1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/sched/task.h> 26 #include "amdgpu_sync.h" 27 #include "amdgpu_object.h" 28 #include "amdgpu_vm.h" 29 #include "amdgpu_mn.h" 30 #include "amdgpu.h" 31 #include "amdgpu_xgmi.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 36 #ifdef dev_fmt 37 #undef dev_fmt 38 #endif 39 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ 40 41 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 42 43 /* Long enough to ensure no retry fault comes after svm range is restored and 44 * page table is updated. 45 */ 46 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000 47 48 struct criu_svm_metadata { 49 struct list_head list; 50 struct kfd_criu_svm_range_priv_data data; 51 }; 52 53 static void svm_range_evict_svm_bo_worker(struct work_struct *work); 54 static bool 55 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 56 const struct mmu_notifier_range *range, 57 unsigned long cur_seq); 58 static int 59 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 60 uint64_t *bo_s, uint64_t *bo_l); 61 static const struct mmu_interval_notifier_ops svm_range_mn_ops = { 62 .invalidate = svm_range_cpu_invalidate_pagetables, 63 }; 64 65 /** 66 * svm_range_unlink - unlink svm_range from lists and interval tree 67 * @prange: svm range structure to be removed 68 * 69 * Remove the svm_range from the svms and svm_bo lists and the svms 70 * interval tree. 71 * 72 * Context: The caller must hold svms->lock 73 */ 74 static void svm_range_unlink(struct svm_range *prange) 75 { 76 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 77 prange, prange->start, prange->last); 78 79 if (prange->svm_bo) { 80 spin_lock(&prange->svm_bo->list_lock); 81 list_del(&prange->svm_bo_list); 82 spin_unlock(&prange->svm_bo->list_lock); 83 } 84 85 list_del(&prange->list); 86 if (prange->it_node.start != 0 && prange->it_node.last != 0) 87 interval_tree_remove(&prange->it_node, &prange->svms->objects); 88 } 89 90 static void 91 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) 92 { 93 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 94 prange, prange->start, prange->last); 95 96 mmu_interval_notifier_insert_locked(&prange->notifier, mm, 97 prange->start << PAGE_SHIFT, 98 prange->npages << PAGE_SHIFT, 99 &svm_range_mn_ops); 100 } 101 102 /** 103 * svm_range_add_to_svms - add svm range to svms 104 * @prange: svm range structure to be added 105 * 106 * Add the svm range to svms interval tree and link list 107 * 108 * Context: The caller must hold svms->lock 109 */ 110 static void svm_range_add_to_svms(struct svm_range *prange) 111 { 112 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 113 prange, prange->start, prange->last); 114 115 list_move_tail(&prange->list, &prange->svms->list); 116 prange->it_node.start = prange->start; 117 prange->it_node.last = prange->last; 118 interval_tree_insert(&prange->it_node, &prange->svms->objects); 119 } 120 121 static void svm_range_remove_notifier(struct svm_range *prange) 122 { 123 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", 124 prange->svms, prange, 125 prange->notifier.interval_tree.start >> PAGE_SHIFT, 126 prange->notifier.interval_tree.last >> PAGE_SHIFT); 127 128 if (prange->notifier.interval_tree.start != 0 && 129 prange->notifier.interval_tree.last != 0) 130 mmu_interval_notifier_remove(&prange->notifier); 131 } 132 133 static bool 134 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) 135 { 136 return dma_addr && !dma_mapping_error(dev, dma_addr) && 137 !(dma_addr & SVM_RANGE_VRAM_DOMAIN); 138 } 139 140 static int 141 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, 142 unsigned long offset, unsigned long npages, 143 unsigned long *hmm_pfns, uint32_t gpuidx) 144 { 145 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 146 dma_addr_t *addr = prange->dma_addr[gpuidx]; 147 struct device *dev = adev->dev; 148 struct page *page; 149 int i, r; 150 151 if (!addr) { 152 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL); 153 if (!addr) 154 return -ENOMEM; 155 prange->dma_addr[gpuidx] = addr; 156 } 157 158 addr += offset; 159 for (i = 0; i < npages; i++) { 160 if (svm_is_valid_dma_mapping_addr(dev, addr[i])) 161 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); 162 163 page = hmm_pfn_to_page(hmm_pfns[i]); 164 if (is_zone_device_page(page)) { 165 struct amdgpu_device *bo_adev = 166 amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 167 168 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + 169 bo_adev->vm_manager.vram_base_offset - 170 bo_adev->kfd.dev->pgmap.range.start; 171 addr[i] |= SVM_RANGE_VRAM_DOMAIN; 172 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); 173 continue; 174 } 175 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 176 r = dma_mapping_error(dev, addr[i]); 177 if (r) { 178 dev_err(dev, "failed %d dma_map_page\n", r); 179 return r; 180 } 181 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", 182 addr[i] >> PAGE_SHIFT, page_to_pfn(page)); 183 } 184 return 0; 185 } 186 187 static int 188 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, 189 unsigned long offset, unsigned long npages, 190 unsigned long *hmm_pfns) 191 { 192 struct kfd_process *p; 193 uint32_t gpuidx; 194 int r; 195 196 p = container_of(prange->svms, struct kfd_process, svms); 197 198 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 199 struct kfd_process_device *pdd; 200 201 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 202 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 203 if (!pdd) { 204 pr_debug("failed to find device idx %d\n", gpuidx); 205 return -EINVAL; 206 } 207 208 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, 209 hmm_pfns, gpuidx); 210 if (r) 211 break; 212 } 213 214 return r; 215 } 216 217 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr, 218 unsigned long offset, unsigned long npages) 219 { 220 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 221 int i; 222 223 if (!dma_addr) 224 return; 225 226 for (i = offset; i < offset + npages; i++) { 227 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) 228 continue; 229 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); 230 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); 231 dma_addr[i] = 0; 232 } 233 } 234 235 void svm_range_free_dma_mappings(struct svm_range *prange) 236 { 237 struct kfd_process_device *pdd; 238 dma_addr_t *dma_addr; 239 struct device *dev; 240 struct kfd_process *p; 241 uint32_t gpuidx; 242 243 p = container_of(prange->svms, struct kfd_process, svms); 244 245 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 246 dma_addr = prange->dma_addr[gpuidx]; 247 if (!dma_addr) 248 continue; 249 250 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 251 if (!pdd) { 252 pr_debug("failed to find device idx %d\n", gpuidx); 253 continue; 254 } 255 dev = &pdd->dev->pdev->dev; 256 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages); 257 kvfree(dma_addr); 258 prange->dma_addr[gpuidx] = NULL; 259 } 260 } 261 262 static void svm_range_free(struct svm_range *prange) 263 { 264 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, 265 prange->start, prange->last); 266 267 svm_range_vram_node_free(prange); 268 svm_range_free_dma_mappings(prange); 269 mutex_destroy(&prange->lock); 270 mutex_destroy(&prange->migrate_mutex); 271 kfree(prange); 272 } 273 274 static void 275 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, 276 uint8_t *granularity, uint32_t *flags) 277 { 278 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 279 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 280 *granularity = 9; 281 *flags = 282 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; 283 } 284 285 static struct 286 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, 287 uint64_t last) 288 { 289 uint64_t size = last - start + 1; 290 struct svm_range *prange; 291 struct kfd_process *p; 292 293 prange = kzalloc(sizeof(*prange), GFP_KERNEL); 294 if (!prange) 295 return NULL; 296 prange->npages = size; 297 prange->svms = svms; 298 prange->start = start; 299 prange->last = last; 300 INIT_LIST_HEAD(&prange->list); 301 INIT_LIST_HEAD(&prange->update_list); 302 INIT_LIST_HEAD(&prange->svm_bo_list); 303 INIT_LIST_HEAD(&prange->deferred_list); 304 INIT_LIST_HEAD(&prange->child_list); 305 atomic_set(&prange->invalid, 0); 306 prange->validate_timestamp = 0; 307 mutex_init(&prange->migrate_mutex); 308 mutex_init(&prange->lock); 309 310 p = container_of(svms, struct kfd_process, svms); 311 if (p->xnack_enabled) 312 bitmap_copy(prange->bitmap_access, svms->bitmap_supported, 313 MAX_GPU_INSTANCE); 314 315 svm_range_set_default_attributes(&prange->preferred_loc, 316 &prange->prefetch_loc, 317 &prange->granularity, &prange->flags); 318 319 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); 320 321 return prange; 322 } 323 324 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) 325 { 326 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) 327 return false; 328 329 return true; 330 } 331 332 static void svm_range_bo_release(struct kref *kref) 333 { 334 struct svm_range_bo *svm_bo; 335 336 svm_bo = container_of(kref, struct svm_range_bo, kref); 337 pr_debug("svm_bo 0x%p\n", svm_bo); 338 339 spin_lock(&svm_bo->list_lock); 340 while (!list_empty(&svm_bo->range_list)) { 341 struct svm_range *prange = 342 list_first_entry(&svm_bo->range_list, 343 struct svm_range, svm_bo_list); 344 /* list_del_init tells a concurrent svm_range_vram_node_new when 345 * it's safe to reuse the svm_bo pointer and svm_bo_list head. 346 */ 347 list_del_init(&prange->svm_bo_list); 348 spin_unlock(&svm_bo->list_lock); 349 350 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 351 prange->start, prange->last); 352 mutex_lock(&prange->lock); 353 prange->svm_bo = NULL; 354 mutex_unlock(&prange->lock); 355 356 spin_lock(&svm_bo->list_lock); 357 } 358 spin_unlock(&svm_bo->list_lock); 359 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) { 360 /* We're not in the eviction worker. 361 * Signal the fence and synchronize with any 362 * pending eviction work. 363 */ 364 dma_fence_signal(&svm_bo->eviction_fence->base); 365 cancel_work_sync(&svm_bo->eviction_work); 366 } 367 dma_fence_put(&svm_bo->eviction_fence->base); 368 amdgpu_bo_unref(&svm_bo->bo); 369 kfree(svm_bo); 370 } 371 372 static void svm_range_bo_wq_release(struct work_struct *work) 373 { 374 struct svm_range_bo *svm_bo; 375 376 svm_bo = container_of(work, struct svm_range_bo, release_work); 377 svm_range_bo_release(&svm_bo->kref); 378 } 379 380 static void svm_range_bo_release_async(struct kref *kref) 381 { 382 struct svm_range_bo *svm_bo; 383 384 svm_bo = container_of(kref, struct svm_range_bo, kref); 385 pr_debug("svm_bo 0x%p\n", svm_bo); 386 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); 387 schedule_work(&svm_bo->release_work); 388 } 389 390 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) 391 { 392 kref_put(&svm_bo->kref, svm_range_bo_release_async); 393 } 394 395 static void svm_range_bo_unref(struct svm_range_bo *svm_bo) 396 { 397 if (svm_bo) 398 kref_put(&svm_bo->kref, svm_range_bo_release); 399 } 400 401 static bool 402 svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange) 403 { 404 struct amdgpu_device *bo_adev; 405 406 mutex_lock(&prange->lock); 407 if (!prange->svm_bo) { 408 mutex_unlock(&prange->lock); 409 return false; 410 } 411 if (prange->ttm_res) { 412 /* We still have a reference, all is well */ 413 mutex_unlock(&prange->lock); 414 return true; 415 } 416 if (svm_bo_ref_unless_zero(prange->svm_bo)) { 417 /* 418 * Migrate from GPU to GPU, remove range from source bo_adev 419 * svm_bo range list, and return false to allocate svm_bo from 420 * destination adev. 421 */ 422 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 423 if (bo_adev != adev) { 424 mutex_unlock(&prange->lock); 425 426 spin_lock(&prange->svm_bo->list_lock); 427 list_del_init(&prange->svm_bo_list); 428 spin_unlock(&prange->svm_bo->list_lock); 429 430 svm_range_bo_unref(prange->svm_bo); 431 return false; 432 } 433 if (READ_ONCE(prange->svm_bo->evicting)) { 434 struct dma_fence *f; 435 struct svm_range_bo *svm_bo; 436 /* The BO is getting evicted, 437 * we need to get a new one 438 */ 439 mutex_unlock(&prange->lock); 440 svm_bo = prange->svm_bo; 441 f = dma_fence_get(&svm_bo->eviction_fence->base); 442 svm_range_bo_unref(prange->svm_bo); 443 /* wait for the fence to avoid long spin-loop 444 * at list_empty_careful 445 */ 446 dma_fence_wait(f, false); 447 dma_fence_put(f); 448 } else { 449 /* The BO was still around and we got 450 * a new reference to it 451 */ 452 mutex_unlock(&prange->lock); 453 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", 454 prange->svms, prange->start, prange->last); 455 456 prange->ttm_res = prange->svm_bo->bo->tbo.resource; 457 return true; 458 } 459 460 } else { 461 mutex_unlock(&prange->lock); 462 } 463 464 /* We need a new svm_bo. Spin-loop to wait for concurrent 465 * svm_range_bo_release to finish removing this range from 466 * its range list. After this, it is safe to reuse the 467 * svm_bo pointer and svm_bo_list head. 468 */ 469 while (!list_empty_careful(&prange->svm_bo_list)) 470 ; 471 472 return false; 473 } 474 475 static struct svm_range_bo *svm_range_bo_new(void) 476 { 477 struct svm_range_bo *svm_bo; 478 479 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); 480 if (!svm_bo) 481 return NULL; 482 483 kref_init(&svm_bo->kref); 484 INIT_LIST_HEAD(&svm_bo->range_list); 485 spin_lock_init(&svm_bo->list_lock); 486 487 return svm_bo; 488 } 489 490 int 491 svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange, 492 bool clear) 493 { 494 struct amdgpu_bo_param bp; 495 struct svm_range_bo *svm_bo; 496 struct amdgpu_bo_user *ubo; 497 struct amdgpu_bo *bo; 498 struct kfd_process *p; 499 struct mm_struct *mm; 500 int r; 501 502 p = container_of(prange->svms, struct kfd_process, svms); 503 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, 504 prange->start, prange->last); 505 506 if (svm_range_validate_svm_bo(adev, prange)) 507 return 0; 508 509 svm_bo = svm_range_bo_new(); 510 if (!svm_bo) { 511 pr_debug("failed to alloc svm bo\n"); 512 return -ENOMEM; 513 } 514 mm = get_task_mm(p->lead_thread); 515 if (!mm) { 516 pr_debug("failed to get mm\n"); 517 kfree(svm_bo); 518 return -ESRCH; 519 } 520 svm_bo->svms = prange->svms; 521 svm_bo->eviction_fence = 522 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 523 mm, 524 svm_bo); 525 mmput(mm); 526 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); 527 svm_bo->evicting = 0; 528 memset(&bp, 0, sizeof(bp)); 529 bp.size = prange->npages * PAGE_SIZE; 530 bp.byte_align = PAGE_SIZE; 531 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 532 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 533 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; 534 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE; 535 bp.type = ttm_bo_type_device; 536 bp.resv = NULL; 537 538 r = amdgpu_bo_create_user(adev, &bp, &ubo); 539 if (r) { 540 pr_debug("failed %d to create bo\n", r); 541 goto create_bo_failed; 542 } 543 bo = &ubo->bo; 544 r = amdgpu_bo_reserve(bo, true); 545 if (r) { 546 pr_debug("failed %d to reserve bo\n", r); 547 goto reserve_bo_failed; 548 } 549 550 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 551 if (r) { 552 pr_debug("failed %d to reserve bo\n", r); 553 amdgpu_bo_unreserve(bo); 554 goto reserve_bo_failed; 555 } 556 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); 557 558 amdgpu_bo_unreserve(bo); 559 560 svm_bo->bo = bo; 561 prange->svm_bo = svm_bo; 562 prange->ttm_res = bo->tbo.resource; 563 prange->offset = 0; 564 565 spin_lock(&svm_bo->list_lock); 566 list_add(&prange->svm_bo_list, &svm_bo->range_list); 567 spin_unlock(&svm_bo->list_lock); 568 569 return 0; 570 571 reserve_bo_failed: 572 amdgpu_bo_unref(&bo); 573 create_bo_failed: 574 dma_fence_put(&svm_bo->eviction_fence->base); 575 kfree(svm_bo); 576 prange->ttm_res = NULL; 577 578 return r; 579 } 580 581 void svm_range_vram_node_free(struct svm_range *prange) 582 { 583 svm_range_bo_unref(prange->svm_bo); 584 prange->ttm_res = NULL; 585 } 586 587 struct amdgpu_device * 588 svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id) 589 { 590 struct kfd_process_device *pdd; 591 struct kfd_process *p; 592 int32_t gpu_idx; 593 594 p = container_of(prange->svms, struct kfd_process, svms); 595 596 gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id); 597 if (gpu_idx < 0) { 598 pr_debug("failed to get device by id 0x%x\n", gpu_id); 599 return NULL; 600 } 601 pdd = kfd_process_device_from_gpuidx(p, gpu_idx); 602 if (!pdd) { 603 pr_debug("failed to get device by idx 0x%x\n", gpu_idx); 604 return NULL; 605 } 606 607 return pdd->dev->adev; 608 } 609 610 struct kfd_process_device * 611 svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev) 612 { 613 struct kfd_process *p; 614 int32_t gpu_idx, gpuid; 615 int r; 616 617 p = container_of(prange->svms, struct kfd_process, svms); 618 619 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpu_idx); 620 if (r) { 621 pr_debug("failed to get device id by adev %p\n", adev); 622 return NULL; 623 } 624 625 return kfd_process_device_from_gpuidx(p, gpu_idx); 626 } 627 628 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) 629 { 630 struct ttm_operation_ctx ctx = { false, false }; 631 632 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); 633 634 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 635 } 636 637 static int 638 svm_range_check_attr(struct kfd_process *p, 639 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 640 { 641 uint32_t i; 642 643 for (i = 0; i < nattr; i++) { 644 uint32_t val = attrs[i].value; 645 int gpuidx = MAX_GPU_INSTANCE; 646 647 switch (attrs[i].type) { 648 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 649 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && 650 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) 651 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 652 break; 653 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 654 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) 655 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 656 break; 657 case KFD_IOCTL_SVM_ATTR_ACCESS: 658 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 659 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 660 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 661 break; 662 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 663 break; 664 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 665 break; 666 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 667 break; 668 default: 669 pr_debug("unknown attr type 0x%x\n", attrs[i].type); 670 return -EINVAL; 671 } 672 673 if (gpuidx < 0) { 674 pr_debug("no GPU 0x%x found\n", val); 675 return -EINVAL; 676 } else if (gpuidx < MAX_GPU_INSTANCE && 677 !test_bit(gpuidx, p->svms.bitmap_supported)) { 678 pr_debug("GPU 0x%x not supported\n", val); 679 return -EINVAL; 680 } 681 } 682 683 return 0; 684 } 685 686 static void 687 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, 688 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 689 bool *update_mapping) 690 { 691 uint32_t i; 692 int gpuidx; 693 694 for (i = 0; i < nattr; i++) { 695 switch (attrs[i].type) { 696 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 697 prange->preferred_loc = attrs[i].value; 698 break; 699 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 700 prange->prefetch_loc = attrs[i].value; 701 break; 702 case KFD_IOCTL_SVM_ATTR_ACCESS: 703 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 704 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 705 *update_mapping = true; 706 gpuidx = kfd_process_gpuidx_from_gpuid(p, 707 attrs[i].value); 708 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 709 bitmap_clear(prange->bitmap_access, gpuidx, 1); 710 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 711 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 712 bitmap_set(prange->bitmap_access, gpuidx, 1); 713 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 714 } else { 715 bitmap_clear(prange->bitmap_access, gpuidx, 1); 716 bitmap_set(prange->bitmap_aip, gpuidx, 1); 717 } 718 break; 719 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 720 *update_mapping = true; 721 prange->flags |= attrs[i].value; 722 break; 723 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 724 *update_mapping = true; 725 prange->flags &= ~attrs[i].value; 726 break; 727 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 728 prange->granularity = attrs[i].value; 729 break; 730 default: 731 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 732 } 733 } 734 } 735 736 static bool 737 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, 738 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 739 { 740 uint32_t i; 741 int gpuidx; 742 743 for (i = 0; i < nattr; i++) { 744 switch (attrs[i].type) { 745 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 746 if (prange->preferred_loc != attrs[i].value) 747 return false; 748 break; 749 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 750 /* Prefetch should always trigger a migration even 751 * if the value of the attribute didn't change. 752 */ 753 return false; 754 case KFD_IOCTL_SVM_ATTR_ACCESS: 755 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 756 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 757 gpuidx = kfd_process_gpuidx_from_gpuid(p, 758 attrs[i].value); 759 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 760 if (test_bit(gpuidx, prange->bitmap_access) || 761 test_bit(gpuidx, prange->bitmap_aip)) 762 return false; 763 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 764 if (!test_bit(gpuidx, prange->bitmap_access)) 765 return false; 766 } else { 767 if (!test_bit(gpuidx, prange->bitmap_aip)) 768 return false; 769 } 770 break; 771 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 772 if ((prange->flags & attrs[i].value) != attrs[i].value) 773 return false; 774 break; 775 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 776 if ((prange->flags & attrs[i].value) != 0) 777 return false; 778 break; 779 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 780 if (prange->granularity != attrs[i].value) 781 return false; 782 break; 783 default: 784 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 785 } 786 } 787 788 return true; 789 } 790 791 /** 792 * svm_range_debug_dump - print all range information from svms 793 * @svms: svm range list header 794 * 795 * debug output svm range start, end, prefetch location from svms 796 * interval tree and link list 797 * 798 * Context: The caller must hold svms->lock 799 */ 800 static void svm_range_debug_dump(struct svm_range_list *svms) 801 { 802 struct interval_tree_node *node; 803 struct svm_range *prange; 804 805 pr_debug("dump svms 0x%p list\n", svms); 806 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 807 808 list_for_each_entry(prange, &svms->list, list) { 809 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 810 prange, prange->start, prange->npages, 811 prange->start + prange->npages - 1, 812 prange->actual_loc); 813 } 814 815 pr_debug("dump svms 0x%p interval tree\n", svms); 816 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 817 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); 818 while (node) { 819 prange = container_of(node, struct svm_range, it_node); 820 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 821 prange, prange->start, prange->npages, 822 prange->start + prange->npages - 1, 823 prange->actual_loc); 824 node = interval_tree_iter_next(node, 0, ~0ULL); 825 } 826 } 827 828 static int 829 svm_range_split_array(void *ppnew, void *ppold, size_t size, 830 uint64_t old_start, uint64_t old_n, 831 uint64_t new_start, uint64_t new_n) 832 { 833 unsigned char *new, *old, *pold; 834 uint64_t d; 835 836 if (!ppold) 837 return 0; 838 pold = *(unsigned char **)ppold; 839 if (!pold) 840 return 0; 841 842 new = kvmalloc_array(new_n, size, GFP_KERNEL); 843 if (!new) 844 return -ENOMEM; 845 846 d = (new_start - old_start) * size; 847 memcpy(new, pold + d, new_n * size); 848 849 old = kvmalloc_array(old_n, size, GFP_KERNEL); 850 if (!old) { 851 kvfree(new); 852 return -ENOMEM; 853 } 854 855 d = (new_start == old_start) ? new_n * size : 0; 856 memcpy(old, pold + d, old_n * size); 857 858 kvfree(pold); 859 *(void **)ppold = old; 860 *(void **)ppnew = new; 861 862 return 0; 863 } 864 865 static int 866 svm_range_split_pages(struct svm_range *new, struct svm_range *old, 867 uint64_t start, uint64_t last) 868 { 869 uint64_t npages = last - start + 1; 870 int i, r; 871 872 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 873 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], 874 sizeof(*old->dma_addr[i]), old->start, 875 npages, new->start, new->npages); 876 if (r) 877 return r; 878 } 879 880 return 0; 881 } 882 883 static int 884 svm_range_split_nodes(struct svm_range *new, struct svm_range *old, 885 uint64_t start, uint64_t last) 886 { 887 uint64_t npages = last - start + 1; 888 889 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", 890 new->svms, new, new->start, start, last); 891 892 if (new->start == old->start) { 893 new->offset = old->offset; 894 old->offset += new->npages; 895 } else { 896 new->offset = old->offset + npages; 897 } 898 899 new->svm_bo = svm_range_bo_ref(old->svm_bo); 900 new->ttm_res = old->ttm_res; 901 902 spin_lock(&new->svm_bo->list_lock); 903 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 904 spin_unlock(&new->svm_bo->list_lock); 905 906 return 0; 907 } 908 909 /** 910 * svm_range_split_adjust - split range and adjust 911 * 912 * @new: new range 913 * @old: the old range 914 * @start: the old range adjust to start address in pages 915 * @last: the old range adjust to last address in pages 916 * 917 * Copy system memory dma_addr or vram ttm_res in old range to new 918 * range from new_start up to size new->npages, the remaining old range is from 919 * start to last 920 * 921 * Return: 922 * 0 - OK, -ENOMEM - out of memory 923 */ 924 static int 925 svm_range_split_adjust(struct svm_range *new, struct svm_range *old, 926 uint64_t start, uint64_t last) 927 { 928 int r; 929 930 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", 931 new->svms, new->start, old->start, old->last, start, last); 932 933 if (new->start < old->start || 934 new->last > old->last) { 935 WARN_ONCE(1, "invalid new range start or last\n"); 936 return -EINVAL; 937 } 938 939 r = svm_range_split_pages(new, old, start, last); 940 if (r) 941 return r; 942 943 if (old->actual_loc && old->ttm_res) { 944 r = svm_range_split_nodes(new, old, start, last); 945 if (r) 946 return r; 947 } 948 949 old->npages = last - start + 1; 950 old->start = start; 951 old->last = last; 952 new->flags = old->flags; 953 new->preferred_loc = old->preferred_loc; 954 new->prefetch_loc = old->prefetch_loc; 955 new->actual_loc = old->actual_loc; 956 new->granularity = old->granularity; 957 new->mapped_to_gpu = old->mapped_to_gpu; 958 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 959 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 960 961 return 0; 962 } 963 964 /** 965 * svm_range_split - split a range in 2 ranges 966 * 967 * @prange: the svm range to split 968 * @start: the remaining range start address in pages 969 * @last: the remaining range last address in pages 970 * @new: the result new range generated 971 * 972 * Two cases only: 973 * case 1: if start == prange->start 974 * prange ==> prange[start, last] 975 * new range [last + 1, prange->last] 976 * 977 * case 2: if last == prange->last 978 * prange ==> prange[start, last] 979 * new range [prange->start, start - 1] 980 * 981 * Return: 982 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last 983 */ 984 static int 985 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, 986 struct svm_range **new) 987 { 988 uint64_t old_start = prange->start; 989 uint64_t old_last = prange->last; 990 struct svm_range_list *svms; 991 int r = 0; 992 993 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, 994 old_start, old_last, start, last); 995 996 if (old_start != start && old_last != last) 997 return -EINVAL; 998 if (start < old_start || last > old_last) 999 return -EINVAL; 1000 1001 svms = prange->svms; 1002 if (old_start == start) 1003 *new = svm_range_new(svms, last + 1, old_last); 1004 else 1005 *new = svm_range_new(svms, old_start, start - 1); 1006 if (!