1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/sched/task.h> 26 #include "amdgpu_sync.h" 27 #include "amdgpu_object.h" 28 #include "amdgpu_vm.h" 29 #include "amdgpu_mn.h" 30 #include "amdgpu.h" 31 #include "amdgpu_xgmi.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 36 #ifdef dev_fmt 37 #undef dev_fmt 38 #endif 39 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ 40 41 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 42 43 /* Long enough to ensure no retry fault comes after svm range is restored and 44 * page table is updated. 45 */ 46 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000 47 48 struct criu_svm_metadata { 49 struct list_head list; 50 struct kfd_criu_svm_range_priv_data data; 51 }; 52 53 static void svm_range_evict_svm_bo_worker(struct work_struct *work); 54 static bool 55 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 56 const struct mmu_notifier_range *range, 57 unsigned long cur_seq); 58 static int 59 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 60 uint64_t *bo_s, uint64_t *bo_l); 61 static const struct mmu_interval_notifier_ops svm_range_mn_ops = { 62 .invalidate = svm_range_cpu_invalidate_pagetables, 63 }; 64 65 /** 66 * svm_range_unlink - unlink svm_range from lists and interval tree 67 * @prange: svm range structure to be removed 68 * 69 * Remove the svm_range from the svms and svm_bo lists and the svms 70 * interval tree. 71 * 72 * Context: The caller must hold svms->lock 73 */ 74 static void svm_range_unlink(struct svm_range *prange) 75 { 76 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 77 prange, prange->start, prange->last); 78 79 if (prange->svm_bo) { 80 spin_lock(&prange->svm_bo->list_lock); 81 list_del(&prange->svm_bo_list); 82 spin_unlock(&prange->svm_bo->list_lock); 83 } 84 85 list_del(&prange->list); 86 if (prange->it_node.start != 0 && prange->it_node.last != 0) 87 interval_tree_remove(&prange->it_node, &prange->svms->objects); 88 } 89 90 static void 91 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) 92 { 93 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 94 prange, prange->start, prange->last); 95 96 mmu_interval_notifier_insert_locked(&prange->notifier, mm, 97 prange->start << PAGE_SHIFT, 98 prange->npages << PAGE_SHIFT, 99 &svm_range_mn_ops); 100 } 101 102 /** 103 * svm_range_add_to_svms - add svm range to svms 104 * @prange: svm range structure to be added 105 * 106 * Add the svm range to svms interval tree and link list 107 * 108 * Context: The caller must hold svms->lock 109 */ 110 static void svm_range_add_to_svms(struct svm_range *prange) 111 { 112 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 113 prange, prange->start, prange->last); 114 115 list_move_tail(&prange->list, &prange->svms->list); 116 prange->it_node.start = prange->start; 117 prange->it_node.last = prange->last; 118 interval_tree_insert(&prange->it_node, &prange->svms->objects); 119 } 120 121 static void svm_range_remove_notifier(struct svm_range *prange) 122 { 123 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", 124 prange->svms, prange, 125 prange->notifier.interval_tree.start >> PAGE_SHIFT, 126 prange->notifier.interval_tree.last >> PAGE_SHIFT); 127 128 if (prange->notifier.interval_tree.start != 0 && 129 prange->notifier.interval_tree.last != 0) 130 mmu_interval_notifier_remove(&prange->notifier); 131 } 132 133 static bool 134 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) 135 { 136 return dma_addr && !dma_mapping_error(dev, dma_addr) && 137 !(dma_addr & SVM_RANGE_VRAM_DOMAIN); 138 } 139 140 static int 141 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, 142 unsigned long offset, unsigned long npages, 143 unsigned long *hmm_pfns, uint32_t gpuidx) 144 { 145 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 146 dma_addr_t *addr = prange->dma_addr[gpuidx]; 147 struct device *dev = adev->dev; 148 struct page *page; 149 int i, r; 150 151 if (!addr) { 152 addr = kvmalloc_array(prange->npages, sizeof(*addr), 153 GFP_KERNEL | __GFP_ZERO); 154 if (!addr) 155 return -ENOMEM; 156 prange->dma_addr[gpuidx] = addr; 157 } 158 159 addr += offset; 160 for (i = 0; i < npages; i++) { 161 if (svm_is_valid_dma_mapping_addr(dev, addr[i])) 162 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); 163 164 page = hmm_pfn_to_page(hmm_pfns[i]); 165 if (is_zone_device_page(page)) { 166 struct amdgpu_device *bo_adev = 167 amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 168 169 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + 170 bo_adev->vm_manager.vram_base_offset - 171 bo_adev->kfd.dev->pgmap.range.start; 172 addr[i] |= SVM_RANGE_VRAM_DOMAIN; 173 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); 174 continue; 175 } 176 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 177 r = dma_mapping_error(dev, addr[i]); 178 if (r) { 179 dev_err(dev, "failed %d dma_map_page\n", r); 180 return r; 181 } 182 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", 183 addr[i] >> PAGE_SHIFT, page_to_pfn(page)); 184 } 185 return 0; 186 } 187 188 static int 189 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, 190 unsigned long offset, unsigned long npages, 191 unsigned long *hmm_pfns) 192 { 193 struct kfd_process *p; 194 uint32_t gpuidx; 195 int r; 196 197 p = container_of(prange->svms, struct kfd_process, svms); 198 199 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 200 struct kfd_process_device *pdd; 201 202 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 203 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 204 if (!pdd) { 205 pr_debug("failed to find device idx %d\n", gpuidx); 206 return -EINVAL; 207 } 208 209 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, 210 hmm_pfns, gpuidx); 211 if (r) 212 break; 213 } 214 215 return r; 216 } 217 218 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr, 219 unsigned long offset, unsigned long npages) 220 { 221 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 222 int i; 223 224 if (!dma_addr) 225 return; 226 227 for (i = offset; i < offset + npages; i++) { 228 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) 229 continue; 230 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); 231 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); 232 dma_addr[i] = 0; 233 } 234 } 235 236 void svm_range_free_dma_mappings(struct svm_range *prange) 237 { 238 struct kfd_process_device *pdd; 239 dma_addr_t *dma_addr; 240 struct device *dev; 241 struct kfd_process *p; 242 uint32_t gpuidx; 243 244 p = container_of(prange->svms, struct kfd_process, svms); 245 246 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 247 dma_addr = prange->dma_addr[gpuidx]; 248 if (!dma_addr) 249 continue; 250 251 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 252 if (!pdd) { 253 pr_debug("failed to find device idx %d\n", gpuidx); 254 continue; 255 } 256 dev = &pdd->dev->pdev->dev; 257 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages); 258 kvfree(dma_addr); 259 prange->dma_addr[gpuidx] = NULL; 260 } 261 } 262 263 static void svm_range_free(struct svm_range *prange) 264 { 265 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, 266 prange->start, prange->last); 267 268 svm_range_vram_node_free(prange); 269 svm_range_free_dma_mappings(prange); 270 mutex_destroy(&prange->lock); 271 mutex_destroy(&prange->migrate_mutex); 272 kfree(prange); 273 } 274 275 static void 276 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, 277 uint8_t *granularity, uint32_t *flags) 278 { 279 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 280 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 281 *granularity = 9; 282 *flags = 283 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; 284 } 285 286 static struct 287 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, 288 uint64_t last) 289 { 290 uint64_t size = last - start + 1; 291 struct svm_range *prange; 292 struct kfd_process *p; 293 294 prange = kzalloc(sizeof(*prange), GFP_KERNEL); 295 if (!prange) 296 return NULL; 297 prange->npages = size; 298 prange->svms = svms; 299 prange->start = start; 300 prange->last = last; 301 INIT_LIST_HEAD(&prange->list); 302 INIT_LIST_HEAD(&prange->update_list); 303 INIT_LIST_HEAD(&prange->svm_bo_list); 304 INIT_LIST_HEAD(&prange->deferred_list); 305 INIT_LIST_HEAD(&prange->child_list); 306 atomic_set(&prange->invalid, 0); 307 prange->validate_timestamp = 0; 308 mutex_init(&prange->migrate_mutex); 309 mutex_init(&prange->lock); 310 311 p = container_of(svms, struct kfd_process, svms); 312 if (p->xnack_enabled) 313 bitmap_copy(prange->bitmap_access, svms->bitmap_supported, 314 MAX_GPU_INSTANCE); 315 316 svm_range_set_default_attributes(&prange->preferred_loc, 317 &prange->prefetch_loc, 318 &prange->granularity, &prange->flags); 319 320 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); 321 322 return prange; 323 } 324 325 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) 326 { 327 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) 328 return false; 329 330 return true; 331 } 332 333 static void svm_range_bo_release(struct kref *kref) 334 { 335 struct svm_range_bo *svm_bo; 336 337 svm_bo = container_of(kref, struct svm_range_bo, kref); 338 pr_debug("svm_bo 0x%p\n", svm_bo); 339 340 spin_lock(&svm_bo->list_lock); 341 while (!list_empty(&svm_bo->range_list)) { 342 struct svm_range *prange = 343 list_first_entry(&svm_bo->range_list, 344 struct svm_range, svm_bo_list); 345 /* list_del_init tells a concurrent svm_range_vram_node_new when 346 * it's safe to reuse the svm_bo pointer and svm_bo_list head. 347 */ 348 list_del_init(&prange->svm_bo_list); 349 spin_unlock(&svm_bo->list_lock); 350 351 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 352 prange->start, prange->last); 353 mutex_lock(&prange->lock); 354 prange->svm_bo = NULL; 355 mutex_unlock(&prange->lock); 356 357 spin_lock(&svm_bo->list_lock); 358 } 359 spin_unlock(&svm_bo->list_lock); 360 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) { 361 /* We're not in the eviction worker. 362 * Signal the fence and synchronize with any 363 * pending eviction work. 364 */ 365 dma_fence_signal(&svm_bo->eviction_fence->base); 366 cancel_work_sync(&svm_bo->eviction_work); 367 } 368 dma_fence_put(&svm_bo->eviction_fence->base); 369 amdgpu_bo_unref(&svm_bo->bo); 370 kfree(svm_bo); 371 } 372 373 static void svm_range_bo_wq_release(struct work_struct *work) 374 { 375 struct svm_range_bo *svm_bo; 376 377 svm_bo = container_of(work, struct svm_range_bo, release_work); 378 svm_range_bo_release(&svm_bo->kref); 379 } 380 381 static void svm_range_bo_release_async(struct kref *kref) 382 { 383 struct svm_range_bo *svm_bo; 384 385 svm_bo = container_of(kref, struct svm_range_bo, kref); 386 pr_debug("svm_bo 0x%p\n", svm_bo); 387 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); 388 schedule_work(&svm_bo->release_work); 389 } 390 391 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) 392 { 393 kref_put(&svm_bo->kref, svm_range_bo_release_async); 394 } 395 396 static void svm_range_bo_unref(struct svm_range_bo *svm_bo) 397 { 398 if (svm_bo) 399 kref_put(&svm_bo->kref, svm_range_bo_release); 400 } 401 402 static bool 403 svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange) 404 { 405 struct amdgpu_device *bo_adev; 406 407 mutex_lock(&prange->lock); 408 if (!prange->svm_bo) { 409 mutex_unlock(&prange->lock); 410 return false; 411 } 412 if (prange->ttm_res) { 413 /* We still have a reference, all is well */ 414 mutex_unlock(&prange->lock); 415 return true; 416 } 417 if (svm_bo_ref_unless_zero(prange->svm_bo)) { 418 /* 419 * Migrate from GPU to GPU, remove range from source bo_adev 420 * svm_bo range list, and return false to allocate svm_bo from 421 * destination adev. 422 */ 423 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 424 if (bo_adev != adev) { 425 mutex_unlock(&prange->lock); 426 427 spin_lock(&prange->svm_bo->list_lock); 428 list_del_init(&prange->svm_bo_list); 429 spin_unlock(&prange->svm_bo->list_lock); 430 431 svm_range_bo_unref(prange->svm_bo); 432 return false; 433 } 434 if (READ_ONCE(prange->svm_bo->evicting)) { 435 struct dma_fence *f; 436 struct svm_range_bo *svm_bo; 437 /* The BO is getting evicted, 438 * we need to get a new one 439 */ 440 mutex_unlock(&prange->lock); 441 svm_bo = prange->svm_bo; 442 f = dma_fence_get(&svm_bo->eviction_fence->base); 443 svm_range_bo_unref(prange->svm_bo); 444 /* wait for the fence to avoid long spin-loop 445 * at list_empty_careful 446 */ 447 dma_fence_wait(f, false); 448 dma_fence_put(f); 449 } else { 450 /* The BO was still around and we got 451 * a new reference to it 452 */ 453 mutex_unlock(&prange->lock); 454 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", 455 prange->svms, prange->start, prange->last); 456 457 prange->ttm_res = prange->svm_bo->bo->tbo.resource; 458 return true; 459 } 460 461 } else { 462 mutex_unlock(&prange->lock); 463 } 464 465 /* We need a new svm_bo. Spin-loop to wait for concurrent 466 * svm_range_bo_release to finish removing this range from 467 * its range list. After this, it is safe to reuse the 468 * svm_bo pointer and svm_bo_list head. 469 */ 470 while (!list_empty_careful(&prange->svm_bo_list)) 471 ; 472 473 return false; 474 } 475 476 static struct svm_range_bo *svm_range_bo_new(void) 477 { 478 struct svm_range_bo *svm_bo; 479 480 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); 481 if (!svm_bo) 482 return NULL; 483 484 kref_init(&svm_bo->kref); 485 INIT_LIST_HEAD(&svm_bo->range_list); 486 spin_lock_init(&svm_bo->list_lock); 487 488 return svm_bo; 489 } 490 491 int 492 svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange, 493 bool clear) 494 { 495 struct amdgpu_bo_param bp; 496 struct svm_range_bo *svm_bo; 497 struct amdgpu_bo_user *ubo; 498 struct amdgpu_bo *bo; 499 struct kfd_process *p; 500 struct mm_struct *mm; 501 int r; 502 503 p = container_of(prange->svms, struct kfd_process, svms); 504 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, 505 prange->start, prange->last); 506 507 if (svm_range_validate_svm_bo(adev, prange)) 508 return 0; 509 510 svm_bo = svm_range_bo_new(); 511 if (!svm_bo) { 512 pr_debug("failed to alloc svm bo\n"); 513 return -ENOMEM; 514 } 515 mm = get_task_mm(p->lead_thread); 516 if (!mm) { 517 pr_debug("failed to get mm\n"); 518 kfree(svm_bo); 519 return -ESRCH; 520 } 521 svm_bo->svms = prange->svms; 522 svm_bo->eviction_fence = 523 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 524 mm, 525 svm_bo); 526 mmput(mm); 