1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/sched/task.h> 26 #include <linux/dynamic_debug.h> 27 #include <drm/ttm/ttm_tt.h> 28 #include <drm/drm_exec.h> 29 30 #include "amdgpu_sync.h" 31 #include "amdgpu_object.h" 32 #include "amdgpu_vm.h" 33 #include "amdgpu_hmm.h" 34 #include "amdgpu.h" 35 #include "amdgpu_xgmi.h" 36 #include "kfd_priv.h" 37 #include "kfd_svm.h" 38 #include "kfd_migrate.h" 39 #include "kfd_smi_events.h" 40 41 #ifdef dev_fmt 42 #undef dev_fmt 43 #endif 44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ 45 46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 47 48 /* Long enough to ensure no retry fault comes after svm range is restored and 49 * page table is updated. 50 */ 51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC) 52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) 53 #define dynamic_svm_range_dump(svms) \ 54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms) 55 #else 56 #define dynamic_svm_range_dump(svms) \ 57 do { if (0) svm_range_debug_dump(svms); } while (0) 58 #endif 59 60 /* Giant svm range split into smaller ranges based on this, it is decided using 61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to 62 * power of 2MB. 63 */ 64 static uint64_t max_svm_range_pages; 65 66 struct criu_svm_metadata { 67 struct list_head list; 68 struct kfd_criu_svm_range_priv_data data; 69 }; 70 71 static void svm_range_evict_svm_bo_worker(struct work_struct *work); 72 static bool 73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 74 const struct mmu_notifier_range *range, 75 unsigned long cur_seq); 76 static int 77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 78 uint64_t *bo_s, uint64_t *bo_l); 79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = { 80 .invalidate = svm_range_cpu_invalidate_pagetables, 81 }; 82 83 /** 84 * svm_range_unlink - unlink svm_range from lists and interval tree 85 * @prange: svm range structure to be removed 86 * 87 * Remove the svm_range from the svms and svm_bo lists and the svms 88 * interval tree. 89 * 90 * Context: The caller must hold svms->lock 91 */ 92 static void svm_range_unlink(struct svm_range *prange) 93 { 94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 95 prange, prange->start, prange->last); 96 97 if (prange->svm_bo) { 98 spin_lock(&prange->svm_bo->list_lock); 99 list_del(&prange->svm_bo_list); 100 spin_unlock(&prange->svm_bo->list_lock); 101 } 102 103 list_del(&prange->list); 104 if (prange->it_node.start != 0 && prange->it_node.last != 0) 105 interval_tree_remove(&prange->it_node, &prange->svms->objects); 106 } 107 108 static void 109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) 110 { 111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 112 prange, prange->start, prange->last); 113 114 mmu_interval_notifier_insert_locked(&prange->notifier, mm, 115 prange->start << PAGE_SHIFT, 116 prange->npages << PAGE_SHIFT, 117 &svm_range_mn_ops); 118 } 119 120 /** 121 * svm_range_add_to_svms - add svm range to svms 122 * @prange: svm range structure to be added 123 * 124 * Add the svm range to svms interval tree and link list 125 * 126 * Context: The caller must hold svms->lock 127 */ 128 static void svm_range_add_to_svms(struct svm_range *prange) 129 { 130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 131 prange, prange->start, prange->last); 132 133 list_move_tail(&prange->list, &prange->svms->list); 134 prange->it_node.start = prange->start; 135 prange->it_node.last = prange->last; 136 interval_tree_insert(&prange->it_node, &prange->svms->objects); 137 } 138 139 static void svm_range_remove_notifier(struct svm_range *prange) 140 { 141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", 142 prange->svms, prange, 143 prange->notifier.interval_tree.start >> PAGE_SHIFT, 144 prange->notifier.interval_tree.last >> PAGE_SHIFT); 145 146 if (prange->notifier.interval_tree.start != 0 && 147 prange->notifier.interval_tree.last != 0) 148 mmu_interval_notifier_remove(&prange->notifier); 149 } 150 151 static bool 152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) 153 { 154 return dma_addr && !dma_mapping_error(dev, dma_addr) && 155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN); 156 } 157 158 static int 159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, 160 unsigned long offset, unsigned long npages, 161 unsigned long *hmm_pfns, uint32_t gpuidx) 162 { 163 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 164 dma_addr_t *addr = prange->dma_addr[gpuidx]; 165 struct device *dev = adev->dev; 166 struct page *page; 167 int i, r; 168 169 if (!addr) { 170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL); 171 if (!addr) 172 return -ENOMEM; 173 prange->dma_addr[gpuidx] = addr; 174 } 175 176 addr += offset; 177 for (i = 0; i < npages; i++) { 178 if (svm_is_valid_dma_mapping_addr(dev, addr[i])) 179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); 180 181 page = hmm_pfn_to_page(hmm_pfns[i]); 182 if (is_zone_device_page(page)) { 183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev; 184 185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + 186 bo_adev->vm_manager.vram_base_offset - 187 bo_adev->kfd.pgmap.range.start; 188 addr[i] |= SVM_RANGE_VRAM_DOMAIN; 189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); 190 continue; 191 } 192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 193 r = dma_mapping_error(dev, addr[i]); 194 if (r) { 195 dev_err(dev, "failed %d dma_map_page\n", r); 196 return r; 197 } 198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", 199 addr[i] >> PAGE_SHIFT, page_to_pfn(page)); 200 } 201 return 0; 202 } 203 204 static int 205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, 206 unsigned long offset, unsigned long npages, 207 unsigned long *hmm_pfns) 208 { 209 struct kfd_process *p; 210 uint32_t gpuidx; 211 int r; 212 213 p = container_of(prange->svms, struct kfd_process, svms); 214 215 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 216 struct kfd_process_device *pdd; 217 218 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 219 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 220 if (!pdd) { 221 pr_debug("failed to find device idx %d\n", gpuidx); 222 return -EINVAL; 223 } 224 225 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, 226 hmm_pfns, gpuidx); 227 if (r) 228 break; 229 } 230 231 return r; 232 } 233 234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr, 235 unsigned long offset, unsigned long npages) 236 { 237 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 238 int i; 239 240 if (!dma_addr) 241 return; 242 243 for (i = offset; i < offset + npages; i++) { 244 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) 245 continue; 246 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); 247 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); 248 dma_addr[i] = 0; 249 } 250 } 251 252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma) 253 { 254 struct kfd_process_device *pdd; 255 dma_addr_t *dma_addr; 256 struct device *dev; 257 struct kfd_process *p; 258 uint32_t gpuidx; 259 260 p = container_of(prange->svms, struct kfd_process, svms); 261 262 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 263 dma_addr = prange->dma_addr[gpuidx]; 264 if (!dma_addr) 265 continue; 266 267 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 268 if (!pdd) { 269 pr_debug("failed to find device idx %d\n", gpuidx); 270 continue; 271 } 272 dev = &pdd->dev->adev->pdev->dev; 273 if (unmap_dma) 274 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages); 275 kvfree(dma_addr); 276 prange->dma_addr[gpuidx] = NULL; 277 } 278 } 279 280 static void svm_range_free(struct svm_range *prange, bool do_unmap) 281 { 282 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT; 283 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 284 285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, 286 prange->start, prange->last); 287 288 svm_range_vram_node_free(prange); 289 svm_range_free_dma_mappings(prange, do_unmap); 290 291 if (do_unmap && !p->xnack_enabled) { 292 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size); 293 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 294 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 295 } 296 mutex_destroy(&prange->lock); 297 mutex_destroy(&prange->migrate_mutex); 298 kfree(prange); 299 } 300 301 static void 302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, 303 uint8_t *granularity, uint32_t *flags) 304 { 305 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 306 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 307 *granularity = 9; 308 *flags = 309 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; 310 } 311 312 static struct 313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, 314 uint64_t last, bool update_mem_usage) 315 { 316 uint64_t size = last - start + 1; 317 struct svm_range *prange; 318 struct kfd_process *p; 319 320 prange = kzalloc(sizeof(*prange), GFP_KERNEL); 321 if (!prange) 322 return NULL; 323 324 p = container_of(svms, struct kfd_process, svms); 325 if (!p->xnack_enabled && update_mem_usage && 326 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT, 327 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) { 328 pr_info("SVM mapping failed, exceeds resident system memory limit\n"); 329 kfree(prange); 330 return NULL; 331 } 332 prange->npages = size; 333 prange->svms = svms; 334 prange->start = start; 335 prange->last = last; 336 INIT_LIST_HEAD(&prange->list); 337 INIT_LIST_HEAD(&prange->update_list); 338 INIT_LIST_HEAD(&prange->svm_bo_list); 339 INIT_LIST_HEAD(&prange->deferred_list); 340 INIT_LIST_HEAD(&prange->child_list); 341 atomic_set(&prange->invalid, 0); 342 prange->validate_timestamp = 0; 343 mutex_init(&prange->migrate_mutex); 344 mutex_init(&prange->lock); 345 346 if (p->xnack_enabled) 347 bitmap_copy(prange->bitmap_access, svms->bitmap_supported, 348 MAX_GPU_INSTANCE); 349 350 svm_range_set_default_attributes(&prange->preferred_loc, 351 &prange->prefetch_loc, 352 &prange->granularity, &prange->flags); 353 354 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); 355 356 return prange; 357 } 358 359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) 360 { 361 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) 362 return false; 363 364 return true; 365 } 366 367 static void svm_range_bo_release(struct kref *kref) 368 { 369 struct svm_range_bo *svm_bo; 370 371 svm_bo = container_of(kref, struct svm_range_bo, kref); 372 pr_debug("svm_bo 0x%p\n", svm_bo); 373 374 spin_lock(&svm_bo->list_lock); 375 while (!list_empty(&svm_bo->range_list)) { 376 struct svm_range *prange = 377 list_first_entry(&svm_bo->range_list, 378 struct svm_range, svm_bo_list); 379 /* list_del_init tells a concurrent svm_range_vram_node_new when 380 * it's safe to reuse the svm_bo pointer and svm_bo_list head. 381 */ 382 list_del_init(&prange->svm_bo_list); 383 spin_unlock(&svm_bo->list_lock); 384 385 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 386 prange->start, prange->last); 387 mutex_lock(&prange->lock); 388 prange->svm_bo = NULL; 389 mutex_unlock(&prange->lock); 390 391 spin_lock(&svm_bo->list_lock); 392 } 393 spin_unlock(&svm_bo->list_lock); 394 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) 395 /* We're not in the eviction worker. Signal the fence. */ 396 dma_fence_signal(&svm_bo->eviction_fence->base); 397 dma_fence_put(&svm_bo->eviction_fence->base); 398 amdgpu_bo_unref(&svm_bo->bo); 399 kfree(svm_bo); 400 } 401 402 static void svm_range_bo_wq_release(struct work_struct *work) 403 { 404 struct svm_range_bo *svm_bo; 405 406 svm_bo = container_of(work, struct svm_range_bo, release_work); 407 svm_range_bo_release(&svm_bo->kref); 408 } 409 410 static void svm_range_bo_release_async(struct kref *kref) 411 { 412 struct svm_range_bo *svm_bo; 413 414 svm_bo = container_of(kref, struct svm_range_bo, kref); 415 pr_debug("svm_bo 0x%p\n", svm_bo); 416 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); 417 schedule_work(&svm_bo->release_work); 418 } 419 420 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) 421 { 422 kref_put(&svm_bo->kref, svm_range_bo_release_async); 423 } 424 425 static void svm_range_bo_unref(struct svm_range_bo *svm_bo) 426 { 427 if (svm_bo) 428 kref_put(&svm_bo->kref, svm_range_bo_release); 429 } 430 431 static bool 432 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange) 433 { 434 mutex_lock(&prange->lock); 435 if (!prange->svm_bo) { 436 mutex_unlock(&prange->lock); 437 return false; 438 } 439 if (prange->ttm_res) { 440 /* We still have a reference, all is well */ 441 mutex_unlock(&prange->lock); 442 return true; 443 } 444 if (svm_bo_ref_unless_zero(prange->svm_bo)) { 445 /* 446 * Migrate from GPU to GPU, remove range from source svm_bo->node 447 * range list, and return false to allocate svm_bo from destination 448 * node. 449 */ 450 if (prange->svm_bo->node != node) { 451 mutex_unlock(&prange->lock); 452 453 spin_lock(&prange->svm_bo->list_lock); 454 list_del_init(&prange->svm_bo_list); 455 spin_unlock(&prange->svm_bo->list_lock); 456 457 svm_range_bo_unref(prange->svm_bo); 458 return false; 459 } 460 if (READ_ONCE(prange->svm_bo->evicting)) { 461 struct dma_fence *f; 462 struct svm_range_bo *svm_bo; 463 /* The BO is getting evicted, 464 * we need to get a new one 465 */ 466 mutex_unlock(&prange->lock); 467 svm_bo = prange->svm_bo; 468 f = dma_fence_get(&svm_bo->eviction_fence->base); 469 svm_range_bo_unref(prange->svm_bo); 470 /* wait for the fence to avoid long spin-loop 471 * at list_empty_careful 472 */ 473 dma_fence_wait(f, false); 474 dma_fence_put(f); 475 } else { 476 /* The BO was still around and we got 477 * a new reference to it 478 */ 479 mutex_unlock(&prange->lock); 480 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", 481 prange->svms, prange->start, prange->last); 482 483 prange->ttm_res = prange->svm_bo->bo->tbo.resource; 484 return true; 485 } 486 487 } else { 488 mutex_unlock(&prange->lock); 489 } 490 491 /* We need a new svm_bo. Spin-loop to wait for concurrent 492 * svm_range_bo_release to finish removing this range from 493 * its range list and set prange->svm_bo to null. After this, 494 * it is safe to reuse the svm_bo pointer and svm_bo_list head. 495 */ 496 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo) 497 cond_resched(); 498 499 return false; 500 } 501 502 static struct svm_range_bo *svm_range_bo_new(void) 503 { 504 struct svm_range_bo *svm_bo; 505 506 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); 507 if (!svm_bo) 508 return NULL; 509 510 kref_init(&svm_bo->kref); 511 INIT_LIST_HEAD(&svm_bo->range_list); 512 spin_lock_init(&svm_bo->list_lock); 513 514 return svm_bo; 515 } 516 517 int 518 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange, 519 bool clear) 520 { 521 struct amdgpu_bo_param bp; 522 struct svm_range_bo *svm_bo; 523 struct amdgpu_bo_user *ubo; 524 struct amdgpu_bo *bo; 525 struct kfd_process *p; 526 struct mm_struct *mm; 527 int r; 528 529 p = container_of(prange->svms, struct kfd_process, svms); 530 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, 531 prange->start, prange->last); 532 533 if (svm_range_validate_svm_bo(node, prange)) 534 return 0; 535 536 svm_bo = svm_range_bo_new(); 537 if (!svm_bo) { 538 pr_debug("failed to alloc svm bo\n"); 539 return -ENOMEM; 540 } 541 mm = get_task_mm(p->lead_thread); 542 if (!mm) { 543 pr_debug("failed to get mm\n"); 544 kfree(svm_bo); 545 return -ESRCH; 546 } 547 svm_bo->node = node; 548 svm_bo->eviction_fence = 549 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 550 mm, 551 svm_bo); 552 mmput(mm); 553 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); 554 svm_bo->evicting = 0; 555 memset(&bp, 