range_update_notifier_and_interval_tree(mm, prange);
2126 		break;
2127 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2128 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2129 			 svms, prange, prange->start, prange->last);
2130 		svm_range_update_notifier_and_interval_tree(mm, prange);
2131 		/* TODO: implement deferred validation and mapping */
2132 		break;
2133 	case SVM_OP_ADD_RANGE:
2134 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2135 			 prange->start, prange->last);
2136 		svm_range_add_to_svms(prange);
2137 		svm_range_add_notifier_locked(mm, prange);
2138 		break;
2139 	case SVM_OP_ADD_RANGE_AND_MAP:
2140 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2141 			 prange, prange->start, prange->last);
2142 		svm_range_add_to_svms(prange);
2143 		svm_range_add_notifier_locked(mm, prange);
2144 		/* TODO: implement deferred validation and mapping */
2145 		break;
2146 	default:
2147 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2148 			 prange->work_item.op);
2149 	}
2150 }
2151 
2152 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2153 {
2154 	struct kfd_process_device *pdd;
2155 	struct kfd_process *p;
2156 	int drain;
2157 	uint32_t i;
2158 
2159 	p = container_of(svms, struct kfd_process, svms);
2160 
2161 restart:
2162 	drain = atomic_read(&svms->drain_pagefaults);
2163 	if (!drain)
2164 		return;
2165 
2166 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2167 		pdd = p->pdds[i];
2168 		if (!pdd)
2169 			continue;
2170 
2171 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2172 
2173 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2174 						     &pdd->dev->adev->irq.ih1);
2175 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2176 	}
2177 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2178 		goto restart;
2179 }
2180 
2181 static void svm_range_deferred_list_work(struct work_struct *work)
2182 {
2183 	struct svm_range_list *svms;
2184 	struct svm_range *prange;
2185 	struct mm_struct *mm;
2186 
2187 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2188 	pr_debug("enter svms 0x%p\n", svms);
2189 
2190 	spin_lock(&svms->deferred_list_lock);
2191 	while (!list_empty(&svms->deferred_range_list)) {
2192 		prange = list_first_entry(&svms->deferred_range_list,
2193 					  struct svm_range, deferred_list);
2194 		spin_unlock(&svms->deferred_list_lock);
2195 
2196 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2197 			 prange->start, prange->last, prange->work_item.op);
2198 
2199 		mm = prange->work_item.mm;
2200 retry:
2201 		mmap_write_lock(mm);
2202 
2203 		/* Checking for the need to drain retry faults must be inside
2204 		 * mmap write lock to serialize with munmap notifiers.
2205 		 */
2206 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2207 			mmap_write_unlock(mm);
2208 			svm_range_drain_retry_fault(svms);
2209 			goto retry;
2210 		}
2211 
2212 		/* Remove from deferred_list must be inside mmap write lock, for
2213 		 * two race cases:
2214 		 * 1. unmap_from_cpu may change work_item.op and add the range
2215 		 *    to deferred_list again, cause use after free bug.
2216 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2217 		 *    lock and continue because deferred_list is empty, but
2218 		 *    deferred_list work is actually waiting for mmap lock.
2219 		 */
2220 		spin_lock(&svms->deferred_list_lock);
2221 		list_del_init(&prange->deferred_list);
2222 		spin_unlock(&svms->deferred_list_lock);
2223 
2224 		mutex_lock(&svms->lock);
2225 		mutex_lock(&prange->migrate_mutex);
2226 		while (!list_empty(&prange->child_list)) {
2227 			struct svm_range *pchild;
2228 
2229 			pchild = list_first_entry(&prange->child_list,
2230 						struct svm_range, child_list);
2231 			pr_debug("child prange 0x%p op %d\n", pchild,
2232 				 pchild->work_item.op);
2233 			list_del_init(&pchild->child_list);
2234 			svm_range_handle_list_op(svms, pchild, mm);
2235 		}
2236 		mutex_unlock(&prange->migrate_mutex);
2237 
2238 		svm_range_handle_list_op(svms, prange, mm);
2239 		mutex_unlock(&svms->lock);
2240 		mmap_write_unlock(mm);
2241 
2242 		/* Pairs with mmget in svm_range_add_list_work */
2243 		mmput(mm);
2244 
2245 		spin_lock(&svms->deferred_list_lock);
2246 	}
2247 	spin_unlock(&svms->deferred_list_lock);
2248 	pr_debug("exit svms 0x%p\n", svms);
2249 }
2250 
2251 void
2252 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2253 			struct mm_struct *mm, enum svm_work_list_ops op)
2254 {
2255 	spin_lock(&svms->deferred_list_lock);
2256 	/* if prange is on the deferred list */
2257 	if (!list_empty(&prange->deferred_list)) {
2258 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2259 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2260 		if (op != SVM_OP_NULL &&
2261 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2262 			prange->work_item.op = op;
2263 	} else {
2264 		prange->work_item.op = op;
2265 
2266 		/* Pairs with mmput in deferred_list_work */
2267 		mmget(mm);
2268 		prange->work_item.mm = mm;
2269 		list_add_tail(&prange->deferred_list,
2270 			      &prange->svms->deferred_range_list);
2271 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2272 			 prange, prange->start, prange->last, op);
2273 	}
2274 	spin_unlock(&svms->deferred_list_lock);
2275 }
2276 
2277 void schedule_deferred_list_work(struct svm_range_list *svms)
2278 {
2279 	spin_lock(&svms->deferred_list_lock);
2280 	if (!list_empty(&svms->deferred_range_list))
2281 		schedule_work(&svms->deferred_list_work);
2282 	spin_unlock(&svms->deferred_list_lock);
2283 }
2284 
2285 static void
2286 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2287 		      struct svm_range *prange, unsigned long start,
2288 		      unsigned long last)
2289 {
2290 	struct svm_range *head;
2291 	struct svm_range *tail;
2292 
2293 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2294 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2295 			 prange->start, prange->last);
2296 		return;
2297 	}
2298 	if (start > prange->last || last < prange->start)
2299 		return;
2300 
2301 	head = tail = prange;
2302 	if (start > prange->start)
2303 		svm_range_split(prange, prange->start, start - 1, &tail);
2304 	if (last < tail->last)
2305 		svm_range_split(tail, last + 1, tail->last, &head);
2306 
2307 	if (head != prange && tail != prange) {
2308 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2309 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2310 	} else if (tail != prange) {
2311 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2312 	} else if (head != prange) {
2313 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2314 	} else if (parent != prange) {
2315 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2316 	}
2317 }
2318 
2319 static void
2320 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2321 			 unsigned long start, unsigned long last)
2322 {
2323 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2324 	struct svm_range_list *svms;
2325 	struct svm_range *pchild;
2326 	struct kfd_process *p;
2327 	unsigned long s, l;
2328 	bool unmap_parent;
2329 
2330 	p = kfd_lookup_process_by_mm(mm);
2331 	if (!p)
2332 		return;
2333 	svms = &p->svms;
2334 
2335 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2336 		 prange, prange->start, prange->last, start, last);
2337 
2338 	/* Make sure pending page faults are drained in the deferred worker
2339 	 * before the range is freed to avoid straggler interrupts on
2340 	 * unmapped memory causing "phantom faults".