527 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); 528 svm_bo->evicting = 0; 529 memset(&bp, 0, sizeof(bp)); 530 bp.size = prange->npages * PAGE_SIZE; 531 bp.byte_align = PAGE_SIZE; 532 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 533 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 534 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; 535 bp.flags |= AMDGPU_AMDKFD_CREATE_SVM_BO; 536 bp.type = ttm_bo_type_device; 537 bp.resv = NULL; 538 539 r = amdgpu_bo_create_user(adev, &bp, &ubo); 540 if (r) { 541 pr_debug("failed %d to create bo\n", r); 542 goto create_bo_failed; 543 } 544 bo = &ubo->bo; 545 r = amdgpu_bo_reserve(bo, true); 546 if (r) { 547 pr_debug("failed %d to reserve bo\n", r); 548 goto reserve_bo_failed; 549 } 550 551 r = dma_resv_reserve_shared(bo->tbo.base.resv, 1); 552 if (r) { 553 pr_debug("failed %d to reserve bo\n", r); 554 amdgpu_bo_unreserve(bo); 555 goto reserve_bo_failed; 556 } 557 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); 558 559 amdgpu_bo_unreserve(bo); 560 561 svm_bo->bo = bo; 562 prange->svm_bo = svm_bo; 563 prange->ttm_res = bo->tbo.resource; 564 prange->offset = 0; 565 566 spin_lock(&svm_bo->list_lock); 567 list_add(&prange->svm_bo_list, &svm_bo->range_list); 568 spin_unlock(&svm_bo->list_lock); 569 570 return 0; 571 572 reserve_bo_failed: 573 amdgpu_bo_unref(&bo); 574 create_bo_failed: 575 dma_fence_put(&svm_bo->eviction_fence->base); 576 kfree(svm_bo); 577 prange->ttm_res = NULL; 578 579 return r; 580 } 581 582 void svm_range_vram_node_free(struct svm_range *prange) 583 { 584 svm_range_bo_unref(prange->svm_bo); 585 prange->ttm_res = NULL; 586 } 587 588 struct amdgpu_device * 589 svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id) 590 { 591 struct kfd_process_device *pdd; 592 struct kfd_process *p; 593 int32_t gpu_idx; 594 595 p = container_of(prange->svms, struct kfd_process, svms); 596 597 gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id); 598 if (gpu_idx < 0) { 599 pr_debug("failed to get device by id 0x%x\n", gpu_id); 600 return NULL; 601 } 602 pdd = kfd_process_device_from_gpuidx(p, gpu_idx); 603 if (!pdd) { 604 pr_debug("failed to get device by idx 0x%x\n", gpu_idx); 605 return NULL; 606 } 607 608 return pdd->dev->adev; 609 } 610 611 struct kfd_process_device * 612 svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev) 613 { 614 struct kfd_process *p; 615 int32_t gpu_idx, gpuid; 616 int r; 617 618 p = container_of(prange->svms, struct kfd_process, svms); 619 620 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpu_idx); 621 if (r) { 622 pr_debug("failed to get device id by adev %p\n", adev); 623 return NULL; 624 } 625 626 return kfd_process_device_from_gpuidx(p, gpu_idx); 627 } 628 629 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) 630 { 631 struct ttm_operation_ctx ctx = { false, false }; 632 633 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); 634 635 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 636 } 637 638 static int 639 svm_range_check_attr(struct kfd_process *p, 640 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 641 { 642 uint32_t i; 643 644 for (i = 0; i < nattr; i++) { 645 uint32_t val = attrs[i].value; 646 int gpuidx = MAX_GPU_INSTANCE; 647 648 switch (attrs[i].type) { 649 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 650 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && 651 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) 652 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 653 break; 654 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 655 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) 656 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 657 break; 658 case KFD_IOCTL_SVM_ATTR_ACCESS: 659 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 660 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 661 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 662 break; 663 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 664 break; 665 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 666 break; 667 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 668 break; 669 default: 670 pr_debug("unknown attr type 0x%x\n", attrs[i].type); 671 return -EINVAL; 672 } 673 674 if (gpuidx < 0) { 675 pr_debug("no GPU 0x%x found\n", val); 676 return -EINVAL; 677 } else if (gpuidx < MAX_GPU_INSTANCE && 678 !test_bit(gpuidx, p->svms.bitmap_supported)) { 679 pr_debug("GPU 0x%x not supported\n", val); 680 return -EINVAL; 681 } 682 } 683 684 return 0; 685 } 686 687 static void 688 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, 689 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 690 { 691 uint32_t i; 692 int gpuidx; 693 694 for (i = 0; i < nattr; i++) { 695 switch (attrs[i].type) { 696 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 697 prange->preferred_loc = attrs[i].value; 698 break; 699 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 700 prange->prefetch_loc = attrs[i].value; 701 break; 702 case KFD_IOCTL_SVM_ATTR_ACCESS: 703 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 704 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 705 gpuidx = kfd_process_gpuidx_from_gpuid(p, 706 attrs[i].value); 707 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 708 bitmap_clear(prange->bitmap_access, gpuidx, 1); 709 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 710 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 711 bitmap_set(prange->bitmap_access, gpuidx, 1); 712 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 713 } else { 714 bitmap_clear(prange->bitmap_access, gpuidx, 1); 715 bitmap_set(prange->bitmap_aip, gpuidx, 1); 716 } 717 break; 718 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 719 prange->flags |= attrs[i].value; 720 break; 721 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 722 prange->flags &= ~attrs[i].value; 723 break; 724 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 725 prange->granularity = attrs[i].value; 726 break; 727 default: 728 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 729 } 730 } 731 } 732 733 static bool 734 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, 735 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 736 { 737 uint32_t i; 738 int gpuidx; 739 740 for (i = 0; i < nattr; i++) { 741 switch (attrs[i].type) { 742 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 743 if (prange->preferred_loc != attrs[i].value) 744 return false; 745 break; 746 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 747 /* Prefetch should always trigger a migration even 748 * if the value of the attribute didn't change. 749 */ 750 return false; 751 case KFD_IOCTL_SVM_ATTR_ACCESS: 752 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 753 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 754 gpuidx = kfd_process_gpuidx_from_gpuid(p, 755 attrs[i].value); 756 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 757 if (test_bit(gpuidx, prange->bitmap_access) || 758 test_bit(gpuidx, prange->bitmap_aip)) 759 return false; 760 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 761 if (!test_bit(gpuidx, prange->bitmap_access)) 762 return false; 763 } else { 764 if (!test_bit(gpuidx, prange->bitmap_aip)) 765 return false; 766 } 767 break; 768 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 769 if ((prange->flags & attrs[i].value) != attrs[i].value) 770 return false; 771 break; 772 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 773 if ((prange->flags & attrs[i].value) != 0) 774 return false; 775 break; 776 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 777 if (prange->granularity != attrs[i].value) 778 return false; 779 break; 780 default: 781 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 782 } 783 } 784 785 return true; 786 } 787 788 /** 789 * svm_range_debug_dump - print all range information from svms 790 * @svms: svm range list header 791 * 792 * debug output svm range start, end, prefetch location from svms 793 * interval tree and link list 794 * 795 * Context: The caller must hold svms->lock 796 */ 797 static void svm_range_debug_dump(struct svm_range_list *svms) 798 { 799 struct interval_tree_node *node; 800 struct svm_range *prange; 801 802 pr_debug("dump svms 0x%p list\n", svms); 803 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 804 805 list_for_each_entry(prange, &svms->list, list) { 806 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 807 prange, prange->start, prange->npages, 808 prange->start + prange->npages - 1, 809 prange->actual_loc); 810 } 811 812 pr_debug("dump svms 0x%p interval tree\n", svms); 813 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 814 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); 815 while (node) { 816 prange = container_of(node, struct svm_range, it_node); 817 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 818 prange, prange->start, prange->npages, 819 prange->start + prange->npages - 1, 820 prange->actual_loc); 821 node = interval_tree_iter_next(node, 0, ~0ULL); 822 } 823 } 824 825 static int 826 svm_range_split_array(void *ppnew, void *ppold, size_t size, 827 uint64_t old_start, uint64_t old_n, 828 uint64_t new_start, uint64_t new_n) 829 { 830 unsigned char *new, *old, *pold; 831 uint64_t d; 832 833 if (!ppold) 834 return 0; 835 pold = *(unsigned char **)ppold; 836 if (!pold) 837 return 0; 838 839 new = kvmalloc_array(new_n, size, GFP_KERNEL); 840 if (!new) 841 return -ENOMEM; 842 843 d = (new_start - old_start) * size; 844 memcpy(new, pold + d, new_n * size); 845 846 old = kvmalloc_array(old_n, size, GFP_KERNEL); 847 if (!old) { 848 kvfree(new); 849 return -ENOMEM; 850 } 851 852 d = (new_start == old_start) ? new_n * size : 0; 853 memcpy(old, pold + d, old_n * size); 854 855 kvfree(pold); 856 *(void **)ppold = old; 857 *(void **)ppnew = new; 858 859 return 0; 860 } 861 862 static int 863 svm_range_split_pages(struct svm_range *new, struct svm_range *old, 864 uint64_t start, uint64_t last) 865 { 866 uint64_t npages = last - start + 1; 867 int i, r; 868 869 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 870 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], 871 sizeof(*old->dma_addr[i]), old->start, 872 npages, new->start, new->npages); 873 if (r) 874 return r; 875 } 876 877 return 0; 878 } 879 880 static int 881 svm_range_split_nodes(struct svm_range *new, struct svm_range *old, 882 uint64_t start, uint64_t last) 883 { 884 uint64_t npages = last - start + 1; 885 886 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", 887 new->svms, new, new->start, start, last); 888 889 if (new->start == old->start) { 890 new->offset = old->offset; 891 old->offset += new->npages; 892 } else { 893 new->offset = old->offset + npages; 894 } 895 896 new->svm_bo = svm_range_bo_ref(old->svm_bo); 897 new->ttm_res = old->ttm_res; 898 899 spin_lock(&new->svm_bo->list_lock); 900 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 901 spin_unlock(&new->svm_bo->list_lock); 902 903 return 0; 904 } 905 906 /** 907 * svm_range_split_adjust - split range and adjust 908 * 909 * @new: new range 910 * @old: the old range 911 * @start: the old range adjust to start address in pages 912 * @last: the old range adjust to last address in pages 913 * 914 * Copy system memory dma_addr or vram ttm_res in old range to new 915 * range from new_start up to size new->npages, the remaining old range is from 916 * start to last 917 * 918 * Return: 919 * 0 - OK, -ENOMEM - out of memory 920 */ 921 static int 922 svm_range_split_adjust(struct svm_range *new, struct svm_range *old, 923 uint64_t start, uint64_t last) 924 { 925 int r; 926 927 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", 928 new->svms, new->start, old->start, old->last, start, last); 929 930 if (new->start < old->start || 931 new->last > old->last) { 932 WARN_ONCE(1, "invalid new range start or last\n"); 933 return -EINVAL; 934 } 935 936 r = svm_range_split_pages(new, old, start, last); 937 if (r) 938 return r; 939 940 if (old->actual_loc && old->ttm_res) { 941 r = svm_range_split_nodes(new, old, start, last); 942 if (r) 943 return r; 944 } 945 946 old->npages = last - start + 1; 947 old->start = start; 948 old->last = last; 949 new->flags = old->flags; 950 new->preferred_loc = old->preferred_loc; 951 new->prefetch_loc = old->prefetch_loc; 952 new->actual_loc = old->actual_loc; 953 new->granularity = old->granularity; 954 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 955 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 956 957 return 0; 958 } 959 960 /** 961 * svm_range_split - split a range in 2 ranges 962 * 963 * @prange: the svm range to split 964 * @start: the remaining range start address in pages 965 * @last: the remaining range last address in pages 966 * @new: the result new range generated 967 * 968 * Two cases only: 969 * case 1: if start == prange->start 970 * prange ==> prange[start, last] 971 * new range [last + 1, prange->last] 972 * 973 * case 2: if last == prange->last 974 * prange ==> prange[start, last] 975 * new range [prange->start, start - 1] 976 * 977 * Return: 978 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last 979 */ 980 static int 981 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, 982 struct svm_range **new) 983 { 984 uint64_t old_start = prange->start; 985 uint64_t old_last = prange->last; 986 struct svm_range_list *svms; 987 int r = 0; 988 989 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, 990 old_start, old_last, start, last); 991 992 if (old_start != start && old_last != last) 993 return -EINVAL; 994 if (start < old_start || last > old_last) 995 return -EINVAL; 996 997 svms = prange->svms; 998 if (old_start == start) 999 *new = svm_range_new(svms, last + 1, old_last); 1000 else 1001 *new = svm_range_new(svms, old_start, start - 1); 1002 if (!