0, sizeof(bp)); 556 bp.size = prange->npages * PAGE_SIZE; 557 bp.byte_align = PAGE_SIZE; 558 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 559 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 560 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; 561 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE; 562 bp.type = ttm_bo_type_device; 563 bp.resv = NULL; 564 if (node->xcp) 565 bp.xcp_id_plus1 = node->xcp->id + 1; 566 567 r = amdgpu_bo_create_user(node->adev, &bp, &ubo); 568 if (r) { 569 pr_debug("failed %d to create bo\n", r); 570 goto create_bo_failed; 571 } 572 bo = &ubo->bo; 573 574 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n", 575 bo->tbo.resource->start << PAGE_SHIFT, bp.size, 576 bp.xcp_id_plus1 - 1); 577 578 r = amdgpu_bo_reserve(bo, true); 579 if (r) { 580 pr_debug("failed %d to reserve bo\n", r); 581 goto reserve_bo_failed; 582 } 583 584 if (clear) { 585 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 586 if (r) { 587 pr_debug("failed %d to sync bo\n", r); 588 amdgpu_bo_unreserve(bo); 589 goto reserve_bo_failed; 590 } 591 } 592 593 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 594 if (r) { 595 pr_debug("failed %d to reserve bo\n", r); 596 amdgpu_bo_unreserve(bo); 597 goto reserve_bo_failed; 598 } 599 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); 600 601 amdgpu_bo_unreserve(bo); 602 603 svm_bo->bo = bo; 604 prange->svm_bo = svm_bo; 605 prange->ttm_res = bo->tbo.resource; 606 prange->offset = 0; 607 608 spin_lock(&svm_bo->list_lock); 609 list_add(&prange->svm_bo_list, &svm_bo->range_list); 610 spin_unlock(&svm_bo->list_lock); 611 612 return 0; 613 614 reserve_bo_failed: 615 amdgpu_bo_unref(&bo); 616 create_bo_failed: 617 dma_fence_put(&svm_bo->eviction_fence->base); 618 kfree(svm_bo); 619 prange->ttm_res = NULL; 620 621 return r; 622 } 623 624 void svm_range_vram_node_free(struct svm_range *prange) 625 { 626 /* serialize prange->svm_bo unref */ 627 mutex_lock(&prange->lock); 628 /* prange->svm_bo has not been unref */ 629 if (prange->ttm_res) { 630 prange->ttm_res = NULL; 631 mutex_unlock(&prange->lock); 632 svm_range_bo_unref(prange->svm_bo); 633 } else 634 mutex_unlock(&prange->lock); 635 } 636 637 struct kfd_node * 638 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id) 639 { 640 struct kfd_process *p; 641 struct kfd_process_device *pdd; 642 643 p = container_of(prange->svms, struct kfd_process, svms); 644 pdd = kfd_process_device_data_by_id(p, gpu_id); 645 if (!pdd) { 646 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id); 647 return NULL; 648 } 649 650 return pdd->dev; 651 } 652 653 struct kfd_process_device * 654 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node) 655 { 656 struct kfd_process *p; 657 658 p = container_of(prange->svms, struct kfd_process, svms); 659 660 return kfd_get_process_device_data(node, p); 661 } 662 663 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) 664 { 665 struct ttm_operation_ctx ctx = { false, false }; 666 667 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); 668 669 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 670 } 671 672 static int 673 svm_range_check_attr(struct kfd_process *p, 674 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 675 { 676 uint32_t i; 677 678 for (i = 0; i < nattr; i++) { 679 uint32_t val = attrs[i].value; 680 int gpuidx = MAX_GPU_INSTANCE; 681 682 switch (attrs[i].type) { 683 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 684 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && 685 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) 686 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 687 break; 688 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 689 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) 690 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 691 break; 692 case KFD_IOCTL_SVM_ATTR_ACCESS: 693 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 694 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 695 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 696 break; 697 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 698 break; 699 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 700 break; 701 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 702 break; 703 default: 704 pr_debug("unknown attr type 0x%x\n", attrs[i].type); 705 return -EINVAL; 706 } 707 708 if (gpuidx < 0) { 709 pr_debug("no GPU 0x%x found\n", val); 710 return -EINVAL; 711 } else if (gpuidx < MAX_GPU_INSTANCE && 712 !test_bit(gpuidx, p->svms.bitmap_supported)) { 713 pr_debug("GPU 0x%x not supported\n", val); 714 return -EINVAL; 715 } 716 } 717 718 return 0; 719 } 720 721 static void 722 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, 723 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 724 bool *update_mapping) 725 { 726 uint32_t i; 727 int gpuidx; 728 729 for (i = 0; i < nattr; i++) { 730 switch (attrs[i].type) { 731 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 732 prange->preferred_loc = attrs[i].value; 733 break; 734 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 735 prange->prefetch_loc = attrs[i].value; 736 break; 737 case KFD_IOCTL_SVM_ATTR_ACCESS: 738 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 739 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 740 if (!p->xnack_enabled) 741 *update_mapping = true; 742 743 gpuidx = kfd_process_gpuidx_from_gpuid(p, 744 attrs[i].value); 745 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 746 bitmap_clear(prange->bitmap_access, gpuidx, 1); 747 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 748 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 749 bitmap_set(prange->bitmap_access, gpuidx, 1); 750 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 751 } else { 752 bitmap_clear(prange->bitmap_access, gpuidx, 1); 753 bitmap_set(prange->bitmap_aip, gpuidx, 1); 754 } 755 break; 756 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 757 *update_mapping = true; 758 prange->flags |= attrs[i].value; 759 break; 760 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 761 *update_mapping = true; 762 prange->flags &= ~attrs[i].value; 763 break; 764 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 765 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F); 766 break; 767 default: 768 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 769 } 770 } 771 } 772 773 static bool 774 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, 775 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 776 { 777 uint32_t i; 778 int gpuidx; 779 780 for (i = 0; i < nattr; i++) { 781 switch (attrs[i].type) { 782 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 783 if (prange->preferred_loc != attrs[i].value) 784 return false; 785 break; 786 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 787 /* Prefetch should always trigger a migration even 788 * if the value of the attribute didn't change. 789 */ 790 return false; 791 case KFD_IOCTL_SVM_ATTR_ACCESS: 792 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 793 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 794 gpuidx = kfd_process_gpuidx_from_gpuid(p, 795 attrs[i].value); 796 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 797 if (test_bit(gpuidx, prange->bitmap_access) || 798 test_bit(gpuidx, prange->bitmap_aip)) 799 return false; 800 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 801 if (!test_bit(gpuidx, prange->bitmap_access)) 802 return false; 803 } else { 804 if (!test_bit(gpuidx, prange->bitmap_aip)) 805 return false; 806 } 807 break; 808 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 809 if ((prange->flags & attrs[i].value) != attrs[i].value) 810 return false; 811 break; 812 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 813 if ((prange->flags & attrs[i].value) != 0) 814 return false; 815 break; 816 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 817 if (prange->granularity != attrs[i].value) 818 return false; 819 break; 820 default: 821 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 822 } 823 } 824 825 return true; 826 } 827 828 /** 829 * svm_range_debug_dump - print all range information from svms 830 * @svms: svm range list header 831 * 832 * debug output svm range start, end, prefetch location from svms 833 * interval tree and link list 834 * 835 * Context: The caller must hold svms->lock 836 */ 837 static void svm_range_debug_dump(struct svm_range_list *svms) 838 { 839 struct interval_tree_node *node; 840 struct svm_range *prange; 841 842 pr_debug("dump svms 0x%p list\n", svms); 843 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 844 845 list_for_each_entry(prange, &svms->list, list) { 846 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 847 prange, prange->start, prange->npages, 848 prange->start + prange->npages - 1, 849 prange->actual_loc); 850 } 851 852 pr_debug("dump svms 0x%p interval tree\n", svms); 853 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 854 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); 855 while (node) { 856 prange = container_of(node, struct svm_range, it_node); 857 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 858 prange, prange->start, prange->npages, 859 prange->start + prange->npages - 1, 860 prange->actual_loc); 861 node = interval_tree_iter_next(node, 0, ~0ULL); 862 } 863 } 864 865 static void * 866 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements, 867 uint64_t offset) 868 { 869 unsigned char *dst; 870 871 dst = kvmalloc_array(num_elements, size, GFP_KERNEL); 872 if (!dst) 873 return NULL; 874 memcpy(dst, (unsigned char *)psrc + offset, num_elements * size); 875 876 return (void *)dst; 877 } 878 879 static int 880 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src) 881 { 882 int i; 883 884 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 885 if (!src->dma_addr[i]) 886 continue; 887 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i], 888 sizeof(*src->dma_addr[i]), src->npages, 0); 889 if (!dst->dma_addr[i]) 890 return -ENOMEM; 891 } 892 893 return 0; 894 } 895 896 static int 897 svm_range_split_array(void *ppnew, void *ppold, size_t size, 898 uint64_t old_start, uint64_t old_n, 899 uint64_t new_start, uint64_t new_n) 900 { 901 unsigned char *new, *old, *pold; 902 uint64_t d; 903 904 if (!ppold) 905 return 0; 906 pold = *(unsigned char **)ppold; 907 if (!pold) 908 return 0; 909 910 d = (new_start - old_start) * size; 911 new = svm_range_copy_array(pold, size, new_n, d); 912 if (!new) 913 return -ENOMEM; 914 d = (new_start == old_start) ? new_n * size : 0; 915 old = svm_range_copy_array(pold, size, old_n, d); 916 if (!old) { 917 kvfree(new); 918 return -ENOMEM; 919 } 920 kvfree(pold); 921 *(void **)ppold = old; 922 *(void **)ppnew = new; 923 924 return 0; 925 } 926 927 static int 928 svm_range_split_pages(struct svm_range *new, struct svm_range *old, 929 uint64_t start, uint64_t last) 930 { 931 uint64_t npages = last - start + 1; 932 int i, r; 933 934 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 935 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], 936 sizeof(*old->dma_addr[i]), old->start, 937 npages, new->start, new->npages); 938 if (r) 939 return r; 940 } 941 942 return 0; 943 } 944 945 static int 946 svm_range_split_nodes(struct svm_range *new, struct svm_range *old, 947 uint64_t start, uint64_t last) 948 { 949 uint64_t npages = last - start + 1; 950 951 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", 952 new->svms, new, new->start, start, last); 953 954 if (new->start == old->start) { 955 new->offset = old->offset; 956 old->offset += new->npages; 957 } else { 958 new->offset = old->offset + npages; 959 } 960 961 new->svm_bo = svm_range_bo_ref(old->svm_bo); 962 new->ttm_res = old->ttm_res; 963 964 spin_lock(&new->svm_bo->list_lock); 965 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 966 spin_unlock(&new->svm_bo->list_lock); 967 968 return 0; 969 } 970 971 /** 972 * svm_range_split_adjust - split range and adjust 973 * 974 * @new: new range 975 * @old: the old range 976 * @start: the old range adjust to start address in pages 977 * @last: the old range adjust to last address in pages 978 * 979 * Copy system memory dma_addr or vram ttm_res in old range to new 980 * range from new_start up to size new->npages, the remaining old range is from 981 * start to last 982 * 983 * Return: 984 * 0 - OK, -ENOMEM - out of memory 985 */ 986 static int 987 svm_range_split_adjust(struct svm_range *new, struct svm_range *old, 988 uint64_t start, uint64_t last) 989 { 990 int r; 991 992 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", 993 new->svms, new->start, old->start, old->last, start, last); 994 995 if (new->start < old->start || 996 new->last > old->last) { 997 WARN_ONCE(1, "invalid new range start or last\n"); 998 return -EINVAL; 999 } 1000 1001 r = svm_range_split_pages(new, old, start, last); 1002 if (r) 1003 return r; 1004 1005 if (old->actual_loc && old->ttm_res) { 1006 r = svm_range_split_nodes(new, old, start, last); 1007 if (r) 1008 return r; 1009 } 1010 1011 old->npages = last - start + 1; 1012 old->start = start; 1013 old->last = last; 1014 new->flags = old->flags; 1015 new->preferred_loc = old->preferred_loc; 1016 new->prefetch_loc = old->prefetch_loc; 1017 new->actual_loc = old->actual_loc; 1018 new->granularity = old->granularity; 1019 new->mapped_to_gpu = old->mapped_to_gpu; 1020 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1021 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1022 1023 return 0; 1024 } 1025 1026 /** 1027 * svm_range_split - split a range in 2 ranges 1028 * 1029 * @prange: the svm range to split 1030 * @start: the remaining range start address in pages 1031 * @last: the remaining range last address in pages 1032 * @new: the result new range generated 1033 * 1034 * Two cases only: 1035 * case 1: if start == prange->start 1036 * prange ==> prange[start, last] 1037 * new range [last + 1, prange->last] 1038 * 1039 * case 2: if last == prange->last 1040 * prange ==> prange[start, last] 1041 * new range [prange->start, start - 1] 1042 * 1043 * Return: 1044 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last 1045 */ 1046 static int 1047 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, 1048 struct svm_range **new) 1049 { 1050 uint64_t old_start = prange->start; 1051 uint64_t old_last = prange->last; 1052 struct svm_range_list *svms; 1053 int r = 0; 1054 1055 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, 1056 old_start, old_last, start, last); 1057 1058 if (old_start != start && old_last != last) 1059 return -EINVAL; 1060 if (start < old_start || last > old_last) 1061 return -EINVAL; 1062 1063 svms = prange->svms; 1064 if (old_start == start) 1065 *new = svm_range_new(svms, last + 1, old_last, false); 1066 else 1067 *new = svm_range_new(svms, old_start, start - 1, false); 1068 if (!