2341 	 */
2342 	atomic_inc(&svms->drain_pagefaults);
2343 
2344 	unmap_parent = start <= prange->start && last >= prange->last;
2345 
2346 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2347 		mutex_lock_nested(&pchild->lock, 1);
2348 		s = max(start, pchild->start);
2349 		l = min(last, pchild->last);
2350 		if (l >= s)
2351 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2352 		svm_range_unmap_split(mm, prange, pchild, start, last);
2353 		mutex_unlock(&pchild->lock);
2354 	}
2355 	s = max(start, prange->start);
2356 	l = min(last, prange->last);
2357 	if (l >= s)
2358 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2359 	svm_range_unmap_split(mm, prange, prange, start, last);
2360 
2361 	if (unmap_parent)
2362 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2363 	else
2364 		svm_range_add_list_work(svms, prange, mm,
2365 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2366 	schedule_deferred_list_work(svms);
2367 
2368 	kfd_unref_process(p);
2369 }
2370 
2371 /**
2372  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2373  * @mni: mmu_interval_notifier struct
2374  * @range: mmu_notifier_range struct
2375  * @cur_seq: value to pass to mmu_interval_set_seq()
2376  *
2377  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2378  * is from migration, or CPU page invalidation callback.
2379  *
2380  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2381  * work thread, and split prange if only part of prange is unmapped.
2382  *
2383  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2384  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2385  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2386  * update GPU mapping to recover.
2387  *
2388  * Context: mmap lock, notifier_invalidate_start lock are held
2389  *          for invalidate event, prange lock is held if this is from migration
2390  */
2391 static bool
2392 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2393 				    const struct mmu_notifier_range *range,
2394 				    unsigned long cur_seq)
2395 {
2396 	struct svm_range *prange;
2397 	unsigned long start;
2398 	unsigned long last;
2399 
2400 	if (range->event == MMU_NOTIFY_RELEASE)
2401 		return true;
2402 	if (!mmget_not_zero(mni->mm))
2403 		return true;
2404 
2405 	start = mni->interval_tree.start;
2406 	last = mni->interval_tree.last;
2407 	start = max(start, range->start) >> PAGE_SHIFT;
2408 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2409 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2410 		 start, last, range->start >> PAGE_SHIFT,
2411 		 (range->end - 1) >> PAGE_SHIFT,
2412 		 mni->interval_tree.start >> PAGE_SHIFT,
2413 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2414 
2415 	prange = container_of(mni, struct svm_range, notifier);
2416 
2417 	svm_range_lock(prange);
2418 	mmu_interval_set_seq(mni, cur_seq);
2419 
2420 	switch (range->event) {
2421 	case MMU_NOTIFY_UNMAP:
2422 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2423 		break;
2424 	default:
2425 		svm_range_evict(prange, mni->mm, start, last, range->event);
2426 		break;
2427 	}
2428 
2429 	svm_range_unlock(prange);
2430 	mmput(mni->mm);
2431 
2432 	return true;
2433 }
2434 
2435 /**
2436  * svm_range_from_addr - find svm range from fault address
2437  * @svms: svm range list header
2438  * @addr: address to search range interval tree, in pages
2439  * @parent: parent range if range is on child list
2440  *
2441  * Context: The caller must hold svms->lock
2442  *
2443  * Return: the svm_range found or NULL
2444  */
2445 struct svm_range *
2446 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2447 		    struct svm_range **parent)
2448 {
2449 	struct interval_tree_node *node;
2450 	struct svm_range *prange;
2451 	struct svm_range *pchild;
2452 
2453 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2454 	if (!node)
2455 		return NULL;
2456 
2457 	prange = container_of(node, struct svm_range, it_node);
2458 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2459 		 addr, prange->start, prange->last, node->start, node->last);
2460 
2461 	if (addr >= prange->start && addr <= prange->last) {
2462 		if (parent)
2463 			*parent = prange;
2464 		return prange;
2465 	}
2466 	list_for_each_entry(pchild, &prange->child_list, child_list)
2467 		if (addr >= pchild->start && addr <= pchild->last) {
2468 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2469 				 addr, pchild->start, pchild->last);
2470 			if (parent)
2471 				*parent = prange;
2472 			return pchild;
2473 		}
2474 
2475 	return NULL;
2476 }
2477 
2478 /* svm_range_best_restore_location - decide the best fault restore location
2479  * @prange: svm range structure
2480  * @adev: the GPU on which vm fault happened
2481  *
2482  * This is only called when xnack is on, to decide the best location to restore
2483  * the range mapping after GPU vm fault. Caller uses the best location to do
2484  * migration if actual loc is not best location, then update GPU page table
2485  * mapping to the best location.
2486  *
2487  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2488  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2489  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2490  *    if range actual loc is cpu, best_loc is cpu
2491  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2492  *    range actual loc.
2493  * Otherwise, GPU no access, best_loc is -1.
2494  *
2495  * Return:
2496  * -1 means vm fault GPU no access
2497  * 0 for CPU or GPU id
2498  */
2499 static int32_t
2500 svm_range_best_restore_location(struct svm_range *prange,
2501 				struct amdgpu_device *adev,
2502 				int32_t *gpuidx)
2503 {
2504 	struct amdgpu_device *bo_adev, *preferred_adev;
2505 	struct kfd_process *p;
2506 	uint32_t gpuid;
2507 	int r;
2508 
2509 	p = container_of(prange->svms, struct kfd_process, svms);
2510 
2511 	r = kfd_process_gpuid_from_adev(p, adev, &gpuid, gpuidx);
2512 	if (r < 0) {
2513 		pr_debug("failed to get gpuid from kgd\n");
2514 		return -1;
2515 	}
2516 
2517 	if (prange->preferred_loc == gpuid ||
2518 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2519 		return prange->preferred_loc;
2520 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2521 		preferred_adev = svm_range_get_adev_by_id(prange,
2522 							prange->preferred_loc);
2523 		if (amdgpu_xgmi_same_hive(adev, preferred_adev))
2524 			return prange->preferred_loc;
2525 		/* fall through */
2526 	}
2527 
2528 	if (test_bit(*gpuidx, prange->bitmap_access))
2529 		return gpuid;
2530 
2531 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2532 		if (!prange->actual_loc)
2533 			return 0;
2534 
2535 		bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
2536 		if (amdgpu_xgmi_same_hive(adev, bo_adev))
2537 			return prange->actual_loc;
2538 		else
2539 			return 0;
2540 	}
2541 
2542 	return -1;
2543 }
2544 
2545 static int
2546 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2547 			       unsigned long *start, unsigned long *last,
2548 			       bool *is_heap_stack)
2549 {
2550 	struct vm_area_struct *vma;
2551 	struct interval_tree_node *node;
2552 	unsigned long start_limit, end_limit;
2553 
2554 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2555 	if (!vma) {
2556 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2557 		return -EFAULT;
2558 	}
2559 
2560 	*is_heap_stack = (vma->vm_start <= vma->vm_mm->brk &&
2561 			  vma->vm_end >= vma->vm_mm->start_brk) ||
2562 			 (vma->vm_start <= vma->vm_mm->start_stack &&
2563 			  vma->vm_end >= vma->vm_mm->start_stack);
2564 
2565 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2566 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2567 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2568 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2569 	/* First range that starts after the fault address */