*new) 1007 return -ENOMEM; 1008 1009 r = svm_range_split_adjust(*new, prange, start, last); 1010 if (r) { 1011 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", 1012 r, old_start, old_last, start, last); 1013 svm_range_free(*new); 1014 *new = NULL; 1015 } 1016 1017 return r; 1018 } 1019 1020 static int 1021 svm_range_split_tail(struct svm_range *prange, 1022 uint64_t new_last, struct list_head *insert_list) 1023 { 1024 struct svm_range *tail; 1025 int r = svm_range_split(prange, prange->start, new_last, &tail); 1026 1027 if (!r) 1028 list_add(&tail->list, insert_list); 1029 return r; 1030 } 1031 1032 static int 1033 svm_range_split_head(struct svm_range *prange, 1034 uint64_t new_start, struct list_head *insert_list) 1035 { 1036 struct svm_range *head; 1037 int r = svm_range_split(prange, new_start, prange->last, &head); 1038 1039 if (!r) 1040 list_add(&head->list, insert_list); 1041 return r; 1042 } 1043 1044 static void 1045 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, 1046 struct svm_range *pchild, enum svm_work_list_ops op) 1047 { 1048 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", 1049 pchild, pchild->start, pchild->last, prange, op); 1050 1051 pchild->work_item.mm = mm; 1052 pchild->work_item.op = op; 1053 list_add_tail(&pchild->child_list, &prange->child_list); 1054 } 1055 1056 /** 1057 * svm_range_split_by_granularity - collect ranges within granularity boundary 1058 * 1059 * @p: the process with svms list 1060 * @mm: mm structure 1061 * @addr: the vm fault address in pages, to split the prange 1062 * @parent: parent range if prange is from child list 1063 * @prange: prange to split 1064 * 1065 * Trims @prange to be a single aligned block of prange->granularity if 1066 * possible. The head and tail are added to the child_list in @parent. 1067 * 1068 * Context: caller must hold mmap_read_lock and prange->lock 1069 * 1070 * Return: 1071 * 0 - OK, otherwise error code 1072 */ 1073 int 1074 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, 1075 unsigned long addr, struct svm_range *parent, 1076 struct svm_range *prange) 1077 { 1078 struct svm_range *head, *tail; 1079 unsigned long start, last, size; 1080 int r; 1081 1082 /* Align splited range start and size to granularity size, then a single 1083 * PTE will be used for whole range, this reduces the number of PTE 1084 * updated and the L1 TLB space used for translation. 1085 */ 1086 size = 1UL << prange->granularity; 1087 start = ALIGN_DOWN(addr, size); 1088 last = ALIGN(addr + 1, size) - 1; 1089 1090 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", 1091 prange->svms, prange->start, prange->last, start, last, size); 1092 1093 if (start > prange->start) { 1094 r = svm_range_split(prange, start, prange->last, &head); 1095 if (r) 1096 return r; 1097 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); 1098 } 1099 1100 if (last < prange->last) { 1101 r = svm_range_split(prange, prange->start, last, &tail); 1102 if (r) 1103 return r; 1104 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 1105 } 1106 1107 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 1108 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { 1109 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; 1110 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", 1111 prange, prange->start, prange->last, 1112 SVM_OP_ADD_RANGE_AND_MAP); 1113 } 1114 return 0; 1115 } 1116 1117 static uint64_t 1118 svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange, 1119 int domain) 1120 { 1121 struct amdgpu_device *bo_adev; 1122 uint32_t flags = prange->flags; 1123 uint32_t mapping_flags = 0; 1124 uint64_t pte_flags; 1125 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); 1126 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT; 1127 1128 if (domain == SVM_RANGE_VRAM_DOMAIN) 1129 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 1130 1131 switch (KFD_GC_VERSION(adev->kfd.dev)) { 1132 case IP_VERSION(9, 4, 1): 1133 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1134 if (bo_adev == adev) { 1135 mapping_flags |= coherent ? 1136 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1137 } else { 1138 mapping_flags |= coherent ? 1139 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1140 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 1141 snoop = true; 1142 } 1143 } else { 1144 mapping_flags |= coherent ? 1145 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1146 } 1147 break; 1148 case IP_VERSION(9, 4, 2): 1149 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1150 if (bo_adev == adev) { 1151 mapping_flags |= coherent ? 1152 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1153 if (adev->gmc.xgmi.connected_to_cpu) 1154 snoop = true; 1155 } else { 1156 mapping_flags |= coherent ? 1157 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1158 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 1159 snoop = true; 1160 } 1161 } else { 1162 mapping_flags |= coherent ? 1163 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1164 } 1165 break; 1166 default: 1167 mapping_flags |= coherent ? 1168 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1169 } 1170 1171 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; 1172 1173 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) 1174 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; 1175 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) 1176 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1177 1178 pte_flags = AMDGPU_PTE_VALID; 1179 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; 1180 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 1181 1182 pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags); 1183 return pte_flags; 1184 } 1185 1186 static int 1187 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1188 uint64_t start, uint64_t last, 1189 struct dma_fence **fence) 1190 { 1191 uint64_t init_pte_value = 0; 1192 1193 pr_debug("[0x%llx 0x%llx]\n", start, last); 1194 1195 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start, 1196 last, init_pte_value, 0, 0, NULL, NULL, 1197 fence); 1198 } 1199 1200 static int 1201 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, 1202 unsigned long last) 1203 { 1204 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1205 struct kfd_process_device *pdd; 1206 struct dma_fence *fence = NULL; 1207 struct kfd_process *p; 1208 uint32_t gpuidx; 1209 int r = 0; 1210 1211 if (!prange->mapped_to_gpu) { 1212 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n", 1213 prange, prange->start, prange->last); 1214 return 0; 1215 } 1216 1217 if (prange->start == start && prange->last == last) { 1218 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange); 1219 prange->mapped_to_gpu = false; 1220 } 1221 1222 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 1223 MAX_GPU_INSTANCE); 1224 p = container_of(prange->svms, struct kfd_process, svms); 1225 1226 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1227 pr_debug("unmap from gpu idx 0x%x\n", gpuidx); 1228 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1229 if (!pdd) { 1230 pr_debug("failed to find device idx %d\n", gpuidx); 1231 return -EINVAL; 1232 } 1233 1234 r = svm_range_unmap_from_gpu(pdd->dev->adev, 1235 drm_priv_to_vm(pdd->drm_priv), 1236 start, last, &fence); 1237 if (r) 1238 break; 1239 1240 if (fence) { 1241 r = dma_fence_wait(fence, false); 1242 dma_fence_put(fence); 1243 fence = NULL; 1244 if (r) 1245 break; 1246 } 1247 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); 1248 } 1249 1250 return r; 1251 } 1252 1253 static int 1254 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, 1255 unsigned long offset, unsigned long npages, bool readonly, 1256 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, 1257 struct dma_fence **fence, bool flush_tlb) 1258 { 1259 struct amdgpu_device *adev = pdd->dev->adev; 1260 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1261 uint64_t pte_flags; 1262 unsigned long last_start; 1263 int last_domain; 1264 int r = 0; 1265 int64_t i, j; 1266 1267 last_start = prange->start + offset; 1268 1269 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, 1270 last_start, last_start + npages - 1, readonly); 1271 1272 for (i = offset; i < offset + npages; i++) { 1273 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; 1274 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; 1275 1276 /* Collect all pages in the same address range and memory domain 1277 * that can be mapped with a single call to update mapping. 1278 */ 1279 if (i < offset + npages - 1 && 1280 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) 1281 continue; 1282 1283 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", 1284 last_start, prange->start + i, last_domain ? "GPU" : "CPU"); 1285 1286 pte_flags = svm_range_get_pte_flags(adev, prange, last_domain); 1287 if (readonly) 1288 pte_flags &= ~AMDGPU_PTE_WRITEABLE; 1289 1290 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", 1291 prange->svms, last_start, prange->start + i, 1292 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, 1293 pte_flags); 1294 1295 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL, 1296 last_start, prange->start + i, 1297 pte_flags, 1298 last_start - prange->start, 1299 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, 1300 NULL, dma_addr, &vm->last_update); 1301 1302 for (j = last_start - prange->start; j <= i; j++) 1303 dma_addr[j] |= last_domain; 1304 1305 if (r) { 1306 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); 1307 goto out; 1308 } 1309 last_start = prange->start + i + 1; 1310 } 1311 1312 r = amdgpu_vm_update_pdes(adev, vm, false); 1313 if (r) { 1314 pr_debug("failed %d to update directories 0x%lx\n", r, 1315 prange->start); 1316 goto out; 1317 } 1318 1319 if (fence) 1320 *fence = dma_fence_get(vm->last_update); 1321 1322 out: 1323 return r; 1324 } 1325 1326 static int 1327 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, 1328 unsigned long npages, bool readonly, 1329 unsigned long *bitmap, bool wait, bool flush_tlb) 1330 { 1331 struct kfd_process_device *pdd; 1332 struct amdgpu_device *bo_adev; 1333 struct kfd_process *p; 1334 struct dma_fence *fence = NULL; 1335 uint32_t gpuidx; 1336 int r = 0; 1337 1338 if (prange->svm_bo && prange->ttm_res) 1339 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 1340 else 1341 bo_adev = NULL; 1342 1343 p = container_of(prange->svms, struct kfd_process, svms); 1344 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1345 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 1346 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1347 if (!pdd) { 1348 pr_debug("failed to find device idx %d\n", gpuidx); 1349 return -EINVAL; 1350 } 1351 1352 pdd = kfd_bind_process_to_device(pdd->dev, p); 1353 if (IS_ERR(pdd)) 1354 return -EINVAL; 1355 1356 if (bo_adev && pdd->dev->adev != bo_adev && 1357 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 1358 pr_debug("cannot map to device idx %d\n", gpuidx); 1359 continue; 1360 } 1361 1362 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, 1363 prange->dma_addr[gpuidx], 1364 bo_adev, wait ? &fence : NULL, 1365 flush_tlb); 1366 if (r) 1367 break; 1368 1369 if (fence) { 1370 r = dma_fence_wait(fence, false); 1371 dma_fence_put(fence); 1372 fence = NULL; 1373 if (r) { 1374 pr_debug("failed %d to dma fence wait\n", r); 1375 break; 1376 } 1377 } 1378 1379 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1380 } 1381 1382 return r; 1383 } 1384 1385 struct svm_validate_context { 1386 struct kfd_process *process; 1387 struct svm_range *prange; 1388 bool intr; 1389 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1390 struct ttm_validate_buffer tv[MAX_GPU_INSTANCE]; 1391 struct list_head validate_list; 1392 struct ww_acquire_ctx ticket; 1393 }; 1394 1395 static int svm_range_reserve_bos(struct svm_validate_context *ctx) 1396 { 1397 struct kfd_process_device *pdd; 1398 struct amdgpu_vm *vm; 1399 uint32_t gpuidx; 1400 int r; 1401 1402 INIT_LIST_HEAD(&ctx->validate_list); 1403 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1404 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1405 if (!pdd) { 1406 pr_debug("failed to find device idx %d\n", gpuidx); 1407 return -EINVAL; 1408 } 1409 vm = drm_priv_to_vm(pdd->drm_priv); 1410 1411 ctx->tv[gpuidx].bo = &vm->root.bo->tbo; 1412 ctx->tv[gpuidx].num_shared = 4; 1413 list_add(&ctx->tv[gpuidx].head, &ctx->validate_list); 1414 } 1415 1416 r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list, 1417 ctx->intr, NULL); 1418 if (r) { 1419 pr_debug("failed %d to reserve bo\n", r); 1420 return r; 1421 } 1422 1423 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1424 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1425 if (!pdd) { 1426 pr_debug("failed to find device idx %d\n", gpuidx); 1427 r = -EINVAL; 1428 goto unreserve_out; 1429 } 1430 1431 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev, 1432 drm_priv_to_vm(pdd->drm_priv), 1433 svm_range_bo_validate, NULL); 1434 if (r) { 1435 pr_debug("failed %d validate pt bos\n", r); 1436 goto unreserve_out; 1437 } 1438 } 1439 1440 return 0; 1441 1442 unreserve_out: 1443 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); 1444 return r; 1445 } 1446 1447 static void svm_range_unreserve_bos(struct svm_validate_context *ctx) 1448 { 1449 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); 1450 } 1451 1452 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) 1453 { 1454 struct kfd_process_device *pdd; 1455 1456 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1457 1458 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); 1459 } 1460 1461 /* 1462 * Validation+GPU mapping with concurrent invalidation (MMU notifiers) 1463 * 1464 * To prevent concurrent destruction or change of range attributes, the 1465 * svm_read_lock must be held. The caller must not hold the svm_write_lock 1466 * because that would block concurrent evictions and lead to deadlocks. To 1467 * serialize concurrent migrations or validations of the same range, the 1468 * prange->migrate_mutex must be held. 1469 * 1470 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its 1471 * eviction fence. 