*new) 1069 return -ENOMEM; 1070 1071 r = svm_range_split_adjust(*new, prange, start, last); 1072 if (r) { 1073 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", 1074 r, old_start, old_last, start, last); 1075 svm_range_free(*new, false); 1076 *new = NULL; 1077 } 1078 1079 return r; 1080 } 1081 1082 static int 1083 svm_range_split_tail(struct svm_range *prange, 1084 uint64_t new_last, struct list_head *insert_list) 1085 { 1086 struct svm_range *tail; 1087 int r = svm_range_split(prange, prange->start, new_last, &tail); 1088 1089 if (!r) 1090 list_add(&tail->list, insert_list); 1091 return r; 1092 } 1093 1094 static int 1095 svm_range_split_head(struct svm_range *prange, 1096 uint64_t new_start, struct list_head *insert_list) 1097 { 1098 struct svm_range *head; 1099 int r = svm_range_split(prange, new_start, prange->last, &head); 1100 1101 if (!r) 1102 list_add(&head->list, insert_list); 1103 return r; 1104 } 1105 1106 static void 1107 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, 1108 struct svm_range *pchild, enum svm_work_list_ops op) 1109 { 1110 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", 1111 pchild, pchild->start, pchild->last, prange, op); 1112 1113 pchild->work_item.mm = mm; 1114 pchild->work_item.op = op; 1115 list_add_tail(&pchild->child_list, &prange->child_list); 1116 } 1117 1118 /** 1119 * svm_range_split_by_granularity - collect ranges within granularity boundary 1120 * 1121 * @p: the process with svms list 1122 * @mm: mm structure 1123 * @addr: the vm fault address in pages, to split the prange 1124 * @parent: parent range if prange is from child list 1125 * @prange: prange to split 1126 * 1127 * Trims @prange to be a single aligned block of prange->granularity if 1128 * possible. The head and tail are added to the child_list in @parent. 1129 * 1130 * Context: caller must hold mmap_read_lock and prange->lock 1131 * 1132 * Return: 1133 * 0 - OK, otherwise error code 1134 */ 1135 int 1136 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, 1137 unsigned long addr, struct svm_range *parent, 1138 struct svm_range *prange) 1139 { 1140 struct svm_range *head, *tail; 1141 unsigned long start, last, size; 1142 int r; 1143 1144 /* Align splited range start and size to granularity size, then a single 1145 * PTE will be used for whole range, this reduces the number of PTE 1146 * updated and the L1 TLB space used for translation. 1147 */ 1148 size = 1UL << prange->granularity; 1149 start = ALIGN_DOWN(addr, size); 1150 last = ALIGN(addr + 1, size) - 1; 1151 1152 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", 1153 prange->svms, prange->start, prange->last, start, last, size); 1154 1155 if (start > prange->start) { 1156 r = svm_range_split(prange, start, prange->last, &head); 1157 if (r) 1158 return r; 1159 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); 1160 } 1161 1162 if (last < prange->last) { 1163 r = svm_range_split(prange, prange->start, last, &tail); 1164 if (r) 1165 return r; 1166 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 1167 } 1168 1169 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 1170 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { 1171 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; 1172 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", 1173 prange, prange->start, prange->last, 1174 SVM_OP_ADD_RANGE_AND_MAP); 1175 } 1176 return 0; 1177 } 1178 static bool 1179 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b) 1180 { 1181 return (node_a->adev == node_b->adev || 1182 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev)); 1183 } 1184 1185 static uint64_t 1186 svm_range_get_pte_flags(struct kfd_node *node, 1187 struct svm_range *prange, int domain) 1188 { 1189 struct kfd_node *bo_node; 1190 uint32_t flags = prange->flags; 1191 uint32_t mapping_flags = 0; 1192 uint64_t pte_flags; 1193 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); 1194 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT; 1195 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/ 1196 unsigned int mtype_local; 1197 1198 if (domain == SVM_RANGE_VRAM_DOMAIN) 1199 bo_node = prange->svm_bo->node; 1200 1201 switch (node->adev->ip_versions[GC_HWIP][0]) { 1202 case IP_VERSION(9, 4, 1): 1203 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1204 if (bo_node == node) { 1205 mapping_flags |= coherent ? 1206 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1207 } else { 1208 mapping_flags |= coherent ? 1209 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1210 if (svm_nodes_in_same_hive(node, bo_node)) 1211 snoop = true; 1212 } 1213 } else { 1214 mapping_flags |= coherent ? 1215 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1216 } 1217 break; 1218 case IP_VERSION(9, 4, 2): 1219 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1220 if (bo_node == node) { 1221 mapping_flags |= coherent ? 1222 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1223 if (node->adev->gmc.xgmi.connected_to_cpu) 1224 snoop = true; 1225 } else { 1226 mapping_flags |= coherent ? 1227 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1228 if (svm_nodes_in_same_hive(node, bo_node)) 1229 snoop = true; 1230 } 1231 } else { 1232 mapping_flags |= coherent ? 1233 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1234 } 1235 break; 1236 case IP_VERSION(9, 4, 3): 1237 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC : 1238 (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW); 1239 snoop = true; 1240 if (uncached) { 1241 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1242 } else if (domain == SVM_RANGE_VRAM_DOMAIN) { 1243 /* local HBM region close to partition */ 1244 if (bo_node->adev == node->adev && 1245 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id)) 1246 mapping_flags |= mtype_local; 1247 /* local HBM region far from partition or remote XGMI GPU */ 1248 else if (svm_nodes_in_same_hive(bo_node, node)) 1249 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1250 /* PCIe P2P */ 1251 else 1252 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1253 /* system memory accessed by the APU */ 1254 } else if (node->adev->flags & AMD_IS_APU) { 1255 /* On NUMA systems, locality is determined per-page 1256 * in amdgpu_gmc_override_vm_pte_flags 1257 */ 1258 if (num_possible_nodes() <= 1) 1259 mapping_flags |= mtype_local; 1260 else 1261 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1262 /* system memory accessed by the dGPU */ 1263 } else { 1264 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1265 } 1266 break; 1267 default: 1268 mapping_flags |= coherent ? 1269 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1270 } 1271 1272 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; 1273 1274 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) 1275 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; 1276 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) 1277 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1278 1279 pte_flags = AMDGPU_PTE_VALID; 1280 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; 1281 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 1282 1283 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags); 1284 return pte_flags; 1285 } 1286 1287 static int 1288 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1289 uint64_t start, uint64_t last, 1290 struct dma_fence **fence) 1291 { 1292 uint64_t init_pte_value = 0; 1293 1294 pr_debug("[0x%llx 0x%llx]\n", start, last); 1295 1296 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start, 1297 last, init_pte_value, 0, 0, NULL, NULL, 1298 fence); 1299 } 1300 1301 static int 1302 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, 1303 unsigned long last, uint32_t trigger) 1304 { 1305 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1306 struct kfd_process_device *pdd; 1307 struct dma_fence *fence = NULL; 1308 struct kfd_process *p; 1309 uint32_t gpuidx; 1310 int r = 0; 1311 1312 if (!prange->mapped_to_gpu) { 1313 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n", 1314 prange, prange->start, prange->last); 1315 return 0; 1316 } 1317 1318 if (prange->start == start && prange->last == last) { 1319 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange); 1320 prange->mapped_to_gpu = false; 1321 } 1322 1323 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 1324 MAX_GPU_INSTANCE); 1325 p = container_of(prange->svms, struct kfd_process, svms); 1326 1327 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1328 pr_debug("unmap from gpu idx 0x%x\n", gpuidx); 1329 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1330 if (!pdd) { 1331 pr_debug("failed to find device idx %d\n", gpuidx); 1332 return -EINVAL; 1333 } 1334 1335 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid, 1336 start, last, trigger); 1337 1338 r = svm_range_unmap_from_gpu(pdd->dev->adev, 1339 drm_priv_to_vm(pdd->drm_priv), 1340 start, last, &fence); 1341 if (r) 1342 break; 1343 1344 if (fence) { 1345 r = dma_fence_wait(fence, false); 1346 dma_fence_put(fence); 1347 fence = NULL; 1348 if (r) 1349 break; 1350 } 1351 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); 1352 } 1353 1354 return r; 1355 } 1356 1357 static int 1358 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, 1359 unsigned long offset, unsigned long npages, bool readonly, 1360 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, 1361 struct dma_fence **fence, bool flush_tlb) 1362 { 1363 struct amdgpu_device *adev = pdd->dev->adev; 1364 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1365 uint64_t pte_flags; 1366 unsigned long last_start; 1367 int last_domain; 1368 int r = 0; 1369 int64_t i, j; 1370 1371 last_start = prange->start + offset; 1372 1373 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, 1374 last_start, last_start + npages - 1, readonly); 1375 1376 for (i = offset; i < offset + npages; i++) { 1377 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; 1378 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; 1379 1380 /* Collect all pages in the same address range and memory domain 1381 * that can be mapped with a single call to update mapping. 1382 */ 1383 if (i < offset + npages - 1 && 1384 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) 1385 continue; 1386 1387 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", 1388 last_start, prange->start + i, last_domain ? "GPU" : "CPU"); 1389 1390 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain); 1391 if (readonly) 1392 pte_flags &= ~AMDGPU_PTE_WRITEABLE; 1393 1394 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", 1395 prange->svms, last_start, prange->start + i, 1396 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, 1397 pte_flags); 1398 1399 /* For dGPU mode, we use same vm_manager to allocate VRAM for 1400 * different memory partition based on fpfn/lpfn, we should use 1401 * same vm_manager.vram_base_offset regardless memory partition. 1402 */ 1403 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL, 1404 last_start, prange->start + i, 1405 pte_flags, 1406 (last_start - prange->start) << PAGE_SHIFT, 1407 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, 1408 NULL, dma_addr, &vm->last_update); 1409 1410 for (j = last_start - prange->start; j <= i; j++) 1411 dma_addr[j] |= last_domain; 1412 1413 if (r) { 1414 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); 1415 goto out; 1416 } 1417 last_start = prange->start + i + 1; 1418 } 1419 1420 r = amdgpu_vm_update_pdes(adev, vm, false); 1421 if (r) { 1422 pr_debug("failed %d to update directories 0x%lx\n", r, 1423 prange->start); 1424 goto out; 1425 } 1426 1427 if (fence) 1428 *fence = dma_fence_get(vm->last_update); 1429 1430 out: 1431 return r; 1432 } 1433 1434 static int 1435 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, 1436 unsigned long npages, bool readonly, 1437 unsigned long *bitmap, bool wait, bool flush_tlb) 1438 { 1439 struct kfd_process_device *pdd; 1440 struct amdgpu_device *bo_adev = NULL; 1441 struct kfd_process *p; 1442 struct dma_fence *fence = NULL; 1443 uint32_t gpuidx; 1444 int r = 0; 1445 1446 if (prange->svm_bo && prange->ttm_res) 1447 bo_adev = prange->svm_bo->node->adev; 1448 1449 p = container_of(prange->svms, struct kfd_process, svms); 1450 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1451 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 1452 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1453 if (!pdd) { 1454 pr_debug("failed to find device idx %d\n", gpuidx); 1455 return -EINVAL; 1456 } 1457 1458 pdd = kfd_bind_process_to_device(pdd->dev, p); 1459 if (IS_ERR(pdd)) 1460 return -EINVAL; 1461 1462 if (bo_adev && pdd->dev->adev != bo_adev && 1463 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 1464 pr_debug("cannot map to device idx %d\n", gpuidx); 1465 continue; 1466 } 1467 1468 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, 1469 prange->dma_addr[gpuidx], 1470 bo_adev, wait ? &fence : NULL, 1471 flush_tlb); 1472 if (r) 1473 break; 1474 1475 if (fence) { 1476 r = dma_fence_wait(fence, false); 1477 dma_fence_put(fence); 1478 fence = NULL; 1479 if (r) { 1480 pr_debug("failed %d to dma fence wait\n", r); 1481 break; 1482 } 1483 } 1484 1485 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1486 } 1487 1488 return r; 1489 } 1490 1491 struct svm_validate_context { 1492 struct kfd_process *process; 1493 struct svm_range *prange; 1494 bool intr; 1495 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1496 struct drm_exec exec; 1497 }; 1498 1499 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr) 1500 { 1501 struct kfd_process_device *pdd; 1502 struct amdgpu_vm *vm; 1503 uint32_t gpuidx; 1504 int r; 1505 1506 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0); 1507 drm_exec_until_all_locked(&ctx->exec) { 1508 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1509 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1510 if (!pdd) { 1511 pr_debug("failed to find device idx %d\n", gpuidx); 1512 r = -EINVAL; 1513 goto unreserve_out; 1514 } 1515 vm = drm_priv_to_vm(pdd->drm_priv); 1516 1517 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1518 drm_exec_retry_on_contention(&ctx->exec); 1519 if (unlikely(r)) { 1520 pr_debug("failed %d to reserve bo\n", r); 1521 goto unreserve_out; 1522 } 1523 } 1524 } 1525 1526 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1527 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1528 if (!pdd) { 1529 pr_debug("failed to find device idx %d\n", gpuidx); 1530 r = -EINVAL; 1531 goto unreserve_out; 1532 } 1533 1534 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev, 1535 drm_priv_to_vm(pdd->drm_priv), 1536 svm_range_bo_validate, NULL); 1537 if (r) { 1538 pr_debug("failed %d validate pt bos\n", r); 1539 goto unreserve_out; 1540 } 1541 } 1542 1543 return 0; 1544 1545 unreserve_out: 1546 drm_exec_fini(&ctx->exec); 1547 return r; 1548 } 1549 1550 static void svm_range_unreserve_bos(struct svm_validate_context *ctx) 1551 { 1552 drm_exec_fini(&ctx->exec); 1553 } 1554 1555 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) 1556 { 1557 struct kfd_process_device *pdd; 1558 1559 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1560 if (!pdd) 1561 return NULL; 1562 1563 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); 1564 } 1565 1566 /* 1567 * Validation+GPU mapping with concurrent invalidation (MMU notifiers) 1568 * 1569 * To prevent concurrent destruction or change of range attributes, the 1570 * svm_read_lock must be held. The caller must not hold the svm_write_lock 1571 * because that would block concurrent evictions and lead to deadlocks. To 1572 * serialize concurrent migrations or validations of the same range, the 1573 * prange->migrate_mutex must be held. 1574 * 1575 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its 1576 * eviction fence. 