2570 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2571 	if (node) {
2572 		end_limit = min(end_limit, node->start);
2573 		/* Last range that ends before the fault address */
2574 		node = container_of(rb_prev(&node->rb),
2575 				    struct interval_tree_node, rb);
2576 	} else {
2577 		/* Last range must end before addr because
2578 		 * there was no range after addr
2579 		 */
2580 		node = container_of(rb_last(&p->svms.objects.rb_root),
2581 				    struct interval_tree_node, rb);
2582 	}
2583 	if (node) {
2584 		if (node->last >= addr) {
2585 			WARN(1, "Overlap with prev node and page fault addr\n");
2586 			return -EFAULT;
2587 		}
2588 		start_limit = max(start_limit, node->last + 1);
2589 	}
2590 
2591 	*start = start_limit;
2592 	*last = end_limit - 1;
2593 
2594 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2595 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2596 		 *start, *last, *is_heap_stack);
2597 
2598 	return 0;
2599 }
2600 
2601 static int
2602 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2603 			   uint64_t *bo_s, uint64_t *bo_l)
2604 {
2605 	struct amdgpu_bo_va_mapping *mapping;
2606 	struct interval_tree_node *node;
2607 	struct amdgpu_bo *bo = NULL;
2608 	unsigned long userptr;
2609 	uint32_t i;
2610 	int r;
2611 
2612 	for (i = 0; i < p->n_pdds; i++) {
2613 		struct amdgpu_vm *vm;
2614 
2615 		if (!p->pdds[i]->drm_priv)
2616 			continue;
2617 
2618 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2619 		r = amdgpu_bo_reserve(vm->root.bo, false);
2620 		if (r)
2621 			return r;
2622 
2623 		/* Check userptr by searching entire vm->va interval tree */
2624 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2625 		while (node) {
2626 			mapping = container_of((struct rb_node *)node,
2627 					       struct amdgpu_bo_va_mapping, rb);
2628 			bo = mapping->bo_va->base.bo;
2629 
2630 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2631 							 start << PAGE_SHIFT,
2632 							 last << PAGE_SHIFT,
2633 							 &userptr)) {
2634 				node = interval_tree_iter_next(node, 0, ~0ULL);
2635 				continue;
2636 			}
2637 
2638 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2639 				 start, last);
2640 			if (bo_s && bo_l) {
2641 				*bo_s = userptr >> PAGE_SHIFT;
2642 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2643 			}
2644 			amdgpu_bo_unreserve(vm->root.bo);
2645 			return -EADDRINUSE;
2646 		}
2647 		amdgpu_bo_unreserve(vm->root.bo);
2648 	}
2649 	return 0;
2650 }
2651 
2652 static struct
2653 svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev,
2654 						struct kfd_process *p,
2655 						struct mm_struct *mm,
2656 						int64_t addr)
2657 {
2658 	struct svm_range *prange = NULL;
2659 	unsigned long start, last;
2660 	uint32_t gpuid, gpuidx;
2661 	bool is_heap_stack;
2662 	uint64_t bo_s = 0;
2663 	uint64_t bo_l = 0;
2664 	int r;
2665 
2666 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2667 					   &is_heap_stack))
2668 		return NULL;
2669 
2670 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2671 	if (r != -EADDRINUSE)
2672 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2673 
2674 	if (r == -EADDRINUSE) {
2675 		if (addr >= bo_s && addr <= bo_l)
2676 			return NULL;
2677 
2678 		/* Create one page svm range if 2MB range overlapping */
2679 		start = addr;
2680 		last = addr;
2681 	}
2682 
2683 	prange = svm_range_new(&p->svms, start, last, true);
2684 	if (!prange) {
2685 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2686 		return NULL;
2687 	}
2688 	if (kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx)) {
2689 		pr_debug("failed to get gpuid from kgd\n");
2690 		svm_range_free(prange, true);
2691 		return NULL;
2692 	}
2693 
2694 	if (is_heap_stack)
2695 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2696 
2697 	svm_range_add_to_svms(prange);
2698 	svm_range_add_notifier_locked(mm, prange);
2699 
2700 	return prange;
2701 }
2702 
2703 /* svm_range_skip_recover - decide if prange can be recovered
2704  * @prange: svm range structure
2705  *
2706  * GPU vm retry fault handle skip recover the range for cases:
2707  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2708  *    deferred list work will drain the stale fault before free the prange.
2709  * 2. prange is on deferred list to add interval notifier after split, or
2710  * 3. prange is child range, it is split from parent prange, recover later
2711  *    after interval notifier is added.
2712  *
2713  * Return: true to skip recover, false to recover
2714  */
2715 static bool svm_range_skip_recover(struct svm_range *prange)
2716 {
2717 	struct svm_range_list *svms = prange->svms;
2718 
2719 	spin_lock(&svms->deferred_list_lock);
2720 	if (list_empty(&prange->deferred_list) &&
2721 	    list_empty(&prange->child_list)) {
2722 		spin_unlock(&svms->deferred_list_lock);
2723 		return false;
2724 	}
2725 	spin_unlock(&svms->deferred_list_lock);
2726 
2727 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2728 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2729 			 svms, prange, prange->start, prange->last);
2730 		return true;
2731 	}
2732 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2733 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2734 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2735 			 svms, prange, prange->start, prange->last);
2736 		return true;
2737 	}
2738 	return false;
2739 }
2740 
2741 static void
2742 svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p,
2743 		      int32_t gpuidx)
2744 {
2745 	struct kfd_process_device *pdd;
2746 
2747 	/* fault is on different page of same range
2748 	 * or fault is skipped to recover later
2749 	 * or fault is on invalid virtual address
2750 	 */
2751 	if (gpuidx == MAX_GPU_INSTANCE) {
2752 		uint32_t gpuid;
2753 		int r;
2754 
2755 		r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx);
2756 		if (r < 0)
2757 			return;
2758 	}
2759 
2760 	/* fault is recovered
2761 	 * or fault cannot recover because GPU no access on the range
2762 	 */
2763 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2764 	if (pdd)
2765 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2766 }
2767 
2768 static bool
2769 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2770 {
2771 	unsigned long requested = VM_READ;
2772 
2773 	if (write_fault)
2774 		requested |= VM_WRITE;
2775 
2776 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2777 		vma->vm_flags);
2778 	return (vma->vm_flags & requested) == requested;
2779 }
2780 
2781 int
2782 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2783 			uint64_t addr, bool write_fault)
2784 {
2785 	struct mm_struct *mm = NULL;
2786 	struct svm_range_list *svms;
2787 	struct svm_range *prange;
2788 	struct kfd_process *p;
2789 	ktime_t timestamp = ktime_get_boottime();
2790 	int32_t best_loc;
2791 	int32_t gpuidx = MAX_GPU_INSTANCE;
2792 	bool write_locked = false;
2793 	struct vm_area_struct *vma;
2794 	bool migration = false;
2795 	int r = 0;
2796 
2797 	if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) {
2798 		pr_debug("device does not support SVM\n");
2799 		return -EFAULT;
2800 	}
2801 
2802 	p = kfd_lookup_process_by_pasid(pasid);
2803 	if (!p) {
2804 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2805 		return 0;
2806 	}
2807 	svms = &p->svms;
2808 
2809 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2810 
2811 	if (atomic_read(&svms->drain_pagefaults)) {
2812 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2813 		r = 0;
2814 		goto out;
2815 	}
2816 
2817 	if (!p->xnack_enabled) {
2818 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2819 		r = -EFAULT;
2820 		goto out;
2821 	}
2822 
2823 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2824 	 * before releasing task ref.