1472 * 1473 * The following sequence ensures race-free validation and GPU mapping: 1474 * 1475 * 1. Reserve page table (and SVM BO if range is in VRAM) 1476 * 2. hmm_range_fault to get page addresses (if system memory) 1477 * 3. DMA-map pages (if system memory) 1478 * 4-a. Take notifier lock 1479 * 4-b. Check that pages still valid (mmu_interval_read_retry) 1480 * 4-c. Check that the range was not split or otherwise invalidated 1481 * 4-d. Update GPU page table 1482 * 4.e. Release notifier lock 1483 * 5. Release page table (and SVM BO) reservation 1484 */ 1485 static int svm_range_validate_and_map(struct mm_struct *mm, 1486 struct svm_range *prange, int32_t gpuidx, 1487 bool intr, bool wait, bool flush_tlb) 1488 { 1489 struct svm_validate_context ctx; 1490 unsigned long start, end, addr; 1491 struct kfd_process *p; 1492 void *owner; 1493 int32_t idx; 1494 int r = 0; 1495 1496 ctx.process = container_of(prange->svms, struct kfd_process, svms); 1497 ctx.prange = prange; 1498 ctx.intr = intr; 1499 1500 if (gpuidx < MAX_GPU_INSTANCE) { 1501 bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE); 1502 bitmap_set(ctx.bitmap, gpuidx, 1); 1503 } else if (ctx.process->xnack_enabled) { 1504 bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 1505 1506 /* If prefetch range to GPU, or GPU retry fault migrate range to 1507 * GPU, which has ACCESS attribute to the range, create mapping 1508 * on that GPU. 1509 */ 1510 if (prange->actual_loc) { 1511 gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process, 1512 prange->actual_loc); 1513 if (gpuidx < 0) { 1514 WARN_ONCE(1, "failed get device by id 0x%x\n", 1515 prange->actual_loc); 1516 return -EINVAL; 1517 } 1518 if (test_bit(gpuidx, prange->bitmap_access)) 1519 bitmap_set(ctx.bitmap, gpuidx, 1); 1520 } 1521 } else { 1522 bitmap_or(ctx.bitmap, prange->bitmap_access, 1523 prange->bitmap_aip, MAX_GPU_INSTANCE); 1524 } 1525 1526 if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) { 1527 if (!prange->mapped_to_gpu) 1528 return 0; 1529 1530 bitmap_copy(ctx.bitmap, prange->bitmap_access, MAX_GPU_INSTANCE); 1531 } 1532 1533 if (prange->actual_loc && !prange->ttm_res) { 1534 /* This should never happen. actual_loc gets set by 1535 * svm_migrate_ram_to_vram after allocating a BO. 1536 */ 1537 WARN_ONCE(1, "VRAM BO missing during validation\n"); 1538 return -EINVAL; 1539 } 1540 1541 svm_range_reserve_bos(&ctx); 1542 1543 p = container_of(prange->svms, struct kfd_process, svms); 1544 owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap, 1545 MAX_GPU_INSTANCE)); 1546 for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) { 1547 if (kfd_svm_page_owner(p, idx) != owner) { 1548 owner = NULL; 1549 break; 1550 } 1551 } 1552 1553 start = prange->start << PAGE_SHIFT; 1554 end = (prange->last + 1) << PAGE_SHIFT; 1555 for (addr = start; addr < end && !r; ) { 1556 struct hmm_range *hmm_range; 1557 struct vm_area_struct *vma; 1558 unsigned long next; 1559 unsigned long offset; 1560 unsigned long npages; 1561 bool readonly; 1562 1563 vma = find_vma(mm, addr); 1564 if (!vma || addr < vma->vm_start) { 1565 r = -EFAULT; 1566 goto unreserve_out; 1567 } 1568 readonly = !(vma->vm_flags & VM_WRITE); 1569 1570 next = min(vma->vm_end, end); 1571 npages = (next - addr) >> PAGE_SHIFT; 1572 WRITE_ONCE(p->svms.faulting_task, current); 1573 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, 1574 addr, npages, &hmm_range, 1575 readonly, true, owner); 1576 WRITE_ONCE(p->svms.faulting_task, NULL); 1577 if (r) { 1578 pr_debug("failed %d to get svm range pages\n", r); 1579 goto unreserve_out; 1580 } 1581 1582 offset = (addr - start) >> PAGE_SHIFT; 1583 r = svm_range_dma_map(prange, ctx.bitmap, offset, npages, 1584 hmm_range->hmm_pfns); 1585 if (r) { 1586 pr_debug("failed %d to dma map range\n", r); 1587 goto unreserve_out; 1588 } 1589 1590 svm_range_lock(prange); 1591 if (amdgpu_hmm_range_get_pages_done(hmm_range)) { 1592 pr_debug("hmm update the range, need validate again\n"); 1593 r = -EAGAIN; 1594 goto unlock_out; 1595 } 1596 if (!list_empty(&prange->child_list)) { 1597 pr_debug("range split by unmap in parallel, validate again\n"); 1598 r = -EAGAIN; 1599 goto unlock_out; 1600 } 1601 1602 r = svm_range_map_to_gpus(prange, offset, npages, readonly, 1603 ctx.bitmap, wait, flush_tlb); 1604 1605 unlock_out: 1606 svm_range_unlock(prange); 1607 1608 addr = next; 1609 } 1610 1611 if (addr == end) { 1612 prange->validated_once = true; 1613 prange->mapped_to_gpu = true; 1614 } 1615 1616 unreserve_out: 1617 svm_range_unreserve_bos(&ctx); 1618 1619 if (!r) 1620 prange->validate_timestamp = ktime_to_us(ktime_get()); 1621 1622 return r; 1623 } 1624 1625 /** 1626 * svm_range_list_lock_and_flush_work - flush pending deferred work 1627 * 1628 * @svms: the svm range list 1629 * @mm: the mm structure 1630 * 1631 * Context: Returns with mmap write lock held, pending deferred work flushed 1632 * 1633 */ 1634 void 1635 svm_range_list_lock_and_flush_work(struct svm_range_list *svms, 1636 struct mm_struct *mm) 1637 { 1638 retry_flush_work: 1639 flush_work(&svms->deferred_list_work); 1640 mmap_write_lock(mm); 1641 1642 if (list_empty(&svms->deferred_range_list)) 1643 return; 1644 mmap_write_unlock(mm); 1645 pr_debug("retry flush\n"); 1646 goto retry_flush_work; 1647 } 1648 1649 static void svm_range_restore_work(struct work_struct *work) 1650 { 1651 struct delayed_work *dwork = to_delayed_work(work); 1652 struct amdkfd_process_info *process_info; 1653 struct svm_range_list *svms; 1654 struct svm_range *prange; 1655 struct kfd_process *p; 1656 struct mm_struct *mm; 1657 int evicted_ranges; 1658 int invalid; 1659 int r; 1660 1661 svms = container_of(dwork, struct svm_range_list, restore_work); 1662 evicted_ranges = atomic_read(&svms->evicted_ranges); 1663 if (!evicted_ranges) 1664 return; 1665 1666 pr_debug("restore svm ranges\n"); 1667 1668 p = container_of(svms, struct kfd_process, svms); 1669 process_info = p->kgd_process_info; 1670 1671 /* Keep mm reference when svm_range_validate_and_map ranges */ 1672 mm = get_task_mm(p->lead_thread); 1673 if (!mm) { 1674 pr_debug("svms 0x%p process mm gone\n", svms); 1675 return; 1676 } 1677 1678 mutex_lock(&process_info->lock); 1679 svm_range_list_lock_and_flush_work(svms, mm); 1680 mutex_lock(&svms->lock); 1681 1682 evicted_ranges = atomic_read(&svms->evicted_ranges); 1683 1684 list_for_each_entry(prange, &svms->list, list) { 1685 invalid = atomic_read(&prange->invalid); 1686 if (!invalid) 1687 continue; 1688 1689 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", 1690 prange->svms, prange, prange->start, prange->last, 1691 invalid); 1692 1693 /* 1694 * If range is migrating, wait for migration is done. 1695 */ 1696 mutex_lock(&prange->migrate_mutex); 1697 1698 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 1699 false, true, false); 1700 if (r) 1701 pr_debug("failed %d to map 0x%lx to gpus\n", r, 1702 prange->start); 1703 1704 mutex_unlock(&prange->migrate_mutex); 1705 if (r) 1706 goto out_reschedule; 1707 1708 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) 1709 goto out_reschedule; 1710 } 1711 1712 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != 1713 evicted_ranges) 1714 goto out_reschedule; 1715 1716 evicted_ranges = 0; 1717 1718 r = kgd2kfd_resume_mm(mm); 1719 if (r) { 1720 /* No recovery from this failure. Probably the CP is 1721 * hanging. No point trying again. 1722 */ 1723 pr_debug("failed %d to resume KFD\n", r); 1724 } 1725 1726 pr_debug("restore svm ranges successfully\n"); 1727 1728 out_reschedule: 1729 mutex_unlock(&svms->lock); 1730 mmap_write_unlock(mm); 1731 mutex_unlock(&process_info->lock); 1732 mmput(mm); 1733 1734 /* If validation failed, reschedule another attempt */ 1735 if (evicted_ranges) { 1736 pr_debug("reschedule to restore svm range\n"); 1737 schedule_delayed_work(&svms->restore_work, 1738 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1739 } 1740 } 1741 1742 /** 1743 * svm_range_evict - evict svm range 1744 * @prange: svm range structure 1745 * @mm: current process mm_struct 1746 * @start: starting process queue number 1747 * @last: last process queue number 1748 * 1749 * Stop all queues of the process to ensure GPU doesn't access the memory, then 1750 * return to let CPU evict the buffer and proceed CPU pagetable update. 1751 * 1752 * Don't need use lock to sync cpu pagetable invalidation with GPU execution. 1753 * If invalidation happens while restore work is running, restore work will 1754 * restart to ensure to get the latest CPU pages mapping to GPU, then start 1755 * the queues. 1756 */ 1757 static int 1758 svm_range_evict(struct svm_range *prange, struct mm_struct *mm, 1759 unsigned long start, unsigned long last) 1760 { 1761 struct svm_range_list *svms = prange->svms; 1762 struct svm_range *pchild; 1763 struct kfd_process *p; 1764 int r = 0; 1765 1766 p = container_of(svms, struct kfd_process, svms); 1767 1768 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1769 svms, prange->start, prange->last, start, last); 1770 1771 if (!p->xnack_enabled) { 1772 int evicted_ranges; 1773 1774 list_for_each_entry(pchild, &prange->child_list, child_list) { 1775 mutex_lock_nested(&pchild->lock, 1); 1776 if (pchild->start <= last && pchild->last >= start) { 1777 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", 1778 pchild->start, pchild->last); 1779 atomic_inc(&pchild->invalid); 1780 } 1781 mutex_unlock(&pchild->lock); 1782 } 1783 1784 if (prange->start <= last && prange->last >= start) 1785 atomic_inc(&prange->invalid); 1786 1787 evicted_ranges = atomic_inc_return(&svms->evicted_ranges); 1788 if (evicted_ranges != 1) 1789 return r; 1790 1791 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", 1792 prange->svms, prange->start, prange->last); 1793 1794 /* First eviction, stop the queues */ 1795 r = kgd2kfd_quiesce_mm(mm); 1796 if (r) 1797 pr_debug("failed to quiesce KFD\n"); 1798 1799 pr_debug("schedule to restore svm %p ranges\n", svms); 1800 schedule_delayed_work(&svms->restore_work, 1801 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1802 } else { 1803 unsigned long s, l; 1804 1805 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", 1806 prange->svms, start, last); 1807 list_for_each_entry(pchild, &prange->child_list, child_list) { 1808 mutex_lock_nested(&pchild->lock, 1); 1809 s = max(start, pchild->start); 1810 l = min(last, pchild->last); 1811 if (l >= s) 1812 svm_range_unmap_from_gpus(pchild, s, l); 1813 mutex_unlock(&pchild->lock); 1814 } 1815 s = max(start, prange->start); 1816 l = min(last, prange->last); 1817 if (l >= s) 1818 svm_range_unmap_from_gpus(prange, s, l); 1819 } 1820 1821 return r; 1822 } 1823 1824 static struct svm_range *svm_range_clone(struct svm_range *old) 1825 { 1826 struct svm_range *new; 1827 1828 new = svm_range_new(old->svms, old->start, old->last); 1829 if (!new) 1830 return NULL; 1831 1832 if (old->svm_bo) { 1833 new->ttm_res = old->ttm_res; 1834 new->offset = old->offset; 1835 new->svm_bo = svm_range_bo_ref(old->svm_bo); 1836 spin_lock(&new->svm_bo->list_lock); 1837 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 1838 spin_unlock(&new->svm_bo->list_lock); 1839 } 1840 new->flags = old->flags; 1841 new->preferred_loc = old->preferred_loc; 1842 new->prefetch_loc = old->prefetch_loc; 1843 new->actual_loc = old->actual_loc; 1844 new->granularity = old->granularity; 1845 new->mapped_to_gpu = old->mapped_to_gpu; 1846 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1847 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1848 1849 return new; 1850 } 1851 1852 /** 1853 * svm_range_add - add svm range and handle overlap 1854 * @p: the range add to this process svms 1855 * @start: page size aligned 1856 * @size: page size aligned 1857 * @nattr: number of attributes 1858 * @attrs: array of attributes 1859 * @update_list: output, the ranges need validate and update GPU mapping 1860 * @insert_list: output, the ranges need insert to svms 1861 * @remove_list: output, the ranges are replaced and need remove from svms 1862 * 1863 * Check if the virtual address range has overlap with any existing ranges, 1864 * split partly overlapping ranges and add new ranges in the gaps. All changes 1865 * should be applied to the range_list and interval tree transactionally. If 1866 * any range split or allocation fails, the entire update fails. Therefore any 1867 * existing overlapping svm_ranges are cloned and the original svm_ranges left 1868 * unchanged. 1869 * 1870 * If the transaction succeeds, the caller can update and insert clones and 1871 * new ranges, then free the originals. 1872 * 1873 * Otherwise the caller can free the clones and new ranges, while the old 1874 * svm_ranges remain unchanged. 1875 * 1876 * Context: Process context, caller must hold svms->lock 1877 * 1878 * Return: 1879 * 0 - OK, otherwise error code 1880 */ 1881 static int 1882 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, 1883 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 1884 struct list_head *update_list, struct list_head *insert_list, 1885 struct list_head *remove_list) 1886 { 1887 unsigned long last = start + size - 1UL; 1888 struct svm_range_list *svms = &p->svms; 1889 struct interval_tree_node *node; 1890 struct svm_range *prange; 1891 struct svm_range *tmp; 1892 int r = 0; 1893 1894 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); 1895 1896 INIT_LIST_HEAD(update_list); 1897 INIT_LIST_HEAD(insert_list); 1898 INIT_LIST_HEAD(remove_list); 1899 1900 node = interval_tree_iter_first(&svms->objects, start, last); 1901 while (node) { 1902 struct interval_tree_node *next; 1903 unsigned long next_start; 1904 1905 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, 1906 node->last); 1907 1908 prange = container_of(node, struct svm_range, it_node); 1909 next = interval_tree_iter_next(node, start, last); 1910 next_start = min(node->last, last) + 1; 1911 1912 if (svm_range_is_same_attrs(p, prange, nattr, attrs)) { 1913 /* nothing to do */ 1914 } else if (node->start < start || node->last > last) { 1915 /* node intersects the update range and its attributes 1916 * will change. Clone and split it, apply updates only 1917 * to the overlapping part 1918 */ 1919 struct svm_range *old = prange; 1920 1921 prange = svm_range_clone(old); 1922 if (!prange) { 1923 r = -ENOMEM; 1924 goto out; 1925 } 1926 1927 list_add(&old->update_list, remove_list); 1928 list_add(&prange->list, insert_list); 1929 list_add(&prange->update_list, update_list); 1930 1931 if (node->start < start) { 1932 pr_debug("change old range start\n"); 1933 r = svm_range_split_head(prange, start, 1934 insert_list); 1935 if (r) 1936 goto out; 1937 } 1938 if (node->last > last) { 1939 pr_debug("change old range last\n"); 1940 r = svm_range_split_tail(prange, last, 1941 insert_list); 1942 if (r) 1943 goto out; 1944 } 1945 } else { 1946 /* The node is contained within start..last, 1947 * just update it 1948 */ 1949 list_add(&prange->update_list, update_list); 1950 } 1951 1952 /* insert a new node if needed */ 1953 if (node->start > start) { 1954 prange = svm_range_new(svms, start, node->start - 1); 1955 if (!prange) { 1956 r = -ENOMEM; 1957 goto out; 1958 } 1959 1960 list_add(&prange->list, insert_list); 1961 list_add(&prange->update_list, update_list); 1962 } 1963 1964 node = next; 1965 start = next_start; 1966 } 1967 1968 /* add a final range at the end if needed */ 1969 if (start <= last) { 1970 prange = svm_range_new(svms, start, last); 1971 if (!prange) { 1972 r = -ENOMEM; 1973 goto out; 1974 } 1975 list_add(&prange->list, insert_list); 1976 list_add(&prange->update_list, update_list); 1977 } 1978 1979 out: 1980 if (r) 1981 list_for_each_entry_safe(prange, tmp, insert_list, list) 1982 svm_range_free(prange); 1983 1984 return r; 1985 } 1986 1987 static void 1988 