1577 * 1578 * The following sequence ensures race-free validation and GPU mapping: 1579 * 1580 * 1. Reserve page table (and SVM BO if range is in VRAM) 1581 * 2. hmm_range_fault to get page addresses (if system memory) 1582 * 3. DMA-map pages (if system memory) 1583 * 4-a. Take notifier lock 1584 * 4-b. Check that pages still valid (mmu_interval_read_retry) 1585 * 4-c. Check that the range was not split or otherwise invalidated 1586 * 4-d. Update GPU page table 1587 * 4.e. Release notifier lock 1588 * 5. Release page table (and SVM BO) reservation 1589 */ 1590 static int svm_range_validate_and_map(struct mm_struct *mm, 1591 struct svm_range *prange, int32_t gpuidx, 1592 bool intr, bool wait, bool flush_tlb) 1593 { 1594 struct svm_validate_context *ctx; 1595 unsigned long start, end, addr; 1596 struct kfd_process *p; 1597 void *owner; 1598 int32_t idx; 1599 int r = 0; 1600 1601 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL); 1602 if (!ctx) 1603 return -ENOMEM; 1604 ctx->process = container_of(prange->svms, struct kfd_process, svms); 1605 ctx->prange = prange; 1606 ctx->intr = intr; 1607 1608 if (gpuidx < MAX_GPU_INSTANCE) { 1609 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE); 1610 bitmap_set(ctx->bitmap, gpuidx, 1); 1611 } else if (ctx->process->xnack_enabled) { 1612 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 1613 1614 /* If prefetch range to GPU, or GPU retry fault migrate range to 1615 * GPU, which has ACCESS attribute to the range, create mapping 1616 * on that GPU. 1617 */ 1618 if (prange->actual_loc) { 1619 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process, 1620 prange->actual_loc); 1621 if (gpuidx < 0) { 1622 WARN_ONCE(1, "failed get device by id 0x%x\n", 1623 prange->actual_loc); 1624 r = -EINVAL; 1625 goto free_ctx; 1626 } 1627 if (test_bit(gpuidx, prange->bitmap_access)) 1628 bitmap_set(ctx->bitmap, gpuidx, 1); 1629 } 1630 1631 /* 1632 * If prange is already mapped or with always mapped flag, 1633 * update mapping on GPUs with ACCESS attribute 1634 */ 1635 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { 1636 if (prange->mapped_to_gpu || 1637 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED) 1638 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE); 1639 } 1640 } else { 1641 bitmap_or(ctx->bitmap, prange->bitmap_access, 1642 prange->bitmap_aip, MAX_GPU_INSTANCE); 1643 } 1644 1645 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { 1646 r = 0; 1647 goto free_ctx; 1648 } 1649 1650 if (prange->actual_loc && !prange->ttm_res) { 1651 /* This should never happen. actual_loc gets set by 1652 * svm_migrate_ram_to_vram after allocating a BO. 1653 */ 1654 WARN_ONCE(1, "VRAM BO missing during validation\n"); 1655 r = -EINVAL; 1656 goto free_ctx; 1657 } 1658 1659 svm_range_reserve_bos(ctx, intr); 1660 1661 p = container_of(prange->svms, struct kfd_process, svms); 1662 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap, 1663 MAX_GPU_INSTANCE)); 1664 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) { 1665 if (kfd_svm_page_owner(p, idx) != owner) { 1666 owner = NULL; 1667 break; 1668 } 1669 } 1670 1671 start = prange->start << PAGE_SHIFT; 1672 end = (prange->last + 1) << PAGE_SHIFT; 1673 for (addr = start; !r && addr < end; ) { 1674 struct hmm_range *hmm_range; 1675 struct vm_area_struct *vma; 1676 unsigned long next = 0; 1677 unsigned long offset; 1678 unsigned long npages; 1679 bool readonly; 1680 1681 vma = vma_lookup(mm, addr); 1682 if (vma) { 1683 readonly = !(vma->vm_flags & VM_WRITE); 1684 1685 next = min(vma->vm_end, end); 1686 npages = (next - addr) >> PAGE_SHIFT; 1687 WRITE_ONCE(p->svms.faulting_task, current); 1688 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages, 1689 readonly, owner, NULL, 1690 &hmm_range); 1691 WRITE_ONCE(p->svms.faulting_task, NULL); 1692 if (r) { 1693 pr_debug("failed %d to get svm range pages\n", r); 1694 if (r == -EBUSY) 1695 r = -EAGAIN; 1696 } 1697 } else { 1698 r = -EFAULT; 1699 } 1700 1701 if (!r) { 1702 offset = (addr - start) >> PAGE_SHIFT; 1703 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages, 1704 hmm_range->hmm_pfns); 1705 if (r) 1706 pr_debug("failed %d to dma map range\n", r); 1707 } 1708 1709 svm_range_lock(prange); 1710 if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) { 1711 pr_debug("hmm update the range, need validate again\n"); 1712 r = -EAGAIN; 1713 } 1714 1715 if (!r && !list_empty(&prange->child_list)) { 1716 pr_debug("range split by unmap in parallel, validate again\n"); 1717 r = -EAGAIN; 1718 } 1719 1720 if (!r) 1721 r = svm_range_map_to_gpus(prange, offset, npages, readonly, 1722 ctx->bitmap, wait, flush_tlb); 1723 1724 if (!r && next == end) 1725 prange->mapped_to_gpu = true; 1726 1727 svm_range_unlock(prange); 1728 1729 addr = next; 1730 } 1731 1732 svm_range_unreserve_bos(ctx); 1733 if (!r) 1734 prange->validate_timestamp = ktime_get_boottime(); 1735 1736 free_ctx: 1737 kfree(ctx); 1738 1739 return r; 1740 } 1741 1742 /** 1743 * svm_range_list_lock_and_flush_work - flush pending deferred work 1744 * 1745 * @svms: the svm range list 1746 * @mm: the mm structure 1747 * 1748 * Context: Returns with mmap write lock held, pending deferred work flushed 1749 * 1750 */ 1751 void 1752 svm_range_list_lock_and_flush_work(struct svm_range_list *svms, 1753 struct mm_struct *mm) 1754 { 1755 retry_flush_work: 1756 flush_work(&svms->deferred_list_work); 1757 mmap_write_lock(mm); 1758 1759 if (list_empty(&svms->deferred_range_list)) 1760 return; 1761 mmap_write_unlock(mm); 1762 pr_debug("retry flush\n"); 1763 goto retry_flush_work; 1764 } 1765 1766 static void svm_range_restore_work(struct work_struct *work) 1767 { 1768 struct delayed_work *dwork = to_delayed_work(work); 1769 struct amdkfd_process_info *process_info; 1770 struct svm_range_list *svms; 1771 struct svm_range *prange; 1772 struct kfd_process *p; 1773 struct mm_struct *mm; 1774 int evicted_ranges; 1775 int invalid; 1776 int r; 1777 1778 svms = container_of(dwork, struct svm_range_list, restore_work); 1779 evicted_ranges = atomic_read(&svms->evicted_ranges); 1780 if (!evicted_ranges) 1781 return; 1782 1783 pr_debug("restore svm ranges\n"); 1784 1785 p = container_of(svms, struct kfd_process, svms); 1786 process_info = p->kgd_process_info; 1787 1788 /* Keep mm reference when svm_range_validate_and_map ranges */ 1789 mm = get_task_mm(p->lead_thread); 1790 if (!mm) { 1791 pr_debug("svms 0x%p process mm gone\n", svms); 1792 return; 1793 } 1794 1795 mutex_lock(&process_info->lock); 1796 svm_range_list_lock_and_flush_work(svms, mm); 1797 mutex_lock(&svms->lock); 1798 1799 evicted_ranges = atomic_read(&svms->evicted_ranges); 1800 1801 list_for_each_entry(prange, &svms->list, list) { 1802 invalid = atomic_read(&prange->invalid); 1803 if (!invalid) 1804 continue; 1805 1806 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", 1807 prange->svms, prange, prange->start, prange->last, 1808 invalid); 1809 1810 /* 1811 * If range is migrating, wait for migration is done. 1812 */ 1813 mutex_lock(&prange->migrate_mutex); 1814 1815 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 1816 false, true, false); 1817 if (r) 1818 pr_debug("failed %d to map 0x%lx to gpus\n", r, 1819 prange->start); 1820 1821 mutex_unlock(&prange->migrate_mutex); 1822 if (r) 1823 goto out_reschedule; 1824 1825 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) 1826 goto out_reschedule; 1827 } 1828 1829 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != 1830 evicted_ranges) 1831 goto out_reschedule; 1832 1833 evicted_ranges = 0; 1834 1835 r = kgd2kfd_resume_mm(mm); 1836 if (r) { 1837 /* No recovery from this failure. Probably the CP is 1838 * hanging. No point trying again. 1839 */ 1840 pr_debug("failed %d to resume KFD\n", r); 1841 } 1842 1843 pr_debug("restore svm ranges successfully\n"); 1844 1845 out_reschedule: 1846 mutex_unlock(&svms->lock); 1847 mmap_write_unlock(mm); 1848 mutex_unlock(&process_info->lock); 1849 1850 /* If validation failed, reschedule another attempt */ 1851 if (evicted_ranges) { 1852 pr_debug("reschedule to restore svm range\n"); 1853 schedule_delayed_work(&svms->restore_work, 1854 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1855 1856 kfd_smi_event_queue_restore_rescheduled(mm); 1857 } 1858 mmput(mm); 1859 } 1860 1861 /** 1862 * svm_range_evict - evict svm range 1863 * @prange: svm range structure 1864 * @mm: current process mm_struct 1865 * @start: starting process queue number 1866 * @last: last process queue number 1867 * @event: mmu notifier event when range is evicted or migrated 1868 * 1869 * Stop all queues of the process to ensure GPU doesn't access the memory, then 1870 * return to let CPU evict the buffer and proceed CPU pagetable update. 1871 * 1872 * Don't need use lock to sync cpu pagetable invalidation with GPU execution. 1873 * If invalidation happens while restore work is running, restore work will 1874 * restart to ensure to get the latest CPU pages mapping to GPU, then start 1875 * the queues. 1876 */ 1877 static int 1878 svm_range_evict(struct svm_range *prange, struct mm_struct *mm, 1879 unsigned long start, unsigned long last, 1880 enum mmu_notifier_event event) 1881 { 1882 struct svm_range_list *svms = prange->svms; 1883 struct svm_range *pchild; 1884 struct kfd_process *p; 1885 int r = 0; 1886 1887 p = container_of(svms, struct kfd_process, svms); 1888 1889 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1890 svms, prange->start, prange->last, start, last); 1891 1892 if (!p->xnack_enabled || 1893 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) { 1894 int evicted_ranges; 1895 bool mapped = prange->mapped_to_gpu; 1896 1897 list_for_each_entry(pchild, &prange->child_list, child_list) { 1898 if (!pchild->mapped_to_gpu) 1899 continue; 1900 mapped = true; 1901 mutex_lock_nested(&pchild->lock, 1); 1902 if (pchild->start <= last && pchild->last >= start) { 1903 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", 1904 pchild->start, pchild->last); 1905 atomic_inc(&pchild->invalid); 1906 } 1907 mutex_unlock(&pchild->lock); 1908 } 1909 1910 if (!mapped) 1911 return r; 1912 1913 if (prange->start <= last && prange->last >= start) 1914 atomic_inc(&prange->invalid); 1915 1916 evicted_ranges = atomic_inc_return(&svms->evicted_ranges); 1917 if (evicted_ranges != 1) 1918 return r; 1919 1920 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", 1921 prange->svms, prange->start, prange->last); 1922 1923 /* First eviction, stop the queues */ 1924 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM); 1925 if (r) 1926 pr_debug("failed to quiesce KFD\n"); 1927 1928 pr_debug("schedule to restore svm %p ranges\n", svms); 1929 schedule_delayed_work(&svms->restore_work, 1930 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1931 } else { 1932 unsigned long s, l; 1933 uint32_t trigger; 1934 1935 if (event == MMU_NOTIFY_MIGRATE) 1936 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE; 1937 else 1938 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY; 1939 1940 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", 1941 prange->svms, start, last); 1942 list_for_each_entry(pchild, &prange->child_list, child_list) { 1943 mutex_lock_nested(&pchild->lock, 1); 1944 s = max(start, pchild->start); 1945 l = min(last, pchild->last); 1946 if (l >= s) 1947 svm_range_unmap_from_gpus(pchild, s, l, trigger); 1948 mutex_unlock(&pchild->lock); 1949 } 1950 s = max(start, prange->start); 1951 l = min(last, prange->last); 1952 if (l >= s) 1953 svm_range_unmap_from_gpus(prange, s, l, trigger); 1954 } 1955 1956 return r; 1957 } 1958 1959 static struct svm_range *svm_range_clone(struct svm_range *old) 1960 { 1961 struct svm_range *new; 1962 1963 new = svm_range_new(old->svms, old->start, old->last, false); 1964 if (!new) 1965 return NULL; 1966 if (svm_range_copy_dma_addrs(new, old)) { 1967 svm_range_free(new, false); 1968 return NULL; 1969 } 1970 if (old->svm_bo) { 1971 new->ttm_res = old->ttm_res; 1972 new->offset = old->offset; 1973 new->svm_bo = svm_range_bo_ref(old->svm_bo); 1974 spin_lock(&new->svm_bo->list_lock); 1975 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 1976 spin_unlock(&new->svm_bo->list_lock); 1977 } 1978 new->flags = old->flags; 1979 new->preferred_loc = old->preferred_loc; 1980 new->prefetch_loc = old->prefetch_loc; 1981 new->actual_loc = old->actual_loc; 1982 new->granularity = old->granularity; 1983 new->mapped_to_gpu = old->mapped_to_gpu; 1984 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1985 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1986 1987 return new; 1988 } 1989 1990 void svm_range_set_max_pages(struct amdgpu_device *adev) 1991 { 1992 uint64_t max_pages; 1993 uint64_t pages, _pages; 1994 uint64_t min_pages = 0; 1995 int i, id; 1996 1997 for (i = 0; i < adev->kfd.dev->num_nodes; i++) { 1998 if (adev->kfd.dev->nodes[i]->xcp) 1999 id = adev->kfd.dev->nodes[i]->xcp->id; 2000 else 2001 id = -1; 2002 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17; 2003 pages = clamp(pages, 1ULL << 9, 1ULL << 18); 2004 pages = rounddown_pow_of_two(pages); 2005 min_pages = min_not_zero(min_pages, pages); 2006 } 2007 2008 do { 2009 max_pages = READ_ONCE(max_svm_range_pages); 2010 _pages = min_not_zero(max_pages, min_pages); 2011 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages); 2012 } 2013 2014 static int 2015 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last, 2016 uint64_t max_pages, struct list_head *insert_list, 2017 struct list_head *update_list) 2018 { 2019 struct svm_range *prange; 2020 uint64_t l; 2021 2022 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n", 2023 max_pages, start, last); 2024 2025 while (last >= start) { 2026 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1); 2027 2028 prange = svm_range_new(svms, start, l, true); 2029 if (!prange) 2030 return -ENOMEM; 2031 list_add(&prange->list, insert_list); 2032 list_add(&prange->update_list, update_list); 2033 2034 start = l + 1; 2035 } 2036 return 0; 2037 } 2038 2039 /** 2040 * svm_range_add - add svm range and handle overlap 2041 * @p: the range add to this process svms 2042 * @start: page size aligned 2043 * @size: page size aligned 2044 * @nattr: number of attributes 2045 * @attrs: array of attributes 2046 * @update_list: output, the ranges need validate and update GPU mapping 2047 * @insert_list: output, the ranges need insert to svms 2048 * @remove_list: output, the ranges are replaced and need remove from svms 2049 * 2050 * Check if the virtual address range has overlap with any existing ranges, 2051 * split partly overlapping ranges and add new ranges in the gaps. All changes 2052 * should be applied to the range_list and interval tree transactionally. If 2053 * any range split or allocation fails, the entire update fails. Therefore any 2054 * existing overlapping svm_ranges are cloned and the original svm_ranges left 2055 * unchanged. 2056 * 2057 * If the transaction succeeds, the caller can update and insert clones and 2058 * new ranges, then free the originals. 2059 * 2060 * Otherwise the caller can free the clones and new ranges, while the old 2061 * svm_ranges remain unchanged. 