2825 	 */
2826 	mm = get_task_mm(p->lead_thread);
2827 	if (!mm) {
2828 		pr_debug("svms 0x%p failed to get mm\n", svms);
2829 		r = 0;
2830 		goto out;
2831 	}
2832 
2833 	mmap_read_lock(mm);
2834 retry_write_locked:
2835 	mutex_lock(&svms->lock);
2836 	prange = svm_range_from_addr(svms, addr, NULL);
2837 	if (!prange) {
2838 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2839 			 svms, addr);
2840 		if (!write_locked) {
2841 			/* Need the write lock to create new range with MMU notifier.
2842 			 * Also flush pending deferred work to make sure the interval
2843 			 * tree is up to date before we add a new range
2844 			 */
2845 			mutex_unlock(&svms->lock);
2846 			mmap_read_unlock(mm);
2847 			mmap_write_lock(mm);
2848 			write_locked = true;
2849 			goto retry_write_locked;
2850 		}
2851 		prange = svm_range_create_unregistered_range(adev, p, mm, addr);
2852 		if (!prange) {
2853 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2854 				 svms, addr);
2855 			mmap_write_downgrade(mm);
2856 			r = -EFAULT;
2857 			goto out_unlock_svms;
2858 		}
2859 	}
2860 	if (write_locked)
2861 		mmap_write_downgrade(mm);
2862 
2863 	mutex_lock(&prange->migrate_mutex);
2864 
2865 	if (svm_range_skip_recover(prange)) {
2866 		amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
2867 		r = 0;
2868 		goto out_unlock_range;
2869 	}
2870 
2871 	/* skip duplicate vm fault on different pages of same range */
2872 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2873 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2874 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2875 			 svms, prange->start, prange->last);
2876 		r = 0;
2877 		goto out_unlock_range;
2878 	}
2879 
2880 	/* __do_munmap removed VMA, return success as we are handling stale
2881 	 * retry fault.
2882 	 */
2883 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
2884 	if (!vma) {
2885 		pr_debug("address 0x%llx VMA is removed\n", addr);
2886 		r = 0;
2887 		goto out_unlock_range;
2888 	}
2889 
2890 	if (!svm_fault_allowed(vma, write_fault)) {
2891 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
2892 			write_fault ? "write" : "read");
2893 		r = -EPERM;
2894 		goto out_unlock_range;
2895 	}
2896 
2897 	best_loc = svm_range_best_restore_location(prange, adev, &gpuidx);
2898 	if (best_loc == -1) {
2899 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
2900 			 svms, prange->start, prange->last);
2901 		r = -EACCES;
2902 		goto out_unlock_range;
2903 	}
2904 
2905 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
2906 		 svms, prange->start, prange->last, best_loc,
2907 		 prange->actual_loc);
2908 
2909 	kfd_smi_event_page_fault_start(adev->kfd.dev, p->lead_thread->pid, addr,
2910 				       write_fault, timestamp);
2911 
2912 	if (prange->actual_loc != best_loc) {
2913 		migration = true;
2914 		if (best_loc) {
2915 			r = svm_migrate_to_vram(prange, best_loc, mm,
2916 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
2917 			if (r) {
2918 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
2919 					 r, addr);
2920 				/* Fallback to system memory if migration to
2921 				 * VRAM failed
2922 				 */
2923 				if (prange->actual_loc)
2924 					r = svm_migrate_vram_to_ram(prange, mm,
2925 					   KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
2926 					   NULL);
2927 				else
2928 					r = 0;
2929 			}
2930 		} else {
2931 			r = svm_migrate_vram_to_ram(prange, mm,
2932 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
2933 					NULL);
2934 		}
2935 		if (r) {
2936 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
2937 				 r, svms, prange->start, prange->last);
2938 			goto out_unlock_range;
2939 		}
2940 	}
2941 
2942 	r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
2943 	if (r)
2944 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
2945 			 r, svms, prange->start, prange->last);
2946 
2947 	kfd_smi_event_page_fault_end(adev->kfd.dev, p->lead_thread->pid, addr,
2948 				     migration);
2949 
2950 out_unlock_range:
2951 	mutex_unlock(&prange->migrate_mutex);
2952 out_unlock_svms:
2953 	mutex_unlock(&svms->lock);
2954 	mmap_read_unlock(mm);
2955 
2956 	svm_range_count_fault(adev, p, gpuidx);
2957 
2958 	mmput(mm);
2959 out:
2960 	kfd_unref_process(p);
2961 
2962 	if (r == -EAGAIN) {
2963 		pr_debug("recover vm fault later\n");
2964 		amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
2965 		r = 0;
2966 	}
2967 	return r;
2968 }
2969 
2970 int
2971 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
2972 {
2973 	struct svm_range *prange, *pchild;
2974 	uint64_t reserved_size = 0;
2975 	uint64_t size;
2976 	int r = 0;
2977 
2978 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
2979 
2980 	mutex_lock(&p->svms.lock);
2981 
2982 	list_for_each_entry(prange, &p->svms.list, list) {
2983 		svm_range_lock(prange);
2984 		list_for_each_entry(pchild, &prange->child_list, child_list) {
2985 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
2986 			if (xnack_enabled) {
2987 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
2988 						KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
2989 			} else {
2990 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
2991 						KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
2992 				if (r)
2993 					goto out_unlock;
2994 				reserved_size += size;
2995 			}
2996 		}
2997 
2998 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
2999 		if (xnack_enabled) {
3000 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3001 						KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
3002 		} else {
3003 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3004 						KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
3005 			if (r)
3006 				goto out_unlock;
3007 			reserved_size += size;
3008 		}
3009 out_unlock:
3010 		svm_range_unlock(prange);
3011 		if (r)
3012 			break;
3013 	}
3014 
3015 	if (r)
3016 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3017 						KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
3018 	else
3019 		/* Change xnack mode must be inside svms lock, to avoid race with
3020 		 * svm_range_deferred_list_work unreserve memory in parallel.
3021 		 */
3022 		p->xnack_enabled = xnack_enabled;
3023 
3024 	mutex_unlock(&p->svms.lock);
3025 	return r;
3026 }
3027 
3028 void svm_range_list_fini(struct kfd_process *p)
3029 {
3030 	struct svm_range *prange;
3031 	struct svm_range *next;
3032 
3033 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3034 
3035 	cancel_delayed_work_sync(&p->svms.restore_work);
3036 
3037 	/* Ensure list work is finished before process is destroyed */
3038 	flush_work(&p->svms.deferred_list_work);
3039 
3040 	/*
3041 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3042 	 * not find kfd process and take mm lock to recover fault.