*new) 1003 return -ENOMEM; 1004 1005 r = svm_range_split_adjust(*new, prange, start, last); 1006 if (r) { 1007 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", 1008 r, old_start, old_last, start, last); 1009 svm_range_free(*new); 1010 *new = NULL; 1011 } 1012 1013 return r; 1014 } 1015 1016 static int 1017 svm_range_split_tail(struct svm_range *prange, 1018 uint64_t new_last, struct list_head *insert_list) 1019 { 1020 struct svm_range *tail; 1021 int r = svm_range_split(prange, prange->start, new_last, &tail); 1022 1023 if (!r) 1024 list_add(&tail->list, insert_list); 1025 return r; 1026 } 1027 1028 static int 1029 svm_range_split_head(struct svm_range *prange, 1030 uint64_t new_start, struct list_head *insert_list) 1031 { 1032 struct svm_range *head; 1033 int r = svm_range_split(prange, new_start, prange->last, &head); 1034 1035 if (!r) 1036 list_add(&head->list, insert_list); 1037 return r; 1038 } 1039 1040 static void 1041 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, 1042 struct svm_range *pchild, enum svm_work_list_ops op) 1043 { 1044 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", 1045 pchild, pchild->start, pchild->last, prange, op); 1046 1047 pchild->work_item.mm = mm; 1048 pchild->work_item.op = op; 1049 list_add_tail(&pchild->child_list, &prange->child_list); 1050 } 1051 1052 /** 1053 * svm_range_split_by_granularity - collect ranges within granularity boundary 1054 * 1055 * @p: the process with svms list 1056 * @mm: mm structure 1057 * @addr: the vm fault address in pages, to split the prange 1058 * @parent: parent range if prange is from child list 1059 * @prange: prange to split 1060 * 1061 * Trims @prange to be a single aligned block of prange->granularity if 1062 * possible. The head and tail are added to the child_list in @parent. 1063 * 1064 * Context: caller must hold mmap_read_lock and prange->lock 1065 * 1066 * Return: 1067 * 0 - OK, otherwise error code 1068 */ 1069 int 1070 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, 1071 unsigned long addr, struct svm_range *parent, 1072 struct svm_range *prange) 1073 { 1074 struct svm_range *head, *tail; 1075 unsigned long start, last, size; 1076 int r; 1077 1078 /* Align splited range start and size to granularity size, then a single 1079 * PTE will be used for whole range, this reduces the number of PTE 1080 * updated and the L1 TLB space used for translation. 1081 */ 1082 size = 1UL << prange->granularity; 1083 start = ALIGN_DOWN(addr, size); 1084 last = ALIGN(addr + 1, size) - 1; 1085 1086 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", 1087 prange->svms, prange->start, prange->last, start, last, size); 1088 1089 if (start > prange->start) { 1090 r = svm_range_split(prange, start, prange->last, &head); 1091 if (r) 1092 return r; 1093 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); 1094 } 1095 1096 if (last < prange->last) { 1097 r = svm_range_split(prange, prange->start, last, &tail); 1098 if (r) 1099 return r; 1100 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 1101 } 1102 1103 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 1104 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { 1105 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; 1106 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", 1107 prange, prange->start, prange->last, 1108 SVM_OP_ADD_RANGE_AND_MAP); 1109 } 1110 return 0; 1111 } 1112 1113 static uint64_t 1114 svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange, 1115 int domain) 1116 { 1117 struct amdgpu_device *bo_adev; 1118 uint32_t flags = prange->flags; 1119 uint32_t mapping_flags = 0; 1120 uint64_t pte_flags; 1121 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); 1122 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT; 1123 1124 if (domain == SVM_RANGE_VRAM_DOMAIN) 1125 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 1126 1127 switch (KFD_GC_VERSION(adev->kfd.dev)) { 1128 case IP_VERSION(9, 4, 1): 1129 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1130 if (bo_adev == adev) { 1131 mapping_flags |= coherent ? 1132 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1133 } else { 1134 mapping_flags |= coherent ? 1135 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1136 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 1137 snoop = true; 1138 } 1139 } else { 1140 mapping_flags |= coherent ? 1141 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1142 } 1143 break; 1144 case IP_VERSION(9, 4, 2): 1145 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1146 if (bo_adev == adev) { 1147 mapping_flags |= coherent ? 1148 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1149 if (adev->gmc.xgmi.connected_to_cpu) 1150 snoop = true; 1151 } else { 1152 mapping_flags |= coherent ? 1153 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1154 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 1155 snoop = true; 1156 } 1157 } else { 1158 mapping_flags |= coherent ? 1159 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1160 } 1161 break; 1162 default: 1163 mapping_flags |= coherent ? 1164 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1165 } 1166 1167 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; 1168 1169 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) 1170 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; 1171 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) 1172 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1173 1174 pte_flags = AMDGPU_PTE_VALID; 1175 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; 1176 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 1177 1178 pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags); 1179 return pte_flags; 1180 } 1181 1182 static int 1183 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1184 uint64_t start, uint64_t last, 1185 struct dma_fence **fence) 1186 { 1187 uint64_t init_pte_value = 0; 1188 1189 pr_debug("[0x%llx 0x%llx]\n", start, last); 1190 1191 return amdgpu_vm_bo_update_mapping(adev, adev, vm, false, true, NULL, 1192 start, last, init_pte_value, 0, 1193 NULL, NULL, fence, NULL); 1194 } 1195 1196 static int 1197 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, 1198 unsigned long last) 1199 { 1200 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1201 struct kfd_process_device *pdd; 1202 struct dma_fence *fence = NULL; 1203 struct kfd_process *p; 1204 uint32_t gpuidx; 1205 int r = 0; 1206 1207 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 1208 MAX_GPU_INSTANCE); 1209 p = container_of(prange->svms, struct kfd_process, svms); 1210 1211 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1212 pr_debug("unmap from gpu idx 0x%x\n", gpuidx); 1213 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1214 if (!pdd) { 1215 pr_debug("failed to find device idx %d\n", gpuidx); 1216 return -EINVAL; 1217 } 1218 1219 r = svm_range_unmap_from_gpu(pdd->dev->adev, 1220 drm_priv_to_vm(pdd->drm_priv), 1221 start, last, &fence); 1222 if (r) 1223 break; 1224 1225 if (fence) { 1226 r = dma_fence_wait(fence, false); 1227 dma_fence_put(fence); 1228 fence = NULL; 1229 if (r) 1230 break; 1231 } 1232 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); 1233 } 1234 1235 return r; 1236 } 1237 1238 static int 1239 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, 1240 unsigned long offset, unsigned long npages, bool readonly, 1241 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, 1242 struct dma_fence **fence) 1243 { 1244 struct amdgpu_device *adev = pdd->dev->adev; 1245 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1246 bool table_freed = false; 1247 uint64_t pte_flags; 1248 unsigned long last_start; 1249 int last_domain; 1250 int r = 0; 1251 int64_t i, j; 1252 1253 last_start = prange->start + offset; 1254 1255 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, 1256 last_start, last_start + npages - 1, readonly); 1257 1258 for (i = offset; i < offset + npages; i++) { 1259 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; 1260 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; 1261 1262 /* Collect all pages in the same address range and memory domain 1263 * that can be mapped with a single call to update mapping. 1264 */ 1265 if (i < offset + npages - 1 && 1266 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) 1267 continue; 1268 1269 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", 1270 last_start, prange->start + i, last_domain ? "GPU" : "CPU"); 1271 1272 pte_flags = svm_range_get_pte_flags(adev, prange, last_domain); 1273 if (readonly) 1274 pte_flags &= ~AMDGPU_PTE_WRITEABLE; 1275 1276 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", 1277 prange->svms, last_start, prange->start + i, 1278 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, 1279 pte_flags); 1280 1281 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1282 NULL, last_start, 1283 prange->start + i, pte_flags, 1284 last_start - prange->start, 1285 NULL, dma_addr, 1286 &vm->last_update, 1287 &table_freed); 1288 1289 for (j = last_start - prange->start; j <= i; j++) 1290 dma_addr[j] |= last_domain; 1291 1292 if (r) { 1293 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); 1294 goto out; 1295 } 1296 last_start = prange->start + i + 1; 1297 } 1298 1299 r = amdgpu_vm_update_pdes(adev, vm, false); 1300 if (r) { 1301 pr_debug("failed %d to update directories 0x%lx\n", r, 1302 prange->start); 1303 goto out; 1304 } 1305 1306 if (fence) 1307 *fence = dma_fence_get(vm->last_update); 1308 1309 if (table_freed) 1310 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1311 out: 1312 return r; 1313 } 1314 1315 static int 1316 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, 1317 unsigned long npages, bool readonly, 1318 unsigned long *bitmap, bool wait) 1319 { 1320 struct kfd_process_device *pdd; 1321 struct amdgpu_device *bo_adev; 1322 struct kfd_process *p; 1323 struct dma_fence *fence = NULL; 1324 uint32_t gpuidx; 1325 int r = 0; 1326 1327 if (prange->svm_bo && prange->ttm_res) 1328 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 1329 else 1330 bo_adev = NULL; 1331 1332 p = container_of(prange->svms, struct kfd_process, svms); 1333 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1334 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 1335 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1336 if (!pdd) { 1337 pr_debug("failed to find device idx %d\n", gpuidx); 1338 return -EINVAL; 1339 } 1340 1341 pdd = kfd_bind_process_to_device(pdd->dev, p); 1342 if (IS_ERR(pdd)) 1343 return -EINVAL; 1344 1345 if (bo_adev && pdd->dev->adev != bo_adev && 1346 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 1347 pr_debug("cannot map to device idx %d\n", gpuidx); 1348 continue; 1349 } 1350 1351 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, 1352 prange->dma_addr[gpuidx], 1353 bo_adev, wait ? &fence : NULL); 1354 if (r) 1355 break; 1356 1357 if (fence) { 1358 r = dma_fence_wait(fence, false); 1359 dma_fence_put(fence); 1360 fence = NULL; 1361 if (r) { 1362 pr_debug("failed %d to dma fence wait\n", r); 1363 break; 1364 } 1365 } 1366 } 1367 1368 return r; 1369 } 1370 1371 struct svm_validate_context { 1372 struct kfd_process *process; 1373 struct svm_range *prange; 1374 bool intr; 1375 unsigned long bitmap[MAX_GPU_INSTANCE]; 1376 struct ttm_validate_buffer tv[MAX_GPU_INSTANCE]; 1377 struct list_head validate_list; 1378 struct ww_acquire_ctx ticket; 1379 }; 1380 1381 static int svm_range_reserve_bos(struct svm_validate_context *ctx) 1382 { 1383 struct kfd_process_device *pdd; 1384 struct amdgpu_vm *vm; 1385 uint32_t gpuidx; 1386 int r; 1387 1388 INIT_LIST_HEAD(&ctx->validate_list); 1389 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1390 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1391 if (!pdd) { 1392 pr_debug("failed to find device idx %d\n", gpuidx); 1393 return -EINVAL; 1394 } 1395 vm = drm_priv_to_vm(pdd->drm_priv); 1396 1397 ctx->tv[gpuidx].bo = &vm->root.bo->tbo; 1398 ctx->tv[gpuidx].num_shared = 4; 1399 list_add(&ctx->tv[gpuidx].head, &ctx->validate_list); 1400 } 1401 1402 r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list, 1403 ctx->intr, NULL); 1404 if (r) { 1405 pr_debug("failed %d to reserve bo\n", r); 1406 return r; 1407 } 1408 1409 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1410 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1411 if (!pdd) { 1412 pr_debug("failed to find device idx %d\n", gpuidx); 1413 r = -EINVAL; 1414 goto unreserve_out; 1415 } 1416 1417 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev, 1418 drm_priv_to_vm(pdd->drm_priv), 1419 svm_range_bo_validate, NULL); 1420 if (r) { 1421 pr_debug("failed %d validate pt bos\n", r); 1422 goto unreserve_out; 1423 } 1424 } 1425 1426 return 0; 1427 1428 unreserve_out: 1429 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); 1430 return r; 1431 } 1432 1433 static void svm_range_unreserve_bos(struct svm_validate_context *ctx) 1434 { 1435 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); 1436 } 1437 1438 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) 1439 { 1440 struct kfd_process_device *pdd; 1441 1442 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1443 1444 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); 1445 } 1446 1447 /* 1448 * Validation+GPU mapping with concurrent invalidation (MMU notifiers) 1449 * 1450 * To prevent concurrent destruction or change of range attributes, the 1451 * svm_read_lock must be held. The caller must not hold the svm_write_lock 1452 * because that would block concurrent evictions and lead to deadlocks. To 1453 * serialize concurrent migrations or validations of the same range, the 1454 * prange->migrate_mutex must be held. 1455 * 1456 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its 1457 * eviction fence. 