2062 * 2063 * Context: Process context, caller must hold svms->lock 2064 * 2065 * Return: 2066 * 0 - OK, otherwise error code 2067 */ 2068 static int 2069 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, 2070 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 2071 struct list_head *update_list, struct list_head *insert_list, 2072 struct list_head *remove_list) 2073 { 2074 unsigned long last = start + size - 1UL; 2075 struct svm_range_list *svms = &p->svms; 2076 struct interval_tree_node *node; 2077 struct svm_range *prange; 2078 struct svm_range *tmp; 2079 struct list_head new_list; 2080 int r = 0; 2081 2082 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); 2083 2084 INIT_LIST_HEAD(update_list); 2085 INIT_LIST_HEAD(insert_list); 2086 INIT_LIST_HEAD(remove_list); 2087 INIT_LIST_HEAD(&new_list); 2088 2089 node = interval_tree_iter_first(&svms->objects, start, last); 2090 while (node) { 2091 struct interval_tree_node *next; 2092 unsigned long next_start; 2093 2094 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, 2095 node->last); 2096 2097 prange = container_of(node, struct svm_range, it_node); 2098 next = interval_tree_iter_next(node, start, last); 2099 next_start = min(node->last, last) + 1; 2100 2101 if (svm_range_is_same_attrs(p, prange, nattr, attrs) && 2102 prange->mapped_to_gpu) { 2103 /* nothing to do */ 2104 } else if (node->start < start || node->last > last) { 2105 /* node intersects the update range and its attributes 2106 * will change. Clone and split it, apply updates only 2107 * to the overlapping part 2108 */ 2109 struct svm_range *old = prange; 2110 2111 prange = svm_range_clone(old); 2112 if (!prange) { 2113 r = -ENOMEM; 2114 goto out; 2115 } 2116 2117 list_add(&old->update_list, remove_list); 2118 list_add(&prange->list, insert_list); 2119 list_add(&prange->update_list, update_list); 2120 2121 if (node->start < start) { 2122 pr_debug("change old range start\n"); 2123 r = svm_range_split_head(prange, start, 2124 insert_list); 2125 if (r) 2126 goto out; 2127 } 2128 if (node->last > last) { 2129 pr_debug("change old range last\n"); 2130 r = svm_range_split_tail(prange, last, 2131 insert_list); 2132 if (r) 2133 goto out; 2134 } 2135 } else { 2136 /* The node is contained within start..last, 2137 * just update it 2138 */ 2139 list_add(&prange->update_list, update_list); 2140 } 2141 2142 /* insert a new node if needed */ 2143 if (node->start > start) { 2144 r = svm_range_split_new(svms, start, node->start - 1, 2145 READ_ONCE(max_svm_range_pages), 2146 &new_list, update_list); 2147 if (r) 2148 goto out; 2149 } 2150 2151 node = next; 2152 start = next_start; 2153 } 2154 2155 /* add a final range at the end if needed */ 2156 if (start <= last) 2157 r = svm_range_split_new(svms, start, last, 2158 READ_ONCE(max_svm_range_pages), 2159 &new_list, update_list); 2160 2161 out: 2162 if (r) { 2163 list_for_each_entry_safe(prange, tmp, insert_list, list) 2164 svm_range_free(prange, false); 2165 list_for_each_entry_safe(prange, tmp, &new_list, list) 2166 svm_range_free(prange, true); 2167 } else { 2168 list_splice(&new_list, insert_list); 2169 } 2170 2171 return r; 2172 } 2173 2174 static void 2175 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, 2176 struct svm_range *prange) 2177 { 2178 unsigned long start; 2179 unsigned long last; 2180 2181 start = prange->notifier.interval_tree.start >> PAGE_SHIFT; 2182 last = prange->notifier.interval_tree.last >> PAGE_SHIFT; 2183 2184 if (prange->start == start && prange->last == last) 2185 return; 2186 2187 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 2188 prange->svms, prange, start, last, prange->start, 2189 prange->last); 2190 2191 if (start != 0 && last != 0) { 2192 interval_tree_remove(&prange->it_node, &prange->svms->objects); 2193 svm_range_remove_notifier(prange); 2194 } 2195 prange->it_node.start = prange->start; 2196 prange->it_node.last = prange->last; 2197 2198 interval_tree_insert(&prange->it_node, &prange->svms->objects); 2199 svm_range_add_notifier_locked(mm, prange); 2200 } 2201 2202 static void 2203 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, 2204 struct mm_struct *mm) 2205 { 2206 switch (prange->work_item.op) { 2207 case SVM_OP_NULL: 2208 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2209 svms, prange, prange->start, prange->last); 2210 break; 2211 case SVM_OP_UNMAP_RANGE: 2212 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2213 svms, prange, prange->start, prange->last); 2214 svm_range_unlink(prange); 2215 svm_range_remove_notifier(prange); 2216 svm_range_free(prange, true); 2217 break; 2218 case SVM_OP_UPDATE_RANGE_NOTIFIER: 2219 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2220 svms, prange, prange->start, prange->last); 2221 svm_range_update_notifier_and_interval_tree(mm, prange); 2222 break; 2223 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: 2224 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2225 svms, prange, prange->start, prange->last); 2226 svm_range_update_notifier_and_interval_tree(mm, prange); 2227 /* TODO: implement deferred validation and mapping */ 2228 break; 2229 case SVM_OP_ADD_RANGE: 2230 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, 2231 prange->start, prange->last); 2232 svm_range_add_to_svms(prange); 2233 svm_range_add_notifier_locked(mm, prange); 2234 break; 2235 case SVM_OP_ADD_RANGE_AND_MAP: 2236 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, 2237 prange, prange->start, prange->last); 2238 svm_range_add_to_svms(prange); 2239 svm_range_add_notifier_locked(mm, prange); 2240 /* TODO: implement deferred validation and mapping */ 2241 break; 2242 default: 2243 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, 2244 prange->work_item.op); 2245 } 2246 } 2247 2248 static void svm_range_drain_retry_fault(struct svm_range_list *svms) 2249 { 2250 struct kfd_process_device *pdd; 2251 struct kfd_process *p; 2252 int drain; 2253 uint32_t i; 2254 2255 p = container_of(svms, struct kfd_process, svms); 2256 2257 restart: 2258 drain = atomic_read(&svms->drain_pagefaults); 2259 if (!drain) 2260 return; 2261 2262 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2263 pdd = p->pdds[i]; 2264 if (!pdd) 2265 continue; 2266 2267 pr_debug("drain retry fault gpu %d svms %p\n", i, svms); 2268 2269 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2270 pdd->dev->adev->irq.retry_cam_enabled ? 2271 &pdd->dev->adev->irq.ih : 2272 &pdd->dev->adev->irq.ih1); 2273 2274 if (pdd->dev->adev->irq.retry_cam_enabled) 2275 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2276 &pdd->dev->adev->irq.ih_soft); 2277 2278 2279 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); 2280 } 2281 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) 2282 goto restart; 2283 } 2284 2285 static void svm_range_deferred_list_work(struct work_struct *work) 2286 { 2287 struct svm_range_list *svms; 2288 struct svm_range *prange; 2289 struct mm_struct *mm; 2290 2291 svms = container_of(work, struct svm_range_list, deferred_list_work); 2292 pr_debug("enter svms 0x%p\n", svms); 2293 2294 spin_lock(&svms->deferred_list_lock); 2295 while (!list_empty(&svms->deferred_range_list)) { 2296 prange = list_first_entry(&svms->deferred_range_list, 2297 struct svm_range, deferred_list); 2298 spin_unlock(&svms->deferred_list_lock); 2299 2300 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, 2301 prange->start, prange->last, prange->work_item.op); 2302 2303 mm = prange->work_item.mm; 2304 retry: 2305 mmap_write_lock(mm); 2306 2307 /* Checking for the need to drain retry faults must be inside 2308 * mmap write lock to serialize with munmap notifiers. 2309 */ 2310 if (unlikely(atomic_read(&svms->drain_pagefaults))) { 2311 mmap_write_unlock(mm); 2312 svm_range_drain_retry_fault(svms); 2313 goto retry; 2314 } 2315 2316 /* Remove from deferred_list must be inside mmap write lock, for 2317 * two race cases: 2318 * 1. unmap_from_cpu may change work_item.op and add the range 2319 * to deferred_list again, cause use after free bug. 2320 * 2. svm_range_list_lock_and_flush_work may hold mmap write 2321 * lock and continue because deferred_list is empty, but 2322 * deferred_list work is actually waiting for mmap lock. 2323 */ 2324 spin_lock(&svms->deferred_list_lock); 2325 list_del_init(&prange->deferred_list); 2326 spin_unlock(&svms->deferred_list_lock); 2327 2328 mutex_lock(&svms->lock); 2329 mutex_lock(&prange->migrate_mutex); 2330 while (!list_empty(&prange->child_list)) { 2331 struct svm_range *pchild; 2332 2333 pchild = list_first_entry(&prange->child_list, 2334 struct svm_range, child_list); 2335 pr_debug("child prange 0x%p op %d\n", pchild, 2336 pchild->work_item.op); 2337 list_del_init(&pchild->child_list); 2338 svm_range_handle_list_op(svms, pchild, mm); 2339 } 2340 mutex_unlock(&prange->migrate_mutex); 2341 2342 svm_range_handle_list_op(svms, prange, mm); 2343 mutex_unlock(&svms->lock); 2344 mmap_write_unlock(mm); 2345 2346 /* Pairs with mmget in svm_range_add_list_work. If dropping the 2347 * last mm refcount, schedule release work to avoid circular locking 2348 */ 2349 mmput_async(mm); 2350 2351 spin_lock(&svms->deferred_list_lock); 2352 } 2353 spin_unlock(&svms->deferred_list_lock); 2354 pr_debug("exit svms 0x%p\n", svms); 2355 } 2356 2357 void 2358 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, 2359 struct mm_struct *mm, enum svm_work_list_ops op) 2360 { 2361 spin_lock(&svms->deferred_list_lock); 2362 /* if prange is on the deferred list */ 2363 if (!list_empty(&prange->deferred_list)) { 2364 pr_debug("update exist prange 0x%p work op %d\n", prange, op); 2365 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); 2366 if (op != SVM_OP_NULL && 2367 prange->work_item.op != SVM_OP_UNMAP_RANGE) 2368 prange->work_item.op = op; 2369 } else { 2370 prange->work_item.op = op; 2371 2372 /* Pairs with mmput in deferred_list_work */ 2373 mmget(mm); 2374 prange->work_item.mm = mm; 2375 list_add_tail(&prange->deferred_list, 2376 &prange->svms->deferred_range_list); 2377 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", 2378 prange, prange->start, prange->last, op); 2379 } 2380 spin_unlock(&svms->deferred_list_lock); 2381 } 2382 2383 void schedule_deferred_list_work(struct svm_range_list *svms) 2384 { 2385 spin_lock(&svms->deferred_list_lock); 2386 if (!list_empty(&svms->deferred_range_list)) 2387 schedule_work(&svms->deferred_list_work); 2388 spin_unlock(&svms->deferred_list_lock); 2389 } 2390 2391 static void 2392 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, 2393 struct svm_range *prange, unsigned long start, 2394 unsigned long last) 2395 { 2396 struct svm_range *head; 2397 struct svm_range *tail; 2398 2399 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2400 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, 2401 prange->start, prange->last); 2402 return; 2403 } 2404 if (start > prange->last || last < prange->start) 2405 return; 2406 2407 head = tail = prange; 2408 if (start > prange->start) 2409 svm_range_split(prange, prange->start, start - 1, &tail); 2410 if (last < tail->last) 2411 svm_range_split(tail, last + 1, tail->last, &head); 2412 2413 if (head != prange && tail != prange) { 2414 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2415 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 2416 } else if (tail != prange) { 2417 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); 2418 } else if (head != prange) { 2419 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2420 } else if (parent != prange) { 2421 prange->work_item.op = SVM_OP_UNMAP_RANGE; 2422 } 2423 } 2424 2425 static void 2426 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, 2427 unsigned long start, unsigned long last) 2428 { 2429 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU; 2430 struct svm_range_list *svms; 2431 struct svm_range *pchild; 2432 struct kfd_process *p; 2433 unsigned long s, l; 2434 bool unmap_parent; 2435 2436 p = kfd_lookup_process_by_mm(mm); 2437 if (!p) 2438 return; 2439 svms = &p->svms; 2440 2441 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, 2442 prange, prange->start, prange->last, start, last); 2443 2444 /* Make sure pending page faults are drained in the deferred worker 2445 * before the range is freed to avoid straggler interrupts on 2446 * unmapped memory causing "phantom faults". 2447 */ 2448 atomic_inc(&svms->drain_pagefaults); 2449 2450 unmap_parent = start <= prange->start && last >= prange->last; 2451 2452 list_for_each_entry(pchild, &prange->child_list, child_list) { 2453 mutex_lock_nested(&pchild->lock, 1); 2454 s = max(start, pchild->start); 2455 l = min(last, pchild->last); 2456 if (l >= s) 2457 svm_range_unmap_from_gpus(pchild, s, l, trigger); 2458 svm_range_unmap_split(mm, prange, pchild, start, last); 2459 mutex_unlock(&pchild->lock); 2460 } 2461 s = max(start, prange->start); 2462 l = min(last, prange->last); 2463 if (l >= s) 2464 svm_range_unmap_from_gpus(prange, s, l, trigger); 2465 svm_range_unmap_split(mm, prange, prange, start, last); 2466 2467 if (unmap_parent) 2468 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); 2469 else 2470 svm_range_add_list_work(svms, prange, mm, 2471 SVM_OP_UPDATE_RANGE_NOTIFIER); 2472 schedule_deferred_list_work(svms); 2473 2474 kfd_unref_process(p); 2475 } 2476 2477 /** 2478 * svm_range_cpu_invalidate_pagetables - interval notifier callback 2479 * @mni: mmu_interval_notifier struct 2480 * @range: mmu_notifier_range struct 2481 * @cur_seq: value to pass to mmu_interval_set_seq() 2482 * 2483 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it 2484 * is from migration, or CPU page invalidation callback. 2485 * 2486 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed 2487 * work thread, and split prange if only part of prange is unmapped. 2488 * 2489 * For invalidation event, if GPU retry fault is not enabled, evict the queues, 2490 * then schedule svm_range_restore_work to update GPU mapping and resume queues. 2491 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will 2492 * update GPU mapping to recover. 2493 * 2494 * Context: mmap lock, notifier_invalidate_start lock are held 2495 * for invalidate event, prange lock is held if this is from migration 2496 */ 2497 static bool 2498 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 2499 const struct mmu_notifier_range *range, 2500 unsigned long cur_seq) 2501 { 2502 struct svm_range *prange; 2503 unsigned long start; 2504 unsigned long last; 2505 2506 if (range->event == MMU_NOTIFY_RELEASE) 2507 return true; 2508 if (!mmget_not_zero(mni->mm)) 2509 return true; 2510 2511 start = mni->interval_tree.start; 2512 last = mni->interval_tree.last; 2513 start = max(start, range->start) >> PAGE_SHIFT; 2514 last = min(last, range->end - 1) >> PAGE_SHIFT; 2515 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", 2516 start, last, range->start >> PAGE_SHIFT, 2517 (range->end - 1) >> PAGE_SHIFT, 2518 mni->interval_tree.start >> PAGE_SHIFT, 2519 mni->interval_tree.last >> PAGE_SHIFT, range->event); 2520 2521 prange = container_of(mni, struct svm_range, notifier); 2522 2523 svm_range_lock(prange); 2524 mmu_interval_set_seq(mni, cur_seq); 2525 2526 switch (range->event) { 2527 case MMU_NOTIFY_UNMAP: 2528 svm_range_unmap_from_cpu(mni->mm, prange, start, last); 2529 break; 2530 default: 2531 svm_range_evict(prange, mni->mm, start, last, range->event); 2532 break; 2533 } 2534 2535 svm_range_unlock(prange); 2536 mmput(mni->mm); 2537 2538 return true; 2539 } 2540 2541 /** 2542 * svm_range_from_addr - find svm range from fault address 2543 * @svms: svm range list header 2544 * @addr: address to search range interval tree, in pages 2545 * @parent: parent range if range is on child list 2546 * 2547 * Context: The caller must hold svms->lock 2548 * 2549 * Return: the svm_range found or NULL 2550 */ 2551 struct svm_range * 2552 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, 2553 struct svm_range **parent) 2554 { 2555 struct interval_tree_node *node; 2556 struct svm_range *prange; 2557 struct svm_range *pchild; 2558 2559 node = interval_tree_iter_first(&svms->objects, addr, addr); 2560 if (!node) 2561 return NULL; 2562 2563 prange = container_of(node, struct svm_range, it_node); 2564 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", 2565 addr, prange->start, prange->last, node->start, node->last); 2566 2567 if (addr >= prange->start && addr <= prange->last) { 2568 if (parent) 2569 *parent = prange; 2570 return prange; 2571 } 2572 list_for_each_entry(pchild, &prange->child_list, child_list) 2573 if (addr >= pchild->start && addr <= pchild->last) { 2574 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", 2575 addr, pchild->start, pchild->last); 2576 if (parent) 2577 *parent = prange; 2578 return pchild; 2579 } 2580 2581 return NULL; 2582 } 2583 2584 /* svm_range_best_restore_location - decide the best fault restore location 2585 * @prange: svm range structure 2586 * @adev: the GPU on which vm fault happened 2587 * 2588 * This is only called when xnack is on, to decide the best location to restore 2589 * the range mapping after GPU vm fault. Caller uses the best location to do 2590 * migration if actual loc is not best location, then update GPU page table 2591 * mapping to the best location. 