3043 	 */
3044 	atomic_inc(&p->svms.drain_pagefaults);
3045 	svm_range_drain_retry_fault(&p->svms);
3046 
3047 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3048 		svm_range_unlink(prange);
3049 		svm_range_remove_notifier(prange);
3050 		svm_range_free(prange, true);
3051 	}
3052 
3053 	mutex_destroy(&p->svms.lock);
3054 
3055 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3056 }
3057 
3058 int svm_range_list_init(struct kfd_process *p)
3059 {
3060 	struct svm_range_list *svms = &p->svms;
3061 	int i;
3062 
3063 	svms->objects = RB_ROOT_CACHED;
3064 	mutex_init(&svms->lock);
3065 	INIT_LIST_HEAD(&svms->list);
3066 	atomic_set(&svms->evicted_ranges, 0);
3067 	atomic_set(&svms->drain_pagefaults, 0);
3068 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3069 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3070 	INIT_LIST_HEAD(&svms->deferred_range_list);
3071 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3072 	spin_lock_init(&svms->deferred_list_lock);
3073 
3074 	for (i = 0; i < p->n_pdds; i++)
3075 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev))
3076 			bitmap_set(svms->bitmap_supported, i, 1);
3077 
3078 	return 0;
3079 }
3080 
3081 /**
3082  * svm_range_check_vm - check if virtual address range mapped already
3083  * @p: current kfd_process
3084  * @start: range start address, in pages
3085  * @last: range last address, in pages
3086  * @bo_s: mapping start address in pages if address range already mapped
3087  * @bo_l: mapping last address in pages if address range already mapped
3088  *
3089  * The purpose is to avoid virtual address ranges already allocated by
3090  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3091  * It looks for each pdd in the kfd_process.
3092  *
3093  * Context: Process context
3094  *
3095  * Return 0 - OK, if the range is not mapped.
3096  * Otherwise error code:
3097  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3098  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3099  * a signal. Release all buffer reservations and return to user-space.
3100  */
3101 static int
3102 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3103 		   uint64_t *bo_s, uint64_t *bo_l)
3104 {
3105 	struct amdgpu_bo_va_mapping *mapping;
3106 	struct interval_tree_node *node;
3107 	uint32_t i;
3108 	int r;
3109 
3110 	for (i = 0; i < p->n_pdds; i++) {
3111 		struct amdgpu_vm *vm;
3112 
3113 		if (!p->pdds[i]->drm_priv)
3114 			continue;
3115 
3116 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3117 		r = amdgpu_bo_reserve(vm->root.bo, false);
3118 		if (r)
3119 			return r;
3120 
3121 		node = interval_tree_iter_first(&vm->va, start, last);
3122 		if (node) {
3123 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3124 				 start, last);
3125 			mapping = container_of((struct rb_node *)node,
3126 					       struct amdgpu_bo_va_mapping, rb);
3127 			if (bo_s && bo_l) {
3128 				*bo_s = mapping->start;
3129 				*bo_l = mapping->last;
3130 			}
3131 			amdgpu_bo_unreserve(vm->root.bo);
3132 			return -EADDRINUSE;
3133 		}
3134 		amdgpu_bo_unreserve(vm->root.bo);
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 /**
3141  * svm_range_is_valid - check if virtual address range is valid
3142  * @p: current kfd_process
3143  * @start: range start address, in pages
3144  * @size: range size, in pages
3145  *
3146  * Valid virtual address range means it belongs to one or more VMAs
3147  *
3148  * Context: Process context
3149  *
3150  * Return:
3151  *  0 - OK, otherwise error code
3152  */
3153 static int
3154 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3155 {
3156 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3157 	struct vm_area_struct *vma;
3158 	unsigned long end;
3159 	unsigned long start_unchg = start;
3160 
3161 	start <<= PAGE_SHIFT;
3162 	end = start + (size << PAGE_SHIFT);
3163 	do {
3164 		vma = vma_lookup(p->mm, start);
3165 		if (!vma || (vma->vm_flags & device_vma))
3166 			return -EFAULT;
3167 		start = min(end, vma->vm_end);
3168 	} while (start < end);
3169 
3170 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3171 				  NULL);
3172 }
3173 
3174 /**
3175  * svm_range_best_prefetch_location - decide the best prefetch location
3176  * @prange: svm range structure
3177  *
3178  * For xnack off:
3179  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3180  * can be CPU or GPU.
3181  *
3182  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3183  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3184  * the best prefetch location is always CPU, because GPU can not have coherent
3185  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3186  *
3187  * For xnack on:
3188  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3189  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3190  *
3191  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3192  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3193  * prefetch location is always CPU.
3194  *
3195  * Context: Process context
3196  *
3197  * Return:
3198  * 0 for CPU or GPU id
3199  */
3200 static uint32_t
3201 svm_range_best_prefetch_location(struct svm_range *prange)
3202 {
3203 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3204 	uint32_t best_loc = prange->prefetch_loc;
3205 	struct kfd_process_device *pdd;
3206 	struct amdgpu_device *bo_adev;
3207 	struct kfd_process *p;
3208 	uint32_t gpuidx;
3209 
3210 	p = container_of(prange->svms, struct kfd_process, svms);
3211 
3212 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3213 		goto out;
3214 
3215 	bo_adev = svm_range_get_adev_by_id(prange, best_loc);
3216 	if (!bo_adev) {
3217 		WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc);
3218 		best_loc = 0;
3219 		goto out;
3220 	}
3221 
3222 	if (p->xnack_enabled)
3223 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3224 	else
3225 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3226 			  MAX_GPU_INSTANCE);
3227 
3228 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3229 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3230 		if (!pdd) {
3231 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3232 			continue;
3233 		}
3234 
3235 		if (pdd->dev->adev == bo_adev)
3236 			continue;
3237 
3238 		if (!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
3239 			best_loc = 0;
3240 			break;
3241 		}
3242 	}
3243 
3244 out:
3245 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3246 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3247 		 best_loc);
3248 
3249 	return best_loc;
3250 }
3251 
3252 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3253  * @mm: current process mm_struct
3254  * @prange: svm range structure
3255  * @migrated: output, true if migration is triggered
3256  *
3257  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3258  * from ram to vram.
3259  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3260  * from vram to ram.
3261  *
3262  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3263  * and restore work:
3264  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3265  *    stops all queues, schedule restore work
3266  * 2. svm_range_restore_work wait for migration is done by
3267  *    a. svm_range_validate_vram takes prange->migrate_mutex
3268  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3269  * 3. restore work update mappings of GPU, resume all queues.