1458 * 1459 * The following sequence ensures race-free validation and GPU mapping: 1460 * 1461 * 1. Reserve page table (and SVM BO if range is in VRAM) 1462 * 2. hmm_range_fault to get page addresses (if system memory) 1463 * 3. DMA-map pages (if system memory) 1464 * 4-a. Take notifier lock 1465 * 4-b. Check that pages still valid (mmu_interval_read_retry) 1466 * 4-c. Check that the range was not split or otherwise invalidated 1467 * 4-d. Update GPU page table 1468 * 4.e. Release notifier lock 1469 * 5. Release page table (and SVM BO) reservation 1470 */ 1471 static int svm_range_validate_and_map(struct mm_struct *mm, 1472 struct svm_range *prange, 1473 int32_t gpuidx, bool intr, bool wait) 1474 { 1475 struct svm_validate_context ctx; 1476 unsigned long start, end, addr; 1477 struct kfd_process *p; 1478 void *owner; 1479 int32_t idx; 1480 int r = 0; 1481 1482 ctx.process = container_of(prange->svms, struct kfd_process, svms); 1483 ctx.prange = prange; 1484 ctx.intr = intr; 1485 1486 if (gpuidx < MAX_GPU_INSTANCE) { 1487 bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE); 1488 bitmap_set(ctx.bitmap, gpuidx, 1); 1489 } else if (ctx.process->xnack_enabled) { 1490 bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 1491 1492 /* If prefetch range to GPU, or GPU retry fault migrate range to 1493 * GPU, which has ACCESS attribute to the range, create mapping 1494 * on that GPU. 1495 */ 1496 if (prange->actual_loc) { 1497 gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process, 1498 prange->actual_loc); 1499 if (gpuidx < 0) { 1500 WARN_ONCE(1, "failed get device by id 0x%x\n", 1501 prange->actual_loc); 1502 return -EINVAL; 1503 } 1504 if (test_bit(gpuidx, prange->bitmap_access)) 1505 bitmap_set(ctx.bitmap, gpuidx, 1); 1506 } 1507 } else { 1508 bitmap_or(ctx.bitmap, prange->bitmap_access, 1509 prange->bitmap_aip, MAX_GPU_INSTANCE); 1510 } 1511 1512 if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) 1513 return 0; 1514 1515 if (prange->actual_loc && !prange->ttm_res) { 1516 /* This should never happen. actual_loc gets set by 1517 * svm_migrate_ram_to_vram after allocating a BO. 1518 */ 1519 WARN_ONCE(1, "VRAM BO missing during validation\n"); 1520 return -EINVAL; 1521 } 1522 1523 svm_range_reserve_bos(&ctx); 1524 1525 p = container_of(prange->svms, struct kfd_process, svms); 1526 owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap, 1527 MAX_GPU_INSTANCE)); 1528 for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) { 1529 if (kfd_svm_page_owner(p, idx) != owner) { 1530 owner = NULL; 1531 break; 1532 } 1533 } 1534 1535 start = prange->start << PAGE_SHIFT; 1536 end = (prange->last + 1) << PAGE_SHIFT; 1537 for (addr = start; addr < end && !r; ) { 1538 struct hmm_range *hmm_range; 1539 struct vm_area_struct *vma; 1540 unsigned long next; 1541 unsigned long offset; 1542 unsigned long npages; 1543 bool readonly; 1544 1545 vma = find_vma(mm, addr); 1546 if (!vma || addr < vma->vm_start) { 1547 r = -EFAULT; 1548 goto unreserve_out; 1549 } 1550 readonly = !(vma->vm_flags & VM_WRITE); 1551 1552 next = min(vma->vm_end, end); 1553 npages = (next - addr) >> PAGE_SHIFT; 1554 WRITE_ONCE(p->svms.faulting_task, current); 1555 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, 1556 addr, npages, &hmm_range, 1557 readonly, true, owner); 1558 WRITE_ONCE(p->svms.faulting_task, NULL); 1559 if (r) { 1560 pr_debug("failed %d to get svm range pages\n", r); 1561 goto unreserve_out; 1562 } 1563 1564 offset = (addr - start) >> PAGE_SHIFT; 1565 r = svm_range_dma_map(prange, ctx.bitmap, offset, npages, 1566 hmm_range->hmm_pfns); 1567 if (r) { 1568 pr_debug("failed %d to dma map range\n", r); 1569 goto unreserve_out; 1570 } 1571 1572 svm_range_lock(prange); 1573 if (amdgpu_hmm_range_get_pages_done(hmm_range)) { 1574 pr_debug("hmm update the range, need validate again\n"); 1575 r = -EAGAIN; 1576 goto unlock_out; 1577 } 1578 if (!list_empty(&prange->child_list)) { 1579 pr_debug("range split by unmap in parallel, validate again\n"); 1580 r = -EAGAIN; 1581 goto unlock_out; 1582 } 1583 1584 r = svm_range_map_to_gpus(prange, offset, npages, readonly, 1585 ctx.bitmap, wait); 1586 1587 unlock_out: 1588 svm_range_unlock(prange); 1589 1590 addr = next; 1591 } 1592 1593 if (addr == end) 1594 prange->validated_once = true; 1595 1596 unreserve_out: 1597 svm_range_unreserve_bos(&ctx); 1598 1599 if (!r) 1600 prange->validate_timestamp = ktime_to_us(ktime_get()); 1601 1602 return r; 1603 } 1604 1605 /** 1606 * svm_range_list_lock_and_flush_work - flush pending deferred work 1607 * 1608 * @svms: the svm range list 1609 * @mm: the mm structure 1610 * 1611 * Context: Returns with mmap write lock held, pending deferred work flushed 1612 * 1613 */ 1614 void 1615 svm_range_list_lock_and_flush_work(struct svm_range_list *svms, 1616 struct mm_struct *mm) 1617 { 1618 retry_flush_work: 1619 flush_work(&svms->deferred_list_work); 1620 mmap_write_lock(mm); 1621 1622 if (list_empty(&svms->deferred_range_list)) 1623 return; 1624 mmap_write_unlock(mm); 1625 pr_debug("retry flush\n"); 1626 goto retry_flush_work; 1627 } 1628 1629 static void svm_range_restore_work(struct work_struct *work) 1630 { 1631 struct delayed_work *dwork = to_delayed_work(work); 1632 struct amdkfd_process_info *process_info; 1633 struct svm_range_list *svms; 1634 struct svm_range *prange; 1635 struct kfd_process *p; 1636 struct mm_struct *mm; 1637 int evicted_ranges; 1638 int invalid; 1639 int r; 1640 1641 svms = container_of(dwork, struct svm_range_list, restore_work); 1642 evicted_ranges = atomic_read(&svms->evicted_ranges); 1643 if (!evicted_ranges) 1644 return; 1645 1646 pr_debug("restore svm ranges\n"); 1647 1648 p = container_of(svms, struct kfd_process, svms); 1649 process_info = p->kgd_process_info; 1650 1651 /* Keep mm reference when svm_range_validate_and_map ranges */ 1652 mm = get_task_mm(p->lead_thread); 1653 if (!mm) { 1654 pr_debug("svms 0x%p process mm gone\n", svms); 1655 return; 1656 } 1657 1658 mutex_lock(&process_info->lock); 1659 svm_range_list_lock_and_flush_work(svms, mm); 1660 mutex_lock(&svms->lock); 1661 1662 evicted_ranges = atomic_read(&svms->evicted_ranges); 1663 1664 list_for_each_entry(prange, &svms->list, list) { 1665 invalid = atomic_read(&prange->invalid); 1666 if (!invalid) 1667 continue; 1668 1669 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", 1670 prange->svms, prange, prange->start, prange->last, 1671 invalid); 1672 1673 /* 1674 * If range is migrating, wait for migration is done. 1675 */ 1676 mutex_lock(&prange->migrate_mutex); 1677 1678 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 1679 false, true); 1680 if (r) 1681 pr_debug("failed %d to map 0x%lx to gpus\n", r, 1682 prange->start); 1683 1684 mutex_unlock(&prange->migrate_mutex); 1685 if (r) 1686 goto out_reschedule; 1687 1688 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) 1689 goto out_reschedule; 1690 } 1691 1692 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != 1693 evicted_ranges) 1694 goto out_reschedule; 1695 1696 evicted_ranges = 0; 1697 1698 r = kgd2kfd_resume_mm(mm); 1699 if (r) { 1700 /* No recovery from this failure. Probably the CP is 1701 * hanging. No point trying again. 1702 */ 1703 pr_debug("failed %d to resume KFD\n", r); 1704 } 1705 1706 pr_debug("restore svm ranges successfully\n"); 1707 1708 out_reschedule: 1709 mutex_unlock(&svms->lock); 1710 mmap_write_unlock(mm); 1711 mutex_unlock(&process_info->lock); 1712 mmput(mm); 1713 1714 /* If validation failed, reschedule another attempt */ 1715 if (evicted_ranges) { 1716 pr_debug("reschedule to restore svm range\n"); 1717 schedule_delayed_work(&svms->restore_work, 1718 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1719 } 1720 } 1721 1722 /** 1723 * svm_range_evict - evict svm range 1724 * @prange: svm range structure 1725 * @mm: current process mm_struct 1726 * @start: starting process queue number 1727 * @last: last process queue number 1728 * 1729 * Stop all queues of the process to ensure GPU doesn't access the memory, then 1730 * return to let CPU evict the buffer and proceed CPU pagetable update. 1731 * 1732 * Don't need use lock to sync cpu pagetable invalidation with GPU execution. 1733 * If invalidation happens while restore work is running, restore work will 1734 * restart to ensure to get the latest CPU pages mapping to GPU, then start 1735 * the queues. 1736 */ 1737 static int 1738 svm_range_evict(struct svm_range *prange, struct mm_struct *mm, 1739 unsigned long start, unsigned long last) 1740 { 1741 struct svm_range_list *svms = prange->svms; 1742 struct svm_range *pchild; 1743 struct kfd_process *p; 1744 int r = 0; 1745 1746 p = container_of(svms, struct kfd_process, svms); 1747 1748 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1749 svms, prange->start, prange->last, start, last); 1750 1751 if (!p->xnack_enabled) { 1752 int evicted_ranges; 1753 1754 list_for_each_entry(pchild, &prange->child_list, child_list) { 1755 mutex_lock_nested(&pchild->lock, 1); 1756 if (pchild->start <= last && pchild->last >= start) { 1757 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", 1758 pchild->start, pchild->last); 1759 atomic_inc(&pchild->invalid); 1760 } 1761 mutex_unlock(&pchild->lock); 1762 } 1763 1764 if (prange->start <= last && prange->last >= start) 1765 atomic_inc(&prange->invalid); 1766 1767 evicted_ranges = atomic_inc_return(&svms->evicted_ranges); 1768 if (evicted_ranges != 1) 1769 return r; 1770 1771 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", 1772 prange->svms, prange->start, prange->last); 1773 1774 /* First eviction, stop the queues */ 1775 r = kgd2kfd_quiesce_mm(mm); 1776 if (r) 1777 pr_debug("failed to quiesce KFD\n"); 1778 1779 pr_debug("schedule to restore svm %p ranges\n", svms); 1780 schedule_delayed_work(&svms->restore_work, 1781 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1782 } else { 1783 unsigned long s, l; 1784 1785 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", 1786 prange->svms, start, last); 1787 list_for_each_entry(pchild, &prange->child_list, child_list) { 1788 mutex_lock_nested(&pchild->lock, 1); 1789 s = max(start, pchild->start); 1790 l = min(last, pchild->last); 1791 if (l >= s) 1792 svm_range_unmap_from_gpus(pchild, s, l); 1793 mutex_unlock(&pchild->lock); 1794 } 1795 s = max(start, prange->start); 1796 l = min(last, prange->last); 1797 if (l >= s) 1798 svm_range_unmap_from_gpus(prange, s, l); 1799 } 1800 1801 return r; 1802 } 1803 1804 static struct svm_range *svm_range_clone(struct svm_range *old) 1805 { 1806 struct svm_range *new; 1807 1808 new = svm_range_new(old->svms, old->start, old->last); 1809 if (!new) 1810 return NULL; 1811 1812 if (old->svm_bo) { 1813 new->ttm_res = old->ttm_res; 1814 new->offset = old->offset; 1815 new->svm_bo = svm_range_bo_ref(old->svm_bo); 1816 spin_lock(&new->svm_bo->list_lock); 1817 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 1818 spin_unlock(&new->svm_bo->list_lock); 1819 } 1820 new->flags = old->flags; 1821 new->preferred_loc = old->preferred_loc; 1822 new->prefetch_loc = old->prefetch_loc; 1823 new->actual_loc = old->actual_loc; 1824 new->granularity = old->granularity; 1825 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1826 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1827 1828 return new; 1829 } 1830 1831 /** 1832 * svm_range_add - add svm range and handle overlap 1833 * @p: the range add to this process svms 1834 * @start: page size aligned 1835 * @size: page size aligned 1836 * @nattr: number of attributes 1837 * @attrs: array of attributes 1838 * @update_list: output, the ranges need validate and update GPU mapping 1839 * @insert_list: output, the ranges need insert to svms 1840 * @remove_list: output, the ranges are replaced and need remove from svms 1841 * 1842 * Check if the virtual address range has overlap with any existing ranges, 1843 * split partly overlapping ranges and add new ranges in the gaps. All changes 1844 * should be applied to the range_list and interval tree transactionally. If 1845 * any range split or allocation fails, the entire update fails. Therefore any 1846 * existing overlapping svm_ranges are cloned and the original svm_ranges left 1847 * unchanged. 1848 * 1849 * If the transaction succeeds, the caller can update and insert clones and 1850 * new ranges, then free the originals. 1851 * 1852 * Otherwise the caller can free the clones and new ranges, while the old 1853 * svm_ranges remain unchanged. 1854 * 1855 * Context: Process context, caller must hold svms->lock 1856 * 1857 * Return: 1858 * 0 - OK, otherwise error code 1859 */ 1860 static int 1861 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, 1862 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 1863 struct list_head *update_list, struct list_head *insert_list, 1864 struct list_head *remove_list) 1865 { 1866 unsigned long last = start + size - 1UL; 1867 struct svm_range_list *svms = &p->svms; 1868 struct interval_tree_node *node; 1869 struct svm_range *prange; 1870 struct svm_range *tmp; 1871 int r = 0; 1872 1873 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); 1874 1875 INIT_LIST_HEAD(update_list); 1876 INIT_LIST_HEAD(insert_list); 1877 INIT_LIST_HEAD(remove_list); 1878 1879 node = interval_tree_iter_first(&svms->objects, start, last); 1880 while (node) { 1881 struct interval_tree_node *next; 1882 unsigned long next_start; 1883 1884 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, 1885 node->last); 1886 1887 prange = container_of(node, struct svm_range, it_node); 1888 next = interval_tree_iter_next(node, start, last); 1889 next_start = min(node->last, last) + 1; 1890 1891 if (svm_range_is_same_attrs(p, prange, nattr, attrs)) { 1892 /* nothing to do */ 1893 } else if (node->start < start || node->last > last) { 1894 /* node intersects the update range and its attributes 1895 * will change. Clone and split it, apply updates only 1896 * to the overlapping part 1897 */ 1898 struct svm_range *old = prange; 1899 1900 prange = svm_range_clone(old); 1901 if (!prange) { 1902 r = -ENOMEM; 1903 goto out; 1904 } 1905 1906 list_add(&old->update_list, remove_list); 1907 list_add(&prange->list, insert_list); 1908 list_add(&prange->update_list, update_list); 1909 1910 if (node->start < start) { 1911 pr_debug("change old range start\n"); 1912 r = svm_range_split_head(prange, start, 1913 insert_list); 1914 if (r) 1915 goto out; 1916 } 1917 if (node->last > last) { 1918 pr_debug("change old range last\n"); 1919 r = svm_range_split_tail(prange, last, 1920 insert_list); 1921 if (r) 1922 goto out; 1923 } 1924 } else { 1925 /* The node is contained within start..last, 1926 * just update it 1927 */ 1928 list_add(&prange->update_list, update_list); 1929 } 1930 1931 /* insert a new node if needed */ 1932 if (node->start > start) { 1933 prange = svm_range_new(svms, start, node->start - 1); 1934 if (!prange) { 1935 r = -ENOMEM; 1936 goto out; 1937 } 1938 1939 list_add(&prange->list, insert_list); 1940 list_add(&prange->update_list, update_list); 1941 } 1942 1943 node = next; 1944 start = next_start; 1945 } 1946 1947 /* add a final range at the end if needed */ 1948 if (start <= last) { 1949 prange = svm_range_new(svms, start, last); 1950 if (!prange) { 1951 r = -ENOMEM; 1952 goto out; 1953 } 1954 list_add(&prange->list, insert_list); 1955 list_add(&prange->update_list, update_list); 1956 } 1957 1958 out: 1959 if (r) 1960 list_for_each_entry_safe(prange, tmp, insert_list, list) 1961 svm_range_free(prange); 1962 1963 return r; 1964 } 1965 1966 static void 1967 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, 1968 struct svm_range *prange) 1969 { 1970 unsigned long start; 1971 unsigned long last; 1972 1973 start = prange->notifier.interval_tree.start >> PAGE_SHIFT; 1974 last = prange->notifier.interval_tree.last >> PAGE_SHIFT; 1975 1976 if (prange->start == start && prange->last == last) 1977 return; 1978 1979 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1980 prange->svms, prange, start, last, prange->start, 1981 prange->last); 1982 1983 if (start != 0 && last != 0) { 1984 interval_tree_remove(&prange->it_node, &prange->svms->objects); 1985 svm_range_remove_notifier(prange); 1986 } 1987 prange->it_node.start = prange->start; 1988 prange->it_node.last = prange->last; 1989 1990 interval_tree_insert(&prange->it_node, &prange->svms->objects); 1991 svm_range_add_notifier_locked(mm, prange); 1992 } 1993 1994 static void 1995 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, 1996 struct mm_struct *mm) 1997 { 1998 switch (prange->work_item.op) { 1999 case SVM_OP_NULL: 2000 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2001 svms, prange, prange->start, prange->last); 2002 break; 2003 case SVM_OP_UNMAP_RANGE: 2004 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2005 svms, prange, prange->start, prange->last); 2006 svm_range_unlink(prange); 2007 svm_range_remove_notifier(prange); 2008 svm_range_free(prange); 2009 break; 2010 case SVM_OP_UPDATE_RANGE_NOTIFIER: 2011 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2012 svms, prange, prange->start, prange->last); 2013 svm_range_update_notifier_and_interval_tree(mm, prange); 2014 break; 2015 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: 2016 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2017 svms, prange, prange->start, prange->last); 2018 svm_range_update_notifier_and_interval_tree(mm, prange); 2019 /* TODO: implement deferred validation and mapping */ 2020 break; 2021 case SVM_OP_ADD_RANGE: 2022 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, 2023 prange->start, prange->last); 2024 svm_range_add_to_svms(prange); 2025 svm_range_add_notifier_locked(mm, prange); 2026 break; 2027 case SVM_OP_ADD_RANGE_AND_MAP: 2028 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, 2029 prange, prange->start, prange->last); 2030 svm_range_add_to_svms(prange); 2031 svm_range_add_notifier_locked(mm, prange); 2032 /* TODO: implement deferred validation and mapping */ 2033 break; 2034 default: 2035 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, 2036 prange->work_item.op); 2037 } 2038 } 2039 2040 static void svm_range_drain_retry_fault(struct svm_range_list *svms) 2041 { 2042 struct kfd_process_device *pdd; 2043 struct kfd_process *p; 2044 int drain; 2045 uint32_t i; 2046 2047 p = container_of(svms, struct kfd_process, svms); 2048 2049 restart: 2050 drain = atomic_read(&svms->drain_pagefaults); 2051 if (!drain) 2052 return; 2053 2054 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2055 pdd = p->pdds[i]; 2056 if (!pdd) 2057 continue; 2058 2059 pr_debug("drain retry fault gpu %d svms %p\n", i, svms); 2060 2061 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2062 &pdd->dev->adev->irq.ih1); 2063 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); 2064 } 2065 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) 2066 goto restart; 2067 } 2068 2069 static void svm_range_deferred_list_work(struct work_struct *work) 2070 { 2071 struct svm_range_list *svms; 2072 struct svm_range *prange; 2073 struct mm_struct *mm; 2074 2075 svms = container_of(work, struct svm_range_list, deferred_list_work); 2076 pr_debug("enter svms 0x%p\n", svms); 2077 2078 spin_lock(&svms->deferred_list_lock); 2079 while (!list_empty(&svms->deferred_range_list)) { 2080 prange = list_first_entry(&svms->deferred_range_list, 2081 struct svm_range, deferred_list); 2082 spin_unlock(&svms->deferred_list_lock); 2083 2084 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, 2085 prange->start, prange->last, prange->work_item.op); 2086 2087 mm = prange->work_item.mm; 2088 retry: 2089 mmap_write_lock(mm); 2090 2091 /* Checking for the need to drain retry faults must be inside 2092 * mmap write lock to serialize with munmap notifiers. 2093 */ 2094 if (unlikely(atomic_read(&svms->drain_pagefaults))) { 2095 mmap_write_unlock(mm); 2096 svm_range_drain_retry_fault(svms); 2097 goto retry; 2098 } 2099 2100 /* Remove from deferred_list must be inside mmap write lock, for 2101 * two race cases: 2102 * 1. unmap_from_cpu may change work_item.op and add the range 2103 * to deferred_list again, cause use after free bug. 2104 * 2. svm_range_list_lock_and_flush_work may hold mmap write 2105 * lock and continue because deferred_list is empty, but 2106 * deferred_list work is actually waiting for mmap lock. 2107 */ 2108 spin_lock(&svms->deferred_list_lock); 2109 list_del_init(&prange->deferred_list); 2110 spin_unlock(&svms->deferred_list_lock); 2111 2112 mutex_lock(&svms->lock); 2113 mutex_lock(&prange->migrate_mutex); 2114 while (!list_empty(&prange->child_list)) { 2115 struct svm_range *pchild; 2116 2117 pchild = list_first_entry(&prange->child_list, 2118 struct svm_range, child_list); 2119 pr_debug("child prange 0x%p op %d\n", pchild, 2120 pchild->work_item.op); 2121 list_del_init(&pchild->child_list); 2122 svm_range_handle_list_op(svms, pchild, mm); 2123 } 2124 mutex_unlock(&prange->migrate_mutex); 2125 2126 svm_range_handle_list_op(svms, prange, mm); 2127 mutex_unlock(&svms->lock); 2128 mmap_write_unlock(mm); 2129 2130 /* Pairs with mmget in svm_range_add_list_work */ 2131 mmput(mm); 2132 2133 spin_lock(&svms->deferred_list_lock); 2134 } 2135 spin_unlock(&svms->deferred_list_lock); 2136 pr_debug("exit svms 0x%p\n", svms); 2137 } 2138 2139 void 2140 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, 2141 struct mm_struct *mm, enum svm_work_list_ops op) 2142 { 2143 spin_lock(&svms->deferred_list_lock); 2144 /* if prange is on the deferred list */ 2145 if (!list_empty(&prange->deferred_list)) { 2146 pr_debug("update exist prange 0x%p work op %d\n", prange, op); 2147 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); 2148 if (op != SVM_OP_NULL && 2149 prange->work_item.op != SVM_OP_UNMAP_RANGE) 2150 prange->work_item.op = op; 2151 } else { 2152 prange->work_item.op = op; 2153 2154 /* Pairs with mmput in deferred_list_work */ 2155 mmget(mm); 2156 prange->work_item.mm = mm; 2157 list_add_tail(&prange->deferred_list, 2158 &prange->svms->deferred_range_list); 2159 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", 2160 prange, prange->start, prange->last, op); 2161 } 2162 spin_unlock(&svms->deferred_list_lock); 2163 } 2164 2165 void schedule_deferred_list_work(struct svm_range_list *svms) 2166 { 2167 spin_lock(&svms->deferred_list_lock); 2168 if (!list_empty(&svms->deferred_range_list)) 2169 schedule_work(&svms->deferred_list_work); 2170 spin_unlock(&svms->deferred_list_lock); 2171 } 2172 2173 static void 2174 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, 2175 struct svm_range *prange, unsigned long start, 2176 unsigned long last) 2177 { 2178 struct svm_range *head; 2179 struct svm_range *tail; 2180 2181 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2182 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, 2183 prange->start, prange->last); 2184 return; 2185 } 2186 if (start > prange->last || last < prange->start) 2187 return; 2188 2189 head = tail = prange; 2190 if (start > prange->start) 2191 svm_range_split(prange, prange->start, start - 1, &tail); 2192 if (last < tail->last) 2193 svm_range_split(tail, last + 1, tail->last, &head); 2194 2195 if (head != prange && tail != prange) { 2196 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2197 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 2198 } else if (tail != prange) { 2199 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); 2200 } else if (head != prange) { 2201 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2202 } else if (parent != prange) { 2203 prange->work_item.op = SVM_OP_UNMAP_RANGE; 2204 } 2205 } 2206 2207 static void 2208 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, 2209 unsigned long start, unsigned long last) 2210 { 2211 struct svm_range_list *svms; 2212 struct svm_range *pchild; 2213 struct kfd_process *p; 2214 unsigned long s, l; 2215 bool unmap_parent; 2216 2217 p = kfd_lookup_process_by_mm(mm); 2218 if (!p) 2219 return; 2220 svms = &p->svms; 2221 2222 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, 2223 prange, prange->start, prange->last, start, last); 2224 2225 /* Make sure pending page faults are drained in the deferred worker 2226 * before the range is freed to avoid straggler interrupts on 2227 * unmapped memory causing "phantom faults". 2228 */ 2229 atomic_inc(&svms->drain_pagefaults); 2230 2231 unmap_parent = start <= prange->start && last >= prange->last; 2232 2233 list_for_each_entry(pchild, &prange->child_list, child_list) { 2234 mutex_lock_nested(&pchild->lock, 1); 2235 s = max(start, pchild->start); 2236 l = min(last, pchild->last); 2237 if (l >= s) 2238 svm_range_unmap_from_gpus(pchild, s, l); 2239 svm_range_unmap_split(mm, prange, pchild, start, last); 2240 mutex_unlock(&pchild->lock); 2241 } 2242 s = max(start, prange->start); 2243 l = min(last, prange->last); 2244 if (l >= s) 2245 svm_range_unmap_from_gpus(prange, s, l); 2246 svm_range_unmap_split(mm, prange, prange, start, last); 2247 2248 if (unmap_parent) 2249 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); 2250 else 2251 svm_range_add_list_work(svms, prange, mm, 2252 SVM_OP_UPDATE_RANGE_NOTIFIER); 2253 schedule_deferred_list_work(svms); 2254 2255 kfd_unref_process(p); 2256 } 2257 2258 /** 2259 * svm_range_cpu_invalidate_pagetables - interval notifier callback 2260 * @mni: mmu_interval_notifier struct 2261 * @range: mmu_notifier_range struct 2262 * @cur_seq: value to pass to mmu_interval_set_seq() 2263 * 2264 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it 2265 * is from migration, or CPU page invalidation callback. 2266 * 2267 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed 2268 * work thread, and split prange if only part of prange is unmapped. 2269 * 2270 * For invalidation event, if GPU retry fault is not enabled, evict the queues, 2271 * then schedule svm_range_restore_work to update GPU mapping and resume queues. 2272 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will 2273 * update GPU mapping to recover. 2274 * 2275 * Context: mmap lock, notifier_invalidate_start lock are held 2276 * for invalidate event, prange lock is held if this is from migration 2277 */ 2278 static bool 2279 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 2280 const struct mmu_notifier_range *range, 2281 unsigned long cur_seq) 2282 { 2283 struct svm_range *prange; 2284 unsigned long start; 2285 unsigned long last; 2286 2287 if (range->event == MMU_NOTIFY_RELEASE) 2288 return true; 2289 2290 start = mni->interval_tree.start; 2291 last = mni->interval_tree.last; 2292 start = max(start, range->start) >> PAGE_SHIFT; 2293 last = min(last, range->end - 1) >> PAGE_SHIFT; 2294 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", 2295 start, last, range->start >> PAGE_SHIFT, 2296 (range->end - 1) >> PAGE_SHIFT, 2297 mni->interval_tree.start >> PAGE_SHIFT, 2298 mni->interval_tree.last >> PAGE_SHIFT, range->event); 2299 2300 prange = container_of(mni, struct svm_range, notifier); 2301 2302 svm_range_lock(prange); 2303 mmu_interval_set_seq(mni, cur_seq); 2304 2305 switch (range->event) { 2306 case MMU_NOTIFY_UNMAP: 2307 svm_range_unmap_from_cpu(mni->mm, prange, start, last); 2308 break; 2309 default: 2310 svm_range_evict(prange, mni->mm, start, last); 2311 break; 2312 } 2313 2314 svm_range_unlock(prange); 2315 2316 return true; 2317 } 2318 2319 /** 2320 * svm_range_from_addr - find svm range from fault address 2321 * @svms: svm range list header 2322 * @addr: address to search range interval tree, in pages 2323 * @parent: parent range if range is on child list 2324 * 2325 * Context: The caller must hold svms->lock 2326 * 2327 * Return: the svm_range found or NULL 2328 */ 2329 struct svm_range * 2330 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, 2331 struct svm_range **parent) 2332 { 2333 struct interval_tree_node *node; 2334 struct svm_range *prange; 2335 struct svm_range *pchild; 2336 2337 node = interval_tree_iter_first(&svms->objects, addr, addr); 2338 if (!node) 2339 return NULL; 2340 2341 prange = container_of(node, struct svm_range, it_node); 2342 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", 2343 addr, prange->start, prange->last, node->start, node->last); 2344 2345 if (addr >= prange->start && addr <= prange->last) { 2346 if (parent) 2347 *parent = prange; 2348 return prange; 2349 } 2350 list_for_each_entry(pchild, &prange->child_list, child_list) 2351 if (addr >= pchild->start && addr <= pchild->last) { 2352 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", 2353 addr, pchild->start, pchild->last); 2354 if (parent) 2355 *parent = prange; 2356 return pchild; 2357 } 2358 2359 return NULL; 2360 } 2361 2362 /* svm_range_best_restore_location - decide the best fault restore location 2363 * @prange: svm range structure 2364 * @adev: the GPU on which vm fault happened 2365 * 2366 * This is only called when xnack is on, to decide the best location to restore 2367 * the range mapping after GPU vm fault. Caller uses the best location to do 2368 * migration if actual loc is not best location, then update GPU page table 2369 * mapping to the best location. 2370 * 2371 * If the preferred loc is accessible by faulting GPU, use preferred loc. 2372 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu 2373 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then 2374 * if range actual loc is cpu, best_loc is cpu 2375 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is 2376 * range actual loc. 2377 * Otherwise, GPU no access, best_loc is -1. 