2592 * 2593 * If the preferred loc is accessible by faulting GPU, use preferred loc. 2594 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu 2595 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then 2596 * if range actual loc is cpu, best_loc is cpu 2597 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is 2598 * range actual loc. 2599 * Otherwise, GPU no access, best_loc is -1. 2600 * 2601 * Return: 2602 * -1 means vm fault GPU no access 2603 * 0 for CPU or GPU id 2604 */ 2605 static int32_t 2606 svm_range_best_restore_location(struct svm_range *prange, 2607 struct kfd_node *node, 2608 int32_t *gpuidx) 2609 { 2610 struct kfd_node *bo_node, *preferred_node; 2611 struct kfd_process *p; 2612 uint32_t gpuid; 2613 int r; 2614 2615 p = container_of(prange->svms, struct kfd_process, svms); 2616 2617 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx); 2618 if (r < 0) { 2619 pr_debug("failed to get gpuid from kgd\n"); 2620 return -1; 2621 } 2622 2623 if (node->adev->gmc.is_app_apu) 2624 return 0; 2625 2626 if (prange->preferred_loc == gpuid || 2627 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { 2628 return prange->preferred_loc; 2629 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 2630 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc); 2631 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node)) 2632 return prange->preferred_loc; 2633 /* fall through */ 2634 } 2635 2636 if (test_bit(*gpuidx, prange->bitmap_access)) 2637 return gpuid; 2638 2639 if (test_bit(*gpuidx, prange->bitmap_aip)) { 2640 if (!prange->actual_loc) 2641 return 0; 2642 2643 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc); 2644 if (bo_node && svm_nodes_in_same_hive(node, bo_node)) 2645 return prange->actual_loc; 2646 else 2647 return 0; 2648 } 2649 2650 return -1; 2651 } 2652 2653 static int 2654 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, 2655 unsigned long *start, unsigned long *last, 2656 bool *is_heap_stack) 2657 { 2658 struct vm_area_struct *vma; 2659 struct interval_tree_node *node; 2660 struct rb_node *rb_node; 2661 unsigned long start_limit, end_limit; 2662 2663 vma = vma_lookup(p->mm, addr << PAGE_SHIFT); 2664 if (!vma) { 2665 pr_debug("VMA does not exist in address [0x%llx]\n", addr); 2666 return -EFAULT; 2667 } 2668 2669 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma); 2670 2671 start_limit = max(vma->vm_start >> PAGE_SHIFT, 2672 (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); 2673 end_limit = min(vma->vm_end >> PAGE_SHIFT, 2674 (unsigned long)ALIGN(addr + 1, 2UL << 8)); 2675 /* First range that starts after the fault address */ 2676 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); 2677 if (node) { 2678 end_limit = min(end_limit, node->start); 2679 /* Last range that ends before the fault address */ 2680 rb_node = rb_prev(&node->rb); 2681 } else { 2682 /* Last range must end before addr because 2683 * there was no range after addr 2684 */ 2685 rb_node = rb_last(&p->svms.objects.rb_root); 2686 } 2687 if (rb_node) { 2688 node = container_of(rb_node, struct interval_tree_node, rb); 2689 if (node->last >= addr) { 2690 WARN(1, "Overlap with prev node and page fault addr\n"); 2691 return -EFAULT; 2692 } 2693 start_limit = max(start_limit, node->last + 1); 2694 } 2695 2696 *start = start_limit; 2697 *last = end_limit - 1; 2698 2699 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", 2700 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, 2701 *start, *last, *is_heap_stack); 2702 2703 return 0; 2704 } 2705 2706 static int 2707 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, 2708 uint64_t *bo_s, uint64_t *bo_l) 2709 { 2710 struct amdgpu_bo_va_mapping *mapping; 2711 struct interval_tree_node *node; 2712 struct amdgpu_bo *bo = NULL; 2713 unsigned long userptr; 2714 uint32_t i; 2715 int r; 2716 2717 for (i = 0; i < p->n_pdds; i++) { 2718 struct amdgpu_vm *vm; 2719 2720 if (!p->pdds[i]->drm_priv) 2721 continue; 2722 2723 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2724 r = amdgpu_bo_reserve(vm->root.bo, false); 2725 if (r) 2726 return r; 2727 2728 /* Check userptr by searching entire vm->va interval tree */ 2729 node = interval_tree_iter_first(&vm->va, 0, ~0ULL); 2730 while (node) { 2731 mapping = container_of((struct rb_node *)node, 2732 struct amdgpu_bo_va_mapping, rb); 2733 bo = mapping->bo_va->base.bo; 2734 2735 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, 2736 start << PAGE_SHIFT, 2737 last << PAGE_SHIFT, 2738 &userptr)) { 2739 node = interval_tree_iter_next(node, 0, ~0ULL); 2740 continue; 2741 } 2742 2743 pr_debug("[0x%llx 0x%llx] already userptr mapped\n", 2744 start, last); 2745 if (bo_s && bo_l) { 2746 *bo_s = userptr >> PAGE_SHIFT; 2747 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; 2748 } 2749 amdgpu_bo_unreserve(vm->root.bo); 2750 return -EADDRINUSE; 2751 } 2752 amdgpu_bo_unreserve(vm->root.bo); 2753 } 2754 return 0; 2755 } 2756 2757 static struct 2758 svm_range *svm_range_create_unregistered_range(struct kfd_node *node, 2759 struct kfd_process *p, 2760 struct mm_struct *mm, 2761 int64_t addr) 2762 { 2763 struct svm_range *prange = NULL; 2764 unsigned long start, last; 2765 uint32_t gpuid, gpuidx; 2766 bool is_heap_stack; 2767 uint64_t bo_s = 0; 2768 uint64_t bo_l = 0; 2769 int r; 2770 2771 if (svm_range_get_range_boundaries(p, addr, &start, &last, 2772 &is_heap_stack)) 2773 return NULL; 2774 2775 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); 2776 if (r != -EADDRINUSE) 2777 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); 2778 2779 if (r == -EADDRINUSE) { 2780 if (addr >= bo_s && addr <= bo_l) 2781 return NULL; 2782 2783 /* Create one page svm range if 2MB range overlapping */ 2784 start = addr; 2785 last = addr; 2786 } 2787 2788 prange = svm_range_new(&p->svms, start, last, true); 2789 if (!prange) { 2790 pr_debug("Failed to create prange in address [0x%llx]\n", addr); 2791 return NULL; 2792 } 2793 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) { 2794 pr_debug("failed to get gpuid from kgd\n"); 2795 svm_range_free(prange, true); 2796 return NULL; 2797 } 2798 2799 if (is_heap_stack) 2800 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; 2801 2802 svm_range_add_to_svms(prange); 2803 svm_range_add_notifier_locked(mm, prange); 2804 2805 return prange; 2806 } 2807 2808 /* svm_range_skip_recover - decide if prange can be recovered 2809 * @prange: svm range structure 2810 * 2811 * GPU vm retry fault handle skip recover the range for cases: 2812 * 1. prange is on deferred list to be removed after unmap, it is stale fault, 2813 * deferred list work will drain the stale fault before free the prange. 2814 * 2. prange is on deferred list to add interval notifier after split, or 2815 * 3. prange is child range, it is split from parent prange, recover later 2816 * after interval notifier is added. 2817 * 2818 * Return: true to skip recover, false to recover 2819 */ 2820 static bool svm_range_skip_recover(struct svm_range *prange) 2821 { 2822 struct svm_range_list *svms = prange->svms; 2823 2824 spin_lock(&svms->deferred_list_lock); 2825 if (list_empty(&prange->deferred_list) && 2826 list_empty(&prange->child_list)) { 2827 spin_unlock(&svms->deferred_list_lock); 2828 return false; 2829 } 2830 spin_unlock(&svms->deferred_list_lock); 2831 2832 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2833 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", 2834 svms, prange, prange->start, prange->last); 2835 return true; 2836 } 2837 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || 2838 prange->work_item.op == SVM_OP_ADD_RANGE) { 2839 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", 2840 svms, prange, prange->start, prange->last); 2841 return true; 2842 } 2843 return false; 2844 } 2845 2846 static void 2847 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p, 2848 int32_t gpuidx) 2849 { 2850 struct kfd_process_device *pdd; 2851 2852 /* fault is on different page of same range 2853 * or fault is skipped to recover later 2854 * or fault is on invalid virtual address 2855 */ 2856 if (gpuidx == MAX_GPU_INSTANCE) { 2857 uint32_t gpuid; 2858 int r; 2859 2860 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx); 2861 if (r < 0) 2862 return; 2863 } 2864 2865 /* fault is recovered 2866 * or fault cannot recover because GPU no access on the range 2867 */ 2868 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 2869 if (pdd) 2870 WRITE_ONCE(pdd->faults, pdd->faults + 1); 2871 } 2872 2873 static bool 2874 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) 2875 { 2876 unsigned long requested = VM_READ; 2877 2878 if (write_fault) 2879 requested |= VM_WRITE; 2880 2881 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, 2882 vma->vm_flags); 2883 return (vma->vm_flags & requested) == requested; 2884 } 2885 2886 int 2887 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, 2888 uint32_t vmid, uint32_t node_id, 2889 uint64_t addr, bool write_fault) 2890 { 2891 struct mm_struct *mm = NULL; 2892 struct svm_range_list *svms; 2893 struct svm_range *prange; 2894 struct kfd_process *p; 2895 ktime_t timestamp = ktime_get_boottime(); 2896 struct kfd_node *node; 2897 int32_t best_loc; 2898 int32_t gpuidx = MAX_GPU_INSTANCE; 2899 bool write_locked = false; 2900 struct vm_area_struct *vma; 2901 bool migration = false; 2902 int r = 0; 2903 2904 if (!KFD_IS_SVM_API_SUPPORTED(adev)) { 2905 pr_debug("device does not support SVM\n"); 2906 return -EFAULT; 2907 } 2908 2909 p = kfd_lookup_process_by_pasid(pasid); 2910 if (!p) { 2911 pr_debug("kfd process not founded pasid 0x%x\n", pasid); 2912 return 0; 2913 } 2914 svms = &p->svms; 2915 2916 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); 2917 2918 if (atomic_read(&svms->drain_pagefaults)) { 2919 pr_debug("draining retry fault, drop fault 0x%llx\n", addr); 2920 r = 0; 2921 goto out; 2922 } 2923 2924 if (!p->xnack_enabled) { 2925 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); 2926 r = -EFAULT; 2927 goto out; 2928 } 2929 2930 /* p->lead_thread is available as kfd_process_wq_release flush the work 2931 * before releasing task ref. 2932 */ 2933 mm = get_task_mm(p->lead_thread); 2934 if (!mm) { 2935 pr_debug("svms 0x%p failed to get mm\n", svms); 2936 r = 0; 2937 goto out; 2938 } 2939 2940 node = kfd_node_by_irq_ids(adev, node_id, vmid); 2941 if (!node) { 2942 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id, 2943 vmid); 2944 r = -EFAULT; 2945 goto out; 2946 } 2947 mmap_read_lock(mm); 2948 retry_write_locked: 2949 mutex_lock(&svms->lock); 2950 prange = svm_range_from_addr(svms, addr, NULL); 2951 if (!prange) { 2952 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", 2953 svms, addr); 2954 if (!write_locked) { 2955 /* Need the write lock to create new range with MMU notifier. 2956 * Also flush pending deferred work to make sure the interval 2957 * tree is up to date before we add a new range 2958 */ 2959 mutex_unlock(&svms->lock); 2960 mmap_read_unlock(mm); 2961 mmap_write_lock(mm); 2962 write_locked = true; 2963 goto retry_write_locked; 2964 } 2965 prange = svm_range_create_unregistered_range(node, p, mm, addr); 2966 if (!prange) { 2967 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", 2968 svms, addr); 2969 mmap_write_downgrade(mm); 2970 r = -EFAULT; 2971 goto out_unlock_svms; 2972 } 2973 } 2974 if (write_locked) 2975 mmap_write_downgrade(mm); 2976 2977 mutex_lock(&prange->migrate_mutex); 2978 2979 if (svm_range_skip_recover(prange)) { 2980 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); 2981 r = 0; 2982 goto out_unlock_range; 2983 } 2984 2985 /* skip duplicate vm fault on different pages of same range */ 2986 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp, 2987 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) { 2988 pr_debug("svms 0x%p [0x%lx %lx] already restored\n", 2989 svms, prange->start, prange->last); 2990 r = 0; 2991 goto out_unlock_range; 2992 } 2993 2994 /* __do_munmap removed VMA, return success as we are handling stale 2995 * retry fault. 2996 */ 2997 vma = vma_lookup(mm, addr << PAGE_SHIFT); 2998 if (!vma) { 2999 pr_debug("address 0x%llx VMA is removed\n", addr); 3000 r = 0; 3001 goto out_unlock_range; 3002 } 3003 3004 if (!svm_fault_allowed(vma, write_fault)) { 3005 pr_debug("fault addr 0x%llx no %s permission\n", addr, 3006 write_fault ? "write" : "read"); 3007 r = -EPERM; 3008 goto out_unlock_range; 3009 } 3010 3011 best_loc = svm_range_best_restore_location(prange, node, &gpuidx); 3012 if (best_loc == -1) { 3013 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", 3014 svms, prange->start, prange->last); 3015 r = -EACCES; 3016 goto out_unlock_range; 3017 } 3018 3019 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", 3020 svms, prange->start, prange->last, best_loc, 3021 prange->actual_loc); 3022 3023 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr, 3024 write_fault, timestamp); 3025 3026 if (prange->actual_loc != best_loc) { 3027 migration = true; 3028 if (best_loc) { 3029 r = svm_migrate_to_vram(prange, best_loc, mm, 3030 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU); 3031 if (r) { 3032 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", 3033 r, addr); 3034 /* Fallback to system memory if migration to 3035 * VRAM failed 3036 */ 3037 if (prange->actual_loc) 3038 r = svm_migrate_vram_to_ram(prange, mm, 3039 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, 3040 NULL); 3041 else 3042 r = 0; 3043 } 3044 } else { 3045 r = svm_migrate_vram_to_ram(prange, mm, 3046 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, 3047 NULL); 3048 } 3049 if (r) { 3050 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", 3051 r, svms, prange->start, prange->last); 3052 goto out_unlock_range; 3053 } 3054 } 3055 3056 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false); 3057 if (r) 3058 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", 3059 r, svms, prange->start, prange->last); 3060 3061 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr, 3062 migration); 3063 3064 out_unlock_range: 3065 mutex_unlock(&prange->migrate_mutex); 3066 out_unlock_svms: 3067 mutex_unlock(&svms->lock); 3068 mmap_read_unlock(mm); 3069 3070 svm_range_count_fault(node, p, gpuidx); 3071 3072 mmput(mm); 3073 out: 3074 kfd_unref_process(p); 3075 3076 if (r == -EAGAIN) { 3077 pr_debug("recover vm fault later\n"); 3078 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); 3079 r = 0; 3080 } 3081 return r; 3082 } 3083 3084 int 3085 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled) 3086 { 3087 struct svm_range *prange, *pchild; 3088 uint64_t reserved_size = 0; 3089 uint64_t size; 3090 int r = 0; 3091 3092 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled); 3093 3094 mutex_lock(&p->svms.lock); 3095 3096 list_for_each_entry(prange, &p->svms.list, list) { 3097 svm_range_lock(prange); 3098 list_for_each_entry(pchild, &prange->child_list, child_list) { 3099 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT; 3100 if (xnack_enabled) { 3101 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 3102 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3103 } else { 3104 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, 3105 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3106 if (r) 3107 goto out_unlock; 3108 reserved_size += size; 3109 } 3110 } 3111 3112 size = (prange->last - prange->start + 1) << PAGE_SHIFT; 3113 if (xnack_enabled) { 3114 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 3115 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3116 } else { 3117 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, 3118 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3119 if (r) 3120 goto out_unlock; 3121 reserved_size += size; 3122 } 3123 out_unlock: 3124 svm_range_unlock(prange); 3125 if (r) 3126 break; 3127 } 3128 3129 if (r) 3130 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size, 3131 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3132 else 3133 /* Change xnack mode must be inside svms lock, to avoid race with 3134 * svm_range_deferred_list_work unreserve memory in parallel. 