3270  *
3271  * Context: Process context
3272  *
3273  * Return:
3274  * 0 - OK, otherwise - error code of migration
3275  */
3276 static int
3277 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3278 			    bool *migrated)
3279 {
3280 	uint32_t best_loc;
3281 	int r = 0;
3282 
3283 	*migrated = false;
3284 	best_loc = svm_range_best_prefetch_location(prange);
3285 
3286 	if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3287 	    best_loc == prange->actual_loc)
3288 		return 0;
3289 
3290 	if (!best_loc) {
3291 		r = svm_migrate_vram_to_ram(prange, mm,
3292 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3293 		*migrated = !r;
3294 		return r;
3295 	}
3296 
3297 	r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3298 	*migrated = !r;
3299 
3300 	return r;
3301 }
3302 
3303 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3304 {
3305 	if (!fence)
3306 		return -EINVAL;
3307 
3308 	if (dma_fence_is_signaled(&fence->base))
3309 		return 0;
3310 
3311 	if (fence->svm_bo) {
3312 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3313 		schedule_work(&fence->svm_bo->eviction_work);
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3320 {
3321 	struct svm_range_bo *svm_bo;
3322 	struct mm_struct *mm;
3323 	int r = 0;
3324 
3325 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3326 	if (!svm_bo_ref_unless_zero(svm_bo))
3327 		return; /* svm_bo was freed while eviction was pending */
3328 
3329 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3330 		mm = svm_bo->eviction_fence->mm;
3331 	} else {
3332 		svm_range_bo_unref(svm_bo);
3333 		return;
3334 	}
3335 
3336 	mmap_read_lock(mm);
3337 	spin_lock(&svm_bo->list_lock);
3338 	while (!list_empty(&svm_bo->range_list) && !r) {
3339 		struct svm_range *prange =
3340 				list_first_entry(&svm_bo->range_list,
3341 						struct svm_range, svm_bo_list);
3342 		int retries = 3;
3343 
3344 		list_del_init(&prange->svm_bo_list);
3345 		spin_unlock(&svm_bo->list_lock);
3346 
3347 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3348 			 prange->start, prange->last);
3349 
3350 		mutex_lock(&prange->migrate_mutex);
3351 		do {
3352 			r = svm_migrate_vram_to_ram(prange, mm,
3353 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3354 		} while (!r && prange->actual_loc && --retries);
3355 
3356 		if (!r && prange->actual_loc)
3357 			pr_info_once("Migration failed during eviction");
3358 
3359 		if (!prange->actual_loc) {
3360 			mutex_lock(&prange->lock);
3361 			prange->svm_bo = NULL;
3362 			mutex_unlock(&prange->lock);
3363 		}
3364 		mutex_unlock(&prange->migrate_mutex);
3365 
3366 		spin_lock(&svm_bo->list_lock);
3367 	}
3368 	spin_unlock(&svm_bo->list_lock);
3369 	mmap_read_unlock(mm);
3370 	mmput(mm);
3371 
3372 	dma_fence_signal(&svm_bo->eviction_fence->base);
3373 
3374 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3375 	 * has been called in svm_migrate_vram_to_ram
3376 	 */
3377 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3378 	svm_range_bo_unref(svm_bo);
3379 }
3380 
3381 static int
3382 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3383 		   uint64_t start, uint64_t size, uint32_t nattr,
3384 		   struct kfd_ioctl_svm_attribute *attrs)
3385 {
3386 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3387 	struct list_head update_list;
3388 	struct list_head insert_list;
3389 	struct list_head remove_list;
3390 	struct svm_range_list *svms;
3391 	struct svm_range *prange;
3392 	struct svm_range *next;
3393 	bool update_mapping = false;
3394 	bool flush_tlb;
3395 	int r = 0;
3396 
3397 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3398 		 p->pasid, &p->svms, start, start + size - 1, size);
3399 
3400 	r = svm_range_check_attr(p, nattr, attrs);
3401 	if (r)
3402 		return r;
3403 
3404 	svms = &p->svms;
3405 
3406 	mutex_lock(&process_info->lock);
3407 
3408 	svm_range_list_lock_and_flush_work(svms, mm);
3409 
3410 	r = svm_range_is_valid(p, start, size);
3411 	if (r) {
3412 		pr_debug("invalid range r=%d\n", r);
3413 		mmap_write_unlock(mm);
3414 		goto out;
3415 	}
3416 
3417 	mutex_lock(&svms->lock);
3418 
3419 	/* Add new range and split existing ranges as needed */
3420 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3421 			  &insert_list, &remove_list);
3422 	if (r) {
3423 		mutex_unlock(&svms->lock);
3424 		mmap_write_unlock(mm);
3425 		goto out;
3426 	}
3427 	/* Apply changes as a transaction */
3428 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3429 		svm_range_add_to_svms(prange);
3430 		svm_range_add_notifier_locked(mm, prange);
3431 	}
3432 	list_for_each_entry(prange, &update_list, update_list) {
3433 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3434 		/* TODO: unmap ranges from GPU that lost access */
3435 	}
3436 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3437 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3438 			 prange->svms, prange, prange->start,
3439 			 prange->last);
3440 		svm_range_unlink(prange);
3441 		svm_range_remove_notifier(prange);
3442 		svm_range_free(prange, false);
3443 	}
3444 
3445 	mmap_write_downgrade(mm);
3446 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3447 	 * this fails we may be left with partially completed actions. There
3448 	 * is no clean way of rolling back to the previous state in such a
3449 	 * case because the rollback wouldn't be guaranteed to work either.
3450 	 */
3451 	list_for_each_entry(prange, &update_list, update_list) {
3452 		bool migrated;
3453 
3454 		mutex_lock(&prange->migrate_mutex);
3455 
3456 		r = svm_range_trigger_migration(mm, prange, &migrated);
3457 		if (r)
3458 			goto out_unlock_range;
3459 
3460 		if (migrated && (!p->xnack_enabled ||
3461 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3462 		    prange->mapped_to_gpu) {
3463 			pr_debug("restore_work will update mappings of GPUs\n");
3464 			mutex_unlock(&prange->migrate_mutex);
3465 			continue;
3466 		}
3467 
3468 		if (!migrated && !update_mapping) {
3469 			mutex_unlock(&prange->migrate_mutex);
3470 			continue;
3471 		}
3472 
3473 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3474 
3475 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3476 					       true, true, flush_tlb);
3477 		if (r)
3478 			pr_debug("failed %d to map svm range\n", r);
3479 
3480 out_unlock_range:
3481 		mutex_unlock(&prange->migrate_mutex);
3482 		if (r)
3483 			break;
3484 	}
3485 
3486 	svm_range_debug_dump(svms);
3487 
3488 	mutex_unlock(&svms->lock);
3489 	mmap_read_unlock(mm);
3490 out:
3491 	mutex_unlock(&process_info->lock);
3492 
3493 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3494 		 &p->svms, start, start + size - 1, r);
3495 
3496 	return r;
3497 }
3498 
3499 static int
3500 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3501 		   uint64_t start, uint64_t size, uint32_t nattr,
3502 		   struct kfd_ioctl_svm_attribute *attrs)
3503 {
3504 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3505 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3506 	bool get_preferred_loc = false;
3507 	bool get_prefetch_loc = false;
3508 	bool get_granularity = false;
3509 	bool get_accessible = false;
3510 	bool get_flags = false;
3511 	uint64_t last = start + size - 1UL;
3512 	uint8_t granularity = 0xff;
3513 	struct interval_tree_node *node;
3514 	struct svm_range_list *svms;
3515 	struct svm_range *prange;
3516 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3517 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3518 	uint32_t flags_and = 0xffffffff;
3519 	uint32_t flags_or = 0;
3520 	int gpuidx;
3521 	uint32_t i;
3522 	int r = 0;
3523 
3524 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3525 		 start + size - 1, nattr);
3526 
3527 	/* Flush pending deferred work to avoid racing with deferred actions from
3528 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3529 	 * can still race with get_attr because we don't hold the mmap lock. But that
3530 	 * would be a race condition in the application anyway, and undefined
3531 	 * behaviour is acceptable in that case.