2378 * 2379 * Return: 2380 * -1 means vm fault GPU no access 2381 * 0 for CPU or GPU id 2382 */ 2383 static int32_t 2384 svm_range_best_restore_location(struct svm_range *prange, 2385 struct amdgpu_device *adev, 2386 int32_t *gpuidx) 2387 { 2388 struct amdgpu_device *bo_adev, *preferred_adev; 2389 struct kfd_process *p; 2390 uint32_t gpuid; 2391 int r; 2392 2393 p = container_of(prange->svms, struct kfd_process, svms); 2394 2395 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, gpuidx); 2396 if (r < 0) { 2397 pr_debug("failed to get gpuid from kgd\n"); 2398 return -1; 2399 } 2400 2401 if (prange->preferred_loc == gpuid || 2402 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { 2403 return prange->preferred_loc; 2404 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 2405 preferred_adev = svm_range_get_adev_by_id(prange, 2406 prange->preferred_loc); 2407 if (amdgpu_xgmi_same_hive(adev, preferred_adev)) 2408 return prange->preferred_loc; 2409 /* fall through */ 2410 } 2411 2412 if (test_bit(*gpuidx, prange->bitmap_access)) 2413 return gpuid; 2414 2415 if (test_bit(*gpuidx, prange->bitmap_aip)) { 2416 if (!prange->actual_loc) 2417 return 0; 2418 2419 bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 2420 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 2421 return prange->actual_loc; 2422 else 2423 return 0; 2424 } 2425 2426 return -1; 2427 } 2428 2429 static int 2430 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, 2431 unsigned long *start, unsigned long *last, 2432 bool *is_heap_stack) 2433 { 2434 struct vm_area_struct *vma; 2435 struct interval_tree_node *node; 2436 unsigned long start_limit, end_limit; 2437 2438 vma = find_vma(p->mm, addr << PAGE_SHIFT); 2439 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { 2440 pr_debug("VMA does not exist in address [0x%llx]\n", addr); 2441 return -EFAULT; 2442 } 2443 2444 *is_heap_stack = (vma->vm_start <= vma->vm_mm->brk && 2445 vma->vm_end >= vma->vm_mm->start_brk) || 2446 (vma->vm_start <= vma->vm_mm->start_stack && 2447 vma->vm_end >= vma->vm_mm->start_stack); 2448 2449 start_limit = max(vma->vm_start >> PAGE_SHIFT, 2450 (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); 2451 end_limit = min(vma->vm_end >> PAGE_SHIFT, 2452 (unsigned long)ALIGN(addr + 1, 2UL << 8)); 2453 /* First range that starts after the fault address */ 2454 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); 2455 if (node) { 2456 end_limit = min(end_limit, node->start); 2457 /* Last range that ends before the fault address */ 2458 node = container_of(rb_prev(&node->rb), 2459 struct interval_tree_node, rb); 2460 } else { 2461 /* Last range must end before addr because 2462 * there was no range after addr 2463 */ 2464 node = container_of(rb_last(&p->svms.objects.rb_root), 2465 struct interval_tree_node, rb); 2466 } 2467 if (node) { 2468 if (node->last >= addr) { 2469 WARN(1, "Overlap with prev node and page fault addr\n"); 2470 return -EFAULT; 2471 } 2472 start_limit = max(start_limit, node->last + 1); 2473 } 2474 2475 *start = start_limit; 2476 *last = end_limit - 1; 2477 2478 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", 2479 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, 2480 *start, *last, *is_heap_stack); 2481 2482 return 0; 2483 } 2484 2485 static int 2486 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, 2487 uint64_t *bo_s, uint64_t *bo_l) 2488 { 2489 struct amdgpu_bo_va_mapping *mapping; 2490 struct interval_tree_node *node; 2491 struct amdgpu_bo *bo = NULL; 2492 unsigned long userptr; 2493 uint32_t i; 2494 int r; 2495 2496 for (i = 0; i < p->n_pdds; i++) { 2497 struct amdgpu_vm *vm; 2498 2499 if (!p->pdds[i]->drm_priv) 2500 continue; 2501 2502 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2503 r = amdgpu_bo_reserve(vm->root.bo, false); 2504 if (r) 2505 return r; 2506 2507 /* Check userptr by searching entire vm->va interval tree */ 2508 node = interval_tree_iter_first(&vm->va, 0, ~0ULL); 2509 while (node) { 2510 mapping = container_of((struct rb_node *)node, 2511 struct amdgpu_bo_va_mapping, rb); 2512 bo = mapping->bo_va->base.bo; 2513 2514 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, 2515 start << PAGE_SHIFT, 2516 last << PAGE_SHIFT, 2517 &userptr)) { 2518 node = interval_tree_iter_next(node, 0, ~0ULL); 2519 continue; 2520 } 2521 2522 pr_debug("[0x%llx 0x%llx] already userptr mapped\n", 2523 start, last); 2524 if (bo_s && bo_l) { 2525 *bo_s = userptr >> PAGE_SHIFT; 2526 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; 2527 } 2528 amdgpu_bo_unreserve(vm->root.bo); 2529 return -EADDRINUSE; 2530 } 2531 amdgpu_bo_unreserve(vm->root.bo); 2532 } 2533 return 0; 2534 } 2535 2536 static struct 2537 svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev, 2538 struct kfd_process *p, 2539 struct mm_struct *mm, 2540 int64_t addr) 2541 { 2542 struct svm_range *prange = NULL; 2543 unsigned long start, last; 2544 uint32_t gpuid, gpuidx; 2545 bool is_heap_stack; 2546 uint64_t bo_s = 0; 2547 uint64_t bo_l = 0; 2548 int r; 2549 2550 if (svm_range_get_range_boundaries(p, addr, &start, &last, 2551 &is_heap_stack)) 2552 return NULL; 2553 2554 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); 2555 if (r != -EADDRINUSE) 2556 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); 2557 2558 if (r == -EADDRINUSE) { 2559 if (addr >= bo_s && addr <= bo_l) 2560 return NULL; 2561 2562 /* Create one page svm range if 2MB range overlapping */ 2563 start = addr; 2564 last = addr; 2565 } 2566 2567 prange = svm_range_new(&p->svms, start, last); 2568 if (!prange) { 2569 pr_debug("Failed to create prange in address [0x%llx]\n", addr); 2570 return NULL; 2571 } 2572 if (kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx)) { 2573 pr_debug("failed to get gpuid from kgd\n"); 2574 svm_range_free(prange); 2575 return NULL; 2576 } 2577 2578 if (is_heap_stack) 2579 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; 2580 2581 svm_range_add_to_svms(prange); 2582 svm_range_add_notifier_locked(mm, prange); 2583 2584 return prange; 2585 } 2586 2587 /* svm_range_skip_recover - decide if prange can be recovered 2588 * @prange: svm range structure 2589 * 2590 * GPU vm retry fault handle skip recover the range for cases: 2591 * 1. prange is on deferred list to be removed after unmap, it is stale fault, 2592 * deferred list work will drain the stale fault before free the prange. 2593 * 2. prange is on deferred list to add interval notifier after split, or 2594 * 3. prange is child range, it is split from parent prange, recover later 2595 * after interval notifier is added. 2596 * 2597 * Return: true to skip recover, false to recover 2598 */ 2599 static bool svm_range_skip_recover(struct svm_range *prange) 2600 { 2601 struct svm_range_list *svms = prange->svms; 2602 2603 spin_lock(&svms->deferred_list_lock); 2604 if (list_empty(&prange->deferred_list) && 2605 list_empty(&prange->child_list)) { 2606 spin_unlock(&svms->deferred_list_lock); 2607 return false; 2608 } 2609 spin_unlock(&svms->deferred_list_lock); 2610 2611 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2612 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", 2613 svms, prange, prange->start, prange->last); 2614 return true; 2615 } 2616 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || 2617 prange->work_item.op == SVM_OP_ADD_RANGE) { 2618 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", 2619 svms, prange, prange->start, prange->last); 2620 return true; 2621 } 2622 return false; 2623 } 2624 2625 static void 2626 svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p, 2627 int32_t gpuidx) 2628 { 2629 struct kfd_process_device *pdd; 2630 2631 /* fault is on different page of same range 2632 * or fault is skipped to recover later 2633 * or fault is on invalid virtual address 2634 */ 2635 if (gpuidx == MAX_GPU_INSTANCE) { 2636 uint32_t gpuid; 2637 int r; 2638 2639 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx); 2640 if (r < 0) 2641 return; 2642 } 2643 2644 /* fault is recovered 2645 * or fault cannot recover because GPU no access on the range 2646 */ 2647 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 2648 if (pdd) 2649 WRITE_ONCE(pdd->faults, pdd->faults + 1); 2650 } 2651 2652 static bool 2653 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) 2654 { 2655 unsigned long requested = VM_READ; 2656 2657 if (write_fault) 2658 requested |= VM_WRITE; 2659 2660 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, 2661 vma->vm_flags); 2662 return (vma->vm_flags & requested) == requested; 2663 } 2664 2665 int 2666 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, 2667 uint64_t addr, bool write_fault) 2668 { 2669 struct mm_struct *mm = NULL; 2670 struct svm_range_list *svms; 2671 struct svm_range *prange; 2672 struct kfd_process *p; 2673 uint64_t timestamp; 2674 int32_t best_loc; 2675 int32_t gpuidx = MAX_GPU_INSTANCE; 2676 bool write_locked = false; 2677 struct vm_area_struct *vma; 2678 int r = 0; 2679 2680 if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) { 2681 pr_debug("device does not support SVM\n"); 2682 return -EFAULT; 2683 } 2684 2685 p = kfd_lookup_process_by_pasid(pasid); 2686 if (!p) { 2687 pr_debug("kfd process not founded pasid 0x%x\n", pasid); 2688 return 0; 2689 } 2690 if (!p->xnack_enabled) { 2691 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); 2692 r = -EFAULT; 2693 goto out; 2694 } 2695 svms = &p->svms; 2696 2697 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); 2698 2699 if (atomic_read(&svms->drain_pagefaults)) { 2700 pr_debug("draining retry fault, drop fault 0x%llx\n", addr); 2701 r = 0; 2702 goto out; 2703 } 2704 2705 /* p->lead_thread is available as kfd_process_wq_release flush the work 2706 * before releasing task ref. 2707 */ 2708 mm = get_task_mm(p->lead_thread); 2709 if (!mm) { 2710 pr_debug("svms 0x%p failed to get mm\n", svms); 2711 r = 0; 2712 goto out; 2713 } 2714 2715 mmap_read_lock(mm); 2716 retry_write_locked: 2717 mutex_lock(&svms->lock); 2718 prange = svm_range_from_addr(svms, addr, NULL); 2719 if (!prange) { 2720 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", 2721 svms, addr); 2722 if (!write_locked) { 2723 /* Need the write lock to create new range with MMU notifier. 2724 * Also flush pending deferred work to make sure the interval 2725 * tree is up to date before we add a new range 2726 */ 2727 mutex_unlock(&svms->lock); 2728 mmap_read_unlock(mm); 2729 mmap_write_lock(mm); 2730 write_locked = true; 2731 goto retry_write_locked; 2732 } 2733 prange = svm_range_create_unregistered_range(adev, p, mm, addr); 2734 if (!prange) { 2735 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", 2736 svms, addr); 2737 mmap_write_downgrade(mm); 2738 r = -EFAULT; 2739 goto out_unlock_svms; 2740 } 2741 } 2742 if (write_locked) 2743 mmap_write_downgrade(mm); 2744 2745 mutex_lock(&prange->migrate_mutex); 2746 2747 if (svm_range_skip_recover(prange)) { 2748 amdgpu_gmc_filter_faults_remove(adev, addr, pasid); 2749 r = 0; 2750 goto out_unlock_range; 2751 } 2752 2753 timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp; 2754 /* skip duplicate vm fault on different pages of same range */ 2755 if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) { 2756 pr_debug("svms 0x%p [0x%lx %lx] already restored\n", 2757 svms, prange->start, prange->last); 2758 r = 0; 2759 goto out_unlock_range; 2760 } 2761 2762 /* __do_munmap removed VMA, return success as we are handling stale 2763 * retry fault. 2764 */ 2765 vma = find_vma(mm, addr << PAGE_SHIFT); 2766 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { 2767 pr_debug("address 0x%llx VMA is removed\n", addr); 2768 r = 0; 2769 goto out_unlock_range; 2770 } 2771 2772 if (!svm_fault_allowed(vma, write_fault)) { 2773 pr_debug("fault addr 0x%llx no %s permission\n", addr, 2774 write_fault ? "write" : "read"); 2775 r = -EPERM; 2776 goto out_unlock_range; 2777 } 2778 2779 best_loc = svm_range_best_restore_location(prange, adev, &gpuidx); 2780 if (best_loc == -1) { 2781 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", 2782 svms, prange->start, prange->last); 2783 r = -EACCES; 2784 goto out_unlock_range; 2785 } 2786 2787 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", 2788 svms, prange->start, prange->last, best_loc, 2789 prange->actual_loc); 2790 2791 if (prange->actual_loc != best_loc) { 2792 if (best_loc) { 2793 r = svm_migrate_to_vram(prange, best_loc, mm); 2794 if (r) { 2795 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", 2796 r, addr); 2797 /* Fallback to system memory if migration to 2798 * VRAM failed 2799 */ 2800 if (prange->actual_loc) 2801 r = svm_migrate_vram_to_ram(prange, mm); 2802 else 2803 r = 0; 2804 } 2805 } else { 2806 r = svm_migrate_vram_to_ram(prange, mm); 2807 } 2808 if (r) { 2809 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", 2810 r, svms, prange->start, prange->last); 2811 goto out_unlock_range; 2812 } 2813 } 2814 2815 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false); 2816 if (r) 2817 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", 2818 r, svms, prange->start, prange->last); 2819 2820 out_unlock_range: 2821 mutex_unlock(&prange->migrate_mutex); 2822 out_unlock_svms: 2823 mutex_unlock(&svms->lock); 2824 mmap_read_unlock(mm); 2825 2826 svm_range_count_fault(adev, p, gpuidx); 2827 2828 mmput(mm); 2829 out: 2830 kfd_unref_process(p); 2831 2832 if (r == -EAGAIN) { 2833 pr_debug("recover vm fault later\n"); 2834 amdgpu_gmc_filter_faults_remove(adev, addr, pasid); 2835 r = 0; 2836 } 2837 return r; 2838 } 2839 2840 void svm_range_list_fini(struct kfd_process *p) 2841 { 2842 struct svm_range *prange; 2843 struct svm_range *next; 2844 2845 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); 2846 2847 cancel_delayed_work_sync(&p->svms.restore_work); 2848 2849 /* Ensure list work is finished before process is destroyed */ 2850 flush_work(&p->svms.deferred_list_work); 2851 2852 /* 2853 * Ensure no retry fault comes in afterwards, as page fault handler will 2854 * not find kfd process and take mm lock to recover fault. 2855 */ 2856 atomic_inc(&p->svms.drain_pagefaults); 2857 svm_range_drain_retry_fault(&p->svms); 2858 2859 list_for_each_entry_safe(prange, next, &p->svms.list, list) { 2860 svm_range_unlink(prange); 2861 svm_range_remove_notifier(prange); 2862 svm_range_free(prange); 2863 } 2864 2865 mutex_destroy(&p->svms.lock); 2866 2867 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); 2868 } 2869 2870 int svm_range_list_init(struct kfd_process *p) 2871 { 2872 struct svm_range_list *svms = &p->svms; 2873 int i; 2874 2875 svms->objects = RB_ROOT_CACHED; 2876 mutex_init(&svms->lock); 2877 INIT_LIST_HEAD(&svms->list); 2878 atomic_set(&svms->evicted_ranges, 0); 2879 atomic_set(&svms->drain_pagefaults, 0); 2880 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); 2881 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); 2882 INIT_LIST_HEAD(&svms->deferred_range_list); 2883 INIT_LIST_HEAD(&svms->criu_svm_metadata_list); 2884 spin_lock_init(&svms->deferred_list_lock); 2885 2886 for (i = 0; i < p->n_pdds; i++) 2887 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev)) 2888 bitmap_set(svms->bitmap_supported, i, 1); 2889 2890 return 0; 2891 } 2892 2893 /** 2894 * svm_range_check_vm - check if virtual address range mapped already 2895 * @p: current kfd_process 2896 * @start: range start address, in pages 2897 * @last: range last address, in pages 2898 * @bo_s: mapping start address in pages if address range already mapped 2899 * @bo_l: mapping last address in pages if address range already mapped 2900 * 2901 * The purpose is to avoid virtual address ranges already allocated by 2902 * kfd_ioctl_alloc_memory_of_gpu ioctl. 