3135 */ 3136 p->xnack_enabled = xnack_enabled; 3137 3138 mutex_unlock(&p->svms.lock); 3139 return r; 3140 } 3141 3142 void svm_range_list_fini(struct kfd_process *p) 3143 { 3144 struct svm_range *prange; 3145 struct svm_range *next; 3146 3147 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); 3148 3149 cancel_delayed_work_sync(&p->svms.restore_work); 3150 3151 /* Ensure list work is finished before process is destroyed */ 3152 flush_work(&p->svms.deferred_list_work); 3153 3154 /* 3155 * Ensure no retry fault comes in afterwards, as page fault handler will 3156 * not find kfd process and take mm lock to recover fault. 3157 */ 3158 atomic_inc(&p->svms.drain_pagefaults); 3159 svm_range_drain_retry_fault(&p->svms); 3160 3161 list_for_each_entry_safe(prange, next, &p->svms.list, list) { 3162 svm_range_unlink(prange); 3163 svm_range_remove_notifier(prange); 3164 svm_range_free(prange, true); 3165 } 3166 3167 mutex_destroy(&p->svms.lock); 3168 3169 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); 3170 } 3171 3172 int svm_range_list_init(struct kfd_process *p) 3173 { 3174 struct svm_range_list *svms = &p->svms; 3175 int i; 3176 3177 svms->objects = RB_ROOT_CACHED; 3178 mutex_init(&svms->lock); 3179 INIT_LIST_HEAD(&svms->list); 3180 atomic_set(&svms->evicted_ranges, 0); 3181 atomic_set(&svms->drain_pagefaults, 0); 3182 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); 3183 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); 3184 INIT_LIST_HEAD(&svms->deferred_range_list); 3185 INIT_LIST_HEAD(&svms->criu_svm_metadata_list); 3186 spin_lock_init(&svms->deferred_list_lock); 3187 3188 for (i = 0; i < p->n_pdds; i++) 3189 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev)) 3190 bitmap_set(svms->bitmap_supported, i, 1); 3191 3192 return 0; 3193 } 3194 3195 /** 3196 * svm_range_check_vm - check if virtual address range mapped already 3197 * @p: current kfd_process 3198 * @start: range start address, in pages 3199 * @last: range last address, in pages 3200 * @bo_s: mapping start address in pages if address range already mapped 3201 * @bo_l: mapping last address in pages if address range already mapped 3202 * 3203 * The purpose is to avoid virtual address ranges already allocated by 3204 * kfd_ioctl_alloc_memory_of_gpu ioctl. 3205 * It looks for each pdd in the kfd_process. 3206 * 3207 * Context: Process context 3208 * 3209 * Return 0 - OK, if the range is not mapped. 3210 * Otherwise error code: 3211 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu 3212 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by 3213 * a signal. Release all buffer reservations and return to user-space. 3214 */ 3215 static int 3216 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 3217 uint64_t *bo_s, uint64_t *bo_l) 3218 { 3219 struct amdgpu_bo_va_mapping *mapping; 3220 struct interval_tree_node *node; 3221 uint32_t i; 3222 int r; 3223 3224 for (i = 0; i < p->n_pdds; i++) { 3225 struct amdgpu_vm *vm; 3226 3227 if (!p->pdds[i]->drm_priv) 3228 continue; 3229 3230 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 3231 r = amdgpu_bo_reserve(vm->root.bo, false); 3232 if (r) 3233 return r; 3234 3235 node = interval_tree_iter_first(&vm->va, start, last); 3236 if (node) { 3237 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", 3238 start, last); 3239 mapping = container_of((struct rb_node *)node, 3240 struct amdgpu_bo_va_mapping, rb); 3241 if (bo_s && bo_l) { 3242 *bo_s = mapping->start; 3243 *bo_l = mapping->last; 3244 } 3245 amdgpu_bo_unreserve(vm->root.bo); 3246 return -EADDRINUSE; 3247 } 3248 amdgpu_bo_unreserve(vm->root.bo); 3249 } 3250 3251 return 0; 3252 } 3253 3254 /** 3255 * svm_range_is_valid - check if virtual address range is valid 3256 * @p: current kfd_process 3257 * @start: range start address, in pages 3258 * @size: range size, in pages 3259 * 3260 * Valid virtual address range means it belongs to one or more VMAs 3261 * 3262 * Context: Process context 3263 * 3264 * Return: 3265 * 0 - OK, otherwise error code 3266 */ 3267 static int 3268 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) 3269 { 3270 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 3271 struct vm_area_struct *vma; 3272 unsigned long end; 3273 unsigned long start_unchg = start; 3274 3275 start <<= PAGE_SHIFT; 3276 end = start + (size << PAGE_SHIFT); 3277 do { 3278 vma = vma_lookup(p->mm, start); 3279 if (!vma || (vma->vm_flags & device_vma)) 3280 return -EFAULT; 3281 start = min(end, vma->vm_end); 3282 } while (start < end); 3283 3284 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, 3285 NULL); 3286 } 3287 3288 /** 3289 * svm_range_best_prefetch_location - decide the best prefetch location 3290 * @prange: svm range structure 3291 * 3292 * For xnack off: 3293 * If range map to single GPU, the best prefetch location is prefetch_loc, which 3294 * can be CPU or GPU. 3295 * 3296 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on 3297 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise 3298 * the best prefetch location is always CPU, because GPU can not have coherent 3299 * mapping VRAM of other GPUs even with large-BAR PCIe connection. 3300 * 3301 * For xnack on: 3302 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is 3303 * prefetch_loc, other GPU access will generate vm fault and trigger migration. 3304 * 3305 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same 3306 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best 3307 * prefetch location is always CPU. 3308 * 3309 * Context: Process context 3310 * 3311 * Return: 3312 * 0 for CPU or GPU id 3313 */ 3314 static uint32_t 3315 svm_range_best_prefetch_location(struct svm_range *prange) 3316 { 3317 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 3318 uint32_t best_loc = prange->prefetch_loc; 3319 struct kfd_process_device *pdd; 3320 struct kfd_node *bo_node; 3321 struct kfd_process *p; 3322 uint32_t gpuidx; 3323 3324 p = container_of(prange->svms, struct kfd_process, svms); 3325 3326 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) 3327 goto out; 3328 3329 bo_node = svm_range_get_node_by_id(prange, best_loc); 3330 if (!bo_node) { 3331 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc); 3332 best_loc = 0; 3333 goto out; 3334 } 3335 3336 if (bo_node->adev->gmc.is_app_apu) { 3337 best_loc = 0; 3338 goto out; 3339 } 3340 3341 if (p->xnack_enabled) 3342 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 3343 else 3344 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 3345 MAX_GPU_INSTANCE); 3346 3347 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 3348 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 3349 if (!pdd) { 3350 pr_debug("failed to get device by idx 0x%x\n", gpuidx); 3351 continue; 3352 } 3353 3354 if (pdd->dev->adev == bo_node->adev) 3355 continue; 3356 3357 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) { 3358 best_loc = 0; 3359 break; 3360 } 3361 } 3362 3363 out: 3364 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", 3365 p->xnack_enabled, &p->svms, prange->start, prange->last, 3366 best_loc); 3367 3368 return best_loc; 3369 } 3370 3371 /* svm_range_trigger_migration - start page migration if prefetch loc changed 3372 * @mm: current process mm_struct 3373 * @prange: svm range structure 3374 * @migrated: output, true if migration is triggered 3375 * 3376 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range 3377 * from ram to vram. 3378 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range 3379 * from vram to ram. 3380 * 3381 * If GPU vm fault retry is not enabled, migration interact with MMU notifier 3382 * and restore work: 3383 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict 3384 * stops all queues, schedule restore work 3385 * 2. svm_range_restore_work wait for migration is done by 3386 * a. svm_range_validate_vram takes prange->migrate_mutex 3387 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns 3388 * 3. restore work update mappings of GPU, resume all queues. 3389 * 3390 * Context: Process context 3391 * 3392 * Return: 3393 * 0 - OK, otherwise - error code of migration 3394 */ 3395 static int 3396 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, 3397 bool *migrated) 3398 { 3399 uint32_t best_loc; 3400 int r = 0; 3401 3402 *migrated = false; 3403 best_loc = svm_range_best_prefetch_location(prange); 3404 3405 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3406 best_loc == prange->actual_loc) 3407 return 0; 3408 3409 if (!best_loc) { 3410 r = svm_migrate_vram_to_ram(prange, mm, 3411 KFD_MIGRATE_TRIGGER_PREFETCH, NULL); 3412 *migrated = !r; 3413 return r; 3414 } 3415 3416 r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH); 3417 *migrated = !r; 3418 3419 return 0; 3420 } 3421 3422 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) 3423 { 3424 /* Dereferencing fence->svm_bo is safe here because the fence hasn't 3425 * signaled yet and we're under the protection of the fence->lock. 3426 * After the fence is signaled in svm_range_bo_release, we cannot get 3427 * here any more. 3428 * 3429 * Reference is dropped in svm_range_evict_svm_bo_worker. 3430 */ 3431 if (svm_bo_ref_unless_zero(fence->svm_bo)) { 3432 WRITE_ONCE(fence->svm_bo->evicting, 1); 3433 schedule_work(&fence->svm_bo->eviction_work); 3434 } 3435 3436 return 0; 3437 } 3438 3439 static void svm_range_evict_svm_bo_worker(struct work_struct *work) 3440 { 3441 struct svm_range_bo *svm_bo; 3442 struct mm_struct *mm; 3443 int r = 0; 3444 3445 svm_bo = container_of(work, struct svm_range_bo, eviction_work); 3446 3447 if (mmget_not_zero(svm_bo->eviction_fence->mm)) { 3448 mm = svm_bo->eviction_fence->mm; 3449 } else { 3450 svm_range_bo_unref(svm_bo); 3451 return; 3452 } 3453 3454 mmap_read_lock(mm); 3455 spin_lock(&svm_bo->list_lock); 3456 while (!list_empty(&svm_bo->range_list) && !r) { 3457 struct svm_range *prange = 3458 list_first_entry(&svm_bo->range_list, 3459 struct svm_range, svm_bo_list); 3460 int retries = 3; 3461 3462 list_del_init(&prange->svm_bo_list); 3463 spin_unlock(&svm_bo->list_lock); 3464 3465 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 3466 prange->start, prange->last); 3467 3468 mutex_lock(&prange->migrate_mutex); 3469 do { 3470 r = svm_migrate_vram_to_ram(prange, mm, 3471 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL); 3472 } while (!r && prange->actual_loc && --retries); 3473 3474 if (!r && prange->actual_loc) 3475 pr_info_once("Migration failed during eviction"); 3476 3477 if (!prange->actual_loc) { 3478 mutex_lock(&prange->lock); 3479 prange->svm_bo = NULL; 3480 mutex_unlock(&prange->lock); 3481 } 3482 mutex_unlock(&prange->migrate_mutex); 3483 3484 spin_lock(&svm_bo->list_lock); 3485 } 3486 spin_unlock(&svm_bo->list_lock); 3487 mmap_read_unlock(mm); 3488 mmput(mm); 3489 3490 dma_fence_signal(&svm_bo->eviction_fence->base); 3491 3492 /* This is the last reference to svm_bo, after svm_range_vram_node_free 3493 * has been called in svm_migrate_vram_to_ram 3494 */ 3495 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); 3496 svm_range_bo_unref(svm_bo); 3497 } 3498 3499 static int 3500 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, 3501 uint64_t start, uint64_t size, uint32_t nattr, 3502 struct kfd_ioctl_svm_attribute *attrs) 3503 { 3504 struct amdkfd_process_info *process_info = p->kgd_process_info; 3505 struct list_head update_list; 3506 struct list_head insert_list; 3507 struct list_head remove_list; 3508 struct svm_range_list *svms; 3509 struct svm_range *prange; 3510 struct svm_range *next; 3511 bool update_mapping = false; 3512 bool flush_tlb; 3513 int r, ret = 0; 3514 3515 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", 3516 p->pasid, &p->svms, start, start + size - 1, size); 3517 3518 r = svm_range_check_attr(p, nattr, attrs); 3519 if (r) 3520 return r; 3521 3522 svms = &p->svms; 3523 3524 mutex_lock(&process_info->lock); 3525 3526 svm_range_list_lock_and_flush_work(svms, mm); 3527 3528 r = svm_range_is_valid(p, start, size); 3529 if (r) { 3530 pr_debug("invalid range r=%d\n", r); 3531 mmap_write_unlock(mm); 3532 goto out; 3533 } 3534 3535 mutex_lock(&svms->lock); 3536 3537 /* Add new range and split existing ranges as needed */ 3538 r = svm_range_add(p, start, size, nattr, attrs, &update_list, 3539 &insert_list, &remove_list); 3540 if (r) { 3541 mutex_unlock(&svms->lock); 3542 mmap_write_unlock(mm); 3543 goto out; 3544 } 3545 /* Apply changes as a transaction */ 3546 list_for_each_entry_safe(prange, next, &insert_list, list) { 3547 svm_range_add_to_svms(prange); 3548 svm_range_add_notifier_locked(mm, prange); 3549 } 3550 list_for_each_entry(prange, &update_list, update_list) { 3551 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping); 3552 /* TODO: unmap ranges from GPU that lost access */ 3553 } 3554 list_for_each_entry_safe(prange, next, &remove_list, update_list) { 3555 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", 3556 prange->svms, prange, prange->start, 3557 prange->last); 3558 svm_range_unlink(prange); 3559 svm_range_remove_notifier(prange); 3560 svm_range_free(prange, false); 3561 } 3562 3563 mmap_write_downgrade(mm); 3564 /* Trigger migrations and revalidate and map to GPUs as needed. If 3565 * this fails we may be left with partially completed actions. There 3566 * is no clean way of rolling back to the previous state in such a 3567 * case because the rollback wouldn't be guaranteed to work either. 