3532 	 */
3533 	flush_work(&p->svms.deferred_list_work);
3534 
3535 	mmap_read_lock(mm);
3536 	r = svm_range_is_valid(p, start, size);
3537 	mmap_read_unlock(mm);
3538 	if (r) {
3539 		pr_debug("invalid range r=%d\n", r);
3540 		return r;
3541 	}
3542 
3543 	for (i = 0; i < nattr; i++) {
3544 		switch (attrs[i].type) {
3545 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3546 			get_preferred_loc = true;
3547 			break;
3548 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3549 			get_prefetch_loc = true;
3550 			break;
3551 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3552 			get_accessible = true;
3553 			break;
3554 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3555 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3556 			get_flags = true;
3557 			break;
3558 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3559 			get_granularity = true;
3560 			break;
3561 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3562 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3563 			fallthrough;
3564 		default:
3565 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3566 			return -EINVAL;
3567 		}
3568 	}
3569 
3570 	svms = &p->svms;
3571 
3572 	mutex_lock(&svms->lock);
3573 
3574 	node = interval_tree_iter_first(&svms->objects, start, last);
3575 	if (!node) {
3576 		pr_debug("range attrs not found return default values\n");
3577 		svm_range_set_default_attributes(&location, &prefetch_loc,
3578 						 &granularity, &flags_and);
3579 		flags_or = flags_and;
3580 		if (p->xnack_enabled)
3581 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3582 				    MAX_GPU_INSTANCE);
3583 		else
3584 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3585 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3586 		goto fill_values;
3587 	}
3588 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3589 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3590 
3591 	while (node) {
3592 		struct interval_tree_node *next;
3593 
3594 		prange = container_of(node, struct svm_range, it_node);
3595 		next = interval_tree_iter_next(node, start, last);
3596 
3597 		if (get_preferred_loc) {
3598 			if (prange->preferred_loc ==
3599 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3600 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3601 			     location != prange->preferred_loc)) {
3602 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3603 				get_preferred_loc = false;
3604 			} else {
3605 				location = prange->preferred_loc;
3606 			}
3607 		}
3608 		if (get_prefetch_loc) {
3609 			if (prange->prefetch_loc ==
3610 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3611 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3612 			     prefetch_loc != prange->prefetch_loc)) {
3613 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3614 				get_prefetch_loc = false;
3615 			} else {
3616 				prefetch_loc = prange->prefetch_loc;
3617 			}
3618 		}
3619 		if (get_accessible) {
3620 			bitmap_and(bitmap_access, bitmap_access,
3621 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3622 			bitmap_and(bitmap_aip, bitmap_aip,
3623 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3624 		}
3625 		if (get_flags) {
3626 			flags_and &= prange->flags;
3627 			flags_or |= prange->flags;
3628 		}
3629 
3630 		if (get_granularity && prange->granularity < granularity)
3631 			granularity = prange->granularity;
3632 
3633 		node = next;
3634 	}
3635 fill_values:
3636 	mutex_unlock(&svms->lock);
3637 
3638 	for (i = 0; i < nattr; i++) {
3639 		switch (attrs[i].type) {
3640 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3641 			attrs[i].value = location;
3642 			break;
3643 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3644 			attrs[i].value = prefetch_loc;
3645 			break;
3646 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3647 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3648 							       attrs[i].value);
3649 			if (gpuidx < 0) {
3650 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3651 				return -EINVAL;
3652 			}
3653 			if (test_bit(gpuidx, bitmap_access))
3654 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3655 			else if (test_bit(gpuidx, bitmap_aip))
3656 				attrs[i].type =
3657 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3658 			else
3659 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3660 			break;
3661 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3662 			attrs[i].value = flags_and;
3663 			break;
3664 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3665 			attrs[i].value = ~flags_or;
3666 			break;
3667 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3668 			attrs[i].value = (uint32_t)granularity;
3669 			break;
3670 		}
3671 	}
3672 
3673 	return 0;
3674 }
3675 
3676 int kfd_criu_resume_svm(struct kfd_process *p)
3677 {
3678 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3679 	int nattr_common = 4, nattr_accessibility = 1;
3680 	struct criu_svm_metadata *criu_svm_md = NULL;
3681 	struct svm_range_list *svms = &p->svms;
3682 	struct criu_svm_metadata *next = NULL;
3683 	uint32_t set_flags = 0xffffffff;
3684 	int i, j, num_attrs, ret = 0;
3685 	uint64_t set_attr_size;
3686 	struct mm_struct *mm;
3687 
3688 	if (list_empty(&svms->criu_svm_metadata_list)) {
3689 		pr_debug("No SVM data from CRIU restore stage 2\n");
3690 		return ret;
3691 	}
3692 
3693 	mm = get_task_mm(p->lead_thread);
3694 	if (!mm) {
3695 		pr_err("failed to get mm for the target process\n");
3696 		return -ESRCH;
3697 	}
3698 
3699 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3700 
3701 	i = j = 0;
3702 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3703 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3704 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3705 
3706 		for (j = 0; j < num_attrs; j++) {
3707 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3708 				 i, j, criu_svm_md->data.attrs[j].type,
3709 				 i, j, criu_svm_md->data.attrs[j].value);
3710 			switch (criu_svm_md->data.attrs[j].type) {
3711 			/* During Checkpoint operation, the query for
3712 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3713 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3714 			 * not used by the range which was checkpointed. Care
3715 			 * must be taken to not restore with an invalid value
3716 			 * otherwise the gpuidx value will be invalid and
3717 			 * set_attr would eventually fail so just replace those
3718 			 * with another dummy attribute such as
3719 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3720 			 */
3721 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3722 				if (criu_svm_md->data.attrs[j].value ==
3723 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3724 					criu_svm_md->data.attrs[j].type =
3725 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3726 					criu_svm_md->data.attrs[j].value = 0;
3727 				}
3728 				break;
3729 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3730 				set_flags = criu_svm_md->data.attrs[j].value;
3731 				break;
3732 			default:
3733 				break;
3734 			}
3735 		}
3736 
3737 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3738 		 * it needs to be inserted before restoring the ranges so
3739 		 * allocate extra space for it before calling set_attr
3740 		 */
3741 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3742 						(num_attrs + 1);
3743 		set_attr_new = krealloc(set_attr, set_attr_size,
3744 					    GFP_KERNEL);
3745 		if (!set_attr_new) {
3746 			ret = -ENOMEM;
3747 			goto exit;
3748 		}
3749 		set_attr = set_attr_new;
3750 
3751 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3752 					sizeof(struct kfd_ioctl_svm_attribute));
3753 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3754 		set_attr[num_attrs].value = ~set_flags;