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, 1989 struct svm_range *prange) 1990 { 1991 unsigned long start; 1992 unsigned long last; 1993 1994 start = prange->notifier.interval_tree.start >> PAGE_SHIFT; 1995 last = prange->notifier.interval_tree.last >> PAGE_SHIFT; 1996 1997 if (prange->start == start && prange->last == last) 1998 return; 1999 2000 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 2001 prange->svms, prange, start, last, prange->start, 2002 prange->last); 2003 2004 if (start != 0 && last != 0) { 2005 interval_tree_remove(&prange->it_node, &prange->svms->objects); 2006 svm_range_remove_notifier(prange); 2007 } 2008 prange->it_node.start = prange->start; 2009 prange->it_node.last = prange->last; 2010 2011 interval_tree_insert(&prange->it_node, &prange->svms->objects); 2012 svm_range_add_notifier_locked(mm, prange); 2013 } 2014 2015 static void 2016 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, 2017 struct mm_struct *mm) 2018 { 2019 switch (prange->work_item.op) { 2020 case SVM_OP_NULL: 2021 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2022 svms, prange, prange->start, prange->last); 2023 break; 2024 case SVM_OP_UNMAP_RANGE: 2025 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2026 svms, prange, prange->start, prange->last); 2027 svm_range_unlink(prange); 2028 svm_range_remove_notifier(prange); 2029 svm_range_free(prange); 2030 break; 2031 case SVM_OP_UPDATE_RANGE_NOTIFIER: 2032 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2033 svms, prange, prange->start, prange->last); 2034 svm_range_update_notifier_and_interval_tree(mm, prange); 2035 break; 2036 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: 2037 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2038 svms, prange, prange->start, prange->last); 2039 svm_range_update_notifier_and_interval_tree(mm, prange); 2040 /* TODO: implement deferred validation and mapping */ 2041 break; 2042 case SVM_OP_ADD_RANGE: 2043 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, 2044 prange->start, prange->last); 2045 svm_range_add_to_svms(prange); 2046 svm_range_add_notifier_locked(mm, prange); 2047 break; 2048 case SVM_OP_ADD_RANGE_AND_MAP: 2049 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, 2050 prange, prange->start, prange->last); 2051 svm_range_add_to_svms(prange); 2052 svm_range_add_notifier_locked(mm, prange); 2053 /* TODO: implement deferred validation and mapping */ 2054 break; 2055 default: 2056 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, 2057 prange->work_item.op); 2058 } 2059 } 2060 2061 static void svm_range_drain_retry_fault(struct svm_range_list *svms) 2062 { 2063 struct kfd_process_device *pdd; 2064 struct kfd_process *p; 2065 int drain; 2066 uint32_t i; 2067 2068 p = container_of(svms, struct kfd_process, svms); 2069 2070 restart: 2071 drain = atomic_read(&svms->drain_pagefaults); 2072 if (!drain) 2073 return; 2074 2075 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2076 pdd = p->pdds[i]; 2077 if (!pdd) 2078 continue; 2079 2080 pr_debug("drain retry fault gpu %d svms %p\n", i, svms); 2081 2082 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2083 &pdd->dev->adev->irq.ih1); 2084 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); 2085 } 2086 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) 2087 goto restart; 2088 } 2089 2090 static void svm_range_deferred_list_work(struct work_struct *work) 2091 { 2092 struct svm_range_list *svms; 2093 struct svm_range *prange; 2094 struct mm_struct *mm; 2095 2096 svms = container_of(work, struct svm_range_list, deferred_list_work); 2097 pr_debug("enter svms 0x%p\n", svms); 2098 2099 spin_lock(&svms->deferred_list_lock); 2100 while (!list_empty(&svms->deferred_range_list)) { 2101 prange = list_first_entry(&svms->deferred_range_list, 2102 struct svm_range, deferred_list); 2103 spin_unlock(&svms->deferred_list_lock); 2104 2105 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, 2106 prange->start, prange->last, prange->work_item.op); 2107 2108 mm = prange->work_item.mm; 2109 retry: 2110 mmap_write_lock(mm); 2111 2112 /* Checking for the need to drain retry faults must be inside 2113 * mmap write lock to serialize with munmap notifiers. 2114 */ 2115 if (unlikely(atomic_read(&svms->drain_pagefaults))) { 2116 mmap_write_unlock(mm); 2117 svm_range_drain_retry_fault(svms); 2118 goto retry; 2119 } 2120 2121 /* Remove from deferred_list must be inside mmap write lock, for 2122 * two race cases: 2123 * 1. unmap_from_cpu may change work_item.op and add the range 2124 * to deferred_list again, cause use after free bug. 2125 * 2. svm_range_list_lock_and_flush_work may hold mmap write 2126 * lock and continue because deferred_list is empty, but 2127 * deferred_list work is actually waiting for mmap lock. 2128 */ 2129 spin_lock(&svms->deferred_list_lock); 2130 list_del_init(&prange->deferred_list); 2131 spin_unlock(&svms->deferred_list_lock); 2132 2133 mutex_lock(&svms->lock); 2134 mutex_lock(&prange->migrate_mutex); 2135 while (!list_empty(&prange->child_list)) { 2136 struct svm_range *pchild; 2137 2138 pchild = list_first_entry(&prange->child_list, 2139 struct svm_range, child_list); 2140 pr_debug("child prange 0x%p op %d\n", pchild, 2141 pchild->work_item.op); 2142 list_del_init(&pchild->child_list); 2143 svm_range_handle_list_op(svms, pchild, mm); 2144 } 2145 mutex_unlock(&prange->migrate_mutex); 2146 2147 svm_range_handle_list_op(svms, prange, mm); 2148 mutex_unlock(&svms->lock); 2149 mmap_write_unlock(mm); 2150 2151 /* Pairs with mmget in svm_range_add_list_work */ 2152 mmput(mm); 2153 2154 spin_lock(&svms->deferred_list_lock); 2155 } 2156 spin_unlock(&svms->deferred_list_lock); 2157 pr_debug("exit svms 0x%p\n", svms); 2158 } 2159 2160 void 2161 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, 2162 struct mm_struct *mm, enum svm_work_list_ops op) 2163 { 2164 spin_lock(&svms->deferred_list_lock); 2165 /* if prange is on the deferred list */ 2166 if (!list_empty(&prange->deferred_list)) { 2167 pr_debug("update exist prange 0x%p work op %d\n", prange, op); 2168 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); 2169 if (op != SVM_OP_NULL && 2170 prange->work_item.op != SVM_OP_UNMAP_RANGE) 2171 prange->work_item.op = op; 2172 } else { 2173 prange->work_item.op = op; 2174 2175 /* Pairs with mmput in deferred_list_work */ 2176 mmget(mm); 2177 prange->work_item.mm = mm; 2178 list_add_tail(&prange->deferred_list, 2179 &prange->svms->deferred_range_list); 2180 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", 2181 prange, prange->start, prange->last, op); 2182 } 2183 spin_unlock(&svms->deferred_list_lock); 2184 } 2185 2186 void schedule_deferred_list_work(struct svm_range_list *svms) 2187 { 2188 spin_lock(&svms->deferred_list_lock); 2189 if (!list_empty(&svms->deferred_range_list)) 2190 schedule_work(&svms->deferred_list_work); 2191 spin_unlock(&svms->deferred_list_lock); 2192 } 2193 2194 static void 2195 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, 2196 struct svm_range *prange, unsigned long start, 2197 unsigned long last) 2198 { 2199 struct svm_range *head; 2200 struct svm_range *tail; 2201 2202 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2203 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, 2204 prange->start, prange->last); 2205 return; 2206 } 2207 if (start > prange->last || last < prange->start) 2208 return; 2209 2210 head = tail = prange; 2211 if (start > prange->start) 2212 svm_range_split(prange, prange->start, start - 1, &tail); 2213 if (last < tail->last) 2214 svm_range_split(tail, last + 1, tail->last, &head); 2215 2216 if (head != prange && tail != prange) { 2217 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2218 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 2219 } else if (tail != prange) { 2220 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); 2221 } else if (head != prange) { 2222 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2223 } else if (parent != prange) { 2224 prange->work_item.op = SVM_OP_UNMAP_RANGE; 2225 } 2226 } 2227 2228 static void 2229 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, 2230 unsigned long start, unsigned long last) 2231 { 2232 struct svm_range_list *svms; 2233 struct svm_range *pchild; 2234 struct kfd_process *p; 2235 unsigned long s, l; 2236 bool unmap_parent; 2237 2238 p = kfd_lookup_process_by_mm(mm); 2239 if (!p) 2240 return; 2241 svms = &p->svms; 2242 2243 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, 2244 prange, prange->start, prange->last, start, last); 2245 2246 /* Make sure pending page faults are drained in the deferred worker 2247 * before the range is freed to avoid straggler interrupts on 2248 * unmapped memory causing "phantom faults". 2249 */ 2250 atomic_inc(&svms->drain_pagefaults); 2251 2252 unmap_parent = start <= prange->start && last >= prange->last; 2253 2254 list_for_each_entry(pchild, &prange->child_list, child_list) { 2255 mutex_lock_nested(&pchild->lock, 1); 2256 s = max(start, pchild->start); 2257 l = min(last, pchild->last); 2258 if (l >= s) 2259 svm_range_unmap_from_gpus(pchild, s, l); 2260 svm_range_unmap_split(mm, prange, pchild, start, last); 2261 mutex_unlock(&pchild->lock); 2262 } 2263 s = max(start, prange->start); 2264 l = min(last, prange->last); 2265 if (l >= s) 2266 svm_range_unmap_from_gpus(prange, s, l); 2267 svm_range_unmap_split(mm, prange, prange, start, last); 2268 2269 if (unmap_parent) 2270 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); 2271 else 2272 svm_range_add_list_work(svms, prange, mm, 2273 SVM_OP_UPDATE_RANGE_NOTIFIER); 2274 schedule_deferred_list_work(svms); 2275 2276 kfd_unref_process(p); 2277 } 2278 2279 /** 2280 * svm_range_cpu_invalidate_pagetables - interval notifier callback 2281 * @mni: mmu_interval_notifier struct 2282 * @range: mmu_notifier_range struct 2283 * @cur_seq: value to pass to mmu_interval_set_seq() 2284 * 2285 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it 2286 * is from migration, or CPU page invalidation callback. 2287 * 2288 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed 2289 * work thread, and split prange if only part of prange is unmapped. 2290 * 2291 * For invalidation event, if GPU retry fault is not enabled, evict the queues, 2292 * then schedule svm_range_restore_work to update GPU mapping and resume queues. 2293 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will 2294 * update GPU mapping to recover. 2295 * 2296 * Context: mmap lock, notifier_invalidate_start lock are held 2297 * for invalidate event, prange lock is held if this is from migration 2298 */ 2299 static bool 2300 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 2301 const struct mmu_notifier_range *range, 2302 unsigned long cur_seq) 2303 { 2304 struct svm_range *prange; 2305 unsigned long start; 2306 unsigned long last; 2307 2308 if (range->event == MMU_NOTIFY_RELEASE) 2309 return true; 2310 2311 start = mni->interval_tree.start; 2312 last = mni->interval_tree.last; 2313 start = max(start, range->start) >> PAGE_SHIFT; 2314 last = min(last, range->end - 1) >> PAGE_SHIFT; 2315 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", 2316 start, last, range->start >> PAGE_SHIFT, 2317 (range->end - 1) >> PAGE_SHIFT, 2318 mni->interval_tree.start >> PAGE_SHIFT, 2319 mni->interval_tree.last >> PAGE_SHIFT, range->event); 2320 2321 prange = container_of(mni, struct svm_range, notifier); 2322 2323 svm_range_lock(prange); 2324 mmu_interval_set_seq(mni, cur_seq); 2325 2326 switch (range->event) { 2327 case MMU_NOTIFY_UNMAP: 2328 svm_range_unmap_from_cpu(mni->mm, prange, start, last); 2329 break; 2330 default: 2331 svm_range_evict(prange, mni->mm, start, last); 2332 break; 2333 } 2334 2335 svm_range_unlock(prange); 2336 2337 return true; 2338 } 2339 2340 /** 2341 * svm_range_from_addr - find svm range from fault address 2342 * @svms: svm range list header 2343 * @addr: address to search range interval tree, in pages 2344 * @parent: parent range if range is on child list 2345 * 2346 * Context: The caller must hold svms->lock 2347 * 2348 * Return: the svm_range found or NULL 2349 */ 2350 struct svm_range * 2351 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, 2352 struct svm_range **parent) 2353 { 2354 struct interval_tree_node *node; 2355 struct svm_range *prange; 2356 struct svm_range *pchild; 2357 2358 node = interval_tree_iter_first(&svms->objects, addr, addr); 2359 if (!node) 2360 return NULL; 2361 2362 prange = container_of(node, struct svm_range, it_node); 2363 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", 2364 addr, prange->start, prange->last, node->start, node->last); 2365 2366 if (addr >= prange->start && addr <= prange->last) { 2367 if (parent) 2368 *parent = prange; 2369 return prange; 2370 } 2371 list_for_each_entry(pchild, &prange->child_list, child_list) 2372 if (addr >= pchild->start && addr <= pchild->last) { 2373 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", 2374 addr, pchild->start, pchild->last); 2375 if (parent) 2376 *parent = prange; 2377 return pchild; 2378 } 2379 2380 return NULL; 2381 } 2382 2383 /* svm_range_best_restore_location - decide the best fault restore location 2384 * @prange: svm range structure 2385 * @adev: the GPU on which vm fault happened 2386 * 2387 * This is only called when xnack is on, to decide the best location to restore 2388 * the range mapping after GPU vm fault. Caller uses the best location to do 2389 * migration if actual loc is not best location, then update GPU page table 2390 * mapping to the best location. 2391 * 2392 * If the preferred loc is accessible by faulting GPU, use preferred loc. 2393 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu 2394 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then 2395 * if range actual loc is cpu, best_loc is cpu 2396 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is 2397 * range actual loc. 2398 * Otherwise, GPU no access, best_loc is -1. 