3568 */ 3569 list_for_each_entry(prange, &update_list, update_list) { 3570 bool migrated; 3571 3572 mutex_lock(&prange->migrate_mutex); 3573 3574 r = svm_range_trigger_migration(mm, prange, &migrated); 3575 if (r) 3576 goto out_unlock_range; 3577 3578 if (migrated && (!p->xnack_enabled || 3579 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) && 3580 prange->mapped_to_gpu) { 3581 pr_debug("restore_work will update mappings of GPUs\n"); 3582 mutex_unlock(&prange->migrate_mutex); 3583 continue; 3584 } 3585 3586 if (!migrated && !update_mapping) { 3587 mutex_unlock(&prange->migrate_mutex); 3588 continue; 3589 } 3590 3591 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu; 3592 3593 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 3594 true, true, flush_tlb); 3595 if (r) 3596 pr_debug("failed %d to map svm range\n", r); 3597 3598 out_unlock_range: 3599 mutex_unlock(&prange->migrate_mutex); 3600 if (r) 3601 ret = r; 3602 } 3603 3604 dynamic_svm_range_dump(svms); 3605 3606 mutex_unlock(&svms->lock); 3607 mmap_read_unlock(mm); 3608 out: 3609 mutex_unlock(&process_info->lock); 3610 3611 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, 3612 &p->svms, start, start + size - 1, r); 3613 3614 return ret ? ret : r; 3615 } 3616 3617 static int 3618 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, 3619 uint64_t start, uint64_t size, uint32_t nattr, 3620 struct kfd_ioctl_svm_attribute *attrs) 3621 { 3622 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); 3623 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); 3624 bool get_preferred_loc = false; 3625 bool get_prefetch_loc = false; 3626 bool get_granularity = false; 3627 bool get_accessible = false; 3628 bool get_flags = false; 3629 uint64_t last = start + size - 1UL; 3630 uint8_t granularity = 0xff; 3631 struct interval_tree_node *node; 3632 struct svm_range_list *svms; 3633 struct svm_range *prange; 3634 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3635 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3636 uint32_t flags_and = 0xffffffff; 3637 uint32_t flags_or = 0; 3638 int gpuidx; 3639 uint32_t i; 3640 int r = 0; 3641 3642 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, 3643 start + size - 1, nattr); 3644 3645 /* Flush pending deferred work to avoid racing with deferred actions from 3646 * previous memory map changes (e.g. munmap). Concurrent memory map changes 3647 * can still race with get_attr because we don't hold the mmap lock. But that 3648 * would be a race condition in the application anyway, and undefined 3649 * behaviour is acceptable in that case. 3650 */ 3651 flush_work(&p->svms.deferred_list_work); 3652 3653 mmap_read_lock(mm); 3654 r = svm_range_is_valid(p, start, size); 3655 mmap_read_unlock(mm); 3656 if (r) { 3657 pr_debug("invalid range r=%d\n", r); 3658 return r; 3659 } 3660 3661 for (i = 0; i < nattr; i++) { 3662 switch (attrs[i].type) { 3663 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3664 get_preferred_loc = true; 3665 break; 3666 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3667 get_prefetch_loc = true; 3668 break; 3669 case KFD_IOCTL_SVM_ATTR_ACCESS: 3670 get_accessible = true; 3671 break; 3672 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3673 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3674 get_flags = true; 3675 break; 3676 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3677 get_granularity = true; 3678 break; 3679 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 3680 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 3681 fallthrough; 3682 default: 3683 pr_debug("get invalid attr type 0x%x\n", attrs[i].type); 3684 return -EINVAL; 3685 } 3686 } 3687 3688 svms = &p->svms; 3689 3690 mutex_lock(&svms->lock); 3691 3692 node = interval_tree_iter_first(&svms->objects, start, last); 3693 if (!node) { 3694 pr_debug("range attrs not found return default values\n"); 3695 svm_range_set_default_attributes(&location, &prefetch_loc, 3696 &granularity, &flags_and); 3697 flags_or = flags_and; 3698 if (p->xnack_enabled) 3699 bitmap_copy(bitmap_access, svms->bitmap_supported, 3700 MAX_GPU_INSTANCE); 3701 else 3702 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); 3703 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); 3704 goto fill_values; 3705 } 3706 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); 3707 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); 3708 3709 while (node) { 3710 struct interval_tree_node *next; 3711 3712 prange = container_of(node, struct svm_range, it_node); 3713 next = interval_tree_iter_next(node, start, last); 3714 3715 if (get_preferred_loc) { 3716 if (prange->preferred_loc == 3717 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3718 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3719 location != prange->preferred_loc)) { 3720 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3721 get_preferred_loc = false; 3722 } else { 3723 location = prange->preferred_loc; 3724 } 3725 } 3726 if (get_prefetch_loc) { 3727 if (prange->prefetch_loc == 3728 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3729 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3730 prefetch_loc != prange->prefetch_loc)) { 3731 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3732 get_prefetch_loc = false; 3733 } else { 3734 prefetch_loc = prange->prefetch_loc; 3735 } 3736 } 3737 if (get_accessible) { 3738 bitmap_and(bitmap_access, bitmap_access, 3739 prange->bitmap_access, MAX_GPU_INSTANCE); 3740 bitmap_and(bitmap_aip, bitmap_aip, 3741 prange->bitmap_aip, MAX_GPU_INSTANCE); 3742 } 3743 if (get_flags) { 3744 flags_and &= prange->flags; 3745 flags_or |= prange->flags; 3746 } 3747 3748 if (get_granularity && prange->granularity < granularity) 3749 granularity = prange->granularity; 3750 3751 node = next; 3752 } 3753 fill_values: 3754 mutex_unlock(&svms->lock); 3755 3756 for (i = 0; i < nattr; i++) { 3757 switch (attrs[i].type) { 3758 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3759 attrs[i].value = location; 3760 break; 3761 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3762 attrs[i].value = prefetch_loc; 3763 break; 3764 case KFD_IOCTL_SVM_ATTR_ACCESS: 3765 gpuidx = kfd_process_gpuidx_from_gpuid(p, 3766 attrs[i].value); 3767 if (gpuidx < 0) { 3768 pr_debug("invalid gpuid %x\n", attrs[i].value); 3769 return -EINVAL; 3770 } 3771 if (test_bit(gpuidx, bitmap_access)) 3772 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; 3773 else if (test_bit(gpuidx, bitmap_aip)) 3774 attrs[i].type = 3775 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; 3776 else 3777 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; 3778 break; 3779 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3780 attrs[i].value = flags_and; 3781 break; 3782 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3783 attrs[i].value = ~flags_or; 3784 break; 3785 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3786 attrs[i].value = (uint32_t)granularity; 3787 break; 3788 } 3789 } 3790 3791 return 0; 3792 } 3793 3794 int kfd_criu_resume_svm(struct kfd_process *p) 3795 { 3796 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; 3797 int nattr_common = 4, nattr_accessibility = 1; 3798 struct criu_svm_metadata *criu_svm_md = NULL; 3799 struct svm_range_list *svms = &p->svms; 3800 struct criu_svm_metadata *next = NULL; 3801 uint32_t set_flags = 0xffffffff; 3802 int i, j, num_attrs, ret = 0; 3803 uint64_t set_attr_size; 3804 struct mm_struct *mm; 3805 3806 if (list_empty(&svms->criu_svm_metadata_list)) { 3807 pr_debug("No SVM data from CRIU restore stage 2\n"); 3808 return ret; 3809 } 3810 3811 mm = get_task_mm(p->lead_thread); 3812 if (!mm) { 3813 pr_err("failed to get mm for the target process\n"); 3814 return -ESRCH; 3815 } 3816 3817 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); 3818 3819 i = j = 0; 3820 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { 3821 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", 3822 i, criu_svm_md->data.start_addr, criu_svm_md->data.size); 3823 3824 for (j = 0; j < num_attrs; j++) { 3825 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", 3826 i, j, criu_svm_md->data.attrs[j].type, 3827 i, j, criu_svm_md->data.attrs[j].value); 3828 switch (criu_svm_md->data.attrs[j].type) { 3829 /* During Checkpoint operation, the query for 3830 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might 3831 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were 3832 * not used by the range which was checkpointed. Care 3833 * must be taken to not restore with an invalid value 3834 * otherwise the gpuidx value will be invalid and 3835 * set_attr would eventually fail so just replace those 3836 * with another dummy attribute such as 3837 * KFD_IOCTL_SVM_ATTR_SET_FLAGS. 3838 */ 3839 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3840 if (criu_svm_md->data.attrs[j].value == 3841 KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 3842 criu_svm_md->data.attrs[j].type = 3843 KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3844 criu_svm_md->data.attrs[j].value = 0; 3845 } 3846 break; 3847 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3848 set_flags = criu_svm_md->data.attrs[j].value; 3849 break; 3850 default: 3851 break; 3852 } 3853 } 3854 3855 /* CLR_FLAGS is not available via get_attr during checkpoint but 3856 * it needs to be inserted before restoring the ranges so 3857 * allocate extra space for it before calling set_attr 3858 */ 3859 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3860 (num_attrs + 1); 3861 set_attr_new = krealloc(set_attr, set_attr_size, 3862 GFP_KERNEL); 3863 if (!set_attr_new) { 3864 ret = -ENOMEM; 3865 goto exit; 3866 } 3867 set_attr = set_attr_new; 3868 3869 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * 3870 sizeof(struct kfd_ioctl_svm_attribute)); 3871 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; 3872 set_attr[num_attrs].value = ~set_flags; 3873 3874 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, 3875 criu_svm_md->data.size, num_attrs + 1, 3876 set_attr); 3877 if (ret) { 3878 pr_err("CRIU: failed to set range attributes\n"); 3879 goto exit; 3880 } 3881 3882 i++; 3883 } 3884 exit: 3885 kfree(set_attr); 3886 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { 3887 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", 3888 criu_svm_md->data.start_addr); 3889 kfree(criu_svm_md); 3890 } 3891 3892 mmput(mm); 3893 return ret; 3894 3895 } 3896 3897 int kfd_criu_restore_svm(struct kfd_process *p, 3898 uint8_t __user *user_priv_ptr, 3899 uint64_t *priv_data_offset, 3900 uint64_t max_priv_data_size) 3901 { 3902 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; 3903 int nattr_common = 4, nattr_accessibility = 1; 3904 struct criu_svm_metadata *criu_svm_md = NULL; 3905 struct svm_range_list *svms = &p->svms; 3906 uint32_t num_devices; 3907 int ret = 0; 3908 3909 num_devices = p->n_pdds; 3910 /* Handle one SVM range object at a time, also the number of gpus are 3911 * assumed to be same on the restore node, checking must be done while 3912 * evaluating the topology earlier 3913 */ 3914 3915 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * 3916 (nattr_common + nattr_accessibility * num_devices); 3917 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; 3918 3919 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3920 svm_attrs_size; 3921 3922 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); 3923 if (!criu_svm_md) { 3924 pr_err("failed to allocate memory to store svm metadata\n"); 3925 return -ENOMEM; 3926 } 3927 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { 3928 ret = -EINVAL; 3929 goto exit; 3930 } 3931 3932 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, 3933 svm_priv_data_size); 3934 if (ret) { 3935 ret = -EFAULT; 3936 goto exit; 3937 } 3938 *priv_data_offset += svm_priv_data_size; 3939 3940 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); 3941 3942 return 0; 3943 3944 3945 exit: 3946 kfree(criu_svm_md); 3947 return ret; 3948 } 3949 3950 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, 3951 uint64_t *svm_priv_data_size) 3952 { 3953 uint64_t total_size, accessibility_size, common_attr_size; 3954 int nattr_common = 4, nattr_accessibility = 1; 3955 int num_devices = p->n_pdds; 3956 struct svm_range_list *svms; 3957 struct svm_range *prange; 3958 uint32_t count = 0; 3959 3960 *svm_priv_data_size = 0; 3961 3962 svms = &p->svms; 3963 if (!svms) 3964 return -EINVAL; 3965 3966 mutex_lock(&svms->lock); 3967 list_for_each_entry(prange, &svms->list, list) { 3968 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", 3969 prange, prange->start, prange->npages, 3970 prange->start + prange->npages - 1); 3971 count++; 3972 } 3973 mutex_unlock(&svms->lock); 3974 3975 *num_svm_ranges = count; 3976 /* Only the accessbility attributes need to be queried for all the gpus 3977 * individually, remaining ones are spanned across the entire process 3978 * regardless of the various gpu nodes. Of the remaining attributes, 3979 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. 3980 * 3981 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC 3982 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC 3983 * KFD_IOCTL_SVM_ATTR_SET_FLAGS 3984 * KFD_IOCTL_SVM_ATTR_GRANULARITY 3985 * 3986 * ** ACCESSBILITY ATTRIBUTES ** 3987 * (Considered as one, type is altered during query, value is gpuid) 3988 * KFD_IOCTL_SVM_ATTR_ACCESS 3989 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE 3990 * KFD_IOCTL_SVM_ATTR_NO_ACCESS 3991 */ 3992 if (*num_svm_ranges > 0) { 3993 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3994 nattr_common; 3995 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * 3996 nattr_accessibility * num_devices; 3997 3998 total_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3999 common_attr_size + accessibility_size; 4000 4001 *svm_priv_data_size = *num_svm_ranges * total_size; 4002 } 4003 4004 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, 4005 *svm_priv_data_size); 4006 return 0; 4007 } 4008 4009 int kfd_criu_checkpoint_svm(struct kfd_process *p, 4010 uint8_t __user *user_priv_data, 4011 uint64_t *priv_data_offset) 4012 { 4013 struct kfd_criu_svm_range_priv_data *svm_priv = NULL; 4014 struct kfd_ioctl_svm_attribute *query_attr = NULL; 4015 uint64_t svm_priv_data_size, query_attr_size = 0; 4016 int index, nattr_common = 4, ret = 0; 4017 struct svm_range_list *svms; 4018 int num_devices = p->n_pdds; 4019 struct svm_range *prange; 4020 struct mm_struct *mm; 4021 4022 svms = &p->svms; 4023 if (!svms) 4024 return -EINVAL; 4025 4026 mm = get_task_mm(p->lead_thread); 4027 if (!mm) { 4028 pr_err("failed to get mm for the target process\n"); 4029 return -ESRCH; 4030 } 4031 4032 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 4033 (nattr_common + num_devices); 4034 4035 query_attr = kzalloc(query_attr_size, GFP_KERNEL); 4036 if (!query_attr) { 4037 ret = -ENOMEM; 4038 goto exit; 4039 } 4040 4041 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; 4042 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; 4043 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; 4044 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; 4045 4046 for (index = 0; index < num_devices; index++) { 4047 struct kfd_process_device *pdd = p->pdds[index]; 4048 4049 query_attr[index + nattr_common].type = 4050 KFD_IOCTL_SVM_ATTR_ACCESS; 4051 query_attr[index + nattr_common].value = pdd->user_gpu_id; 4052 } 4053 4054 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; 4055 4056 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); 4057 if (!svm_priv) { 4058 ret = -ENOMEM; 4059 goto exit_query; 4060 } 4061 4062 index = 0; 4063 list_for_each_entry(prange, &svms->list, list) { 4064 4065 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; 4066 svm_priv->start_addr = prange->start; 4067 svm_priv->size = prange->npages; 4068 memcpy(&svm_priv->attrs, query_attr, query_attr_size); 4069 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", 4070 prange, prange->start, prange->npages, 4071 prange->start + prange->npages - 1, 4072 prange->npages * PAGE_SIZE); 4073 4074 ret = svm_range_get_attr(p, mm, svm_priv->start_addr, 4075 svm_priv->size, 4076 (nattr_common + num_devices), 4077 svm_priv->attrs); 4078 if (ret) { 4079 pr_err("CRIU: failed to obtain range attributes\n"); 4080 goto exit_priv; 4081 } 4082 4083 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, 4084 svm_priv_data_size)) { 4085 pr_err("Failed to copy svm priv to user\n"); 4086 ret = -EFAULT; 4087 goto exit_priv; 4088 } 4089 4090 *priv_data_offset += svm_priv_data_size; 4091 4092 } 4093 4094 4095 exit_priv: 4096 kfree(svm_priv); 4097 exit_query: 4098 kfree(query_attr); 4099 exit: 4100 mmput(mm); 4101 return ret; 4102 } 4103 4104 int 4105 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, 4106 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) 4107 { 4108 struct mm_struct *mm = current->mm; 4109 int r; 4110 4111 start >>= PAGE_SHIFT; 4112 size >>= PAGE_SHIFT; 4113 4114 switch (op) { 4115 case KFD_IOCTL_SVM_OP_SET_ATTR: 4116 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); 4117 break; 4118 case KFD_IOCTL_SVM_OP_GET_ATTR: 4119 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); 4120 break; 4121 default: 4122 r = EINVAL; 4123 break; 4124 } 4125 4126 return r; 4127 } 4128