3755 
3756 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3757 					 criu_svm_md->data.size, num_attrs + 1,
3758 					 set_attr);
3759 		if (ret) {
3760 			pr_err("CRIU: failed to set range attributes\n");
3761 			goto exit;
3762 		}
3763 
3764 		i++;
3765 	}
3766 exit:
3767 	kfree(set_attr);
3768 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3769 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3770 						criu_svm_md->data.start_addr);
3771 		kfree(criu_svm_md);
3772 	}
3773 
3774 	mmput(mm);
3775 	return ret;
3776 
3777 }
3778 
3779 int kfd_criu_restore_svm(struct kfd_process *p,
3780 			 uint8_t __user *user_priv_ptr,
3781 			 uint64_t *priv_data_offset,
3782 			 uint64_t max_priv_data_size)
3783 {
3784 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3785 	int nattr_common = 4, nattr_accessibility = 1;
3786 	struct criu_svm_metadata *criu_svm_md = NULL;
3787 	struct svm_range_list *svms = &p->svms;
3788 	uint32_t num_devices;
3789 	int ret = 0;
3790 
3791 	num_devices = p->n_pdds;
3792 	/* Handle one SVM range object at a time, also the number of gpus are
3793 	 * assumed to be same on the restore node, checking must be done while
3794 	 * evaluating the topology earlier
3795 	 */
3796 
3797 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3798 		(nattr_common + nattr_accessibility * num_devices);
3799 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3800 
3801 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3802 								svm_attrs_size;
3803 
3804 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3805 	if (!criu_svm_md) {
3806 		pr_err("failed to allocate memory to store svm metadata\n");
3807 		return -ENOMEM;
3808 	}
3809 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3810 		ret = -EINVAL;
3811 		goto exit;
3812 	}
3813 
3814 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3815 			     svm_priv_data_size);
3816 	if (ret) {
3817 		ret = -EFAULT;
3818 		goto exit;
3819 	}
3820 	*priv_data_offset += svm_priv_data_size;
3821 
3822 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3823 
3824 	return 0;
3825 
3826 
3827 exit:
3828 	kfree(criu_svm_md);
3829 	return ret;
3830 }
3831 
3832 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3833 		       uint64_t *svm_priv_data_size)
3834 {
3835 	uint64_t total_size, accessibility_size, common_attr_size;
3836 	int nattr_common = 4, nattr_accessibility = 1;
3837 	int num_devices = p->n_pdds;
3838 	struct svm_range_list *svms;
3839 	struct svm_range *prange;
3840 	uint32_t count = 0;
3841 
3842 	*svm_priv_data_size = 0;
3843 
3844 	svms = &p->svms;
3845 	if (!svms)
3846 		return -EINVAL;
3847 
3848 	mutex_lock(&svms->lock);
3849 	list_for_each_entry(prange, &svms->list, list) {
3850 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3851 			 prange, prange->start, prange->npages,
3852 			 prange->start + prange->npages - 1);
3853 		count++;
3854 	}
3855 	mutex_unlock(&svms->lock);
3856 
3857 	*num_svm_ranges = count;
3858 	/* Only the accessbility attributes need to be queried for all the gpus
3859 	 * individually, remaining ones are spanned across the entire process
3860 	 * regardless of the various gpu nodes. Of the remaining attributes,
3861 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
3862 	 *
3863 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
3864 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
3865 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
3866 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
3867 	 *
3868 	 * ** ACCESSBILITY ATTRIBUTES **
3869 	 * (Considered as one, type is altered during query, value is gpuid)
3870 	 * KFD_IOCTL_SVM_ATTR_ACCESS
3871 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
3872 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
3873 	 */
3874 	if (*num_svm_ranges > 0) {
3875 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3876 			nattr_common;
3877 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
3878 			nattr_accessibility * num_devices;
3879 
3880 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3881 			common_attr_size + accessibility_size;
3882 
3883 		*svm_priv_data_size = *num_svm_ranges * total_size;
3884 	}
3885 
3886 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
3887 		 *svm_priv_data_size);
3888 	return 0;
3889 }
3890 
3891 int kfd_criu_checkpoint_svm(struct kfd_process *p,
3892 			    uint8_t __user *user_priv_data,
3893 			    uint64_t *priv_data_offset)
3894 {
3895 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
3896 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
3897 	uint64_t svm_priv_data_size, query_attr_size = 0;
3898 	int index, nattr_common = 4, ret = 0;
3899 	struct svm_range_list *svms;
3900 	int num_devices = p->n_pdds;
3901 	struct svm_range *prange;
3902 	struct mm_struct *mm;
3903 
3904 	svms = &p->svms;
3905 	if (!svms)
3906 		return -EINVAL;
3907 
3908 	mm = get_task_mm(p->lead_thread);
3909 	if (!mm) {
3910 		pr_err("failed to get mm for the target process\n");
3911 		return -ESRCH;
3912 	}
3913 
3914 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3915 				(nattr_common + num_devices);
3916 
3917 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
3918 	if (!query_attr) {
3919 		ret = -ENOMEM;
3920 		goto exit;
3921 	}
3922 
3923 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
3924 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
3925 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3926 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
3927 
3928 	for (index = 0; index < num_devices; index++) {
3929 		struct kfd_process_device *pdd = p->pdds[index];
3930 
3931 		query_attr[index + nattr_common].type =
3932 			KFD_IOCTL_SVM_ATTR_ACCESS;
3933 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
3934 	}
3935 
3936 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
3937 
3938 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
3939 	if (!svm_priv) {
3940 		ret = -ENOMEM;
3941 		goto exit_query;
3942 	}
3943 
3944 	index = 0;
3945 	list_for_each_entry(prange, &svms->list, list) {
3946 
3947 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
3948 		svm_priv->start_addr = prange->start;
3949 		svm_priv->size = prange->npages;
3950 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
3951 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
3952 			 prange, prange->start, prange->npages,
3953 			 prange->start + prange->npages - 1,
3954 			 prange->npages * PAGE_SIZE);
3955 
3956 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
3957 					 svm_priv->size,
3958 					 (nattr_common + num_devices),
3959 					 svm_priv->attrs);
3960 		if (ret) {
3961 			pr_err("CRIU: failed to obtain range attributes\n");
3962 			goto exit_priv;
3963 		}
3964 
3965 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
3966 				 svm_priv_data_size)) {
3967 			pr_err("Failed to copy svm priv to user\n");
3968 			ret = -EFAULT;
3969 			goto exit_priv;
3970 		}
3971 
3972 		*priv_data_offset += svm_priv_data_size;
3973 
3974 	}
3975 
3976 
3977 exit_priv:
3978 	kfree(svm_priv);
3979 exit_query:
3980 	kfree(query_attr);
3981 exit:
3982 	mmput(mm);
3983 	return ret;
3984 }
3985 
3986 int
3987 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
3988 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
3989 {
3990 	struct mm_struct *mm = current->mm;
3991 	int r;
3992 
3993 	start >>= PAGE_SHIFT;
3994 	size >>= PAGE_SHIFT;
3995 
3996 	switch (op) {
3997 	case KFD_IOCTL_SVM_OP_SET_ATTR:
3998 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
3999 		break;
4000 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4001 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4002 		break;
4003 	default:
4004 		r = EINVAL;
4005 		break;
4006 	}
4007 
4008 	return r;
4009 }
4010