2399 * 2400 * Return: 2401 * -1 means vm fault GPU no access 2402 * 0 for CPU or GPU id 2403 */ 2404 static int32_t 2405 svm_range_best_restore_location(struct svm_range *prange, 2406 struct amdgpu_device *adev, 2407 int32_t *gpuidx) 2408 { 2409 struct amdgpu_device *bo_adev, *preferred_adev; 2410 struct kfd_process *p; 2411 uint32_t gpuid; 2412 int r; 2413 2414 p = container_of(prange->svms, struct kfd_process, svms); 2415 2416 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, gpuidx); 2417 if (r < 0) { 2418 pr_debug("failed to get gpuid from kgd\n"); 2419 return -1; 2420 } 2421 2422 if (prange->preferred_loc == gpuid || 2423 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { 2424 return prange->preferred_loc; 2425 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 2426 preferred_adev = svm_range_get_adev_by_id(prange, 2427 prange->preferred_loc); 2428 if (amdgpu_xgmi_same_hive(adev, preferred_adev)) 2429 return prange->preferred_loc; 2430 /* fall through */ 2431 } 2432 2433 if (test_bit(*gpuidx, prange->bitmap_access)) 2434 return gpuid; 2435 2436 if (test_bit(*gpuidx, prange->bitmap_aip)) { 2437 if (!prange->actual_loc) 2438 return 0; 2439 2440 bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 2441 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 2442 return prange->actual_loc; 2443 else 2444 return 0; 2445 } 2446 2447 return -1; 2448 } 2449 2450 static int 2451 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, 2452 unsigned long *start, unsigned long *last, 2453 bool *is_heap_stack) 2454 { 2455 struct vm_area_struct *vma; 2456 struct interval_tree_node *node; 2457 unsigned long start_limit, end_limit; 2458 2459 vma = find_vma(p->mm, addr << PAGE_SHIFT); 2460 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { 2461 pr_debug("VMA does not exist in address [0x%llx]\n", addr); 2462 return -EFAULT; 2463 } 2464 2465 *is_heap_stack = (vma->vm_start <= vma->vm_mm->brk && 2466 vma->vm_end >= vma->vm_mm->start_brk) || 2467 (vma->vm_start <= vma->vm_mm->start_stack && 2468 vma->vm_end >= vma->vm_mm->start_stack); 2469 2470 start_limit = max(vma->vm_start >> PAGE_SHIFT, 2471 (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); 2472 end_limit = min(vma->vm_end >> PAGE_SHIFT, 2473 (unsigned long)ALIGN(addr + 1, 2UL << 8)); 2474 /* First range that starts after the fault address */ 2475 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); 2476 if (node) { 2477 end_limit = min(end_limit, node->start); 2478 /* Last range that ends before the fault address */ 2479 node = container_of(rb_prev(&node->rb), 2480 struct interval_tree_node, rb); 2481 } else { 2482 /* Last range must end before addr because 2483 * there was no range after addr 2484 */ 2485 node = container_of(rb_last(&p->svms.objects.rb_root), 2486 struct interval_tree_node, rb); 2487 } 2488 if (node) { 2489 if (node->last >= addr) { 2490 WARN(1, "Overlap with prev node and page fault addr\n"); 2491 return -EFAULT; 2492 } 2493 start_limit = max(start_limit, node->last + 1); 2494 } 2495 2496 *start = start_limit; 2497 *last = end_limit - 1; 2498 2499 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", 2500 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, 2501 *start, *last, *is_heap_stack); 2502 2503 return 0; 2504 } 2505 2506 static int 2507 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, 2508 uint64_t *bo_s, uint64_t *bo_l) 2509 { 2510 struct amdgpu_bo_va_mapping *mapping; 2511 struct interval_tree_node *node; 2512 struct amdgpu_bo *bo = NULL; 2513 unsigned long userptr; 2514 uint32_t i; 2515 int r; 2516 2517 for (i = 0; i < p->n_pdds; i++) { 2518 struct amdgpu_vm *vm; 2519 2520 if (!p->pdds[i]->drm_priv) 2521 continue; 2522 2523 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2524 r = amdgpu_bo_reserve(vm->root.bo, false); 2525 if (r) 2526 return r; 2527 2528 /* Check userptr by searching entire vm->va interval tree */ 2529 node = interval_tree_iter_first(&vm->va, 0, ~0ULL); 2530 while (node) { 2531 mapping = container_of((struct rb_node *)node, 2532 struct amdgpu_bo_va_mapping, rb); 2533 bo = mapping->bo_va->base.bo; 2534 2535 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, 2536 start << PAGE_SHIFT, 2537 last << PAGE_SHIFT, 2538 &userptr)) { 2539 node = interval_tree_iter_next(node, 0, ~0ULL); 2540 continue; 2541 } 2542 2543 pr_debug("[0x%llx 0x%llx] already userptr mapped\n", 2544 start, last); 2545 if (bo_s && bo_l) { 2546 *bo_s = userptr >> PAGE_SHIFT; 2547 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; 2548 } 2549 amdgpu_bo_unreserve(vm->root.bo); 2550 return -EADDRINUSE; 2551 } 2552 amdgpu_bo_unreserve(vm->root.bo); 2553 } 2554 return 0; 2555 } 2556 2557 static struct 2558 svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev, 2559 struct kfd_process *p, 2560 struct mm_struct *mm, 2561 int64_t addr) 2562 { 2563 struct svm_range *prange = NULL; 2564 unsigned long start, last; 2565 uint32_t gpuid, gpuidx; 2566 bool is_heap_stack; 2567 uint64_t bo_s = 0; 2568 uint64_t bo_l = 0; 2569 int r; 2570 2571 if (svm_range_get_range_boundaries(p, addr, &start, &last, 2572 &is_heap_stack)) 2573 return NULL; 2574 2575 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); 2576 if (r != -EADDRINUSE) 2577 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); 2578 2579 if (r == -EADDRINUSE) { 2580 if (addr >= bo_s && addr <= bo_l) 2581 return NULL; 2582 2583 /* Create one page svm range if 2MB range overlapping */ 2584 start = addr; 2585 last = addr; 2586 } 2587 2588 prange = svm_range_new(&p->svms, start, last); 2589 if (!prange) { 2590 pr_debug("Failed to create prange in address [0x%llx]\n", addr); 2591 return NULL; 2592 } 2593 if (kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx)) { 2594 pr_debug("failed to get gpuid from kgd\n"); 2595 svm_range_free(prange); 2596 return NULL; 2597 } 2598 2599 if (is_heap_stack) 2600 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; 2601 2602 svm_range_add_to_svms(prange); 2603 svm_range_add_notifier_locked(mm, prange); 2604 2605 return prange; 2606 } 2607 2608 /* svm_range_skip_recover - decide if prange can be recovered 2609 * @prange: svm range structure 2610 * 2611 * GPU vm retry fault handle skip recover the range for cases: 2612 * 1. prange is on deferred list to be removed after unmap, it is stale fault, 2613 * deferred list work will drain the stale fault before free the prange. 2614 * 2. prange is on deferred list to add interval notifier after split, or 2615 * 3. prange is child range, it is split from parent prange, recover later 2616 * after interval notifier is added. 2617 * 2618 * Return: true to skip recover, false to recover 2619 */ 2620 static bool svm_range_skip_recover(struct svm_range *prange) 2621 { 2622 struct svm_range_list *svms = prange->svms; 2623 2624 spin_lock(&svms->deferred_list_lock); 2625 if (list_empty(&prange->deferred_list) && 2626 list_empty(&prange->child_list)) { 2627 spin_unlock(&svms->deferred_list_lock); 2628 return false; 2629 } 2630 spin_unlock(&svms->deferred_list_lock); 2631 2632 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2633 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", 2634 svms, prange, prange->start, prange->last); 2635 return true; 2636 } 2637 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || 2638 prange->work_item.op == SVM_OP_ADD_RANGE) { 2639 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", 2640 svms, prange, prange->start, prange->last); 2641 return true; 2642 } 2643 return false; 2644 } 2645 2646 static void 2647 svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p, 2648 int32_t gpuidx) 2649 { 2650 struct kfd_process_device *pdd; 2651 2652 /* fault is on different page of same range 2653 * or fault is skipped to recover later 2654 * or fault is on invalid virtual address 2655 */ 2656 if (gpuidx == MAX_GPU_INSTANCE) { 2657 uint32_t gpuid; 2658 int r; 2659 2660 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx); 2661 if (r < 0) 2662 return; 2663 } 2664 2665 /* fault is recovered 2666 * or fault cannot recover because GPU no access on the range 2667 */ 2668 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 2669 if (pdd) 2670 WRITE_ONCE(pdd->faults, pdd->faults + 1); 2671 } 2672 2673 static bool 2674 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) 2675 { 2676 unsigned long requested = VM_READ; 2677 2678 if (write_fault) 2679 requested |= VM_WRITE; 2680 2681 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, 2682 vma->vm_flags); 2683 return (vma->vm_flags & requested) == requested; 2684 } 2685 2686 int 2687 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, 2688 uint64_t addr, bool write_fault) 2689 { 2690 struct mm_struct *mm = NULL; 2691 struct svm_range_list *svms; 2692 struct svm_range *prange; 2693 struct kfd_process *p; 2694 uint64_t timestamp; 2695 int32_t best_loc; 2696 int32_t gpuidx = MAX_GPU_INSTANCE; 2697 bool write_locked = false; 2698 struct vm_area_struct *vma; 2699 int r = 0; 2700 2701 if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) { 2702 pr_debug("device does not support SVM\n"); 2703 return -EFAULT; 2704 } 2705 2706 p = kfd_lookup_process_by_pasid(pasid); 2707 if (!p) { 2708 pr_debug("kfd process not founded pasid 0x%x\n", pasid); 2709 return 0; 2710 } 2711 svms = &p->svms; 2712 2713 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); 2714 2715 if (atomic_read(&svms->drain_pagefaults)) { 2716 pr_debug("draining retry fault, drop fault 0x%llx\n", addr); 2717 r = 0; 2718 goto out; 2719 } 2720 2721 if (!p->xnack_enabled) { 2722 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); 2723 r = -EFAULT; 2724 goto out; 2725 } 2726 2727 /* p->lead_thread is available as kfd_process_wq_release flush the work 2728 * before releasing task ref. 2729 */ 2730 mm = get_task_mm(p->lead_thread); 2731 if (!mm) { 2732 pr_debug("svms 0x%p failed to get mm\n", svms); 2733 r = 0; 2734 goto out; 2735 } 2736 2737 mmap_read_lock(mm); 2738 retry_write_locked: 2739 mutex_lock(&svms->lock); 2740 prange = svm_range_from_addr(svms, addr, NULL); 2741 if (!prange) { 2742 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", 2743 svms, addr); 2744 if (!write_locked) { 2745 /* Need the write lock to create new range with MMU notifier. 2746 * Also flush pending deferred work to make sure the interval 2747 * tree is up to date before we add a new range 2748 */ 2749 mutex_unlock(&svms->lock); 2750 mmap_read_unlock(mm); 2751 mmap_write_lock(mm); 2752 write_locked = true; 2753 goto retry_write_locked; 2754 } 2755 prange = svm_range_create_unregistered_range(adev, p, mm, addr); 2756 if (!prange) { 2757 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", 2758 svms, addr); 2759 mmap_write_downgrade(mm); 2760 r = -EFAULT; 2761 goto out_unlock_svms; 2762 } 2763 } 2764 if (write_locked) 2765 mmap_write_downgrade(mm); 2766 2767 mutex_lock(&prange->migrate_mutex); 2768 2769 if (svm_range_skip_recover(prange)) { 2770 amdgpu_gmc_filter_faults_remove(adev, addr, pasid); 2771 r = 0; 2772 goto out_unlock_range; 2773 } 2774 2775 timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp; 2776 /* skip duplicate vm fault on different pages of same range */ 2777 if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) { 2778 pr_debug("svms 0x%p [0x%lx %lx] already restored\n", 2779 svms, prange->start, prange->last); 2780 r = 0; 2781 goto out_unlock_range; 2782 } 2783 2784 /* __do_munmap removed VMA, return success as we are handling stale 2785 * retry fault. 2786 */ 2787 vma = find_vma(mm, addr << PAGE_SHIFT); 2788 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { 2789 pr_debug("address 0x%llx VMA is removed\n", addr); 2790 r = 0; 2791 goto out_unlock_range; 2792 } 2793 2794 if (!svm_fault_allowed(vma, write_fault)) { 2795 pr_debug("fault addr 0x%llx no %s permission\n", addr, 2796 write_fault ? "write" : "read"); 2797 r = -EPERM; 2798 goto out_unlock_range; 2799 } 2800 2801 best_loc = svm_range_best_restore_location(prange, adev, &gpuidx); 2802 if (best_loc == -1) { 2803 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", 2804 svms, prange->start, prange->last); 2805 r = -EACCES; 2806 goto out_unlock_range; 2807 } 2808 2809 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", 2810 svms, prange->start, prange->last, best_loc, 2811 prange->actual_loc); 2812 2813 if (prange->actual_loc != best_loc) { 2814 if (best_loc) { 2815 r = svm_migrate_to_vram(prange, best_loc, mm); 2816 if (r) { 2817 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", 2818 r, addr); 2819 /* Fallback to system memory if migration to 2820 * VRAM failed 2821 */ 2822 if (prange->actual_loc) 2823 r = svm_migrate_vram_to_ram(prange, mm); 2824 else 2825 r = 0; 2826 } 2827 } else { 2828 r = svm_migrate_vram_to_ram(prange, mm); 2829 } 2830 if (r) { 2831 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", 2832 r, svms, prange->start, prange->last); 2833 goto out_unlock_range; 2834 } 2835 } 2836 2837 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false); 2838 if (r) 2839 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", 2840 r, svms, prange->start, prange->last); 2841 2842 out_unlock_range: 2843 mutex_unlock(&prange->migrate_mutex); 2844 out_unlock_svms: 2845 mutex_unlock(&svms->lock); 2846 mmap_read_unlock(mm); 2847 2848 svm_range_count_fault(adev, p, gpuidx); 2849 2850 mmput(mm); 2851 out: 2852 kfd_unref_process(p); 2853 2854 if (r == -EAGAIN) { 2855 pr_debug("recover vm fault later\n"); 2856 amdgpu_gmc_filter_faults_remove(adev, addr, pasid); 2857 r = 0; 2858 } 2859 return r; 2860 } 2861 2862 void svm_range_list_fini(struct kfd_process *p) 2863 { 2864 struct svm_range *prange; 2865 struct svm_range *next; 2866 2867 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); 2868 2869 cancel_delayed_work_sync(&p->svms.restore_work); 2870 2871 /* Ensure list work is finished before process is destroyed */ 2872 flush_work(&p->svms.deferred_list_work); 2873 2874 /* 2875 * Ensure no retry fault comes in afterwards, as page fault handler will 2876 * not find kfd process and take mm lock to recover fault. 2877 */ 2878 atomic_inc(&p->svms.drain_pagefaults); 2879 svm_range_drain_retry_fault(&p->svms); 2880 2881 list_for_each_entry_safe(prange, next, &p->svms.list, list) { 2882 svm_range_unlink(prange); 2883 svm_range_remove_notifier(prange); 2884 svm_range_free(prange); 2885 } 2886 2887 mutex_destroy(&p->svms.lock); 2888 2889 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); 2890 } 2891 2892 int svm_range_list_init(struct kfd_process *p) 2893 { 2894 struct svm_range_list *svms = &p->svms; 2895 int i; 2896 2897 svms->objects = RB_ROOT_CACHED; 2898 mutex_init(&svms->lock); 2899 INIT_LIST_HEAD(&svms->list); 2900 atomic_set(&svms->evicted_ranges, 0); 2901 atomic_set(&svms->drain_pagefaults, 0); 2902 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); 2903 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); 2904 INIT_LIST_HEAD(&svms->deferred_range_list); 2905 INIT_LIST_HEAD(&svms->criu_svm_metadata_list); 2906 spin_lock_init(&svms->deferred_list_lock); 2907 2908 for (i = 0; i < p->n_pdds; i++) 2909 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev)) 2910 bitmap_set(svms->bitmap_supported, i, 1); 2911 2912 return 0; 2913 } 2914 2915 /** 2916 * svm_range_check_vm - check if virtual address range mapped already 2917 * @p: current kfd_process 2918 * @start: range start address, in pages 2919 * @last: range last address, in pages 2920 * @bo_s: mapping start address in pages if address range already mapped 2921 * @bo_l: mapping last address in pages if address range already mapped 2922 * 2923 * The purpose is to avoid virtual address ranges already allocated by 2924 * kfd_ioctl_alloc_memory_of_gpu ioctl. 