2903 * It looks for each pdd in the kfd_process. 2904 * 2905 * Context: Process context 2906 * 2907 * Return 0 - OK, if the range is not mapped. 2908 * Otherwise error code: 2909 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu 2910 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by 2911 * a signal. Release all buffer reservations and return to user-space. 2912 */ 2913 static int 2914 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 2915 uint64_t *bo_s, uint64_t *bo_l) 2916 { 2917 struct amdgpu_bo_va_mapping *mapping; 2918 struct interval_tree_node *node; 2919 uint32_t i; 2920 int r; 2921 2922 for (i = 0; i < p->n_pdds; i++) { 2923 struct amdgpu_vm *vm; 2924 2925 if (!p->pdds[i]->drm_priv) 2926 continue; 2927 2928 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2929 r = amdgpu_bo_reserve(vm->root.bo, false); 2930 if (r) 2931 return r; 2932 2933 node = interval_tree_iter_first(&vm->va, start, last); 2934 if (node) { 2935 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", 2936 start, last); 2937 mapping = container_of((struct rb_node *)node, 2938 struct amdgpu_bo_va_mapping, rb); 2939 if (bo_s && bo_l) { 2940 *bo_s = mapping->start; 2941 *bo_l = mapping->last; 2942 } 2943 amdgpu_bo_unreserve(vm->root.bo); 2944 return -EADDRINUSE; 2945 } 2946 amdgpu_bo_unreserve(vm->root.bo); 2947 } 2948 2949 return 0; 2950 } 2951 2952 /** 2953 * svm_range_is_valid - check if virtual address range is valid 2954 * @p: current kfd_process 2955 * @start: range start address, in pages 2956 * @size: range size, in pages 2957 * 2958 * Valid virtual address range means it belongs to one or more VMAs 2959 * 2960 * Context: Process context 2961 * 2962 * Return: 2963 * 0 - OK, otherwise error code 2964 */ 2965 static int 2966 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) 2967 { 2968 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 2969 struct vm_area_struct *vma; 2970 unsigned long end; 2971 unsigned long start_unchg = start; 2972 2973 start <<= PAGE_SHIFT; 2974 end = start + (size << PAGE_SHIFT); 2975 do { 2976 vma = find_vma(p->mm, start); 2977 if (!vma || start < vma->vm_start || 2978 (vma->vm_flags & device_vma)) 2979 return -EFAULT; 2980 start = min(end, vma->vm_end); 2981 } while (start < end); 2982 2983 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, 2984 NULL); 2985 } 2986 2987 /** 2988 * svm_range_best_prefetch_location - decide the best prefetch location 2989 * @prange: svm range structure 2990 * 2991 * For xnack off: 2992 * If range map to single GPU, the best prefetch location is prefetch_loc, which 2993 * can be CPU or GPU. 2994 * 2995 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on 2996 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise 2997 * the best prefetch location is always CPU, because GPU can not have coherent 2998 * mapping VRAM of other GPUs even with large-BAR PCIe connection. 2999 * 3000 * For xnack on: 3001 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is 3002 * prefetch_loc, other GPU access will generate vm fault and trigger migration. 3003 * 3004 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same 3005 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best 3006 * prefetch location is always CPU. 3007 * 3008 * Context: Process context 3009 * 3010 * Return: 3011 * 0 for CPU or GPU id 3012 */ 3013 static uint32_t 3014 svm_range_best_prefetch_location(struct svm_range *prange) 3015 { 3016 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 3017 uint32_t best_loc = prange->prefetch_loc; 3018 struct kfd_process_device *pdd; 3019 struct amdgpu_device *bo_adev; 3020 struct kfd_process *p; 3021 uint32_t gpuidx; 3022 3023 p = container_of(prange->svms, struct kfd_process, svms); 3024 3025 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) 3026 goto out; 3027 3028 bo_adev = svm_range_get_adev_by_id(prange, best_loc); 3029 if (!bo_adev) { 3030 WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc); 3031 best_loc = 0; 3032 goto out; 3033 } 3034 3035 if (p->xnack_enabled) 3036 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 3037 else 3038 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 3039 MAX_GPU_INSTANCE); 3040 3041 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 3042 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 3043 if (!pdd) { 3044 pr_debug("failed to get device by idx 0x%x\n", gpuidx); 3045 continue; 3046 } 3047 3048 if (pdd->dev->adev == bo_adev) 3049 continue; 3050 3051 if (!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 3052 best_loc = 0; 3053 break; 3054 } 3055 } 3056 3057 out: 3058 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", 3059 p->xnack_enabled, &p->svms, prange->start, prange->last, 3060 best_loc); 3061 3062 return best_loc; 3063 } 3064 3065 /* FIXME: This is a workaround for page locking bug when some pages are 3066 * invalid during migration to VRAM 3067 */ 3068 void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm, 3069 void *owner) 3070 { 3071 struct hmm_range *hmm_range; 3072 int r; 3073 3074 if (prange->validated_once) 3075 return; 3076 3077 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, 3078 prange->start << PAGE_SHIFT, 3079 prange->npages, &hmm_range, 3080 false, true, owner); 3081 if (!r) { 3082 amdgpu_hmm_range_get_pages_done(hmm_range); 3083 prange->validated_once = true; 3084 } 3085 } 3086 3087 /* svm_range_trigger_migration - start page migration if prefetch loc changed 3088 * @mm: current process mm_struct 3089 * @prange: svm range structure 3090 * @migrated: output, true if migration is triggered 3091 * 3092 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range 3093 * from ram to vram. 3094 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range 3095 * from vram to ram. 3096 * 3097 * If GPU vm fault retry is not enabled, migration interact with MMU notifier 3098 * and restore work: 3099 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict 3100 * stops all queues, schedule restore work 3101 * 2. svm_range_restore_work wait for migration is done by 3102 * a. svm_range_validate_vram takes prange->migrate_mutex 3103 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns 3104 * 3. restore work update mappings of GPU, resume all queues. 3105 * 3106 * Context: Process context 3107 * 3108 * Return: 3109 * 0 - OK, otherwise - error code of migration 3110 */ 3111 static int 3112 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, 3113 bool *migrated) 3114 { 3115 uint32_t best_loc; 3116 int r = 0; 3117 3118 *migrated = false; 3119 best_loc = svm_range_best_prefetch_location(prange); 3120 3121 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3122 best_loc == prange->actual_loc) 3123 return 0; 3124 3125 if (!best_loc) { 3126 r = svm_migrate_vram_to_ram(prange, mm); 3127 *migrated = !r; 3128 return r; 3129 } 3130 3131 r = svm_migrate_to_vram(prange, best_loc, mm); 3132 *migrated = !r; 3133 3134 return r; 3135 } 3136 3137 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) 3138 { 3139 if (!fence) 3140 return -EINVAL; 3141 3142 if (dma_fence_is_signaled(&fence->base)) 3143 return 0; 3144 3145 if (fence->svm_bo) { 3146 WRITE_ONCE(fence->svm_bo->evicting, 1); 3147 schedule_work(&fence->svm_bo->eviction_work); 3148 } 3149 3150 return 0; 3151 } 3152 3153 static void svm_range_evict_svm_bo_worker(struct work_struct *work) 3154 { 3155 struct svm_range_bo *svm_bo; 3156 struct kfd_process *p; 3157 struct mm_struct *mm; 3158 int r = 0; 3159 3160 svm_bo = container_of(work, struct svm_range_bo, eviction_work); 3161 if (!svm_bo_ref_unless_zero(svm_bo)) 3162 return; /* svm_bo was freed while eviction was pending */ 3163 3164 /* svm_range_bo_release destroys this worker thread. So during 3165 * the lifetime of this thread, kfd_process and mm will be valid. 3166 */ 3167 p = container_of(svm_bo->svms, struct kfd_process, svms); 3168 mm = p->mm; 3169 if (!mm) 3170 return; 3171 3172 mmap_read_lock(mm); 3173 spin_lock(&svm_bo->list_lock); 3174 while (!list_empty(&svm_bo->range_list) && !r) { 3175 struct svm_range *prange = 3176 list_first_entry(&svm_bo->range_list, 3177 struct svm_range, svm_bo_list); 3178 int retries = 3; 3179 3180 list_del_init(&prange->svm_bo_list); 3181 spin_unlock(&svm_bo->list_lock); 3182 3183 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 3184 prange->start, prange->last); 3185 3186 mutex_lock(&prange->migrate_mutex); 3187 do { 3188 r = svm_migrate_vram_to_ram(prange, 3189 svm_bo->eviction_fence->mm); 3190 } while (!r && prange->actual_loc && --retries); 3191 3192 if (!r && prange->actual_loc) 3193 pr_info_once("Migration failed during eviction"); 3194 3195 if (!prange->actual_loc) { 3196 mutex_lock(&prange->lock); 3197 prange->svm_bo = NULL; 3198 mutex_unlock(&prange->lock); 3199 } 3200 mutex_unlock(&prange->migrate_mutex); 3201 3202 spin_lock(&svm_bo->list_lock); 3203 } 3204 spin_unlock(&svm_bo->list_lock); 3205 mmap_read_unlock(mm); 3206 3207 dma_fence_signal(&svm_bo->eviction_fence->base); 3208 3209 /* This is the last reference to svm_bo, after svm_range_vram_node_free 3210 * has been called in svm_migrate_vram_to_ram 3211 */ 3212 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); 3213 svm_range_bo_unref(svm_bo); 3214 } 3215 3216 static int 3217 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, 3218 uint64_t start, uint64_t size, uint32_t nattr, 3219 struct kfd_ioctl_svm_attribute *attrs) 3220 { 3221 struct amdkfd_process_info *process_info = p->kgd_process_info; 3222 struct list_head update_list; 3223 struct list_head insert_list; 3224 struct list_head remove_list; 3225 struct svm_range_list *svms; 3226 struct svm_range *prange; 3227 struct svm_range *next; 3228 int r = 0; 3229 3230 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", 3231 p->pasid, &p->svms, start, start + size - 1, size); 3232 3233 r = svm_range_check_attr(p, nattr, attrs); 3234 if (r) 3235 return r; 3236 3237 svms = &p->svms; 3238 3239 mutex_lock(&process_info->lock); 3240 3241 svm_range_list_lock_and_flush_work(svms, mm); 3242 3243 r = svm_range_is_valid(p, start, size); 3244 if (r) { 3245 pr_debug("invalid range r=%d\n", r); 3246 mmap_write_unlock(mm); 3247 goto out; 3248 } 3249 3250 mutex_lock(&svms->lock); 3251 3252 /* Add new range and split existing ranges as needed */ 3253 r = svm_range_add(p, start, size, nattr, attrs, &update_list, 3254 &insert_list, &remove_list); 3255 if (r) { 3256 mutex_unlock(&svms->lock); 3257 mmap_write_unlock(mm); 3258 goto out; 3259 } 3260 /* Apply changes as a transaction */ 3261 list_for_each_entry_safe(prange, next, &insert_list, list) { 3262 svm_range_add_to_svms(prange); 3263 svm_range_add_notifier_locked(mm, prange); 3264 } 3265 list_for_each_entry(prange, &update_list, update_list) { 3266 svm_range_apply_attrs(p, prange, nattr, attrs); 3267 /* TODO: unmap ranges from GPU that lost access */ 3268 } 3269 list_for_each_entry_safe(prange, next, &remove_list, update_list) { 3270 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", 3271 prange->svms, prange, prange->start, 3272 prange->last); 3273 svm_range_unlink(prange); 3274 svm_range_remove_notifier(prange); 3275 svm_range_free(prange); 3276 } 3277 3278 mmap_write_downgrade(mm); 3279 /* Trigger migrations and revalidate and map to GPUs as needed. If 3280 * this fails we may be left with partially completed actions. There 3281 * is no clean way of rolling back to the previous state in such a 3282 * case because the rollback wouldn't be guaranteed to work either. 3283 */ 3284 list_for_each_entry(prange, &update_list, update_list) { 3285 bool migrated; 3286 3287 mutex_lock(&prange->migrate_mutex); 3288 3289 r = svm_range_trigger_migration(mm, prange, &migrated); 3290 if (r) 3291 goto out_unlock_range; 3292 3293 if (migrated && !p->xnack_enabled) { 3294 pr_debug("restore_work will update mappings of GPUs\n"); 3295 mutex_unlock(&prange->migrate_mutex); 3296 continue; 3297 } 3298 3299 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 3300 true, true); 3301 if (r) 3302 pr_debug("failed %d to map svm range\n", r); 3303 3304 out_unlock_range: 3305 mutex_unlock(&prange->migrate_mutex); 3306 if (r) 3307 break; 3308 } 3309 3310 svm_range_debug_dump(svms); 3311 3312 mutex_unlock(&svms->lock); 3313 mmap_read_unlock(mm); 3314 out: 3315 mutex_unlock(&process_info->lock); 3316 3317 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, 3318 &p->svms, start, start + size - 1, r); 3319 3320 return r; 3321 } 3322 3323 static int 3324 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, 3325 uint64_t start, uint64_t size, uint32_t nattr, 3326 struct kfd_ioctl_svm_attribute *attrs) 3327 { 3328 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); 3329 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); 3330 bool get_preferred_loc = false; 3331 bool get_prefetch_loc = false; 3332 bool get_granularity = false; 3333 bool get_accessible = false; 3334 bool get_flags = false; 3335 uint64_t last = start + size - 1UL; 3336 uint8_t granularity = 0xff; 3337 struct interval_tree_node *node; 3338 struct svm_range_list *svms; 3339 struct svm_range *prange; 3340 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3341 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3342 uint32_t flags_and = 0xffffffff; 3343 uint32_t flags_or = 0; 3344 int gpuidx; 3345 uint32_t i; 3346 int r = 0; 3347 3348 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, 3349 start + size - 1, nattr); 3350 3351 /* Flush pending deferred work to avoid racing with deferred actions from 3352 * previous memory map changes (e.g. munmap). Concurrent memory map changes 3353 * can still race with get_attr because we don't hold the mmap lock. But that 3354 * would be a race condition in the application anyway, and undefined 3355 * behaviour is acceptable in that case. 3356 */ 3357 flush_work(&p->svms.deferred_list_work); 3358 3359 mmap_read_lock(mm); 3360 r = svm_range_is_valid(p, start, size); 3361 mmap_read_unlock(mm); 3362 if (r) { 3363 pr_debug("invalid range r=%d\n", r); 3364 return r; 3365 } 3366 3367 for (i = 0; i < nattr; i++) { 3368 switch (attrs[i].type) { 3369 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3370 get_preferred_loc = true; 3371 break; 3372 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3373 get_prefetch_loc = true; 3374 break; 3375 case KFD_IOCTL_SVM_ATTR_ACCESS: 3376 get_accessible = true; 3377 break; 3378 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3379 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3380 get_flags = true; 3381 break; 3382 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3383 get_granularity = true; 3384 break; 3385 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 3386 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 3387 fallthrough; 3388 default: 3389 pr_debug("get invalid attr type 0x%x\n", attrs[i].type); 3390 return -EINVAL; 3391 } 3392 } 3393 3394 svms = &p->svms; 3395 3396 mutex_lock(&svms->lock); 3397 3398 node = interval_tree_iter_first(&svms->objects, start, last); 3399 if (!node) { 3400 pr_debug("range attrs not found return default values\n"); 3401 svm_range_set_default_attributes(&location, &prefetch_loc, 3402 &granularity, &flags_and); 3403 flags_or = flags_and; 3404 if (p->xnack_enabled) 3405 bitmap_copy(bitmap_access, svms->bitmap_supported, 3406 MAX_GPU_INSTANCE); 3407 else 3408 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); 3409 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); 3410 goto fill_values; 3411 } 3412 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); 3413 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); 3414 3415 while (node) { 3416 struct interval_tree_node *next; 3417 3418 prange = container_of(node, struct svm_range, it_node); 3419 next = interval_tree_iter_next(node, start, last); 3420 3421 if (get_preferred_loc) { 3422 if (prange->preferred_loc == 3423 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3424 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3425 location != prange->preferred_loc)) { 3426 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3427 get_preferred_loc = false; 3428 } else { 3429 location = prange->preferred_loc; 3430 } 3431 } 3432 if (get_prefetch_loc) { 3433 if (prange->prefetch_loc == 3434 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3435 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3436 prefetch_loc != prange->prefetch_loc)) { 3437 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3438 get_prefetch_loc = false; 3439 } else { 3440 prefetch_loc = prange->prefetch_loc; 3441 } 3442 } 3443 if (get_accessible) { 3444 bitmap_and(bitmap_access, bitmap_access, 3445 prange->bitmap_access, MAX_GPU_INSTANCE); 3446 bitmap_and(bitmap_aip, bitmap_aip, 3447 prange->bitmap_aip, MAX_GPU_INSTANCE); 3448 } 3449 if (get_flags) { 3450 flags_and &= prange->flags; 3451 flags_or |= prange->flags; 3452 } 3453 3454 if (get_granularity && prange->granularity < granularity) 3455 granularity = prange->granularity; 3456 3457 node = next; 3458 } 3459 fill_values: 3460 mutex_unlock(&svms->lock); 3461 3462 for (i = 0; i < nattr; i++) { 3463 switch (attrs[i].type) { 3464 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3465 attrs[i].value = location; 3466 break; 3467 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3468 attrs[i].value = prefetch_loc; 3469 break; 3470 case KFD_IOCTL_SVM_ATTR_ACCESS: 3471 gpuidx = kfd_process_gpuidx_from_gpuid(p, 3472 attrs[i].value); 3473 if (gpuidx < 0) { 3474 pr_debug("invalid gpuid %x\n", attrs[i].value); 3475 return -EINVAL; 3476 } 3477 if (test_bit(gpuidx, bitmap_access)) 3478 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; 3479 else if (test_bit(gpuidx, bitmap_aip)) 3480 attrs[i].type = 3481 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; 3482 else 3483 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; 3484 break; 3485 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3486 attrs[i].value = flags_and; 3487 break; 3488 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3489 attrs[i].value = ~flags_or; 3490 break; 3491 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3492 attrs[i].value = (uint32_t)granularity; 3493 break; 3494 } 3495 } 3496 3497 return 0; 3498 } 3499 3500 int kfd_criu_resume_svm(struct kfd_process *p) 3501 { 3502 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; 3503 int nattr_common = 4, nattr_accessibility = 1; 3504 struct criu_svm_metadata *criu_svm_md = NULL; 3505 struct svm_range_list *svms = &p->svms; 3506 struct criu_svm_metadata *next = NULL; 3507 uint32_t set_flags = 0xffffffff; 3508 int i, j, num_attrs, ret = 0; 3509 uint64_t set_attr_size; 3510 struct mm_struct *mm; 3511 3512 if (list_empty(&svms->criu_svm_metadata_list)) { 3513 pr_debug("No SVM data from CRIU restore stage 2\n"); 3514 return ret; 3515 } 3516 3517 mm = get_task_mm(p->lead_thread); 3518 if (!mm) { 3519 pr_err("failed to get mm for the target process\n"); 3520 return -ESRCH; 3521 } 3522 3523 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); 3524 3525 i = j = 0; 3526 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { 3527 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", 3528 i, criu_svm_md->data.start_addr, criu_svm_md->data.size); 3529 3530 for (j = 0; j < num_attrs; j++) { 3531 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", 3532 i, j, criu_svm_md->data.attrs[j].type, 3533 i, j, criu_svm_md->data.attrs[j].value); 3534 switch (criu_svm_md->data.attrs[j].type) { 3535 /* During Checkpoint operation, the query for 3536 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might 3537 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were 3538 * not used by the range which was checkpointed. Care 3539 * must be taken to not restore with an invalid value 3540 * otherwise the gpuidx value will be invalid and 3541 * set_attr would eventually fail so just replace those 3542 * with another dummy attribute such as 3543 * KFD_IOCTL_SVM_ATTR_SET_FLAGS. 3544 */ 3545 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3546 if (criu_svm_md->data.attrs[j].value == 3547 KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 3548 criu_svm_md->data.attrs[j].type = 3549 KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3550 criu_svm_md->data.attrs[j].value = 0; 3551 } 3552 break; 3553 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3554 set_flags = criu_svm_md->data.attrs[j].value; 3555 break; 3556 default: 3557 break; 3558 } 3559 } 3560 3561 /* CLR_FLAGS is not available via get_attr during checkpoint but 3562 * it needs to be inserted before restoring the ranges so 3563 * allocate extra space for it before calling set_attr 3564 */ 3565 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3566 (num_attrs + 1); 3567 set_attr_new = krealloc(set_attr, set_attr_size, 3568 GFP_KERNEL); 3569 if (!set_attr_new) { 3570 ret = -ENOMEM; 3571 goto exit; 3572 } 3573 set_attr = set_attr_new; 3574 3575 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * 3576 sizeof(struct kfd_ioctl_svm_attribute)); 3577 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; 3578 set_attr[num_attrs].value = ~set_flags; 3579 3580 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, 3581 criu_svm_md->data.size, num_attrs + 1, 3582 set_attr); 3583 if (ret) { 3584 pr_err("CRIU: failed to set range attributes\n"); 3585 goto exit; 3586 } 3587 3588 i++; 3589 } 3590 exit: 3591 kfree(set_attr); 3592 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { 3593 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", 3594 criu_svm_md->data.start_addr); 3595 kfree(criu_svm_md); 3596 } 3597 3598 mmput(mm); 3599 return ret; 3600 3601 } 3602 3603 int kfd_criu_restore_svm(struct kfd_process *p, 3604 uint8_t __user *user_priv_ptr, 3605 uint64_t *priv_data_offset, 3606 uint64_t max_priv_data_size) 3607 { 3608 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; 3609 int nattr_common = 4, nattr_accessibility = 1; 3610 struct criu_svm_metadata *criu_svm_md = NULL; 3611 struct svm_range_list *svms = &p->svms; 3612 uint32_t num_devices; 3613 int ret = 0; 3614 3615 num_devices = p->n_pdds; 3616 /* Handle one SVM range object at a time, also the number of gpus are 3617 * assumed to be same on the restore node, checking must be done while 3618 * evaluating the topology earlier 3619 */ 3620 3621 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * 3622 (nattr_common + nattr_accessibility * num_devices); 3623 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; 3624 3625 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3626 svm_attrs_size; 3627 3628 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); 3629 if (!criu_svm_md) { 3630 pr_err("failed to allocate memory to store svm metadata\n"); 3631 return -ENOMEM; 3632 } 3633 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { 3634 ret = -EINVAL; 3635 goto exit; 3636 } 3637 3638 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, 3639 svm_priv_data_size); 3640 if (ret) { 3641 ret = -EFAULT; 3642 goto exit; 3643 } 3644 *priv_data_offset += svm_priv_data_size; 3645 3646 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); 3647 3648 return 0; 3649 3650 3651 exit: 3652 kfree(criu_svm_md); 3653 return ret; 3654 } 3655 3656 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, 3657 uint64_t *svm_priv_data_size) 3658 { 3659 uint64_t total_size, accessibility_size, common_attr_size; 3660 int nattr_common = 4, nattr_accessibility = 1; 3661 int num_devices = p->n_pdds; 3662 struct svm_range_list *svms; 3663 struct svm_range *prange; 3664 uint32_t count = 0; 3665 3666 *svm_priv_data_size = 0; 3667 3668 svms = &p->svms; 3669 if (!svms) 3670 return -EINVAL; 3671 3672 mutex_lock(&svms->lock); 3673 list_for_each_entry(prange, &svms->list, list) { 3674 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", 3675 prange, prange->start, prange->npages, 3676 prange->start + prange->npages - 1); 3677 count++; 3678 } 3679 mutex_unlock(&svms->lock); 3680 3681 *num_svm_ranges = count; 3682 /* Only the accessbility attributes need to be queried for all the gpus 3683 * individually, remaining ones are spanned across the entire process 3684 * regardless of the various gpu nodes. Of the remaining attributes, 3685 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. 3686 * 3687 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC 3688 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC 3689 * KFD_IOCTL_SVM_ATTR_SET_FLAGS 3690 * KFD_IOCTL_SVM_ATTR_GRANULARITY 3691 * 3692 * ** ACCESSBILITY ATTRIBUTES ** 3693 * (Considered as one, type is altered during query, value is gpuid) 3694 * KFD_IOCTL_SVM_ATTR_ACCESS 3695 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE 3696 * KFD_IOCTL_SVM_ATTR_NO_ACCESS 3697 */ 3698 if (*num_svm_ranges > 0) { 3699 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3700 nattr_common; 3701 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * 3702 nattr_accessibility * num_devices; 3703 3704 total_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3705 common_attr_size + accessibility_size; 3706 3707 *svm_priv_data_size = *num_svm_ranges * total_size; 3708 } 3709 3710 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, 3711 *svm_priv_data_size); 3712 return 0; 3713 } 3714 3715 int kfd_criu_checkpoint_svm(struct kfd_process *p, 3716 uint8_t __user *user_priv_data, 3717 uint64_t *priv_data_offset) 3718 { 3719 struct kfd_criu_svm_range_priv_data *svm_priv = NULL; 3720 struct kfd_ioctl_svm_attribute *query_attr = NULL; 3721 uint64_t svm_priv_data_size, query_attr_size = 0; 3722 int index, nattr_common = 4, ret = 0; 3723 struct svm_range_list *svms; 3724 int num_devices = p->n_pdds; 3725 struct svm_range *prange; 3726 struct mm_struct *mm; 3727 3728 svms = &p->svms; 3729 if (!svms) 3730 return -EINVAL; 3731 3732 mm = get_task_mm(p->lead_thread); 3733 if (!mm) { 3734 pr_err("failed to get mm for the target process\n"); 3735 return -ESRCH; 3736 } 3737 3738 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3739 (nattr_common + num_devices); 3740 3741 query_attr = kzalloc(query_attr_size, GFP_KERNEL); 3742 if (!query_attr) { 3743 ret = -ENOMEM; 3744 goto exit; 3745 } 3746 3747 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; 3748 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; 3749 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3750 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; 3751 3752 for (index = 0; index < num_devices; index++) { 3753 struct kfd_process_device *pdd = p->pdds[index]; 3754 3755 query_attr[index + nattr_common].type = 3756 KFD_IOCTL_SVM_ATTR_ACCESS; 3757 query_attr[index + nattr_common].value = pdd->user_gpu_id; 3758 } 3759 3760 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; 3761 3762 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); 3763 if (!svm_priv) { 3764 ret = -ENOMEM; 3765 goto exit_query; 3766 } 3767 3768 index = 0; 3769 list_for_each_entry(prange, &svms->list, list) { 3770 3771 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; 3772 svm_priv->start_addr = prange->start; 3773 svm_priv->size = prange->npages; 3774 memcpy(&svm_priv->attrs, query_attr, query_attr_size); 3775 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", 3776 prange, prange->start, prange->npages, 3777 prange->start + prange->npages - 1, 3778 prange->npages * PAGE_SIZE); 3779 3780 ret = svm_range_get_attr(p, mm, svm_priv->start_addr, 3781 svm_priv->size, 3782 (nattr_common + num_devices), 3783 svm_priv->attrs); 3784 if (ret) { 3785 pr_err("CRIU: failed to obtain range attributes\n"); 3786 goto exit_priv; 3787 } 3788 3789 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, 3790 svm_priv_data_size)) { 3791 pr_err("Failed to copy svm priv to user\n"); 3792 ret = -EFAULT; 3793 goto exit_priv; 3794 } 3795 3796 *priv_data_offset += svm_priv_data_size; 3797 3798 } 3799 3800 3801 exit_priv: 3802 kfree(svm_priv); 3803 exit_query: 3804 kfree(query_attr); 3805 exit: 3806 mmput(mm); 3807 return ret; 3808 } 3809 3810 int 3811 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, 3812 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) 3813 { 3814 struct mm_struct *mm = current->mm; 3815 int r; 3816 3817 start >>= PAGE_SHIFT; 3818 size >>= PAGE_SHIFT; 3819 3820 switch (op) { 3821 case KFD_IOCTL_SVM_OP_SET_ATTR: 3822 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); 3823 break; 3824 case KFD_IOCTL_SVM_OP_GET_ATTR: 3825 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); 3826 break; 3827 default: 3828 r = EINVAL; 3829 break; 3830 } 3831 3832 return r; 3833 } 3834