2925 * It looks for each pdd in the kfd_process. 2926 * 2927 * Context: Process context 2928 * 2929 * Return 0 - OK, if the range is not mapped. 2930 * Otherwise error code: 2931 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu 2932 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by 2933 * a signal. Release all buffer reservations and return to user-space. 2934 */ 2935 static int 2936 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 2937 uint64_t *bo_s, uint64_t *bo_l) 2938 { 2939 struct amdgpu_bo_va_mapping *mapping; 2940 struct interval_tree_node *node; 2941 uint32_t i; 2942 int r; 2943 2944 for (i = 0; i < p->n_pdds; i++) { 2945 struct amdgpu_vm *vm; 2946 2947 if (!p->pdds[i]->drm_priv) 2948 continue; 2949 2950 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2951 r = amdgpu_bo_reserve(vm->root.bo, false); 2952 if (r) 2953 return r; 2954 2955 node = interval_tree_iter_first(&vm->va, start, last); 2956 if (node) { 2957 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", 2958 start, last); 2959 mapping = container_of((struct rb_node *)node, 2960 struct amdgpu_bo_va_mapping, rb); 2961 if (bo_s && bo_l) { 2962 *bo_s = mapping->start; 2963 *bo_l = mapping->last; 2964 } 2965 amdgpu_bo_unreserve(vm->root.bo); 2966 return -EADDRINUSE; 2967 } 2968 amdgpu_bo_unreserve(vm->root.bo); 2969 } 2970 2971 return 0; 2972 } 2973 2974 /** 2975 * svm_range_is_valid - check if virtual address range is valid 2976 * @p: current kfd_process 2977 * @start: range start address, in pages 2978 * @size: range size, in pages 2979 * 2980 * Valid virtual address range means it belongs to one or more VMAs 2981 * 2982 * Context: Process context 2983 * 2984 * Return: 2985 * 0 - OK, otherwise error code 2986 */ 2987 static int 2988 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) 2989 { 2990 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 2991 struct vm_area_struct *vma; 2992 unsigned long end; 2993 unsigned long start_unchg = start; 2994 2995 start <<= PAGE_SHIFT; 2996 end = start + (size << PAGE_SHIFT); 2997 do { 2998 vma = find_vma(p->mm, start); 2999 if (!vma || start < vma->vm_start || 3000 (vma->vm_flags & device_vma)) 3001 return -EFAULT; 3002 start = min(end, vma->vm_end); 3003 } while (start < end); 3004 3005 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, 3006 NULL); 3007 } 3008 3009 /** 3010 * svm_range_best_prefetch_location - decide the best prefetch location 3011 * @prange: svm range structure 3012 * 3013 * For xnack off: 3014 * If range map to single GPU, the best prefetch location is prefetch_loc, which 3015 * can be CPU or GPU. 3016 * 3017 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on 3018 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise 3019 * the best prefetch location is always CPU, because GPU can not have coherent 3020 * mapping VRAM of other GPUs even with large-BAR PCIe connection. 3021 * 3022 * For xnack on: 3023 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is 3024 * prefetch_loc, other GPU access will generate vm fault and trigger migration. 3025 * 3026 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same 3027 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best 3028 * prefetch location is always CPU. 3029 * 3030 * Context: Process context 3031 * 3032 * Return: 3033 * 0 for CPU or GPU id 3034 */ 3035 static uint32_t 3036 svm_range_best_prefetch_location(struct svm_range *prange) 3037 { 3038 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 3039 uint32_t best_loc = prange->prefetch_loc; 3040 struct kfd_process_device *pdd; 3041 struct amdgpu_device *bo_adev; 3042 struct kfd_process *p; 3043 uint32_t gpuidx; 3044 3045 p = container_of(prange->svms, struct kfd_process, svms); 3046 3047 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) 3048 goto out; 3049 3050 bo_adev = svm_range_get_adev_by_id(prange, best_loc); 3051 if (!bo_adev) { 3052 WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc); 3053 best_loc = 0; 3054 goto out; 3055 } 3056 3057 if (p->xnack_enabled) 3058 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 3059 else 3060 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 3061 MAX_GPU_INSTANCE); 3062 3063 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 3064 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 3065 if (!pdd) { 3066 pr_debug("failed to get device by idx 0x%x\n", gpuidx); 3067 continue; 3068 } 3069 3070 if (pdd->dev->adev == bo_adev) 3071 continue; 3072 3073 if (!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 3074 best_loc = 0; 3075 break; 3076 } 3077 } 3078 3079 out: 3080 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", 3081 p->xnack_enabled, &p->svms, prange->start, prange->last, 3082 best_loc); 3083 3084 return best_loc; 3085 } 3086 3087 /* FIXME: This is a workaround for page locking bug when some pages are 3088 * invalid during migration to VRAM 3089 */ 3090 void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm, 3091 void *owner) 3092 { 3093 struct hmm_range *hmm_range; 3094 int r; 3095 3096 if (prange->validated_once) 3097 return; 3098 3099 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, 3100 prange->start << PAGE_SHIFT, 3101 prange->npages, &hmm_range, 3102 false, true, owner); 3103 if (!r) { 3104 amdgpu_hmm_range_get_pages_done(hmm_range); 3105 prange->validated_once = true; 3106 } 3107 } 3108 3109 /* svm_range_trigger_migration - start page migration if prefetch loc changed 3110 * @mm: current process mm_struct 3111 * @prange: svm range structure 3112 * @migrated: output, true if migration is triggered 3113 * 3114 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range 3115 * from ram to vram. 3116 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range 3117 * from vram to ram. 3118 * 3119 * If GPU vm fault retry is not enabled, migration interact with MMU notifier 3120 * and restore work: 3121 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict 3122 * stops all queues, schedule restore work 3123 * 2. svm_range_restore_work wait for migration is done by 3124 * a. svm_range_validate_vram takes prange->migrate_mutex 3125 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns 3126 * 3. restore work update mappings of GPU, resume all queues. 3127 * 3128 * Context: Process context 3129 * 3130 * Return: 3131 * 0 - OK, otherwise - error code of migration 3132 */ 3133 static int 3134 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, 3135 bool *migrated) 3136 { 3137 uint32_t best_loc; 3138 int r = 0; 3139 3140 *migrated = false; 3141 best_loc = svm_range_best_prefetch_location(prange); 3142 3143 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3144 best_loc == prange->actual_loc) 3145 return 0; 3146 3147 if (!best_loc) { 3148 r = svm_migrate_vram_to_ram(prange, mm); 3149 *migrated = !r; 3150 return r; 3151 } 3152 3153 r = svm_migrate_to_vram(prange, best_loc, mm); 3154 *migrated = !r; 3155 3156 return r; 3157 } 3158 3159 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) 3160 { 3161 if (!fence) 3162 return -EINVAL; 3163 3164 if (dma_fence_is_signaled(&fence->base)) 3165 return 0; 3166 3167 if (fence->svm_bo) { 3168 WRITE_ONCE(fence->svm_bo->evicting, 1); 3169 schedule_work(&fence->svm_bo->eviction_work); 3170 } 3171 3172 return 0; 3173 } 3174 3175 static void svm_range_evict_svm_bo_worker(struct work_struct *work) 3176 { 3177 struct svm_range_bo *svm_bo; 3178 struct kfd_process *p; 3179 struct mm_struct *mm; 3180 int r = 0; 3181 3182 svm_bo = container_of(work, struct svm_range_bo, eviction_work); 3183 if (!svm_bo_ref_unless_zero(svm_bo)) 3184 return; /* svm_bo was freed while eviction was pending */ 3185 3186 /* svm_range_bo_release destroys this worker thread. So during 3187 * the lifetime of this thread, kfd_process and mm will be valid. 3188 */ 3189 p = container_of(svm_bo->svms, struct kfd_process, svms); 3190 mm = p->mm; 3191 if (!mm) 3192 return; 3193 3194 mmap_read_lock(mm); 3195 spin_lock(&svm_bo->list_lock); 3196 while (!list_empty(&svm_bo->range_list) && !r) { 3197 struct svm_range *prange = 3198 list_first_entry(&svm_bo->range_list, 3199 struct svm_range, svm_bo_list); 3200 int retries = 3; 3201 3202 list_del_init(&prange->svm_bo_list); 3203 spin_unlock(&svm_bo->list_lock); 3204 3205 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 3206 prange->start, prange->last); 3207 3208 mutex_lock(&prange->migrate_mutex); 3209 do { 3210 r = svm_migrate_vram_to_ram(prange, 3211 svm_bo->eviction_fence->mm); 3212 } while (!r && prange->actual_loc && --retries); 3213 3214 if (!r && prange->actual_loc) 3215 pr_info_once("Migration failed during eviction"); 3216 3217 if (!prange->actual_loc) { 3218 mutex_lock(&prange->lock); 3219 prange->svm_bo = NULL; 3220 mutex_unlock(&prange->lock); 3221 } 3222 mutex_unlock(&prange->migrate_mutex); 3223 3224 spin_lock(&svm_bo->list_lock); 3225 } 3226 spin_unlock(&svm_bo->list_lock); 3227 mmap_read_unlock(mm); 3228 3229 dma_fence_signal(&svm_bo->eviction_fence->base); 3230 3231 /* This is the last reference to svm_bo, after svm_range_vram_node_free 3232 * has been called in svm_migrate_vram_to_ram 3233 */ 3234 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); 3235 svm_range_bo_unref(svm_bo); 3236 } 3237 3238 static int 3239 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, 3240 uint64_t start, uint64_t size, uint32_t nattr, 3241 struct kfd_ioctl_svm_attribute *attrs) 3242 { 3243 struct amdkfd_process_info *process_info = p->kgd_process_info; 3244 struct list_head update_list; 3245 struct list_head insert_list; 3246 struct list_head remove_list; 3247 struct svm_range_list *svms; 3248 struct svm_range *prange; 3249 struct svm_range *next; 3250 bool update_mapping = false; 3251 bool flush_tlb; 3252 int r = 0; 3253 3254 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", 3255 p->pasid, &p->svms, start, start + size - 1, size); 3256 3257 r = svm_range_check_attr(p, nattr, attrs); 3258 if (r) 3259 return r; 3260 3261 svms = &p->svms; 3262 3263 mutex_lock(&process_info->lock); 3264 3265 svm_range_list_lock_and_flush_work(svms, mm); 3266 3267 r = svm_range_is_valid(p, start, size); 3268 if (r) { 3269 pr_debug("invalid range r=%d\n", r); 3270 mmap_write_unlock(mm); 3271 goto out; 3272 } 3273 3274 mutex_lock(&svms->lock); 3275 3276 /* Add new range and split existing ranges as needed */ 3277 r = svm_range_add(p, start, size, nattr, attrs, &update_list, 3278 &insert_list, &remove_list); 3279 if (r) { 3280 mutex_unlock(&svms->lock); 3281 mmap_write_unlock(mm); 3282 goto out; 3283 } 3284 /* Apply changes as a transaction */ 3285 list_for_each_entry_safe(prange, next, &insert_list, list) { 3286 svm_range_add_to_svms(prange); 3287 svm_range_add_notifier_locked(mm, prange); 3288 } 3289 list_for_each_entry(prange, &update_list, update_list) { 3290 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping); 3291 /* TODO: unmap ranges from GPU that lost access */ 3292 } 3293 list_for_each_entry_safe(prange, next, &remove_list, update_list) { 3294 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", 3295 prange->svms, prange, prange->start, 3296 prange->last); 3297 svm_range_unlink(prange); 3298 svm_range_remove_notifier(prange); 3299 svm_range_free(prange); 3300 } 3301 3302 mmap_write_downgrade(mm); 3303 /* Trigger migrations and revalidate and map to GPUs as needed. If 3304 * this fails we may be left with partially completed actions. There 3305 * is no clean way of rolling back to the previous state in such a 3306 * case because the rollback wouldn't be guaranteed to work either. 3307 */ 3308 list_for_each_entry(prange, &update_list, update_list) { 3309 bool migrated; 3310 3311 mutex_lock(&prange->migrate_mutex); 3312 3313 r = svm_range_trigger_migration(mm, prange, &migrated); 3314 if (r) 3315 goto out_unlock_range; 3316 3317 if (migrated && !p->xnack_enabled) { 3318 pr_debug("restore_work will update mappings of GPUs\n"); 3319 mutex_unlock(&prange->migrate_mutex); 3320 continue; 3321 } 3322 3323 if (!migrated && !update_mapping) { 3324 mutex_unlock(&prange->migrate_mutex); 3325 continue; 3326 } 3327 3328 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu; 3329 3330 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 3331 true, true, flush_tlb); 3332 if (r) 3333 pr_debug("failed %d to map svm range\n", r); 3334 3335 out_unlock_range: 3336 mutex_unlock(&prange->migrate_mutex); 3337 if (r) 3338 break; 3339 } 3340 3341 svm_range_debug_dump(svms); 3342 3343 mutex_unlock(&svms->lock); 3344 mmap_read_unlock(mm); 3345 out: 3346 mutex_unlock(&process_info->lock); 3347 3348 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, 3349 &p->svms, start, start + size - 1, r); 3350 3351 return r; 3352 } 3353 3354 static int 3355 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, 3356 uint64_t start, uint64_t size, uint32_t nattr, 3357 struct kfd_ioctl_svm_attribute *attrs) 3358 { 3359 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); 3360 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); 3361 bool get_preferred_loc = false; 3362 bool get_prefetch_loc = false; 3363 bool get_granularity = false; 3364 bool get_accessible = false; 3365 bool get_flags = false; 3366 uint64_t last = start + size - 1UL; 3367 uint8_t granularity = 0xff; 3368 struct interval_tree_node *node; 3369 struct svm_range_list *svms; 3370 struct svm_range *prange; 3371 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3372 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3373 uint32_t flags_and = 0xffffffff; 3374 uint32_t flags_or = 0; 3375 int gpuidx; 3376 uint32_t i; 3377 int r = 0; 3378 3379 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, 3380 start + size - 1, nattr); 3381 3382 /* Flush pending deferred work to avoid racing with deferred actions from 3383 * previous memory map changes (e.g. munmap). Concurrent memory map changes 3384 * can still race with get_attr because we don't hold the mmap lock. But that 3385 * would be a race condition in the application anyway, and undefined 3386 * behaviour is acceptable in that case. 3387 */ 3388 flush_work(&p->svms.deferred_list_work); 3389 3390 mmap_read_lock(mm); 3391 r = svm_range_is_valid(p, start, size); 3392 mmap_read_unlock(mm); 3393 if (r) { 3394 pr_debug("invalid range r=%d\n", r); 3395 return r; 3396 } 3397 3398 for (i = 0; i < nattr; i++) { 3399 switch (attrs[i].type) { 3400 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3401 get_preferred_loc = true; 3402 break; 3403 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3404 get_prefetch_loc = true; 3405 break; 3406 case KFD_IOCTL_SVM_ATTR_ACCESS: 3407 get_accessible = true; 3408 break; 3409 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3410 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3411 get_flags = true; 3412 break; 3413 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3414 get_granularity = true; 3415 break; 3416 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 3417 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 3418 fallthrough; 3419 default: 3420 pr_debug("get invalid attr type 0x%x\n", attrs[i].type); 3421 return -EINVAL; 3422 } 3423 } 3424 3425 svms = &p->svms; 3426 3427 mutex_lock(&svms->lock); 3428 3429 node = interval_tree_iter_first(&svms->objects, start, last); 3430 if (!node) { 3431 pr_debug("range attrs not found return default values\n"); 3432 svm_range_set_default_attributes(&location, &prefetch_loc, 3433 &granularity, &flags_and); 3434 flags_or = flags_and; 3435 if (p->xnack_enabled) 3436 bitmap_copy(bitmap_access, svms->bitmap_supported, 3437 MAX_GPU_INSTANCE); 3438 else 3439 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); 3440 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); 3441 goto fill_values; 3442 } 3443 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); 3444 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); 3445 3446 while (node) { 3447 struct interval_tree_node *next; 3448 3449 prange = container_of(node, struct svm_range, it_node); 3450 next = interval_tree_iter_next(node, start, last); 3451 3452 if (get_preferred_loc) { 3453 if (prange->preferred_loc == 3454 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3455 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3456 location != prange->preferred_loc)) { 3457 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3458 get_preferred_loc = false; 3459 } else { 3460 location = prange->preferred_loc; 3461 } 3462 } 3463 if (get_prefetch_loc) { 3464 if (prange->prefetch_loc == 3465 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3466 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3467 prefetch_loc != prange->prefetch_loc)) { 3468 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3469 get_prefetch_loc = false; 3470 } else { 3471 prefetch_loc = prange->prefetch_loc; 3472 } 3473 } 3474 if (get_accessible) { 3475 bitmap_and(bitmap_access, bitmap_access, 3476 prange->bitmap_access, MAX_GPU_INSTANCE); 3477 bitmap_and(bitmap_aip, bitmap_aip, 3478 prange->bitmap_aip, MAX_GPU_INSTANCE); 3479 } 3480 if (get_flags) { 3481 flags_and &= prange->flags; 3482 flags_or |= prange->flags; 3483 } 3484 3485 if (get_granularity && prange->granularity < granularity) 3486 granularity = prange->granularity; 3487 3488 node = next; 3489 } 3490 fill_values: 3491 mutex_unlock(&svms->lock); 3492 3493 for (i = 0; i < nattr; i++) { 3494 switch (attrs[i].type) { 3495 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3496 attrs[i].value = location; 3497 break; 3498 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3499 attrs[i].value = prefetch_loc; 3500 break; 3501 case KFD_IOCTL_SVM_ATTR_ACCESS: 3502 gpuidx = kfd_process_gpuidx_from_gpuid(p, 3503 attrs[i].value); 3504 if (gpuidx < 0) { 3505 pr_debug("invalid gpuid %x\n", attrs[i].value); 3506 return -EINVAL; 3507 } 3508 if (test_bit(gpuidx, bitmap_access)) 3509 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; 3510 else if (test_bit(gpuidx, bitmap_aip)) 3511 attrs[i].type = 3512 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; 3513 else 3514 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; 3515 break; 3516 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3517 attrs[i].value = flags_and; 3518 break; 3519 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3520 attrs[i].value = ~flags_or; 3521 break; 3522 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3523 attrs[i].value = (uint32_t)granularity; 3524 break; 3525 } 3526 } 3527 3528 return 0; 3529 } 3530 3531 int kfd_criu_resume_svm(struct kfd_process *p) 3532 { 3533 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; 3534 int nattr_common = 4, nattr_accessibility = 1; 3535 struct criu_svm_metadata *criu_svm_md = NULL; 3536 struct svm_range_list *svms = &p->svms; 3537 struct criu_svm_metadata *next = NULL; 3538 uint32_t set_flags = 0xffffffff; 3539 int i, j, num_attrs, ret = 0; 3540 uint64_t set_attr_size; 3541 struct mm_struct *mm; 3542 3543 if (list_empty(&svms->criu_svm_metadata_list)) { 3544 pr_debug("No SVM data from CRIU restore stage 2\n"); 3545 return ret; 3546 } 3547 3548 mm = get_task_mm(p->lead_thread); 3549 if (!mm) { 3550 pr_err("failed to get mm for the target process\n"); 3551 return -ESRCH; 3552 } 3553 3554 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); 3555 3556 i = j = 0; 3557 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { 3558 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", 3559 i, criu_svm_md->data.start_addr, criu_svm_md->data.size); 3560 3561 for (j = 0; j < num_attrs; j++) { 3562 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", 3563 i, j, criu_svm_md->data.attrs[j].type, 3564 i, j, criu_svm_md->data.attrs[j].value); 3565 switch (criu_svm_md->data.attrs[j].type) { 3566 /* During Checkpoint operation, the query for 3567 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might 3568 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were 3569 * not used by the range which was checkpointed. Care 3570 * must be taken to not restore with an invalid value 3571 * otherwise the gpuidx value will be invalid and 3572 * set_attr would eventually fail so just replace those 3573 * with another dummy attribute such as 3574 * KFD_IOCTL_SVM_ATTR_SET_FLAGS. 3575 */ 3576 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3577 if (criu_svm_md->data.attrs[j].value == 3578 KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 3579 criu_svm_md->data.attrs[j].type = 3580 KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3581 criu_svm_md->data.attrs[j].value = 0; 3582 } 3583 break; 3584 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3585 set_flags = criu_svm_md->data.attrs[j].value; 3586 break; 3587 default: 3588 break; 3589 } 3590 } 3591 3592 /* CLR_FLAGS is not available via get_attr during checkpoint but 3593 * it needs to be inserted before restoring the ranges so 3594 * allocate extra space for it before calling set_attr 3595 */ 3596 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3597 (num_attrs + 1); 3598 set_attr_new = krealloc(set_attr, set_attr_size, 3599 GFP_KERNEL); 3600 if (!set_attr_new) { 3601 ret = -ENOMEM; 3602 goto exit; 3603 } 3604 set_attr = set_attr_new; 3605 3606 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * 3607 sizeof(struct kfd_ioctl_svm_attribute)); 3608 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; 3609 set_attr[num_attrs].value = ~set_flags; 3610 3611 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, 3612 criu_svm_md->data.size, num_attrs + 1, 3613 set_attr); 3614 if (ret) { 3615 pr_err("CRIU: failed to set range attributes\n"); 3616 goto exit; 3617 } 3618 3619 i++; 3620 } 3621 exit: 3622 kfree(set_attr); 3623 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { 3624 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", 3625 criu_svm_md->data.start_addr); 3626 kfree(criu_svm_md); 3627 } 3628 3629 mmput(mm); 3630 return ret; 3631 3632 } 3633 3634 int kfd_criu_restore_svm(struct kfd_process *p, 3635 uint8_t __user *user_priv_ptr, 3636 uint64_t *priv_data_offset, 3637 uint64_t max_priv_data_size) 3638 { 3639 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; 3640 int nattr_common = 4, nattr_accessibility = 1; 3641 struct criu_svm_metadata *criu_svm_md = NULL; 3642 struct svm_range_list *svms = &p->svms; 3643 uint32_t num_devices; 3644 int ret = 0; 3645 3646 num_devices = p->n_pdds; 3647 /* Handle one SVM range object at a time, also the number of gpus are 3648 * assumed to be same on the restore node, checking must be done while 3649 * evaluating the topology earlier 3650 */ 3651 3652 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * 3653 (nattr_common + nattr_accessibility * num_devices); 3654 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; 3655 3656 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3657 svm_attrs_size; 3658 3659 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); 3660 if (!criu_svm_md) { 3661 pr_err("failed to allocate memory to store svm metadata\n"); 3662 return -ENOMEM; 3663 } 3664 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { 3665 ret = -EINVAL; 3666 goto exit; 3667 } 3668 3669 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, 3670 svm_priv_data_size); 3671 if (ret) { 3672 ret = -EFAULT; 3673 goto exit; 3674 } 3675 *priv_data_offset += svm_priv_data_size; 3676 3677 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); 3678 3679 return 0; 3680 3681 3682 exit: 3683 kfree(criu_svm_md); 3684 return ret; 3685 } 3686 3687 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, 3688 uint64_t *svm_priv_data_size) 3689 { 3690 uint64_t total_size, accessibility_size, common_attr_size; 3691 int nattr_common = 4, nattr_accessibility = 1; 3692 int num_devices = p->n_pdds; 3693 struct svm_range_list *svms; 3694 struct svm_range *prange; 3695 uint32_t count = 0; 3696 3697 *svm_priv_data_size = 0; 3698 3699 svms = &p->svms; 3700 if (!svms) 3701 return -EINVAL; 3702 3703 mutex_lock(&svms->lock); 3704 list_for_each_entry(prange, &svms->list, list) { 3705 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", 3706 prange, prange->start, prange->npages, 3707 prange->start + prange->npages - 1); 3708 count++; 3709 } 3710 mutex_unlock(&svms->lock); 3711 3712 *num_svm_ranges = count; 3713 /* Only the accessbility attributes need to be queried for all the gpus 3714 * individually, remaining ones are spanned across the entire process 3715 * regardless of the various gpu nodes. Of the remaining attributes, 3716 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. 3717 * 3718 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC 3719 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC 3720 * KFD_IOCTL_SVM_ATTR_SET_FLAGS 3721 * KFD_IOCTL_SVM_ATTR_GRANULARITY 3722 * 3723 * ** ACCESSBILITY ATTRIBUTES ** 3724 * (Considered as one, type is altered during query, value is gpuid) 3725 * KFD_IOCTL_SVM_ATTR_ACCESS 3726 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE 3727 * KFD_IOCTL_SVM_ATTR_NO_ACCESS 3728 */ 3729 if (*num_svm_ranges > 0) { 3730 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3731 nattr_common; 3732 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * 3733 nattr_accessibility * num_devices; 3734 3735 total_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3736 common_attr_size + accessibility_size; 3737 3738 *svm_priv_data_size = *num_svm_ranges * total_size; 3739 } 3740 3741 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, 3742 *svm_priv_data_size); 3743 return 0; 3744 } 3745 3746 int kfd_criu_checkpoint_svm(struct kfd_process *p, 3747 uint8_t __user *user_priv_data, 3748 uint64_t *priv_data_offset) 3749 { 3750 struct kfd_criu_svm_range_priv_data *svm_priv = NULL; 3751 struct kfd_ioctl_svm_attribute *query_attr = NULL; 3752 uint64_t svm_priv_data_size, query_attr_size = 0; 3753 int index, nattr_common = 4, ret = 0; 3754 struct svm_range_list *svms; 3755 int num_devices = p->n_pdds; 3756 struct svm_range *prange; 3757 struct mm_struct *mm; 3758 3759 svms = &p->svms; 3760 if (!svms) 3761 return -EINVAL; 3762 3763 mm = get_task_mm(p->lead_thread); 3764 if (!mm) { 3765 pr_err("failed to get mm for the target process\n"); 3766 return -ESRCH; 3767 } 3768 3769 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3770 (nattr_common + num_devices); 3771 3772 query_attr = kzalloc(query_attr_size, GFP_KERNEL); 3773 if (!query_attr) { 3774 ret = -ENOMEM; 3775 goto exit; 3776 } 3777 3778 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; 3779 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; 3780 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3781 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; 3782 3783 for (index = 0; index < num_devices; index++) { 3784 struct kfd_process_device *pdd = p->pdds[index]; 3785 3786 query_attr[index + nattr_common].type = 3787 KFD_IOCTL_SVM_ATTR_ACCESS; 3788 query_attr[index + nattr_common].value = pdd->user_gpu_id; 3789 } 3790 3791 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; 3792 3793 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); 3794 if (!svm_priv) { 3795 ret = -ENOMEM; 3796 goto exit_query; 3797 } 3798 3799 index = 0; 3800 list_for_each_entry(prange, &svms->list, list) { 3801 3802 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; 3803 svm_priv->start_addr = prange->start; 3804 svm_priv->size = prange->npages; 3805 memcpy(&svm_priv->attrs, query_attr, query_attr_size); 3806 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", 3807 prange, prange->start, prange->npages, 3808 prange->start + prange->npages - 1, 3809 prange->npages * PAGE_SIZE); 3810 3811 ret = svm_range_get_attr(p, mm, svm_priv->start_addr, 3812 svm_priv->size, 3813 (nattr_common + num_devices), 3814 svm_priv->attrs); 3815 if (ret) { 3816 pr_err("CRIU: failed to obtain range attributes\n"); 3817 goto exit_priv; 3818 } 3819 3820 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, 3821 svm_priv_data_size)) { 3822 pr_err("Failed to copy svm priv to user\n"); 3823 ret = -EFAULT; 3824 goto exit_priv; 3825 } 3826 3827 *priv_data_offset += svm_priv_data_size; 3828 3829 } 3830 3831 3832 exit_priv: 3833 kfree(svm_priv); 3834 exit_query: 3835 kfree(query_attr); 3836 exit: 3837 mmput(mm); 3838 return ret; 3839 } 3840 3841 int 3842 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, 3843 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) 3844 { 3845 struct mm_struct *mm = current->mm; 3846 int r; 3847 3848 start >>= PAGE_SHIFT; 3849 size >>= PAGE_SHIFT; 3850 3851 switch (op) { 3852 case KFD_IOCTL_SVM_OP_SET_ATTR: 3853 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); 3854 break; 3855 case KFD_IOCTL_SVM_OP_GET_ATTR: 3856 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); 3857 break; 3858 default: 3859 r = EINVAL; 3860 break; 3861 } 3862 3863 return r; 3864 } 3865